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The question of a canonical quantization of the electromagnetic field as a system with two
primary constraints is analyzed. Attention is focused on the following aspects of the problem: 1)
the conditions on physical states; 2) the "old" and "new" Gupta formalisms; 3) the
interpretation of the operators a0, a0

+; 4) the vacuum in quantum electrodynamics. The starting
point for the analysis is Dirac's quantization recipe for systems with constraints. It is shown that
the Fermi formalism with a condition on the physical states is completely correct.
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Since the electromagnetic field is observable classically, it,
above all other fields, should be quantized according to the
canonical procedure. It is ironic that of the fields we shall
consider, it is the most difficult to quantize.

J. D. Bjorken and S. D. Drell
Relativistic Quantum Fields

1. INTRODUCTION

Although the electromagnetic field was the first dy-
namic system with an infinite number of degrees of freedom
to be subjected to quantization,' it seems that we still lack a
description of this procedure which is completely satisfac-
tory from the modern standpoint.

The difficulties in a quantum description of the electro-
magnetic field are rooted in a combination of the pseudo-
Euclidean nature of space-time and the property of gauge
invariance of the theory, i.e., in the presence of nonphysical
degrees of freedom for the vector potential AM(x). These
nonphysical degrees of freedom are allowed in the theory so
that it can be made explicitly relativistically invariant. In
classical mechanics, gauge invariance is eliminated by add-
ing to the equations of motion a suitable gauge condition,
e.g.,

turn theory, A^ (x) are operators which obey certain com-
mutation relations2

[All(x).Av(y)]-~igllvD(x-y) (1.2)

c A , - l = 0. (1.1)

t a is a metric tensor, and D is the commutation function of
a massless scalar field; i.e., it is assumed that the fields are
free), so conditions (1.1) cannot be transferred to these op-
erators. Specifically, if we apply the operator^ to (1.2) and
use (1.1), we find d^D(x — y) = 0, which is wrong. The
latter point was understood quite clearly by the creators of
quantum electrodynamics (QED). The only way to retain
condition (1.1) in the classical limit without running into
conflict with the postulates of quantum mechanics is to re-
quire that this condition hold only on the physical vectors of
the Hilbert space:

S=-= 0;

This is the relativistically invariant Lorentz gauge. In quan- This equality is written in the Heisenberg picture. Condition
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(1.3) is linked with the name of Fermi3"5 (Refs. 3-5 have
been translated into Russian6; see also Ref. 7 and Subsection
6.5 of the present paper). It was this condition which was
subsequently used by Dirac.8'9 The question of the accepta-
bility of this condition was raised during the development of
modern QED.

Several authors10"12 have stated that physical states
cannot be normalized in a formalism using condition (1.3)
(see the criticism in Subsections 4.2 and 6.4). Accordingly,
Gupta13 replaced this condition by the weaker condition

^^' (^phys -O (1.4)

(A l+ > contains annihilation operators). In the same paper,
Gupta13 formulated a rather lengthy quantization procedure
which incorporated condition (1.4). Gupta essentially pos-
tulated the existence of an auxiliary Hilbert space, to which
he then assigned an indefinite metric. The operation of tak-
ing the Hermitian adjoint was redefined (see Ref. 14 and also
Subsection 6.1 of the present paper). Immediately after the
appearance of Gupta's paper,13 Bleuler15 generalized it to
the case of interacting fields. It appears that Gupta subse-
quently recognized that an indefinite metric is inherent in
QED, and he rejected the artificial introduction of an auxil-
iary Hilbert space with a definite metric.16 Since the original
formalism13 also lacked an explicit relativistic invariance (it
has been asserted17 that is formalism is Lorentz-noninvar-
iant in general), Gupta devoted a separate paper18 to prov-
ing the relativistic invariance of his final construction. A
(harmless) deficiency of that construction is the presence of
vectors with a zero norm in the physical subspace. States of
this sort obviously cannot have a physical meaning. The
overall procedure is now referred to as "Gupta-Bleuler
quantization." The first version of this procedure1315 is the
one usually reproduced in textbooks.2'19'20 In their book,
Jauch and Rohrlich21 present both quantization schemes,
i.e., the schemes using conditions (1.3) and (1.4).

On the whole, a reading of the literature on this problem
does not leave the impression of complete clarity. This ques-
tion, however, is of more than methodological interest. Some
typical systems of this sort are Yang-Mills fields and the
gravitational field. A corresponding problem arises in the
quantization of a string. A Hamiltonian mechanics of sys-
tems with constraints has been developed, and general rules
for the canonical quantization of these systems have been
formulated, in an effort to construct a quantum-mechanical
description of gravity.22"24 According to the theory, electro-
dynamics is a system with two primary constraints. Below
we analyze the problem of canonical quantization of the
electromagnetic field in detail.

Notation. The metric g^ ( H ) is adopted.
The Greek indices run over the values 0, 1,2, 3; the Latin
indices run over the values 1, 2, 3, unless otherwise stipulat-
ed. A streamlined notation is used for differentiation opera-
tors, <9M = d/dx*, and for the d'Alembertians, D s - <92

= — g*vdpdv. Repeated Greek indices which take on iden-
tical values mean a summation with the appropriate metric
tensor, e.g., q^xli=gflvqllxv = q^x? =qx. Physical state
vectors are denoted by <I>, the physical vacuum by 4>0, and
the mathematical vacuum by ip0. States generated by the
operators aQ

+,a3
+ = a^ (q)qi/\q\ are called states with

"time-like" and "longitudinal" photons. The quantities 8ik,

5f, <5 v̂, <5* are Kronecker deltas; {,} are classical Poisson
brackets; and {x',pk } = Sk. We are using the Heaviside (ra-
tionalized) system of units. Everywhere we are setting
ft = c = 1; e is the electric charge.

2. CLASSICAL THEORY

2.1. Lagrangian formalism

The dynamics of a free electromagnetic field is specified
by the Lagrangian functional density

(2.1)

where F^ =d^Av - 3vAfl and AT"1*"7 =gfpgva -gvpf.
The tensor F^v is invariant under gauge transformations
•^fi (•*) - ^ / i (•*) + 9^ A (x), where A is an arbitrary function
of the coordinates. In other words, the theory is invariant
under an infinite-dimensional transformation group, and ac-
cording to Noether's second theorem25 an identity relation
holds among the equations of motion. This assertion means
that there are fewer equations of motion than there are un-
knowns; i.e., the time evolution of some of the variables is
not contained in (2.1). The Langrange equations of motion
which follow from (2.1) are

o, (2.2)

and the identity relation which we just mentioned among the
four equations in (2.2) for the four functions A is
dfldvFflv=0{ the Noether identity). Gauge invariance is eli-
minated by supplementing (2.2) with requirement (1.1).
The rest of Maxwell's equations (dpF^ + d^F^
+ dvFp)i = 0) hold identically for arbitrary A^.

