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Theoretical and experimental investigations of charged dislocations in alkali halide crystals are
reviewed. A description is given of the fine structure of an edge dislocation with defects on the
dislocation line. A systematic account is given of theories of a sessile charged dislocation ranging
from its representation by an infinitely long charged filament to an allowance for the fine
structure of the dislocation line. Phenomenological models dealing with a charge on a moving
dislocation are discussed. Forces acting on a dislocation are considered and the characteristics of
its motion under the influence of an external mechanical load and of an electric field are dealt
with. The direct and converse dislocation piezoelectric effects are described for a crystal
containing mobile charged dislocations. In presentation of experimental results special attention
is given to studies providing quantitative estimates of the linear charge density on a dislocation.
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1. INTRODUCTION

It is known that plastic deformation of crystals is large-
ly due to mobile dislocations. The motion and inter-action of
dislocations determine not only the change in the shape, but
also the real atomic structure and many physical properties
of crystals. Dislocation dynamics is consequently one of the
most rapidly growing branches of solid-state physics. The
laws governing dislocation dynamics are determined by the
nature of the interatomic binding forces in solids. Defects,
including dislocations, in crystals with heteropolar (ionic)
bonds which include alkali halides carry an electric charge.
This gives rise to special features of the motion and interac-
tion of dislocations and is responsible for "cross" effects,
such as the transfer of charge on application of mechanical
loads and plastic flow under the influence of an electric field.
The discovery of these effects is firmly linked to the names of
A.F. Ioffe,1 A.V. Stepanov,23 and Gyulai and Hartly.4 The
effects are attracting continuing interest of researchers be-
cause of the extensive use of alkali halide crystals in infrared
laser technology, solid state storage devices, etc.

The progress made in the study and explanation of elec-
trical effects in alkali halide crystals is largely due to the
recent results obtained on charged dislocations. We shall
provide a systematic account of theoretical and experimen-
tal investigations of charged dislocations carried out in the
Soviet Union and abroad. We shall concentrate our atten-

tion on the fundamental work carried out in recent years.
Earlier investigations had been reviewed in 1958 (Refs. 5
and 6), 1968 (Ref. 7), 1974 (Ref. 8), and 1975 (Ref. 9).

2. THEORY OF CHARGED DISLOCATIONS

2.1. Fine structure of dislocations in alkali halide crystals.
Influence of impurities on the dislocation charge

Ionic crystals consist of oppositely charged ions. The
appearance of defects (including point defects, dislocations,
block boundaries, etc.) in an ionic crystal disturbs the
charge equilibrium so that defects (including dislocations)
acquire an electric charge. The charge on an edge dislocation
is transported by the dislocation as it moves, but screw dislo-
cations do not transport charges. We shall deal mainly with
the dynamic effects, so that screw dislocations will not be
considered.

Easy slip planes along which edge dislocations glide
preferentially in alkali halide crystals belong to the {110}
family. These planes are shown in Fig. 1. The direction of an
edge dislocation is described byji unit vector Al = (100) and
its Burgers vector b = (a /2) [ l l0] (a is the lattice period) is
not the smallest translation vector. This is due to the fact
that the direction of the vector b in alkali halide crystals is
determined not only by the condition for a minimum of the
dislocation energy, but also by the electrical neutrality con-
dition. The latter imposes certain requirements also on the
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FIG. 1. Easy slip systems in alkali halide crystals. The cleavage planes are
{100}.
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FIG. 2. Edge dislocation with Al = [001 ] and b = (a/2) [ 110] in alkali
halide crystals. The ion lattice is formed by (110) planes. Two (110) half-
planes form a dislocation. A (001) cleavage plane is perpendicular to this
dislocation.

geometry of an edge dislocation. Such a dislocation can be
created by introduction of two additional {110} half-planes
or one {100} half-plane. The edges of extra {110} half-
planes are located at different levels.6 Figure 2 shows a recti-
linear edge dislocation in the structure of NaCl with the vec-
tor Al = [001] and the Burgers vector b_= (a/2) [ llO]. The
ionic lattice is represented by a set of (110) planes. The clea-
vage plane (001) is perpendicular to a dislocation. The dis-
tribution of ions in the core of a dislocation gliding in the
{HO} (HO) system and the energy of a core in NaCl were
first calculated in Ref. 10. The boundaries of extra half-
planes from which a dislocation is composed represent a
chain of dipoles; if the alternation of charges in this chain is
not disturbed, the dislocation is not charged. The periodicity
may be disturbed by jogs, i.e., short parts of an edge disloca-
tion, by means of which it is transferred to neighboring par-
allel slip planes."12 There are two types of jogs. The first
corresponds to a discontinuity in both half-planes which are
used to represent a dislocation. The height of such a jog is
aVT/2. Since such a jog (known as a complete jog) induces
two reversals of opposite charges, it remains neutral. The
second type of jog corresponds to a discontinuity in just one
half-plane and is known as a half-jog and its height is ayJ2/4.
Figures 3a and 3b show the distributions of ions in two
neighboring (100) planes where dislocations have a half-jog.
The plane of the figure is parallel to (100). The slip plane is
perpendicular to the [ HO] direction. It also has a discontin-

uity (traces of slip planes AB and CD). The dislocation line
is perpendicular to the plane of the figure and the direction of
slip is [ llO]. It is clear from Fig. 3a that a "defect" appears
at some specific point on a dislocation and this defect can be
called a "nascent" vacancy (represented by a shaded
square). In the neighboring (100) plane (Fig. 3b) there is a
positive ion A opposite this vacancy. The case illustrated in
Fig. 3 corresponds to "creation" of an anion vacancy and
appearance of a positive charge in the case of the half-jog.
Similarly, near a "defect" corresponding to "creation" of a
cation vacancy there is a negative charge. The charges of
nascent vacancies of both types are equal and opposite in
sign; we shall assume that these charges are + q. The addi-
tion of an ion with opposite sign to a half-jog alters the sign of
its charge, i.e., the nature of the nascent vacancy so that

± q =F e = =F q.

Hence, it follows that the charge of a half-jog is ± e/2, i.e., it
is half the electron charge. Jogs on edge dislocations in alkali
halide crystals may appear because of thermal activation or
as a result of intersection of dislocations. The possible types
of jogs formed as a result of intersection of dislocations are
discussed in Ref. 13. An excess of half-jogs of one sign makes
a dislocation charged. A dislocation charge may change be-
cause of the diffusion of ions to a half-jog. Bassani and
Thomson14 showed that the charge on an edge dislocation in
an alkali halide crystal may also be due to an excess of vacan-
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FIG. 3. Distribution of ions in neighboring (100) planes in
an alkali halide crystal when an edge dislocation is displaced
to a neighboring slip plane via a charged "half-jog."
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FIG. 4. Fine structure of a (110) extra plane of an edge disloca-
tion with a Burgers vector b = (a/2) [ 110 ]. The continuous cir-
cles are ions in the plane of the figure, whereas the dashed circles
lie b /2 below this plane. The defects in the region surrounding a
dislocation are also shown.

cies of one sign in the dislocation core. This happens on in-
troduction of divalent impurity atoms into a crystal. Atoms
of divalent metals occupy the cation sites in the lattice and
retention of neutrality requires formation of one cation va-
cancy for each impurity ion. In such a doped crystal the
number of cation vacancies exceeds the number of anion va-
cancies by an amount equal to the number of divalent impur-
ities. An excess of cation vacancies in the core of an edge
dislocation in a doped crystal determines the charge of the
dislocation. This charge changes as a result of a change in the
number of charged "defects" in its core. Since the energy of
formation of a vacancy in a dislocation core differs from the
energy of formation of a pair of independent half-jogs of the
same sign, vacancies and half-jogs are regarded as indepen-
dent types of defect.

Figure 4 shows the projection of a (110) extra plane of
an edge dislocation with the Burgers vector b = (a/2) [ 110]
onto the plane of the figure. The ions lying in the plane of the
figure are identified by continuous circles and the dashed
curves identify the ions located at a distance b /2 below the
plane of the figure. The defects on a dislocation determine
the fine structure of the edge of the extra plane. They include
a complete uncharged jog C, positively and negatively
charged jogs H + and H_, an anion vacancy D + carrying a
positive charge, and a cation vacancy D_ carrying a nega-
tive charge. This figure shows also defects located far from a
dislocation: these are divalent impurity ions M + + , and the
anion and cation vacancies V + and V_.

2.2. Theoretical models of sessile charged dislocations

The surface of an alkali halide crystal, like an edge dis-
location, may also carry an electric charge. Theories of
charged dislocations in alkali halide crystals have preceded
studies of charges on the crystal surface.