2.2. Hamiltonian formalism

Gauge invariance complicates making the switch to a
Hamiltonian formalism. If L is the Lagrangian, we need to
solve the N equations

Pi-
, q) 0 = 1, 2 . . . .A'), (2.3)

for the velocities q and then eliminate them from the expres-
sion H =p, q' — L (q,q) in order to make this switch. System
(2.3) can be solved only if the matrix

r
1 a =

(2.4)

is nondegenerate. This is not the case in electrodynamics,
where, according to (2.1), the matrix (2.4),

iv-OvOo (2.5)

is degenerate since, being diagonal, it has a zero on its diag-
onal: r ° ° = 0. It is this circumstance which leads to the ap-
pearance of constraints.24 When Eqs. (2.3) are solved, the
velocities drop out of some of the equations, and they con-
vert into relations between coordinates and momenta of the
type

<P*(?. P) = 0 (k = 1, 2, . . ., s, s<N), (2.6)

which are called "constraints" (the functions <pk themselves
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are also called "constraints"). Dirac24 carried out a general
analysis of systems of this sort. For electrodynamics, Eqs.
(2.3) are

^ i f ; F*°- (2-7)
from which we conclude that one of the canonical momenta
77̂  is zero (a primary constraint).

n° = 0. (2.8)

This is how the presence of nonphysical degrees of freedom
is manifested in the Hamiltonian formalism. Calculating the
Hamiltonian, we find

//„=-- ] d 3 . r [ y ( E 2 + H 2 ) - / l 0 d i v E - i :iM0], ( 2 9 )

Ek = Fh°, H 2 jFlk, divE = d,tE
h (i. k -^ \ , 2. 3).

By virtue of (2.8), and also since the Hamiltonian formalism
must not contain velocities, the last term in (2.9) is usually
discarded. We now need to ensure that the dynamic system is
noncontradictory, i.e., that constraint (2.8) holds at all
times and does not contradict the equations of motion. For
this purpose we need the equality TT° = 0. Calculating
TT° = {w0, HO} = divE, where

3. QUANTUM THEORY

Going over to a quantum description of the dynamic
system reduces to replacing the canonical variables q,p by
the operators q,p in all the expressions. These operators obey
the commutation relations

— pq=i{g. p). (3.1)

{ / • * }
6rr'1 (x) l 'Ai (•£) /

are the classical Poisson brackets, we find the new condition

div E = 0. (2.10)

This recipe is valid only in Cartesian coordinates. It is unam-
biguous if there is no problem wifh the ordering of the opera-
tors in the Hamiltonian.8 The presence of constraints aggra-
vates the difficulties.22"24 Electrodynamics is a typical
system with constraints. In addition to the physical vari-
ables, it also contains nonphysical variables. There are two
ways to deal with them in quantum theory.

1) Banish all nonphysical variables. In this approach,
the theory loses its explicit covariance.

2) Allow nonphysical as well as physical degrees of
freedom. This approach is usually preferred because of its
explicit relativistic invariance.

3.1. Elimination of nonphysical variables

To illustrate the first of these methods, we consider the
example of the scalar electrodynamics specified by the La-
grangian

X=-j Flv + [(9, + ieAv) Ol [(<V + ieAJ O]* - V (2*O»),
(3.2)

where V describes the self-effect of the complex field 4*. It is
convenient to transform from O to a pair of real scalar fields:
<p = (<p, + i<p2)/4l. We will treat these fields as constitut-
ing a two-dimensional vector <jp = (<p,,ip2). We can then re-
write (3.2) as

Since the electric field Ek = vk is a canonical momentum
according to (2.7), Eq. (2.10) is also a constraint (asecond-
ary constraint). There are no other constraints, since we
have {divE, Ha } = 0. For the analysis below it is important
to determine the values of the Poisson brackets of both con-
straints. We have W°, divE} = 0; i.e., the constraints are in
an involution (primary constraints). This fact plays an im-
portant role in the derivation of quantum theory,24 since where T = - ir2, r2 is a Pauli matrix, and (T<p), =

(3.3)

constraints of this sort may be thought of as certain general-
ized momenta. Conditions (2.8) and (2.10) cannot be ex-
tended to operators without running into conflict with the
canonical commutation relations.7'24

It was mentioned above that the presence of constraints
in the theory reflects the presence of nonphysical variables.
The number of nonphysical variables (if there are no second-
ary constraints) is equal to the number of constraints. Con-
sequently, an electrodynamics formulated in terms of a vec-
tor field A^ is a system with two nonphysical degrees of
freedom. The two other physical components of A^ describe
two possible polarization states of the photon. The fact that
the solutions of equations of motion (2.2) contain only a
single arbitrary function means that the time evolution of
one of the nonphysical degrees of freedom is determined en-
tirely by the time evolution of the other.

The introduction of an interaction with charged fields
does not cause any substantial changes in this analysis.8>9'24

The theory retains its gauge invariance, and in the Hamilto-
nian formulation the dynamics is again characterized by the
presence of two primary constraints:

Switching to a Hamiltonian formalism,

ox OX

we find

H •- j d ^ { 1 (E* - - IP) - I p* •;- 4- [(dh , eAh T) <pp

G dhE
h

0. d i v E (2.11)

{jp = — dJf VdA1* is the 4-current). In other words, only
the secondary constraint changes.

(3.4)

divE — /„. £"- F"°. (3.5)

As we have already mentioned, a primary constraint re-
mains the same (TT° = 0) when an interaction is incorporat-
ed, while a secondary constraint changes. In place of (2.10)
we have ir° = G = 0. Here ir° and G are generators of gauge
transformations. Calculating the Poisson brackets of G with
p and cp, we see that G (more precisely, its density) is a
generator of rotations in a plane. To get a better understand-
ing of the physical content of this model, we single out the
physical variables26 from among the canonical variables cp,
p, and Ak, Ek. We transform from the Cartesian variables
cpx, cp2 to the polar variablesp, d (p2 = cp2) with the canoni-
cal-conjugate momenta pp = (<p,p)/p,p0 = (ne,p)p
= p Ty (ne is a unit vector). We resolve the electromagnetic

fields into components:
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E'L

dhah -=0,

where A= — dkcf = dkdk. It is clear that ak, ek and a,n-
form pairs of canonically conjugate variables. It follows
from (3.5) that we have G = — Aire + epe, so according to
(3.6) and the definition ofp, 6 the gauge-invariant variables
are the pairs ak ,e

kp,pp, while 6 and a change under displa-
cements generated by G: a -> a + Aco, d->8 — eco. Here co (x)
is an arbitrary infinitesimal function. It follows from these
relations that the combination A~'a + 6 /e is gauge-invar-
iant. Consequently, the two "nonphysical" variables a and
6, which do vary under gauge transformations, are actually
linear combinations of a physical component and a nonphy-
sical component. We accordingly transform to the new
canonical variables 77, pv and 1?, pe:

•» - — A - '

1

1 , (3.7)

We obviously have/?e = G/2, and t?,/?e form a pair of non-
physical variables, while 77, /?,, form a pair of physical vari-
ables (they do not change under gauge transformations)."
We write Hamiltonian (3.4) in terms of the new variables:

1 r
2 L

(Pn + TO)2 I
iV J

(3.8)

As we have assumed, the nonphysical degree of freedom 1?
turns out to be cyclic. It has been shown26 that the phase
space of the variables p, pp is a cone which has been rolled
out into a half-plane.

Although we have singled out the physical variables, we
cannot make the switch to operators in (3.8), since we are
using curvilinear coordinates. Strictly speaking, further-
more, we cannot eliminate the nonphysical degrees of free-
dom before performing the quantization, e.g., by setting
them equal to zero in (3.8), since the operations of eliminat-
ing variables and quantization generally do not com-
mute.26'27 In order to derive the correct expression for the
energy operator without auxiliary nonphysical degrees of
freedom, we need to go back to Eq. (3.4), written in terms of
Cartesian coordinates, replace the canonical variables by op-
erators and recall that according to the general theory,22"24

the constraints vanish only on vectors <J> of the physical sub-
space:

,i°<T> • <>. G ' O - 0 (6" (3.9)

We accordingly write the term E2 in (3.4) in the form see
(3.6)]

)-|= \ d3x(e2 — nAix). (3.10)d-VE-

In integrating by parts in (3.10), we ignored the terms out-
side the integrals. Noting that the zeroth component of the
current isy'o = — dJ¥/dA0 = — epTq> = — epe, and noting
that we have ir= — A~'( — epe + G),according to (3.7),

we draw the following conclusion: When we use (3.10) and
conditions (3.9), we can describe the physical Hamiltonian
Hphys corresponding to (3.4) by

s = J E P - /0
(3.11)

where

The third term here describes the Coulomb interaction of the
charges. We have written ak in place of Ak in (3.11), since
the "nonphysical" component of the vector Ak (i.e., a ) is
assigned to the field phase ^.where it combines with 6 and
converts into 77. In making the transformation to operators
in (3.4) and in the constraints, we have no problem with
ordering, so the operator (3.11) is the Hamiltonian which
we have been seeking.

3.2. Fixing of nonphysical variables (choice of gauge)

If we wish to retain the explicit relativistic invariance of
the theory after we quantize, we need to construct a formal-
ism which involves all four components of the vector A^ (x),
including the nonphysical components. However, nonphysi-
cal canonical variables in classical physics are, generally
speaking, totally arbitrary,24 so we must ask just which oper-
ators should be associated with them in a quantum theory.

In quantum theory, in contrast with the classical case,
condition (3.1) for nonphysical variables q, p itself imposes
a definite restriction on these variables, since not every pair
of operators will satisfy this condition. Requirement (3.1)
means that nonphysical variables, like physical variables,
are related at different times by a unitary transformation, the
generator of which for the former is completely arbitary.2) It
follows that in deriving a specific theory we must fix the
nonphysical variables, i.e., specify their time evolution, in
some way. Obviously, the fixing of a law of this sort violates
the explicit gauge invariance of the theory: This approach is
equivalent to choosing a gauge. On the whole, the theory of
course remains gauge-invariant in the sense that a change in
gauge condition does not affect the physics (the situation
here is analogous to the choice of a coordinate system in
mechanics). It would be desirable to construct the theory in
such a way that the physical and nonphysical components of
A^ are formally equivalent. Corresponding to this goal
would be the addition to the Lagrangian .if in (2.1) (or
(3.2) ] of some term ££" which lifts the degeneracy of matrix
(2.5) (see Subsection 6.3 regarding the requirements im-
posed on Jf'). We consider the specific example with28

(3.12)

We thus assume

X

The added term lifts the degeneracy for any parameter value
I" ~' 7̂  0, and it violates gauge invariance. The case J" = 1 cor-
responds to the Feynman gauge. For an arbitrary g, one
would speak in terms of the class of Fermi gauges. This class
of gauges was first introduced by Heisenberg and Pauli.28 In
the case g = 1, the addition cancels out with the second term
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in (2.1), and the equations of motion take the particularly
simple form

• ^ii = -;V. (3.13)

so we will set £ = 1 at this point.
3.2.1. Free electromagnetic field. We first consider a free

field. We construct a Hamiltonian formalism. We have

L, (3-14)

q')- ( 3 - 2 5 )

# 0 = j d3* (jiMn-.se— 'I')

A}.

(3.15)

In order to write Ho in a form convenient for making the
transformation to creation and annihilation operators, we
express the functional (3.15) in terms of potentials:

(3.16)

WithyM = 0, the vector A^ satisfies d'Alembert's equation,
so we have

where

(q) i
d3?

(3.17)

(3.18)• ( 2 n ) » 2 o ) , ' < " < / - ! M l . H - " •

Substituting expression (3.17) into (3.16), and carrying out

the necessary integrations, we find

We now go over to a quantum description. Since the
classical Poisson brackets of the canonical variables AVi,ir

v

are

we have the following result for the corresponding opera-
tors, according to (3.1):

A A
t A I \ V / \1 f& V C / \ f\ fl / IJ A 4 t

Using (3.14) in (3.21), and noting that the fields at points
separated by a space-like interval commute, we conclude
that the following commutation relations hold for the fields:

Commutation relations for the operators fiM ,a+ follow from
(3.22) if the latter are expressed in terms of A^ by means of

an (?) = (X«+). A,,). al= — (x^1. An). (3.23)

where Xg±) = exP( +«7*) are solutions of d'Alembert's
equation with positive (x\+ ') a n ^ negative (xl ~') energies
which have the properties (x<q±)>X<q±)) — ±<5(q>q'),
(x\±s>'X^^- I n (3.23) and in the equations which follow,
we are using the standard scalar product

(7.i. X2) = * _,

and the "invariant" 5-function
X (q - q'). Using (3.22)-(3.24), we find

(3.24)

The energy operator of a free field is found from expression
(3.19) by making the substitutions a*

#o=-y

>a^ ,

(3.26)

The basic difficulties of QED stem from (3.25) and
(3.26).

1) According to (3.25), the theory has states with a
negative norm (since we have [ao(q), ao

+(g')] =
- <5(q,q') and for if>t = Sdfj,(q)f(q)aJ (q)tp0 we have the

inequality ( ^ i ) = U\\2 = - Sd[i(q)[f(q)\2 <0 if
(il>0,t/j0) = \,ao(q) if>0 = 0).