2.2.1. Distribution of a charge on a plane surface of an
alkali halide crystal. The distribution of the charge and po-
tential on a plane surface of an alkali halide crystal was first
investigated by Lehovec.15 Lehovec began with the assump-
tion that cation and anion vacancies in a crystal may appear
independently of one another and that the energies of their
formation are different.16 The equilibrium number of vacan-
cies of each kind per unit volume of a crystal n1>2 can be
found from the condition for a minimum of the thermody-
namic potential & and it is permissible to vary it separately
with respect to «, and n2. According to Ref. 17, a smaller
energy is needed to detach a cation from a lattice site so that
an excess of cation vacancies should form and the electrical
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neutrality in the bulk of a crystal can be restored by migra-
tion of some of the vacancies to the surface of a crystal, i.e.,
the surface becomes charged. A three-dimensional charged
layer appears on the surface. The concentrations of the ca-
tion and anion vacancies in such a layer are different. The
distribution of the potential in the charged layer can be
found by solving the Poisson equation. The problem of find-
ing the potential has a rigorous analytic solution.15

I. M. Lifshitz and Ya. E. Geguzin demonstrated18 that
the assumptions used in the calculations of Ref. 15 are incor-
rect. It is pointless to speak of emergence of vacancies of one
type on the surface of a crystal, because this should produce
a macroscopic layer of ions of one kind. Moreover, it is not
permissible to introduce separately the concepts of activa-
tion energies of vacancies of either kind and the thermody-
namic potential cannot be varied independently with respect
to n, and n2 According to Ref. 18 the number of sites 2Arin a
lattice is assumed to be an independent internal parameter
and allowance is made for the fact that in an ordered struc-
ture we have

nx + Nt = n2 + N2; (2.1)

where Nh2 are the numbers of atoms of each kind per unit
volume. The thermodynamic potential of the system is

§ (Nt, N2, N) = [ioiV — kT In wx — kT In w2

here, fi0 is the chemical potential in a pair of different atoms;
gl2 is the characteristic energy of a defect; klnwl2 is the
contribution of the cation and anion vacancies to the con-
figurational entropy. In the case of a dilute solution (n l 2

) the thermodynamic probability is

">,, 2=«1. eN (2.2)

where e is the base of natural logarithms. It follows from the
condition of equilibrium of the system

= 0 (2.3)

that the expression for the product of the solubilities is

04(00) a2(co) = e-u/"r = a j ; (2.4)

here,

U = fi0 — (g± + ga),
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(2.5)

(2.6)

and f/is the energy of formation of a Schottky pair by remov-
al of one anion and one cation from their normal lattice sites
and displacement to new sites on the crystal surface. The
solubility product shows that vacancies may be created in
pairs so that a charge may not appear on the surface of a
crystal. The appearance of a charge on the surface of an al-
kalj halide crystal is due to the fact18 that in a thin surface
layer, of the order of several interatomic distances (we shall
call this an intrinsic surface layer), the energy of the interac-
tion between ions is different than in the bulk of the crystal.
Consequently, the equilibrium concentration of vacancies of
each kind at the surface will differ from the concentration in
the bulk. Hence, an electric charge should form on the sur-
face, an electric field should appear, and vacancies should
become redistributed in a surface layer of thickness of the
order of the Debye screening radius.

The chemical potentials of defects in the bulk are

(2.7)

(2.8)

The chemical potentials in an intrinsic surface layer are giv-
en by

.1*1,2 = k T l D al,2 (*) ± C<P (X)±gl,2 - &gi,2 (*);

here, x is the coordinate measured from the surface into the
interior of the crystal; Ag, 2 (x) is the change in the charac-
teristic energy of a defect in an intrinsic surface layer;
Agi,2 (x) = 0 if x$>a; q>{x) is the electric potential. The
condition of constancy of the chemical potential near the
surface and in the bulk of a crystal

(a:) = (2.9)

leads to the following equilibrium value of the vacancy con-
centration in such an intrinsic surface layer:

&(x)); (2.10)

here, a0 is given by Eq. (2.4)

x = - -^ - ( ( p ( a : ) - ( p ( 0 0 ) )

6 (x) = 1, x ^ a,
= 0, x> a.

The function Ff2 is given by

A charge distribution established in a crystal is

p (x) = -?%*- [sh x + y (F? - F$)] 8 (*),

where ft = a3 is the atomic volume. The distribution of the
electric potential is found by solving the Poisson equation
subject to the following boundary conditions:.

Calculations indicate that near the surface of a crystal there
is a double electric layer and the charge of the intrinsic sur-
face layer is compensated by the charge on the surface.

It therefore follows from the theory of Lifshitz and Ge-
guzin that the charge and potential on the surface of an alkali
halide crystal are governed not only by the bulk properties,
but also by the surface properties.

2.2.2. Model of a dislocation in the form of a charged
filament. The first theoretical investigations of charged dis-
locations were reported by Eshelby et al.19 A dislocation is
regarded in Ref. 19 as an infinite charged filament surround-
ed by a continuously distributed charge cloud. An infinite
value of the potential of the filament itself can be avoided by
surrounding it with a cylindrical surface of radius r0 and the
procedure of finding the potential of a dislocation is replaced
by the problem of determination of the potential on the sur-
face. The mechanism of formation of a dislocation charge
considered in Ref. 19 is similar to the formation of charges
on the surface of alkali halide crystals.15 Eshelby et al. ig-
nored the energy binding defects to a dislocation line so that
a dislocation, like a free surface in Ref. 15, is a continuous
source or sink of vacancies. In spite of the incorrectness of
these assumptions, the paper of Eshelby et al. played a major
role in the development of a theory of charged dislocations,
becoming a starting point for subsequent theories. Mobile
atoms of divalent impurities are considered in Ref. 19 in
order to bring the model closer to reality. Conservation of
electrical neutrality requires creation of one cation vacancy
per each impurity atom, so that cr^oo) =a 2 (oo) + C,
where C is the concentration of divalent impurity atoms. It is
shown in Ref. 20 that a doped crystal is described by Eq.
(2.4), so that

a, (oo) (a, (oo) - c) = exp ( - = a;

A compensating charge cloud consists of mobile ion and an-
ion vacancies and of divalent impurity atoms; the density of
this cloud is

p = e (raM (r) + n2 (r) — rex (r)), (2.11)

where nM (r) is the number of impurity atoms per unit vol-
ume.

The equilibrium number of defects on a dislocation line
in a charge cloud can be determined by minimization of the
thermodynamic potential. In general, the thermodynamic
potential can be represented by a sum of three terms:.

e 4- W- (2.12)

& d includes the energy of formation and the entropy term
for defects on a dislocation; & c applies to a charge cloud; W
is the energy of the electrostatic interaction of the disloca-
tion-charge cloud system. The energy ^includes the poten-
tial energy of the electrostatic interaction between a disloca-
tion Wd and a charge cloud Wc. According to Ref. 19, Eq.
(2.12) reduces to & = &c + Wand it is found that

= \
b

The first term on the right-hand side of & c is the energy of
formation of defects in the investigated cloud, whereas the
second and third are the entropy terms calculated in a dilute

1063 Sov. Phys. Usp. 31 (12), December 1988 N. A. Tyapunina and E. P. Belozerova 1063



solution approximation [ see Eq. (2.2) ]. We can reduce W to
Wc, which includes the energy of the electrostatic interac-
tion of charge clouds with one another Wcc, and with a dis-
location line Wc d , so that

= $ pq>(r).2nrdr,W=Wn = ]

where the potential cp{r) is due to the cloud and dislocation
charges, and R is the radius of a cylinder sufficiently far from
a dislocation. Integration is carried out over the whole vol-
ume of the cylinder, with the exception of a region of radius
r0 surrounding a dislocation line. The total charge inside this
volume is zero. The solution of the variational problem using
the electrical neutrality of the system and the condition of
conservation of the total number of divalent impurities
should make it possible to determine the concentration of
vacancies and divalent impurities in a charge cloud.19 The
Poisson equation

ee0
(2.13)

(e0 is the electrical constant of the permittivity of free space
and e is the permittivity of the investigated material) can be
reduced to

y2/? = —sinhp-A"1,
eeokT

2«1(oo)JVe«
1/2

(2.14)

(2.15)

is the radius of the cloud. Equation (2.14) is expressed in
terms of cylindrical coordinates; its exact solution is possible
only ifp-41, i.e., if sinhp~p. This solution is

Ko and Io are the modified Bessel functions of the zeroth
order and with an imaginary argument. Since Io does not
have a finite limit at infinity, we shall ignore it. The potential
in the charge cloud is

We can find A using the fact that in the limit r-* r0 the poten-
tial becomes equal to the potential of an infinitely long
charged filament. We finally have

(2.16)

where Qi is the charge per unit length of a dislocation line.
Although the theory of Eshelby et al. was developed

only for the case when eq>4,kT, which cannot be realized
even at room temperature, and although a dislocation was
regarded as an infinitely strong vacancy sink, it nevertheless
stimulated theoretical and experimental investigations of
charged dislocations. There was a considerable resonance to
the discovery of the isoelectric points predicted in Ref. 19:
these are such temperatures T-x at which the charge Q, van-
ishes. The sign of Q, is reversed at temperature T>T{. The
experiments in which the isoelectric points were discovered
were first carried out by Davidge.21 Kosevich, Margvelash-
vili, and Saralidze22'23 solved the problem of the distribution
of the charge and potential around an edge dislocation in an
alkali halide crystal allowing for the energy WU2 of the elas-

tic interaction of cation and anion vacancies with the dislo-
cation. In discussing the appearance of a charge on a disloca-
tion Kosevich et al. used the model of Lifshitz and Geguzin'8

and regarded a dislocation as a special surface near which
the energy of formation of defects is different than in the
bulk of a crystal. The equilibrium vacancy concentrations
are then given by

The dimensionless function Ff2 has the same meaning as in
Eq. (2.10), i.e., it is related to a change in the characteristic
energy of vacancies on a surface of radius r0 surrounding a
dislocation. In the determination of Wli2 a vacancy is re-
garded as a dilatation center causing an inelastic change in
the volume of the medium. The energy of the elastic interac-
tion of such a defect with an edge dislocation is24

A,,;
A , 2= - '

Gfe(l + v)
•2 3n(l-v)

here, ip is the angle measured from the Burgers vector in a
plane perpendicular to the dislocation line; r is the distance
from the dislocation axis to the point under consideration; G
is the shear modulus; v is the Poisson ratio; AF 1 2 is the
change in the volume of the medium at the location of a
vacancy. The solution of the Poisson equation subject to the
conditions e<p4,kTand Wl2 <kTshows that inclusion of
the elastic interaction results in a redistribution of the charge
in the bulk and in a disturbance of the axially symmetric
distribution of the potential. Similar results were obtained
by Kolomiitsev25 who also demonstrated that at short dis-
tances from the axis of an edge dislocation (up to ~30 A)
the distributions of the potential and charge are affected sig-
nificantly by a modulus effect due to the difference between
the elastic moduli of the defects and the matrix.26

2.2.3. Allowance for the fine structure of a charged dislo-
cation. The relationship between the fine structure of an edge
dislocation and its charge111214 was developed further by
Whitworth.27'28 It was assumed in Ref. 27 that the disloca-
tion charge is due to charged jogs and vacancies (Fig. 4)
which for the sake of brevity we shall call defects on a dislo-
cation. As in Ref. 19, the charge cloud is assumed to consist
of mobile cation and anion vacancies as well as mobile diva-
lent impurity atoms. The following characteristic param-
eters were introduced by Whitworth in calculations of the
charge and potential of a dislocation line: yU2—the number
of negatively and positively charged jogs per unit length of a
dislocation; /?, 2—the number of negatively and positively
charged vacancies per unit length of a dislocation;
T = I/a—the number of atomic planes per unit length;
+ q—the charge of a jog or a vacancy; J—the energy of

formation of a pair of jogs of opposite signs; gx—the energy
of formation of a cation vacancy due to a change in the
charge of a negative jog; g2—the energy of formation of an
anion vacancy because of a change in the charge of a positive
jog; S\ + S2—the energy of formation of a Schottky pair in
the bulk of a crystal; B,—the energy of association of a dislo-
cation and a cation vacancy; B2—the energy of association of
a dislocation and an anion vacancy;
J£ = (g, + g2) — (If; + B2)—the energy of formation of a
Schottky pair on a dislocation line. In this model, disloca-
tions are no longer regarded as infinite sources or sinks of
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vacancies. In the expression for the thermodynamic poten-
tial of Eq. (2.12) the term ^ c is of the same form as in Ref.
19. In the definition of % d it is assumed that jogs and vacan-
cies are distributed uniformly along a dislocation and that
their contribution to the configurational entropy can be
written down in the approximation of a dilute solution, so
that

i ) + (*i. 2 - Bu 2) p\, 2

2 In — — kTyui \n2-kT~.
Vi. a Pi, :

The energy is W= Wc + W&, where Wc is denned in the
same way as in Ref. 19, whereas Wd = Q,$>0 *s the potential
energy of a charged dislocation due to the interaction of its
charges with one another and with the charge cloud. Here,
<I>0 is the potential of a dislocation line and

•-Pi) - (2.17)

Whitworth27 found yt 2 and/J12 by solving the variational
problem for the thermodynamic potential and substituting
the results in Eq. (2.17), which gives

kT — i ] } ; (2.18)

here,

) = ln B l ( B a )

ao

The first term in the above expression for Q, is due to
charged jogs and the second is due to vacancies on a disloca-
tion. We can find 4>0 by surrounding a dislocation with a
surface of radius r, selected so that l4,rx 4, A, where / is the
distance between neighboring defects on a dislocation. If
/•</-,, an electric field is established solely by the charges on
a dislocation line, whereas for r > r, we have to allow also for
the influence of the charge cloud. The potential <f>0 differs
from the potential considered in Ref. 19 by a correction
which allows for the discrete nature of the distribution of
charges on a dislocation line, i.e.,

here, if/, is the potential of the surface surrounding a disloca-
tion, calculated on the assumption that the dislocation line
includes 2M charges distributed uniformly with an average
linear density Q,. If x^>rx, then

Qi
2jtEEn

• I n
2MI (2.19)

In determination of ifi2 it is assumed that the radius r, tends
to zero and the charges on a dislocation are distributed dis-
cretely. It is assumed that tf>2 amounts to (^2max + fi min )/2;
here, ip2 min is the potential at the center of a gap of length 2/
between discrete charges, so that

mln
Qi

2HEE0
(2.20)

between two neighboring charges on a dislocation line. In
the case of a uniform distribution of charges the system
should relax i.e. each of the charges should shift by 1/2, so
that

(2.21)

Using Eqs. (2.20) and (2.21), we can find if>2, which in the
case of large values of M can be written in the form

Qi
2jl££n

(lnAf+ln (2.22)

where C = 0.5112 is the Euler constant. Using Eqs. (2.19)
and (2.22) subject to the condition /•< A, we find that

<?'
2neen

(2.23)

The values of Qt and 4>0 can be obtained by solving graphi-
cally Eqs. (2.18) and (2.23) and assuming specific values of
Jt S\ > 82' B\< B2, V< a n d ^- ^ n estimate of <!>0 obtained by
means of Eq. (2.18) from the experimental data on Q, given
in Ref. 29 for NaCl at room temperature
[a(oo) =5X1O"5, Q, = - 2 X 1 0 " " C-m"1],29 on the
assumption that Q{ is entirely due to cation vacancies and
tha t5 , = 6 .4xl0- 2 0 / (Ref . 14) and T = 3.55X 109 m"1,
gives <t>0 = 0.24 V. Consequently, the condition e<P04,kT
necessary for linearization of Eq. (2.13) is not satisfied.

A more general form of a charge cloud was considered
by Whitworth in Ref. 28 and the difference from Ref. 27 was
that, in addition to mobile cation vacancies, the author al-
lowed also for immobile divalent impurities, which can be in
the free state or can form electric dipoles with cation vacan-
cies. The fine structure of a dislocation is represented by one
of the types of a charged defect on dislocations that interact
with one another. In the treatment given in Ref. 28
Whitworth allowed for the pair electrostatic interaction of
defects. The model proposed in Ref. 28 makes it possible to
consider not only ionic crystals, but also semiconductors.
Let us assume that «0 is the total number of divalent impuri-
ties per unit volume and that it is the same both in the charge
cloud and outside; «, ( oo ) is the number of cation vacancies
per unit volume far from the cloud; h M (oo) and
[n0 — nM(cx>)] are, respectively, the numbers of free im-
purities and dipoles. The following parameters are used in
the description of the charge cloud:

hM is the number of impurities in the free state;
[n0 — nM (r) ] is the number of dipoles per unit volume;
nx(r) is the number of mobile cation vacancies per unit

volume found by solving the variational problem'9 and de-
scribed by

«1(r) = «I(oo)e-<PW/»T. (2.24)

It follows from the condition of electrical neutrality that

«M(oo). (2.25)

The concentrations of associated and free defects are related
by the law of mass action,20 from which it follows

"l (r) «H (r) rcM(oo1
(2.26)

O — « M

In determination of ^ 2 m a x a test charge displaced at a point Using Eqs. (2.24), (2.25), and (2.26), Whitworth28 de-
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scribes nM by

n _ n1(oo)exp( — e(f(r)/kT)

The density of charges in a cloud

P = e (nM (r) - n, (r))

is modified after allowance for Eq. (2.27) to

, = CTl(oo) / exp(-«p(rVfcr)

(2.27)

(2.28)

here, h = hM(ao)/no.
The potential inside the cloud can be found without

linearization of the Poisson equation

dra A'(2-k)
e " p

by numerical methods using two boundary conditions. The
first boundary condition is written down in the form of the
Gauss theorem:

(2.30)

and allowance is made for the fact that in the limit r-»0 the
potential is created simply by the dislocation charges. When
the processes inside the cloud are considered, a dislocation is
regarded as a charged filament. The second condition fol-
lows from the fact that forp 41 and r-» oo the solution of Eq.
(2.29) becomesp = AK0(r/A). Introducing a dimension-
less variable s = ln(r/A), Whitworth28 reduces Eq. (2.29)
to the form

ds2 2—h I" l+fe(e-P—1)

and the boundary condition of Eq. (2.30) now becomes

(2.31)

lim -¥-= —
2nee0 kT (2.32)

so that in the limit s -> — oo the/? (\) curves have asymptotes,
the slopes of which are the same for different values of A if the
temperature of a sample is constant. The value of s0 from
which the boundary condition of Eq. (2.32) begins to be
satisfied depends on h. Equation (2.29) is solved by the
"chasing" method.30

In an analysis of a dislocation it is assumed30 that it
contains only one type of charged defect. We shall assume
that M is the number of such defects per unit length of a
dislocation. In the extrinsic conduction range the value of M
represents the number of cation vacancies or negatively
charged jogs; in the extrinsic conduction range it represents
the number of anion vacancies or positively charged jogs.
Since defects on a dislocation interact in pairs, we can intro-
duce a quantity j = 1, 2, 3, . . . , so that ./a gives the distance
between the defects in a pair. Let us assume that m, is the
number of interacting pairs of defects with a given value of/.
The number of ways of distributing defects in such pairs is31

Ml . (2.33)

The function

, M -, (2/», - l

gives the fraction of positions on a dislocation occupied by
defects; here, iVis the total number of sites per unit length of
a dislocation. Knowing/, we can find the dislocation charge

Q, = jrf. (2.35)

The equilibrium value of/can be deduced from the condi-
tion of constancy of the chemical potential at a dislocation
Hd and in the bulk of a crystal fi, (oo):

(2.36)

here, &M includes the Af-dependent terms of the thermody-
namic potential in Eq. (2.12). These terms are & d, Wd, and
the energy WcA of the electrostatic interaction between a
charge cloud and a dislocation.