2) According to (3.26), states with a negative energy
may appear (since the form a+a^ = a0

+a0 — a£ak is of
variable sign).

Both these difficulties stem from time-like photons. We
can show that if we restrict the discussion to the physical
subspace <^phys of the complete Hilbert space
(JFphys C i H , which is fixed by conditions (3.9), and if we
correctly define the operation of taking the "Hermitian ad-
joint" for the operator a0 (Subsection 4.2), we can eliminate
the difficulties. According to (3.14) we have

n(q)(L(g)e-i"x-b(q)eio!C), (3.27)

where

£ (?) = 9VH (9). ?2 = 0. (3.29)

Using (3.27) and (3.28), we can rewrite conditions (3.9) as

L(q)<b = 0, Z+(9)(p = 0. (3.30)

Equations analogous to (3.23) can be used to derive (3.30).
By virtue of the equality

?')] = 0 (3.31)

conditions (3.30) do not contradict each other.
It is now a straightforward matter to show that the

norm of vectors <t>&^"phys is always positive and that the
energy of corresponding states is nonnegative. Specifically,
the only states which could have a negative norm are those
which have an odd number of time-like photons. States of
the type (a0

+ )"$, however, do not belong to ^ p h y s , since
according to (3.25) and (3.29) we have

and L(^)(ao
+)"4>7^0,n>l.In other words, the first of con-

ditions (3.30) does not hold. If we ignore the second condi-
tion in (3.30), we^see that nonphysical states with a zero
norm of the type (Z. + ) " <J> are retained in the theory. After
they are eliminated, we are left with exclusively states with a
positive norm.

To demonstrate that the physical subspace has no nega-
tive-energy states, we write the operator h = — (1/2) (fi^
Qfi + Qp ^/J+ ) m t r i e form

h(q) = ~ [h (?) a\ (q) -|- a\ (q) a\ (q)}
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j[L+(q), ao(g)]+j[L(q), (3.33)

wherea3(q) = (.q,&(q))/vg,(<lA(.q)) = 0. Using commu-
tation relations (3.32) and their complex conjugates
[L + ,aM ] = q^S, we find that the commutators jcancel out
in (3.33),andthetermscontainingtheoperatorsZ,,Z, + van-
ish on physical vectors. Only physical photons thus contrib-
ute to the energy; nonphysical photons make no contribu-
tion even to the energy of the ground state (an infinite
constant which appears after h is reduced to normal form).

This essentially completes the proof that the theory is
self-consistent Nevertheless, we wish to verify that the
Hamiltonian Ho does not send physical vectors outside the
physical subspace in the course of the motion. This circum-
stance follows from the equalities

lL(q), Ho) = (•>„£ (<?), [L* (q). Ho] r.-. - « , / > (q), (3.34)

according to which we have LH0<b = L + H0<b = 0. The
theory thus satisfies all the physical requirements.

3.2.2. Interacting electromagnetic field. We have been
discussing the quantization of a free electromagnetic field. It
is easy to see that incorporating an interaction does not
change the quantization procedure. Specifically, the La-
grangian of (for example) spinor electrodynamics is2

X^ — l / ^ v + ;{•(!(?„ —e4M)Yn^-ro»H-. (3.35)

The modified Lagrangian J£ + 3" in (3.12) with £ = 1
leads to equations of motion (3.13), from which it follows,3

by virtue of the conservation of electric current, dj^ = 0,
that the operator d^A^ satisfies d'Alembert's equation
Ud^A^ = 0 . Equations (3.14), (3.20), and (3.21) remain
completely the same. Consequently, the equations for the
constraints remain superficially the same:

We have already seen, however, that secondary constraint
(2.10) changes when an interaction is incorporated [see
(2.11) and (3.5)]. We can show that there is no contradic-
tion here. Using the equation of motion Ao + dk d

k A ° =j °,
we find

0hE
h- f - dh (d"A° -3°A1'} - /«

f—'A* — dhAh — f- (3.36)

We simply need to verify that the evolution operator Uu,
= exp[ — iH{t — t') ] does not send physical states outside

JTphys; i.e., we need to verify that ^"phys is an invariant sub-
space under the application of the operator Uu •. However,
this point follows in a trivial way from the fact that the theo-
ry is noncontradictory:

(3.37)

[n°. #] = i(c1ivE-/0)»0,

[div E —;0. H] = idhd
kn°»(J,

since, according to (3.37), we have HQ>e£Tphys phys

The symbol~in (3.37) means equality on vectors from
^ p h y s •

Let us take a brief look at the form of the conditions on
physical states in various pictures. In the Heisenberg pic-
ture, physical vectors are fixed by condition (1.3). Since the
operator d^AM satisfies d'Alembert's equation, (1.3) holds

if only two conditions are satisfied at the time t = 0: d^A^ <t>
= 0,3^AM<P = 0. By virtue of (3.37), these conditions are

equivalent to the two conditions in (3.9) in the Schrodinger
picture [even when an interaction is incorporated; see
(3.36) ]. The relationship between Fermi quantization with
the sole condition (1.3) and quantization by Dirac's rec-
ipe,24 with the two conditions in (3.9) on the vectors $ , thus
becomes clear.

In order to write (3.9) in the interaction picture, we
need to transform to free fields in the equations for ir° and
G = SkE

k —j °. In other words, we need to use the equation
A ° + dkd

kA ° = 0 in (3.36). As a result we find29

G---.n=-d»AVL-f>. (3.38)

These are the constraints in the interaction picture. It fol-
lows that condition (1.3), which hold for arbitrary x°, is
rewritten in the following form in the interaction picture29'30

> = 0. (3.39)

The reason is that according to (1.2) and (3.22) with x° = 0
we would have D(x) = 0 and D(x) = 8{x).

4. STRUCTURE OF THE HILBERT SPACE

4.1. Hilbert space in the Heisenberg-Pauli-Fermi gauge

If all the components of the vector AM are allowed in the
formalism, the structure of the complete Hilbert space is
determined by commutation relations (3.25) for the opera-
tors a^ a +, and it bears the imprint of the structure of Min-
kowski space. We will now prove these assertions.

We first consider the question of the vacuum. If the
theory is given by Eqs. (3.25) and (3.26), without any re-
strictions on the state vectors, the mathematical vacuum ip0

is formally fixed by the conditions

a!i(q)% = 0. (4.1)

For the operators ak (q), k = 1,2,3, requirement (4.1) is ob-
vious. The only point which might raise some doubt is the
assumption that (4.1) also holds for ao(q) (see Subsection
6.4). However, this circumstance seems unavoidable if we
postulate that the vector ip0 is relativistically invariant, since
the Lorentz-transformed operator ak may also contain a ze-
roth component. A difficulty (an imaginary one) is caused
by the anomalous sign of the commutator [ao,a^ ] = — 8 in
comparison with the commutators of spatial components,
since it would appear that a0 should play the role of a cre-
ation operator. Actually, the question reduces to the defini-
tion of the operator a0

+ which is the conjugate of a0. It is easy
to see that if a^ (q) is the operator which performs multipli-
cation by the function a^ (q) then according to (3.25) we
would have 2M (q) = — g^vPq8/8av{q) [see (4.7)] and
condition (4.1) would hold. This form of the operator a^ is
dictated by relativistic invariance.