We shall assume that ^ d is the characteristic energy of
one defect; then, using Eq. (2.33), we find that in the case of
large values of M

M
In (2.37)

i=0

Here, Wd includes the energy of the electrostatic interaction
of charges on a dislocation with one another Wd d and with a
charge cloud WA >c :

= wAA

In determination of Wd it is assumed first that defects are
distributed uniformly on a dislocation and the correspond-
ing energy Wu is found; next, a correction A W for the pair of
interaction of defects is introduced, so that

here,

(0)). (2.38)

The potential <pd is created by the dislocation charges and <pc

(0) by the cloud charge. It follows from the Green reciproc-
ity theorem,32 that

so that we obtain

u + Wc, d = -i- (0). (2.39)

According to Whitworth,28 the energy A W represents
the pair interaction

without allowance for the self-energy of the defects

0 4itee0! '

here, / = a//is the distance between neighboring defects on a
dislocation, so that

(2.40)
. 7 = 1
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Introducing

(2.41)

where &$ is given by the right-hand side of Eq. (2.39) and
^ M ' is the sum of the right-hand sides of Eqs. (2.37) and
(2.40), we obtain

(2.42)
dM

)

We can find (d&M)/dM)n(r) if we obtain the expressions
for q>d and q>c (0) in Eq. (2.39). Here, <pd is asssumed to be
the potential created by the dislocation charges on a surface
of sufficiently small radius, so that the condition of Eq.
(2.32) for the potential in the charge cloud is satisfied; in
this case thep(s) curve has an asymptote with a slope H. We
can then represent <pd in the form of a sum of the potential of
an infinitely long charged filament <pf and the correction
A<pd for the discrete distribution of charges on a dislocation.
We can define A<pd as the difference between the potentials
described by Eqs. (2.20) and (2.19), so that

_ ft (2.43)

here, R is the radius of a surface sufficiently far from a
charge cloud for which we are calculating the potential. The
potential of the charge cloud on the dislocation line <pc (0)
can also be replaced by the potential on a surface of radius r0.
It can be regarded as the difference between the potential
q> (r0) obtained by solving the Poisson equation [ Eq. (2.31)]
and the potential of a dislocation line represented by a
charged filament, so that

(2.44)

Using Eqs. (2.43) and (2.44), we find that simple transfor-
mations yield

*»&> __PoikT
dM (2.45)

here,

where

B '

The following quantities adopted earlier are used in the
above expression:

s0 = In -If , p (s0) = -
kT *

The ratio P/H considered as a function of H was plotted
graphically by Whitworth28 for different values of h. The
slope H depends on/[see Eqs. (2.32) and (2.35)], so that p0

is a complex function of/ The second term in the expression
for fid [Eq. (2.42)] can be found if we determine the equilib-
rium number of pairs w,. With this in mind we separate from
the right-hand sides of Eqs. (2.37) and (2.40) the terms
dependent on m} and solve the variational problem using
two additional conditions which require constancy of the
number of sites and of the number of defects on a dislocation.

The solution gives the expression

m.j= .4exp ( — Sgj — —) ;

we have here

(2.46)

<? = • 4nee0kTa '

where A and 3? are constants. Using Eq. (2.46), we obtain

LiL) =gd + kTlnZ; (2.47)

here,
oo

In £ == — In 2 e x

is a function of/ Therefore, using Eqs. (2.45) and (2.47)
Whitworth29 obtained

In £.

The condition for equilibrium of such a system is

kT

or, using Eqs. (2.7) and (2.8),

P o-I = - I n {;+(-£<- +In a, (oo)) ; (2.48)

here, Ag = g{ — gd is the energy of association of a defect on
a dislocation. If we know Ag, we can use Eq. (2.48) to find
graphically (using the dependences ofp0 and In f on/) the
equilibrium value of/corresponding to a specific concentra-
tion a, (oo ) at a given temperature. The procedure which
can be used to find/is described in Ref. 28. It is interesting to
compare the value of/ found by this method with the value
obtained ignoring the electrostatic interaction of defects on a
dislocation. Adopting the scheme described above,
Whitworth used Ag as a parameter and found the corre-
sponding values of/ for three NaCl crystals with different
total concentrations c of divalent impurities, different con-
centrations of free vacancies a{ (oo), and different values of
h (Ref. 28). The properties of these crystals are listed in
Table I. The calculations were made for Q= 16.5, corre-
sponding to a charge q = e at room temperature. Figure 5
shows the dependence of/on Ag for these crystals on a semi-
logarithmic scale. The dashed curve is plotted for a crystal B
without allowance for the interaction between defects on a
dislocation. We can see that inclusion of the electrostatic
interaction plays an important role in the estimate of/and,
consequently, in determination of Q,.

Seitz" and Bassani and Thomson14 were the first to
point out the possibility that a charge can appear at an edge
dislocation in an alkali halide crystal and they attributed this
charge to jogs and vacancies on a dislocation. Initially the
theory of charged dislocations was developing parallel to the
theory of charges on the surface of alkali halide crystals.
Lehovec15 explained the appearance of a charge on the sur-
face of a crystal by a difference between the energies of for-
mation of cation and anion vacancies in the bulk of a crystal.
Eshelby et al.19 used the model of Lehovec15 and developed
the first theory of charged dislocations in which a disloca-
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TABLE I. Properties of crystals represented by curves in Fig. 5, determined at T = 293 K (extrinsic
conduction region).

Crystal

Total concentration of divalent impurities c
Concentration of free cation vacancies a( oo )

Fraction of free impurities in the bulk h
Ratio A of the radius of a charge cloud to the lattice
constant

A

2-10-'
2-10"9

10"2

550

B

2-10-3

2-10-8

10-3

174

C

10-o
10"'

10~3

78

tion was regarded as a charged filament. Lifshitz and Gegu-
zin18 corrected the model of Lehovec15 and demonstrated
that the charge on the surface of an alkali halide crystal is not
only due to the bulk properties of such a crystal, but also due
to the properties of the surface itself. Kosevich, Margvelash-
vili, and Saralidze22'23 pointed out the possibility that the
ideas of Lifshitz and Geguzin18 can be applied to edge dislo-
cations in alkali halide crystals. Finally, Whitworth27 ob-
tained an expression for the charge on an edge dislocation
and related the charge to the characteristic energies of de-
fects on a dislocation. Over a period of thirty years there has
been a move from a charged filament to the fine structure of a
dislocation, leading to the development of a model of a ses-
sile charged dislocation.

2.3. Influence of an electric field on elementary plastic
deformation events. Characteristics of motion of charged
dislocations

2.3.1. Forces acting on a dislocation. Koehler,33 Mott,
and Nabarro34'35 introduced the concept of a force acting on
a dislocation. This makes it possible to describe the motion
of a dislocation as that of an extended mechanical object. A
distinction is made between a self-interaction force which
appears as a result of a change in the length or shape of a
dislocation, a force due to the interaction of a dislocation
with other dislocations, and the force which appears on ap-
plication of an external mechanical load. According to the
Peach-Koehler expression, the force per unit length of a dis-
location is F = [(fb)Al], where f is the stress tensor.

10'

1
i
1
1

>B

/ g, ev
0,5 0,6

FIG. 5. Dependence of the fraction of positions on a dislocation line occu-
pied by defects on the energy of their association/ (Ag), plotted for three
samples, with properties listed in Table I. The dashed line is the depen-
dence calculated for the crystal B ignoring the pair interaction between
defects.

Hence, the force acting on a dislocation in its slip plane is

F = ((Tb)n)[Al,n], (2.49)

where
[bAl]

n = I bAl

is a unit vector along the normal to the slip plane. A disloca-
tion in an alkali halide crystal experiences forces also due to
the presence of an electric charge. If there is an electric field
in a crystal, then a dislocation moving in its slip plane experi-
ences a force36

F = ([Qt AI, E] n) [Al n]. (2.50)

The action of an electric field is not equivalent to the influ-
ence of a mechanical load, because the field influences not
only the dislocation but also the charge cloud surrounding it
as well as the charged pinning centers, causing reorientation
of the latter and altering their coupling to the dislocation.

2.3.2. Influence of an electric field on the yield stress of
an alkali halide crystal. A mechanical stress close to the
yield stress of an alkali halide crystal can be created by an
electric field of intensity amounting to several tens of mega-
volts per meter. Studies of the effects of such high fields meet
with major experimental difficulties, so that it is usual to
study the simultaneous effect of a mechanical load and an
electric field.

We shall consider a crystal split along the {100} cleav-
age planes (Fig. 1) and assume that an electric field is creat-
ed along the [010] direction and also that a mechanical load
is applied along the [001] axis. Edge dislocations with the
Burgers vectors (a/2) [011] and (a/2) [011] located in
(011) and (OlT) planes, experience forces due to the me-
chanical load and the electric field. The resultant force
differs for dislocations with different mechanical signs and it
can be written in the form37

F = bt* ±
J/2

(2.51)

here, r* is the effective stress which ensures thermally acti-
vated overcoming of obstacles in the presence of an electric
field. The velocity of thermally activated motion of a dislo-
cation governed by these obstacles is38

v=Ae-$iF)lhT, (2.52)

where A is a constant at a given temperature and & (F) is the
value of the thermodynamic potential associated with over-
coming of an obstacle. Since the field affects the starting
stress, for example by its effect on the dislocation-pinning
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centers, it follows that

where r j is the starting stress observed only under the influ-
ence of a mechanical load. The force needed to overcome an
obstacle and to initiate translational motion of a dislocation
in the absence of an electric field is

whereas the additional force acting on dislocations of differ-
ent mechanical signs in the presence of a field is

1/2
(2.53)

In the presence of an electric field the thermodynamic poten-
tial $ (Fo + AF) can be expanded as a Taylor series. Substi-
tuting this series in Eq. (2.52) we find that the velocity v
depends on a number of parameters associated with &' (Fo),
&"(F0), etc. We then have

a, ,i? \ m*kT .

m* can be found in experiments applying loads in steps or in
studies of creep.38 If we confine ourselves to the linear terms
of the expansion, we can describe the velocity of dislocations
of different mechanical signs in the presence of an electric
field by the expression

(2.54)

where v0 is the velocity in the absence of a field. Clearly, v is a
function of just one controlled parameter m*. The rate of
deformation (strain rate) in the absence of an electric field,
on condition that only the edge dislocations are in motion,
amounts to e0 = \Kbv0, where A" is the dislocation density. If
the numbers of dislocations of opposite mechanical signs are
the same and equal to K /2, the rate of deformation in an
electric field can be represented by

(2.55)

It follows from Eq. (2.55) that if the rate of deformation is
note maintained at b = k0, the yield stress in an electric field
decreases by

(2.56)
bz*, 1/2

It follows from Eq. (2.56) that in weak electric fields obey-
ing the inequality E4sbT%42/m*Q,, the change in the yield
stress is

(2.57)

i.e., the yield stress varies proportionally to the square of the
electric field intensity. In high fields, we have

_ » f\ IT*

(2.58)

i.e., the yield stress decreases linearly on increase in E.
2.3.3. Influence of a charge cloud on a vibrating disloca-

tion. In an analysis of the influence of a charge cloud on a

vibrating dislocation it is usual to consider above-barrier
motion of dislocations in place of the thermally activated
mechanism of overcoming of obstacles. Two limiting cases
can be distinguished: a charge cloud in motion and a cloud at
rest. In the case of a cloud at rest a dislocation which is
displaced experiences a restoring force Fb due to elastic and
electrostatic interactions of a dislocation with the cloud.
When only the electrostatic interaction is allowed for, it is
found that

Fb=-Qi is the displacement of a dislocation).

This force can be estimated from

2KEBO\ '

here KF (f /A) is a dimensionless parameter. If f <̂ A and
K F = K(£ /A, then Ko lies within the range 1.8-4 (Ref. 9), so
that Fb is proportional to the displacement:

Q\ (2.59)

We shall consider a dislocation segment lying in the (x,y)
plane and pinned at points + / /2. We shall assume that this
segment experiences an alternating stress r = Toe"°', where
co is the angular frequency of this stress. The differential
equation describing the motion of such a segment is

dt* dy*
(2.60)

The first term on the right-hand side of Eq. (2.60) represents
the force of inertia {A = rrpb 2 is the effective mass per unit
length); the second is the friction, and the third is an ap-
proximate expression for the self-interaction force

T — Gi}2

~n(l-v)'

whereas the fourth term is the force exerted by the charge
cloud. In the kilohertz range the frequency of oscillations of
the external force is low compared with the resonance fre-
quency of the segment, so that the inertial term can be ig-
nored.39 Assuming, for the sake of simplicity, that the fric-
tion force vanishes, we obtain the following solution of the
above equation:

cHv;/) I V _ / M 1 / 2

ch (v//2) J ' Y \ T j
(2.61)

It follows from Eq. (2.61) that if \yl4,1, i.e., in the case of
low values of /, a dislocation bends like an elastic filament
and its maximum displacement is f(0) = rbl2/ST. I f ^ / > 1,
i.e., when / is large, we find that g — rb /L, and the charge
cloud plays the dominant role in limiting the vibrational mo-
tion of a charged dislocation. The influence of a cloud at rest
can be investigated by the methods of internal friction at low
amplitudes of the relative strain e0 at room temperature.40

A mobile cloud follows a dislocation and the associated
diffusion processes result in energy dissipation. The decel-
eration in the case of an electrostatic interaction of a disloca-
tion with a charge cloud moving by diffusion was first con-
sidered by Brown.41 The value of the electrical potential q>0

necessary to find the force acting on a dislocation can be
found by simultaneous solution of the Poisson equation
(2.13) and of the diffusion equation
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V<pc)=O, (2.62)

which is derived using the Nernst-Einstein relationship
between the diffusion coefficient D and the conductivity a.
However, the Brown solution is strictly speaking valid only
in the case of low frequencies co of vibrations of a dislocation
segment. In the more general case the influence of a charge
cloud can be discussed on the basis of the treatment pro-
posed by Tanibayashi.42 It is assumed in Ref. 42 that a cloud
consists of two types of charged defects of opposite sign. The
relaxation time of the cloud is

D '

where Z>, and D2 are the diffusion coefficients of defects of
each type. The cloud creates a force which depends on the
displacement and velocity of a vibrating dislocation. If
<a0> 1, the cloud can be regarded as immobile and the force
exerted by it can be divided into two components, one of
which is proportional to the displacement

-sJ^1**2*6)' (2.63)

and the other to the velocity of a vibrating dislocation

(2.64)

The restoring force Fb depends on the frequency. How-
ever, according to Ref. 9, the value of Fb for a cloud at rest
should be independent of a [see Eq. (2.59)]. The general
expression for the force exerted by a charge cloud on a vi-
brating dislocation42 can be used to find the damping decre-
ment 8. The influence of a cloud on the damping in alkali
halide crystals was considered by Robinson and Tallon.43^15

However, the equation of a vibrating dislocation segment
was solved in Refs. 43-45 using expressions similar to Eqs.
(2.63) and (2.64), which are valid only if co6^> 1. According
to Ref. 42, a charge cloud has the strongest influence on the
damping in the presence of long dislocation loops. The fre-
quency dependence 8 (m) is predicted to have an asymmetric

maximum at a frequency a>m s;—- .

It therefore follows that a charge cloud plays a role in
limiting the vibrational motion of charged dislocations. A
study of the influence of such a cloud can be made by the
internal friction method if dislocations are not detached
from weak pinning centers. The temperature dependence of
the damping should reveal isoelectric points in respect of
variation of 8 caused by disappearance of the interaction of
dislocations with a charge cloud.

2.3.4. Transport of charge by moving dislocations. Dy-
namic methods are used in experimental investigations of
the dislocation charge and its transport by moving disloca-
tions. A charge carried by a moving dislocation changes be-
cause a dislocation "sweeps through" vacancies. This idea of
sweeping out of vacancies by a moving dislocation was put
forward by Pratt.46 Experimental data on reduction in the
charge due to stopping of a dislocation showed that the
transported charge is not in equilibrium. A rigorous theory
describing this nonequilibrium charge is not yet available.
Phenomenological models are based on two mechanisms of
charge transport by moving dislocations. According to Ref.

FIG. 6. Distribution of ions in (001) planes which are normal to the line of
a moving edge dislocation in NaCl. The state labeled II represents the
dislocation that shifted by b/2. The positions A and B identify cation
vacancies.

47, a moving dislocation captures cation vacancies encoun-
tered in its path and it may also capture vacancies which are
components of impurity-vacancy dipoles or even more com-
plex aggregates when their positions relative to a moving
dislocation are favorable. On the other hand, divalent impu-
rity ions, dipoles, and dipole aggregates with appropriate
positions relative to a traveling dislocation may act as va-
cancy "traps." Two symmetric configurations in a (001)
plane, perpendicular to an edge dislocation with the Burgers
vector (1/2) [ 110] in an NaCl crystal, are shown in Fig. 6,
which is taken from Ref. 47. The large circles are the
Goldschmidt radii of the chlorine ions, whereas the smaller
circles represent the sodium ions. The ion positions are based
on the calculations reported in Ref. 10. A vacancy at a point
A is bound to a dislocation. A shift by b/2 transforms the
configuration shown on the left (I) to the one on the right
(II). The smallest potential energy in the configuration II
corresponds either to a vacancy at the position A or to an ion
at a position C when the sites A and B are vacant. In the
former case the position A remains vacant and the distribu-
tion of ions is no longer symmetric. Further displacement to
the right leaves the vacancy behind the dislocation. The
transport of the vacancy requires the displacement of an ion
from B to A when the dislocation is moving to the right. Such
a jump must be thermally activated. Therefore, at low tem-
peratures a dislocation cannot carry charge. In the second
case in the configuration II a positive ion is at the symmetric
position C and the positions A and B are vacant. Further
motion of dislocation to the right transfers an ion from C to
A and this restores the configuration I and a vacancy again
appears in a dislocation core. This process does not require
thermal activation so that in the configuration II a disloca-
tion can carry a charge at any temperature. Of these two
possible configurations the one encountered in practice is
that which has a lower potential energy.