We thus postulate the existence of a Lorentz-invariant
cyclic vector tp0 which satisfies condition (4.1). The vectors
which are obtained by applying all possible operators of the
type (aM

+ )", n = 0,1,2,... to it form the basis of the Hilbert
space. Among the basis vectors there are some which have a
negative norm, since the Hilbert space has an indefinite met-
ric. With physical applications in mind, we resolve the vec-
tor a (q) along the basis vectors31:
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where

ef (q) 9, = e$> (q) ^ = 0, <#> (?) ej» (?) = - 8 1 * , (4.2')

9 « = f j = 0, g i i?~=2W| (i, * = 1 , 2 ) .

In other words, if ̂  = («,;0,0,?) is a standard vector, then
we have gM = (« , ; 0,0, — q). Since there are isotropic vec-
tors among vectors (4.2), they form a nonorthogonal basis.
We construct the operators

ai(q) = 4° (q) «n (?). ^ (9) = ?nS (?) - K(q) = g^ (q)

(4.3)

and their Hermitian adjoints a,+ , L +,K+. The operators
AT,̂ T+ obviously have the same properties as the operators
L,L+:

(q), K* (q')] = 0.

, q').

and

K+ (q')] = [K (q),

, q').

(4.4)

(4.5)

Applying the operators a,+ ,L+,K+ to ^0, we find that the
Hilbert space 3f breaks up into subspaces
^ ^ . J F ^ ^ ^ ^ J r ^ , ^ , , . The basis of sub-
space 3fy is found by applying to if>0 the operators 2,+ ,
^ofe^y, the bases 3Vt and 3ffn are found by applying the
operators L+,K+, respectively. The basis J%?vS is found by
applying the operators (S,+ )n(L+)m, n>l, m>\, etc. The
vectors <piz3fsp have a positive norm, while the norms of (for
example) vectors from 3f\,3f\,3fW'*^vv a r e ze ro—by
virtue of (3.31), (4.1), (4.4), and the commutation rela-
tions which follow from (4.2'),

[at(q), L+(q')] = ) , K* (q1)}

- [at (q), L (q')) = [at (?), K (?')] = 0. (4.6)

The subspaces We and §fv are not orthogonal by virtue of
(4.5).

It is now clear just which states are eliminated by condi-
tions (3.30). The first of them, by virtue of (4.1), (3.31),
(4.5), and (4.6),^eliminates states which are generated by
the operators K+. In other words, the subspaces
3?v ,<#%,, ,&?& ydf^j, are cut out. We thereby obtain a Hil-
bert space in Gupta's formalism: S^Q = 3?'^ ® Jif^ © ^"q>t,-
Vectors from the subspace SV^ © 3f '^ are orthogonal to
vectors <p and have a zero norm. The second of conditions
(3.30) eliminates nonphysical states with a zero norm. We
are left with the subspace of states of physical photons, off^,,
with a positive-definite matrix. To find its structure, we find
the physical vacuum.

4.2. Vacuum in the Fermi formalism

In the representation in which a* (q) is the operator
which performs multiplication by the function a^iq) the
operator 3M (q) is, according to (3.25), the operator which
performs a variational differentiation:

Using

(4.7)

(4.8)

we can rewrite conditions (3.30) for the vacuum vector 4>0:

^ o = O, ffua|l(g)0>0 = 0. (4.9)

Furthermore, the vacuum must satisfy the condition that
there are no physical photons:

<M<7)<J>o = (1 = 1,2). (4.9')

The validity of representation (4.8) can be verified directly.
Since we have q^a^ (q) =cog (a0 — a3) for a standard vector
q, and since we have a0 = — f3q S/Sa0, a3 = f3q S/8a3, ac-
cording to (4.7), we find3' q^a^ {q) = — f5qaq {8/8aQ + 8/
8a3) = — figq^S/Sa^^q). Transforming to the variables
a~(q) =^a M (? ) , a+(q) =qllafl{q), 8a~ (q)/8a+ (q1)
= 0 in (4.9), we find the pair of equations

6a* (?) er(q)<bo = O. (4.10)

Using (4.9'), we see that the solution of the first of these
equations is an arbitrary functional of a~(q); i.e.,
&0 = F[a~(.q)]. The second condition in (4.10) fixes the
functional F:

Solution (4.11) can be interpreted easily: The physical vacu-
um is a state which has no transverse (physical) photons
with an indefinite number of superimposed time-like and
longitudinal photons for each value of the vector q, q1 = 0.
The state <l>0 is unrenormalizable. However, this circum-
stance is not a flaw of the theory, since it is clear that the
unrenormalizability of <t>0 is of the same nature as the unre-
normalizability of states with a definite momentum in scat-
tering theory (monochromatic plane waves—generalized ei-
genvectors32). Just as unrenormalizability of plane waves in
scattering theory can be eliminated by making a transition to
a space of finite volume, we can get rid of the unrenormaliza-
bility of <$0 here by (for example) transforming to a
"smeared" S-function <5U)^2m-)-1/2exp( -x2/2e),
e>0. The theory thus allows nonphysical states with a zero
norm, but these states are harmless. At the end of the calcu-
lations, we can let e go to zero. It was shown by direct calcu-
lations in Ref. 11 that unrenormalizability of <J>0 does not
affect the physical results.

A different realization of algebra (3.25) is ordinarily
used in the literature10-12'2^21:

at(q) -* at(q),

P.,

Ms) -*P,-

ao(q)^ao(
(4.12)

This representation of algebra (3.25) violates the explicit
relativistic in variance of the theory (there is no equality
0^1^0 = 0). Accordingly, the solution <t>0 of the equations
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which is given by21

5>0 - c exp ( j du (?) a3 (?) a0 (?)) , (4.14)

is also not invariant under Lorentz transformations. The
vector <t>0, like 4>0, is unrenormalizable. In contrast with
realization (4.7), realization (4.12) yields an unrenorma-
lizable vacuum (4.14) even if we discard the second condi-
tion in (3.30) or in (4.13) ]. It was the unrenormalizability
of specifically $ 0 (Refs. 10-12 and 20) which motivated the
search for new quantization paths.13'30 It is clear from this
discussion that <t>0 can be identified with the vacuum state
only as a result of a misunderstanding.