It follows from qualitative considerations of the ener-
gy48 that the maximum charge Q ™ax acquired by a disloca-
tion in the course of its motion corresponds to one vacancy
per two positive sites, i.e., it is half the self-evident limit of
one vacancy per one site.

The second mechanism of charge transport by a moving
dislocation allows not only for the capture of vacancies, but
also for their diffusion,49'50 i.e., it postulates thermal activa-
tion. The nature of the temperature dependence of the trans-
ported charge is governed not only by the diffusion param-
eters, but also by the velocity of the dislocation itself. The
dynamic equilibrium charge carried by a moving dislocation
is limited by the processes of emission and absorption of va-
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cancies and, according to Ref. 49, is

Qi = - i + (v/v0)
ent
w,

— i£L
- w, •
(2.65)

The strain in an electric field is known as the converse pie-
zoelectric effect:

Here, n, is the number of vacancies which are deposited per
unit length of a dislocation per unit time as a result of their
diffusion out of the bulk of a sample; n, is the number of
vacancies swept through by a dislocation of unit length per
unit path; w, is the probability that a dislocation loses a va-
cancy as a result of thermal activation; w, is the probability
that a vacancy is lost from a dislocation because of capture
by traps which are encountered by a dislocation in the course
of its motion At low velocities (v<4v0) vacancies manage to
migrate toward a dislocation from the bulk and the domi-
nant mechanism of vacancy loss is spontaneous emission. At
high velocities the motion of a dislocation changes from
thermally activated to viscous, the efficiency of sweeping out
vacancies decreases strongly, and the quantity Q, tends to a
temperature-independent limit Qo. The mechanism of
charge transport acting in this range of velocities does not
require thermal activation. The nature of this mechanism is
still the subject of discussion. The quantitites nt,nuu)t, and
wt in Eq. (2.65) are not known so that the proposed model
cannot be used to obtain quantitative estimates. However,
the very idea of a diffusion mechanism of charge transport
by a moving dislocation is valuable. The proposed model
explains satisfactorily the experimental dependences of the
charge carried by a dislocation on its velocity and on tem-
perature.49

The model of diffusion transport of charge by a moving
dislocation has been developed further by Hungarian physi-
cists.5152 The transport of vacancies in the elastic and elec-
tric fields of a dislocation is considered in Ref. 51. A charged
dislocation is regarded as a series of uniformly distributed
charges.27 A computer calculation method developed by the
authors of Ref. 27 made it possible to calculate the influence
of various factors on the charge carried by a dislocation.
They investigated the establishment of a dynamic equilibri-
um charge in the process of motion of an initially uncharged
dislocation. It was found that when a dislocation charge is
formed, vacancies collect at points close to the dislocation
line. On the other hand, according to Refs. 53 and 54, some
of the transported charge is not bound to the dislocation
core. A moving dislocation not only transports charges in-
side its core, but also drags (by its elastic field) vacancies
and sets them in directional drift motion which is called the
vacancy wind. The problem of vacancy drift is still a matter
of discussion.9

A charge swept out by a dislocation is not initially sur-
rounded by a cloud of charged defects of the opposite sign. A
charge cloud forms as a result of diffusion of charged parti-
cles in the electric field of a dislocation and the main carriers
are mobile cation vacancies. The time required to establish a
charge equilibrium is t = eeg/a.

2.4. Direct and converse dislocation piezoelectric effects.
Electroacoustic loop

The polarization in an elastic field is known as the direct
piezoelectric effect:

J>, — di}hx)h.
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(2.66)

di}hEk; (2.67)

dyk is the piezoelectric modulus.55 The piezoelectric effects
do not occur in centrosymmetric crystals, which include al-
kali halides. If alkali halides contain mobile dislocations,
then in elastic and electric fields they exhibit phenomena
which are known as the direct and converse dislocation pie-
zoelectric effects. Motion of charged dislocations in an elas-
tic field results in an additional polarization

= Ad,mnxmn. (2.68)

By analogy with Eq. (2.66), this is called the direct disloca-
tion piezoelectric effect. A dislocation piezoelectric modulus
A</,mn can be expressed in terms of the characteristics of a
dislocation. Motion of dislocations in an elastic field also
causes dislocation strains and, consequently, makes an addi-
tional contribution to the elastic compliance. A dislocation
strain which appears in an electric field is proportional to the
intensity of this field:

A&M^&dkijEj. (2.69)

This is known as the converse dislocation piezoelectric ef-
fect. In general, the piezoelectric moduli describing the di-
rect and converse effects are different. Displacement of
charged dislocations induces also an additional polarization
and, consequently, makes an additional contribution to the
electric susceptibility.

The relationship between the electrical and elastic
properties of alkali halide crystals containing mobile
charged dislocations can be represented by an electroacous-
tic loop shown in Fig. 7. We can see that in the presence of
charged dislocations an electric field not only induces a po-
larization, but also a strain in alkali halide crystals. In turn,
an elastic field not only deforms, but also polarizes a crystal.
In the absence of dislocations the elastic properties of alkali
halide crystals are unrelated to the electrical properties.

The contribution of mobile charged dislocations to the
electric susceptibility Xy > to the elastic compliance Sklmn,
and to the dislocation piezoelectric moduli Aaf,mn and Ac? klj

were first calculated theoretically by Brantley and Bauer.36

These authors considered the condition of equilibrium of a
dislocation segment pinned at its ends and subjected to an

u

XtJ

j

Sklnm

Pi

trim

FIG. 7. Electroacoustic loop of an ionic crystal containing mobile charged
dislocations. Here, &d,mn and A</ 'klj are the coefficients representing the
direct and converse dislocation piezoelectric effects.

N. A. Tyapunina and E. P. Belozerova 1071



elastic or electric force, but they ignored the influence of a
charge cloud. The self-interaction force was considered in
the approximation of linear tension and was assumed to be
equal to T/R, where R is the radius of curvature of the dislo-
cation segment. In the presence of an elastic field applied
along the [100] axis the contribution of dislocations to the
elastic compliance is36

AS1H1 =
KbH*
4871

The direct and converse dislocation piezoelectric moduli are
the same. When an electric field is applied along the [001 ]
direction, it is found that

Ad;u = - 241/2 T

and the contribution of dislocations to the electric suscepti-
bility is

In another paper56 Bauer and Brantley considered dy-
namic effects on application of acoustic and alternating elec-
tric fields. As in Rei. 36, they assumed that the dislocation
segments were of equal length and ignored the influence of a
charge cloud. The differential equation describing the forced
vibrations of a dislocation segment on application of an elec-
tric field F = QiEoexp(io>t) can be written in the form given
by Eq. (2.60) ignoring the restoring force Fb = — Lf. Hav-
ing determined f, we can now find the dislocation polariza-
tion A ^ k and the correction to the electric susceptibility
due to dislocations. According to Ref. 56,

The quantity

determines the contribution to the electric susceptibility and

v ( 2 ) — -

gives the contribution to the dielectric losses; here, a>0 =
/) (T/A ) l n is the resonance frequency of vibrations of a dis-
location segment. If a sample is subjected not only to an
alternating electric field, but also to an acoustic field of the
same frequency, additional contributions are made to A^-"
and Lxf anc* they depend on the phase shift between these
two fields.

The solution in the case when only an acoustic field is
acting was obtained by Koehler57 and by Granato and
Liicke39 who calculated the contribution of dislocations to
the elastic compliance defect ASWmB /Sklmn and to the damp-
ing decrement 8. The expression for the dislocation piezoe-
lectric modulus was obtained by Robinson58:

A d , . . = • (2.70)

The application of an alternating electric field to the same
sample makes additional contributions to 8 and A 5 U 1 1 /
Sun and this contribution depends on the phase shift
between the electric and acoustic fields. Calculations of the

direct and converse dislocation piezoelectric moduli allow-
ing for the influence of a charge cloud were reported in Refs.
59 and 60. The differential equations describing vibrations of
a dislocation segment in alternating acoustic and electric
fields were supplemented by a force exerted by a charge
cloud. In the case of an electric field an allowance was made
for its direct influence on the charges in a cloud consisting of
one59 and two types of charged defects of the opposite
signs.60 This effect displaces charges in an electric field and
alters the force exerted by the cloud on a dislocation. The
result is that at frequencies «<(X>, +D2)/A

2, when the
charge cloud is mobile, the dislocation piezoelectric moduli
Arf and Ad' are different. The effects predicted in Refs. 59
and 60 will require new experimental investigations of the
direct and converse dislocation piezoelectric effects at var-
ious frequencies and in a wide range of temperatures.

3. EXPERIMENTAL DATA ON THE BEHAVIOR OF CHARGED
DISLOCATIONS AND THEIR INFLUENCE ON THE
PROPERTIES OF ALKALI HALIDE CRYSTALS

Reviews of experimental investigations of charged dis-
locations in alkali halide crystals carried out up to 1975 can
be found in Refs. 7-9. The progress made in the last 10-15
years in theoretical investigations of charged dislocations
and the associated effects has stimulated a large number of
new experimental studies (Table II) . Investigations of
charged dislocations in alkali halide crystals have covered a
wide range of topics, such as the appearance of a potential
difference between different points on a sample on applica-
tion of a static or an alternating load, the deformation of a
sample in an electric field, the influence of an electric field on
the mechanical properties associated with the presence of a
charge on dislocations (internal friction, defect of the elastic
compliance, creep, yield stress, etc.), the influence of an
electric field on the motion and multiplication of disloca-
tions in alkali halide crystals deformed by ultrasound, etc.