Armed with the vector 4>0, we can find a basis in the
physical subspace. This basis is formed by vectors of the type

4.3. Scalar product in Hilbert space

Up to this point we have adhered to the traditional ap-
proach to Hilbert space in QED, without planning the defin-
ition of a scalar product in it. This question deserves a sepa-
rate discussion.

Let us examine the quartet of Hilbert-space vectors
ip^ = a+ (q)ip0 as an example. These vectors form a vector
of Minkowski space. The element which is the conjugate of
ip^, i.e., ifi*aM {q), also transforms as a vector under Lorentz
transformations. Consequently, a Lorentz-invariant scalar
product of vectors of this sort can be formed only by means
of the metric tensor gMV e.g.,

(tfi. 1>.)=-*|lv0l>i,.. W

X (r|)0, o(l (?) a+
v (q

1) xy = 4 j dp. (g) 41 (?) ^2 (q).

(4.15)
Expression (4.15) incorporates relation (3.25). Generaliz-
ing this definition to multiphoton states, we conclude that
the Lorentz-invariant norms of all elements of 3ff are posi-
tive. This mathematical apparatus must be used with cau-
tion. For example, it may turn out that the norm of the state

is Lorentz-invariant. On the other hand, we have | |^ t | | = 0,
contradicting the assertion that all invariant norms are posi-
tive. Actually, L + (q) is a creation operator in basis (4.2).
Indeed the metric tensor gAB in this basis is

V ^

(1

0

0

1

1 B

0

— 1

0
(1

pAeti

0
0

1
II

°
n'

A, = 0, 1, 2 ,3 . (4.16)

In other words, we have L+{q) = ^Ico^a^
(q)=42coqZi+ (q), so that (ip°L, ip°L), where if>°L = 6o

+^o> is
not invariant, but it does transform as the component g°° of
the tensor Jf48. In this connection we wish to emphasize that

although Lorentz-invariant norms are positive-definite the
Hilbert space is pseudo-Euclidean, and nonphysical states
are to be eliminated. The circumstance that the concepts of
covariant and contra variant vectors (covariant and contra-
variant under transformations in Minkowski space) should
also be introduced for elements of the Hilbert space in elec-
trodynamics was first demonstrated by Konisi and Ogi-
moto33 (see also Ref. 34).

4.4. Is the Fermi formalism contradictory?

One of the proofs of the contradictory nature of the
second condition in (3.30) is the following discussion,14

which is taken from Bogolyubov and Shirkov's book,2 where
this proof is given in coordinate space. The vacuum is a state
without photons, so a corresponding vector is annihilated by
annihilation operators. Since the vacuum is a physical state,
we have the following results according to (3.30):

L*(g)% = 0. (4.17)

Applying the operator K(q') from (4.3) to (4.17), and us-
ing (4.1) and (4.5), we find the contradiction

K (?') L* (?) ^0 = - 2co|6 (q, q') i|:0 = 0 (4.18)

(we find the equality if>0 = 0 ) . The error in this conclusion
stems from the identification of the mathematical vacuum
ip0, defined by condition (4.1), with the physical vacuum
<I>0, given by (4.11). The assertion that the physical vacuum
must obey condition (4.1) is totally arbitrary and does not
follow from the formalism. The vector <I>0 must, first of all,
satisfy the condition that there are no physical photons,
(4.9'). Another requirement which it must meet is that con-
ditions (3.30), which are common to all the vectors of the
physical subspace, are satisfied. Clearly, when <f>0 is defined
in this way we run into no contradiction: The operators a,
commute with L,L + [see (4.6)], and Eq. (4.18), in which
the replacement ip0 -»<I>0 has been made, become inapplica-
ble, since we have K(q)<t>0=£0, according to (4.5) and
(4.11).

Another "proof that condition (1.3) is contradictory
is based on the assertion that commutation relations (1.2),
taken between physical states,

((D, ), Av(y))®)=id,D(x-y)(®, <»), (4.19)

do not hold, since the left side of (4.19) is zero. The latter
assertion is wrong because in its proof the operator d^A^ in
the expression (4>,(9p/4M^v4>) was brought over to the left
bracket, and this manipulation is generally illegal. Pursuing
this logic, we easily reach the conclusion that (for example)
states with a definite momentum are not allowed in quantum
mechanics. Let us assume^p =prpp and \x,p] = i. We then
have

(4.20)

from which we conclude that the right side of (4.20) is zero.
These arguments are incorrect because (first) the states if>p

are unrenormalizable and (second) we have the obvious in-
equality (i/rp,pxi/>p)^p(if/pxt/>p): Whenp is brought over to
the left bracket in the coordinate representation, nonintegral
terms arise.
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Finally, one may encounter the assertion that condi-
tions (3.25) and (4.1) are contradictory for the zeroth com-
ponents of operators.214 Actually, if we multiply the vector
if>l = Sd[i(q)f(q)a<f (q)ip0 by its complex conjugate, we find

= - J (4.21)

while there should be a positive quantity on the left. How-
ever, (4.21) actually demonstrates only the negativity of the
norm of a state with a nonphysical photon, as follows from
the specific realization (4.7) of algebra (3.25) and from the
content of Subsection 4.3. We have been led astray by the
application of the words "complex conjugate" to tpx. Actual-
ly, the vector which is the conjugate of ^, is defined by the
equality i/ffSd/j.(q)il>$ao(q)f*(q), and the sign of the square
norm | |^i | | 2 is dictated by commutation relations (3.25).
The difficulty here is basically psychological, since we are
convinced that the square norms of all states are positive.
However, in agreeing to allow nonphysical entities in the
theory we cannot insist that they have the same properties as
physical dynamic variables. All that we can require in this
case is that the formalism be noncontradictory.

5. CONCLUSION

Let us summarize. There are two equivalent procedures
for quantizing the electromagnetic field. One is the so-called
new Gupta formalism, which is set forth in Subsection 6.2.
That formalism is based exclusively on condition (1.4) [or
on the first condition in (3.30) ]. If we adopt the relativisti-
cally invariant realization (4.7) of algebra (3.25), we find
that the physical vacuum <l>0 in this procedure is the same,
within some term f, 11 f 11 = 0, which is orthogonal to it, as the
mathematical vacuum rp0. This formalism has the disadvan-
tage that it contains nonphysical states of zero norm. Real-
ization (4.12) of algebra (3.25) does not have explicit rela-
tivistic invariance, and it gives us an unrenormalizable,
relativistically noninvariant vacuum (4.14), even in a for-
malism with condition (1.4) alone.

The other procedure is Fermi's original formalism, 3~6 to
which Dirac always adhered.8'9 That formalism uses both
conditions (3.30) on physical vectors, which follow from a
general analysis of the dynamics of an electromagnetic field
as a mechanical system. By incorporating the second condi-
tion in (3.30), we banish from the theory nonphysical states
with a zero norm. The physical vacuum 3>0 has a clear math-
ematical meaning: It is a generalized eigenvector of the oper-
ators 7r°,5T°; in other words, it is unrenormalizable. However,
this point causes no difficulties in the calculations (Ref. 11
and Sec. 4 of the present paper). In neither of these proce-
dures is it necessary to introduce deliberately an indefinite
metric13 by means of an operator 9] (Subsection 6.1).

6. APPENDIX

6.1. "Old" Gupta formalism13

For the convenience of the reader, we will briefly review
the essential features of Gupta's suggestions. The difficulties
which arose in the quantization of the electromagnetic field
occurred not only because the energy and the metric of the
Hilbert space were not positive definite (Sec. 3) but also
because of the interpretation of the operators ao,a^ . Since
their commutator [ao,a^ ] = — 8 has the sign opposite that
of the commutator ak ,af, according to (3.25), the standard

analysis8 shows that an operator which increases the eigen-
values of aoaQ is a0 [if ao3o

+ |n) = n\n), then aoao
+

ao\n) = (n + \)ao\n); for simplicity, we have taken the
quantum mechanical harmonic oscillator here, [ao,a^
= — 1; see Subsection 6.4 for more details]. That interpre-

tation, however, violates the explicit relativistic invariance,
since it follows from the invariance of the vacuum ip0 and
from the condition a0

+ ip0 = 0 that we have a + ip0 = 0 for all
/j., but this result is unacceptable. Gupta's first paper was one
attempt to resolve these difficulties. In that paper it was es-
sentially postulated that commutation relations (3.25) are a
consequence of the introduction of an indefinite metric in
some Hilbert space with a positive-definite metric. Specifi-
cally, it is assumed that the theory is based on the operators
aM (a),a* (q), which obey the commutation relations

where the operator a* is the Hermitian adjoint of a^ and <5MV

is the Kronecker delta. All the operators aM in this auxiliary
space can be regarded as annihilation operators, while the a*
are creation operators. The vacuum is defined by the cus-
tomary equation

vh>=o. (6.2)

The scalar product changes in this space. Specifically, an
indefinite metric is introduced, and this circumstance can
obviously change the concept of the Hermitian adjoint of
certain operators. The new metric is chosen in such a way
that those operators which are Hermitian adjoints in the
sense of the new metric satisfy commutation relations
(3.25). The technical procedure for doing this can be out-
lined as follows. One chooses some metric operator 77, which
is used to define a new scalar product of vectors:

The operator which is the adjoint of A is defined in accor-
dance with the rule

i.e.,
(6.4)

(6.5)

It remains to choose an operator 77 in such a way that condi-
tions (3.25) are satisfied, Clearly, the following equations
must hold,

[il, ah] = [r\, <z*] = 0, [r), ao]+~[T), aol+ = O. (6.6)

where [A,B] + =AB + BA. In other words 77 anticommutes
with ao,ag . We thus find

and if relations (6.1) hold then the operators 0^,0+ satisfy
commutation relations (3.25). It is not difficult to find an
explicit expression for the operator 77:

•n = (—l)JVo, (6.8)

where the operator No represents the number of timelike
photons. In this procedure, use is made of only the auxiliary
condition (1.4).
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The shortcomings of this approach stand out like sore
thumbs. We know that nonphysical photons are permitted in
the formalism for the sake of making it explicitly covariant.
The operator (6.8), on the other hand, does not have this
property; i.e., the theory actually loses its explicit Lorentz
in variance. (Although implicitly, of course, it is Lorentz-
invariant). Another troublesome point is the fact that the
derivation of the theory begins with explicitly noncovariant
relations (6.1). Finally, the entire construction seems con-
trived: Even commutation relations (3.25) are evidence that
the theory contains from the outset states with a negative
norm. Gupta subsequently pruned the unnecessary elements
from the construction.

6.2 "New" Gupta formalism" "

The formalism which finally emerged is essentially
equivalent to that set forth in Sec. 3 and Sec. 4, but without
the second of conditions (3.30). The operators fl^,aM

+ obey
relations (3.25), and the mathematical vacuum if)0 is defined
by equality (4.1). The physical subspace is delimited by con-
dition (1.4); i.e., the mathematical vacuum also belongs to
the physical subspace. The basis of the complete Hilbert
space is formed by vectors which are found by applying to ij>0

an arbitrary number of operators aM
+. Among them there are

states with a negative norm (which contain an odd number
of timelike photons). The Hilbert space also contains states
witha zero norm. The latter are obtained by applying opera-
tors L + to the physical states $ :

L+O |p = = (<P, LL+O) = 0, (6.9)

since, according to (3.31), L (q) commutes with L + (q), and
we have L<fr = 0. States with a zero norm belong to the
physical subspace because of (again) relation (3.31),
L(L + )"<!>=(£ + )"L® = 0, and they^are orthogonal to
vectors from iF p h y s : (<!>„£ +4>2) = (L<Plt<P2) = 0. The
physical Hilbert space of Gupta's formalism, <%^hys, is thus
the direct sum of the subspace ^ ( 0 > of vectors with a zero
norm and the subspace (orthogonal to it) of vectors with a
positive norm, ^+): ^ h y s = JT<+)e JT<0>. An arbitrary
physical vector in this formalism is of the form
3>G = <£<+) + f, where f e ^ 0 1 . Nonphysical vectors f can
be eliminated by transforming to the factor space35

<^phys — s /&l •

6.3. Fixing the gauge

What requirements should we impose on the gauge-fix-
ing term £" [the "gauge fixer"; see (3.12) ]. With regard to
perturbation theory, these requirements fall in a natural way
into two groups. In the first group are the requirements
which must be met unconditionally. Let us list these require-
ments. The term J2" which is to be added to Jf must

1) lift the degeneracy of the Lagrangian,
2) be relativistically invariant,
3) not alter the equations for physical variables (Max-

well's equations), and
4) not lead to a contradiction.
One requirement which we would like to satisfy is the

following:
5) The term &' must satisfy all the conditions which

are customarily imposed on Lagrangians (locality,

renormalizability, and the absence of derivatives of
fields higher than the first).

The first of these conditions is self-evident. The point of
adding &' to the Lagrangian is to specify equations of mo-
tion for nonphysical degrees of freedom (to fix the gauge).
This condition is not equivalent to the condition

1') that the term &' must violate gauge in variance.
The lifting of degeneracy of course automatically
means a violation of gauge invariance, but the in-
verse is not true.

For example,
A
v-
T

(6.10)

violates gauge invariance, but it does not lift degeneracy,
since when we go over to a Hamiltonian formalism we again
find constraints, but now they are secondary.36

The second condition might be regarded as not abso-
lutely necessary. However, that view would be inconsistent,
since the nonphysical variables were admitted into the theo-
ry in order to make it explicitly covariant.