3.1. Investigations of electrical effects due to application of a
mechanical load

Such investigations were begun by A.V. Stepanov2'3

who established in 1933 an effect (later identified by his
name) representing the appearance of an electric charge on
the surface of a rocksalt crystal when it was subjected to
macroscopic deformation by a uniaxial compressive force.
Caffyn and Goodfellow61 related the Stepanov charge to the
properties of dislocations and carried out a series of experi-
ments designed to detect this charge. Later experiments
have revealed that the charge can be induced also by other
deformation methods (bending, application of a concentrat-
ed force, alternating loads) and for different positions of
electrodes on a sample.9 The appearance of a charge on the
surface of an alkali halide crystal subjected to macroscopic
deformation is explained by the fact that dislocations mov-
ing along slip (glide) planes carry their charge to the sur-
face. The subsequent development of the method of uniaxial
compression put forward by Stepanov has yielded quantita-
tive data on the charge carried by a dislocation in an alkali
halide crystal and on the dependence of such a charge on the
applied stress, rate of deformation, numbers of cation and
anion vacancies, temperature, etc.53-54'62'63'65'66 In Refs. 62
and 63 the charge Q, carried by an edge dislocation was
deduced by measuring a current / in a circuit between elec-
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TABLE II. Electric charges Q, (per unit length) carried by dislocations in alkali halide crystals,
taken from published data.

Crystal

LiF

NaCl

KC1

KBr

Concentration of divalent
impurities, mol. fraction

total concentration

lO-6

Mg++, 7-10"5

Mg++, 1-10"4

excess of cation vacancies

_
.

Ca++, 2-10-5
Ca^, 2-10-5

—
—

Mn++, 2-10-5 —3-10-5
Ca++ no 4,5-10"6,

Mg++ 7-10"6

Mn++, 1,4-10-5

total concentration
2-10-5

10-5
Ca++, 1,5-10-*
Ca++, —

total concentration
lir-

T, K

77

298
room (293 K)

»

300
room

(>

78
296
321
300

room
,>
»

300
room

„
298

room

»

Qi , C/m

-8,1-10-"

-1,1-10-"
- l ,0 -10- i E

-2,2-10-"
-3,1-10-"

+2,2-10-"...+2,9-10-"
-1,2-10-u...-2,1-10-n

-3-10-" . . . -1 ,3-10-10

- 2 - 1 0 " 1 3 . . . - 1 , 7 - 1 0 - "
— 1 7 - 1 0 " i 3 . . — 3 . 7 - 1 0 " 1 3

-7-io-"'
-2,5-10-"

-2-10-13. . . - 1 ,7 -10 - "
-2 -10-n

-2,5-10-n
-2-10-u.. .-4-10-u

flo -1,1-10-1°
— 1 5-10-u . . . -2 4-10-u

-1,0-"l0-"'
-2,7-10""...-7,5-10-"

-3,1-10-12
-4-IO-11. . . -9 ,5-10-n

-7 -10-u
-8-10-12. . . -2 ,2-10-n

Ref.

44

44

63

78

78

84

76

49

44

110

115

115

76

36

106

27

48

76

116

58

43

105

87

75

trades and by determination of the rate of deformation e:
Q, = yflbl/Se, where S is the electrode area. The current
was due to the fact that different numbers of edge disloca-
tions reached the two electrodes. The deformation in Ref. 62
was applied along two systems of crystallographic easy glide
planes, whereas in Ref. 63 it was applied along one such
system. It was interesting to note a change in the sign of the
signal obtained when deformation was applied in one glide
system63 (this change in the sign was attributed earlier to a
change in the effective glide or slip systems in the course of
active loading of a sample7). The change in the sign was
observed before reaching the yield stress. After inversion the
signal increased, reached its maximum value in the yield pla-
teau, and then decreased rapidly as a result of further load-
ing. This decrease in the signal after passing through the
yield plateau could be explained by the dependence of the
charge carried by dislocations on the velocity of their mo-
tion, which in turn reached its maximum value on the yield
plateau.64 The investigations reported in Refs. 53, 54, 65,
and 66 were concerned with a charge carried on the surface
of an alkali halide crystal under uniaxial compression condi-
tions. The experiments described in Refs. 53 and 54 were
carried out on NaCl crystals with cation or anion impurities.
These crystals were deformed using two slip (glide) systems
at temperatures between room and 600 °C. The electric
charge transported to a side face of a sample was measured
with an electrometer. The linear charge density Q, on a dis-
location was deduced from the transport charge and the
number of dislocations AAT, which reached a side face in the
course of deformation and AK was found from a shear step
measured by an interference method. However, the charge
calculated by this method for temperatures in excess of
500 °C was higher than the limiting value Q ™ax. This was
explained in Refs. 53 and 54 by putting forward the idea of a
directional drift of vacancies dragged by the elastic field of a

dislocation. Confirmation of this idea would require further
experiments. Detailed investigations of inversion of the sign
of the signal obtained for NaCl samples with controlled
numbers of cation and anion vacancies were reported in
Refs. 65 .and 66. It was established that during the initial
stage of deformation the sign of the charge carried to the
surface was opposite to the sign of the charge at dislocations
of the investigated crystals. This "minority" signal reached
its maximum value for a load corresponding to the yield
stress. The strain £, corresponding to the point of inversion
of the sign of the signal and the magnitude of the signal itself
before and after the inversion increased considerably on in-
crease in the deformation rate. One of the possible explana-
tions of the change in the sign of the charge carried to the
surface was that initially it was due to the charge on the
surface and only after the inversion point it was contributed
by dislocations. The final identification of the mechanism
responsible for the inversion of the sign of the charge would
require further experiments on samples with a controlled
state of their surface. Fischbach and Nowick67 first observed
an electric signal when a concentrated load was used. A
qualitative analysis indicated68 that the signal increased con-
siderably as a result of preliminary bending of a sample or
introduction of divalent impurities. Further modernization
of the method employed69"71 made it possible to determine
the charge carried by an edge dislocation. An indentation
method was used in Refs. 49 and 50 to investigate formation
of a dynamic equilibrium charge carried by a moving dislo-
cation in LiF crystals. An investigation of the sign of the
potential which appeared as a result of indentation showed
that dislocations in crystals containing divalent cation im-
purities were negatively charged, whereas those in crystals
containing anion impurities were positively charged. Figure
8 shows the dependence of the charge on the velocity of a
dislocation in an LiF crystal with an Mg impurity (10~5
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FIG. 8. Dependence of the charge carried by a dislocation in LiF on the
velocity of its motion49: 1) 20°C;2) 100 °C; 3) 150'C.

molar fraction) at three different temperatures.49 The de-
pendence of Qi on the velocity indicated that the mechanism
of charge transport was thermally activated. Clearly, at high
velocities the charge decreased by several orders of magni-
tude tending to a velocity-independent limit Qo. A phenome-
nological explanation50 of the dependence Q, (y) was given
by us earlier in Sec. 2.3.3. Identification of the mechanism of
transport of the charge Qo will require further investigations.

The appearance of an electrical signal as a result of cy-
clic deformation is observed at low72"75 and ultrasonic58'76"79

frequencies. In the case of small strains the signal is due to
reversible displacements of a charged dislocation relative to
a Debye-Hiickel cloud. At high vibration amplitudes a dislo-
cation travels a large distance and its charge increases as a
result of vacancy capture. Developments of this method
have made it possible to estimate quantitatively the disloca-
tion charge. Whitworth et a/.47'48-74 subjected previously
bent NaCl samples to tensile-compressive strains at a fre-
quency of 0.04 Hz. When the load was applied along the
[100] direction and the voltage was measured between the
(001) faces, the charge was described by

Ub(C+CtV

Here, £% is the plastic strain amplitude equal to the differ-
ence between the total and elastic strains; C is the capaci-
tance between the electrodes; Ce is the capacitance of an
electrometer; rj = {Kx + K2)/(,K, — K2); K is the disloca-
tion density with the required mechanical sign to create
bending found from Nye's formula,80 and AT, + K2 is the to-
tal density of dislocations calculated from the etch figures. It
was established that the charge Qt increased on increase in
the load amplitude tending to its maximum limit Q J""" corre-
sponding to one electron charge e per two like ions on a
dislocation line. When a sample was subjected for a longer
time to the maximum amplitudes employed in Ref. 48, the
charge Qt decreased, i.e., the charge acquired by a moving
dislocation was not the equilibrium value. The Whitworth
method was used by van Dingenen75 to investigate an electri-
cal signal developed as a result of vibrations of KBr at low
(0.02 Hz) and acoustic frequencies. In the interpretation of
the results obtained at different stages of cyclic loading an
attempt was made to separate the electrical effects due to
displacement of a vibrating dislocation relative to a charge
cloud from the effects resulting from an increase in Qt due to
the capture of vacancies by a moving dislocation. Further
experiments are needed to investigate the contribution of
these two effects to the measured electrical signal at different
vibration amplitudes and frequencies. The piezoelectric
modulus for the direct Ad and converse Ac?' dislocation pie-
zoelectric effects, the damping 8, and the elastic compliance
defect AS,,,, / S , , , , , were determined58'76 for previously bent
LiF, NaCl, and KC1 samples; the measurements were made
at a frequency of 40 kHz and then Eq. (2.70) was used to
calculate the dislocation charge Q,. In the range of ampli-
tudes £0 used in these investigations it was found that Ac? and
Ac?' were the same. Figure 9 shows the amplitude depen-
dences Ad3,,(£„), ( A S i m / S m , ) ( £ „ ) , S(e0), and Q,(e0)
obtained for a sample of KC1 at room temperature. It is clear
from this figure that in the absence of an amplitude depen-
dence of the damping the charge carried by a dislocation did
not change when £0 was increased. Simultaneous studies of
the direct and converse dislocation piezoelectric effects, in-
ternal friction, and the electric voltage t/between electrodes
on the surfaces of LiF and NaCl samples, carried out at a
frequency of 100 kHz, were made77"79 using the method of
Ref. 81. The direct and converse dislocation piezoelectric
effects were observed only for the samples subjected to a

n'K

10'