The third and fourth conditions are self-evident. The
first of these eliminates the term (6.10). The need for the
latter follows from the example J£" =x/JA/x/4. The equa-
tions of motion in this case take the form d^F^ =jv +xv/
4. Applying the operator dv to them, we find the absurdity
1 = 0 .

The motivation for satisfying the other conditions is ob-
vious, at any rate when perturbation theory is used. If we do
not introduce any auxiliary fields, then these requirements
lead in an essentially unambiguous way to an ¥' from Fermi
class (3.12) (more precisely, we should speak in terms of the
class of Heisenberg-Pauli-Fermi gauges; cf . Subsection 6.5).

6.4. "Relativistic" oscillator

Let us examine the problem of interpreting the opera-
tors ao(q),aj~ (q) in the following simple example. We con-
sider the system specified by the Lagrangian

^ - - y s " (xvxx — Xniv), (o.ll)

where g^" is the metric tensor of Minkowski space, *M is a 4-
vector in it, and, x^ = dx^/dr, r is an invariant parameter
(a "time"). This model serves as a good illustration of the
essence of the difficulties which arise in a quantization of the
electromagnetic field in the Heisenberg-Pauli-Fermi gauge,
since here again the dynamic variable is a 4-vector. Switch-
ing to a Hamiltonian formalism, with />•* — dL /
dxM = — g^v^v,wefind

H == ,, - L = — Y (6.12)

Clearly, the energy is not positive definite.
We turn now to a quantum description. The classical

Poisson brackets
operators

,pv } = <5* define the commutator of

(6.13)

We express the Hamiltonian H= — (pt'p>'+xlixfl)/2 in
terms of the operators

- ~

160 Sov. Phys. Usp. 31 (2), February 1988 L. V. Prokhorov 160



a$]= — (6.14)

We find

CJ av.O- (6.15)

Since one of the four independent oscillators is anomalous,
we examine the question of its ground state ip0. If we set

=--i, 2, 3). (6.16)

then by solving these equations in the x representation, (<9 /
dxk +xk)rp0=(d /dx0 + xo)i[>o = 0, we find

- 4 ( ^ + x3)l. (6.17)

The function (6.17) is normalizable (it is for this reason that
a0

+ ,ak were chosen as annihilation operators21), but it does
not offer relativistic invariance (and it is for this reason that
this choice is unacceptable). If we instead require

M>o = O (n = 0, i, 2, 3),

we find that the solution of these equations

(6.18)

5- (6.19)
is Lorentz-invariant but unrenormalizable. It is this circum-
stance which motivated the adoption of realization (4.12) in
QED an analog of (6.16) ] and which was the original cause
of the difficulties. The dilemma is resolved by switching to a
physical subspace, which is distinguished by condition (3.9)
or (3.30). In this model, we correspondingly have the condi-
tions (fi0 — 23)4> = 0,(20

+ — a3
+ )<J> = 0. These conditions

determine a "physical" subspace which is formed by vectors
of the type <£> = S(x0 — x3)<p(xvx2), where q> is a square-
integrable function. The function <t> is a well-defined math-
ematical entity (a generalized eigenvector32).

6.5. Brief history of the question

A quantum description of the electromagnetic field was
first offered by Dirac.1 He considered the radiation field,
which he treated as a set of independent operators. Dirac's
pioneering study stimulated further research in this direc-
tion. Jordan and Pauli37 (Refs. 7,28, and 37 have been trans-
lated into Russian38) established relativistically invariant
commutation relations for the operators of the electromag-
netic field, and they introduced functionals and functional
derivatives of fields. The fundamental paper by Heisenberg
and Pauli28 contained nearly all of the basic, elements of
modern spinor electrodynamics. That theory was formulat-
ed in a relativistically invariant way. The appearance of con-
straints (the conditions if = 0 and divE = 0) was noted. A
class of gauges known today as "Fermi gauges" was intro-
duced. The same year saw the appearance of Fermi's paper3

in which the conditions d^A^ = 0,3^A^ = 0 first appeared,
although the meaning of these conditions in quantum theory
was not discussed there. In a subsequent paper,7 Heisenberg
and Pauli pointed out quite unambiguously that these condi-
tions should be understood as conditions on wave functions
(or functionals). Fermi4'5 treated them in exactly the same
way. He found a wave function which satisfied these condi-
tions. We thus see that the foundations of quantum electro-
dynamics had already been laid by the beginning of the
1930s.

At the end of the 1950s, when modern QED was con-
structed, condition (1.3) was at the center of attention. It
was observed that this condition leads to the unrenormaliza-
bility of the vacuum (4.14) (Refs. 10-12). We should point
out that solution (4.14), which is based on realization
(4.12) of algebra (3.25), can be found in papers by many
authors.10"1239"*1 However, nowhere has it been pointed out
that this solution is relativistically invariant. Dirac eliminat-
ed it from the fourth edition of his book.8 It did not reappear
in later studies by Dirac.9

The difficulties in interpreting the operators ao,aj~ and
the unrenormalizability of vacuum (4.14) spurred Gupta on
to a search for a new formulation of the theory (Subsection
6.1) and led him to reject condition (1.3).13 As motivation
for rejecting (1.3), Gupta13 offered only the comment that it
was too restrictive to be satisfied by any states of radiation
fields. Although it is evident that he subsequently1618 saw
that an artificial construction with a metric tensor rj was not
necessary, and he abandoned that path, it is that path which
found its way into the textbooks. As it happened, the basic
treatises on quantum field theory and QED219"21 were writ-
ten in the period between the first13 and second16 of Gupta's
publications. Although the monographs and textbooks have
been reissued since then, Gupta's original construction has
remained untouched. (To be fair, we should acknowledge
that the fourth edition of the monograph in Ref. 20, which
appeared in 1981, omitted the construction with the opera-
tor f/, but the reason for the change was not specified.) For
the past two decades, there has been almost no discussion of
the subtleties of the quantization of the electromagnetic
field. It has been assumed that the problem was solved theo-
retically by Gupta and that everything required for practical
calculations is contained in the rules postulated by Feyn-
man. The equivalence of these rules (in the Feynman gauge)
to a quantum field theory with Fermi condition (1.3) has
been demonstrated by Ning Hu.31

I am deeply grateful to B. L. Voronov and V. V. Nester-
enko for useful discussions.

1 'Gauge invariance is a necessary characteristic of a physical quantity, but
it is by no means a sufficient characteristic. For example, pa = G/2 is
gauge-invariant, since E andy'o are invariant.

21 Another limitation is the requirement that they must commute with
physical quantities.

31 We wish to call attention to the circumstance that 50, as a variational-
differentiation operator, does not have the same sign as a 3. This sign is
dictated by commutation relations (3.25).
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