Ac/311,C/N

o o
_a a_a_aa>-

10,-s 10' n-* 10'

O

10-72

w

FIG. 9. Amplitude dependences of the dislocation piezoelectric
modulus A^3I | , oftheelastic compliance defect A S m l /Snn of the
damping S, and of the charge Q, carried by a dislocation in a KC1
crystal.58
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preliminary plastic deformation by bending and the piezoe-
lectric moduli were the same for the direct and converse
effects. The amplitude dependence of the electrical signal
U(e0) obtained at low values of e0 was a linear function of
the strain, so that the charge carried by an edge dislocation
subjected to low strains e0 was not affected by its motion.79

The amplitude dependences of the internal friction and of
the dislocation piezoelectric modulus were qualitatively
similar. The linear dependence U(e0) was retained in a cer-
tain range of e0, where S(e0) already exhibited an amplitude
dependence. In spite of the fact that investigations of the
amplitude dependences of the damping and of the disloca-
tion piezoelectric modulus reported in Refs. 58 and 76 and in
Refs. 77-79 were carried out in the same range of amplitudes
e0 and although the results were qualitatively similar, the
interpretations adopted were different. In Refs. 58 and 76
the authors invoked a model of the interaction of a vibrating
dislocation with a charge clout.43^5 An increase in the
damping on increase in e0 was attributed to the escape of a
vibrating dislocation from a cloud. In the course of vibra-
tions outside a cloud a dislocation "swept through" vacan-
cies encountered in its path and increased the charge._A cal-
culation of the average displacement of a dislocation £ at an
amplitude e0 corresponding to the onset of the amplitude
dependence 8(e0) indicated that f and the Debye-Hiickel
cloud radius A had similar values. On the other hand, in the
model proposed in Ref. 79 use was made of the idea of ther-
mal-fluctuation-induced detachment of edge and screw dis-
locations from pinning centers82'83 and an edge dislocation
was regarded as a charged string. Additional data are needed
to determine under what conditions each of the proposed
mechanisms predominates.

3.2. Investigations of dislocation strains in alkali halide
crystals subjected to an electric field

The deformation of alkali halide samples due to the mo-
tion of charged dislocations in an electric field was first re-

ported by Sproull.84 When a voltage was applied to the elec-
trodes on two opposite surfaces of a previously bent LiF
sample, the sag of the sample changed by an amount mea-
sured with a special electromechanical transducer. The
strain was found to be an odd function of the electric field,
i.e., it was different from electrostriction and was due to dis-
placement of charged dislocations. Translational motion of
charged dislocations in an electric field was observed by
Shvidkovskii, Tyapunina, and Belozerova85 who used the
selective etching method. Similar experiments were carried
out by Zagoruiko,86 who detected a change in the direction
of motion of an edge dislocation as a result of reversal of the
field. Only edge dislocations participated in such motion.
There was a threshold field in which motion began. In ex-
periments on NaCl this field was 8 X 105 V/m. A change in
the direction of motion of an edge dislocation as a result of
repeated switching of the electric field in the experiments of
Zagoruiko86 is demonstrated in Fig. 10. The motion of edge
dislocations along rays of a dislocation rosette emerging
from an indentation made in a KC1 crystal in an electric field
was reported in Ref. 87. Such motion also began when a
certain threshold electric field was reached. Assuming that
the threshold field causing dislocation motion was equiva-
lent to a mechanical force, the authors of Ref. 87 used the
critical shear stress and the threshold field intensity Eth to
calculate Qt. The charge found in this way was 58% of the
maximum charge QT™. A series of investigations88"91 re-
vealed the motion of dislocation walls of edge dislocations in
alkali halide crystals subjected to an electric field. This field
was perpendicular to the boundary of a sample. The motion
was observed only above room temperature and it began
when a certain threshold field was reached.88'89 The dis-
placement of a dislocation wall depended on the intensity of
the electric field and the duration of exposure to this field,
which in the experiments of Refs. 88 and 89 amounted to 11-
90 h. The experimental results88"91 did not give a clear an-
swer on the sign of the charge of dislocation walls in alkali

FIG. 10. Changes in the direction of motion of an edge
dislocation as a result of reversal of an electric field
(E= 1.5XlO6V/m).86
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halide crystals. According to Refs. 88 and 89, the charge
carried by a wall in an alkali halide crystal was negative
below 620 °C and positive above 640 °C. According to Ref.
90, a dislocation wall in NaCl was charged negatively at tem-
peratures 500-700 °C. In the study reported in Ref. 91 it was
found that dislocation walls in NaCl consisting of edge dislo-
cations were displaced in the direction of the electric field at
temperatures 300—440 °C, i.e., they were positively charged.
At room temperature it was found that a redistribution of
cation vacancies took place near such walls when a sample
was subjected to an electric field.91 This altered the micro-
hardness on both sides of the wall. The microhardness in-
creased in the zone of accumulation of negative charges and
decreased in the softening zone located on the other side of a
dislocation wall. The abrupt change in the microhardness
depended on the density of the electric field and the duration
of exposure to this field. In 1966, Driyaev et a/.92'93 discov-
ered vibrations of LiF samples in an alternating electric field.
These samples represented single-wave vibrators exhibiting
flexural vibrations. Under resonance conditions the vibra-
tions of a sample lagged by -ir/2 behind the electric field, i.e.,
the field was in phase with the effective electric force that
excited the crystal. According to Refs. 92 and 93, an alter-
nating electric field induced vibrations of charged disloca-
tion segments. The sag of a dislocation creates microplastic
strains and gives rise to an effective force which excites vi-
brations of the crystal.

3.3. Simultaneous influence of an electric field and a
mechanical load

We shall now consider the experiments in which an
electric field was applied simultaneously with a mechanical
load. Static,94 pulse,95"99 and alternating100'101 loads have
been used. The simultaneous application of a mechanical
load and an electric field to a sample produces effects differ-
ent from those when the load and field are applied consecu-
tively. In addition to a direct effect on charged dislocations,
the electric field induces a redistribution of charged jogs and
reorients pinning centers which are formed by impurity-va-
cancy dipoles and by aggregates of dipoles, and it redistri-
butes charged defects at block boundaries and on the surface
of a crystal.

The influence of an electric field on the starting stresses
and on the distance traveled by dislocations in NaCl samples
subjected to uniaxial compression was investigated and re-
ported in Ref. 94. A reduction in the starting stresses and an
increase in the mean free path of dislocations were observed
when an electric field was applied. A calculation of the
charge Q, from the change in the starting stress, allowing
only for the direct effect of an electric field on a charged
dislocation, gave values exceeding Q 7"ax. According to Ref.
94, an electric field acts not only on dislocations, but also on
dipole pinning centers causing their reorientation and weak-
ening their coupling to dislocations. The influence of shear
stress and electric field pulses on the mobility of edge and
screw dislocations in NaCl crystals was also investigat-
ed.95"99 An increase in the mobility of edge dislocations on
application of an electric pulse to a sample subjected to a
mechanical load was interpreted as the effect of an electric
field on the dislocation charge. A strong rise in the mobility
of screw dislocations after a preliminary electric field pulse
was attributed to a redistribution of charged jogs along a

A, 10"7m

-it -it/2 rc/Z

FIG. 11. Dependences of the amplitudes of flexural vibrations of a sample,
subjected simultaneously to a mechanical force and an electric field, on
the phase shift between the force and the field.93 Curve 1 represents a
sample with positively charged dislocations and curve 2 represents a sam-
ple with negative dislocations.

dislocation. The simultaneous effects of an alternating me-
chanical force, exciting flexural vibrations of an LiF crystal,
and of an alternating electric field of the same frequency was
studied by Driyaev et alP This study was carried out on
crystals of two types with positively and negatively charged
dislocations. The amplitude of vibrations of the investigated
crystals depended on the phase shift q> between the mechani-
cal and electrical forces. The relevant dependence is shown
in Fig. 11. It is clear that in the case of crystals with negative-
ly charged dislocations the amplitude A was maximal for
<p = 0 (curve 1), whereas in the case of positively charged
dislocations the amplitude A reached its maximum value for
cp = -nr (curve 2). The theoretical curve for the amplitude A
was obtained by simultaneous solution of the differential
equation describing flexural vibrations of a sample and of the
equation describing vibrations of a dislocation segment sub-
ject to mechanical and electrical forces exerted on such a
dislocation regarded as a charged filament. 10° According to
Ref. 100,

A = K {F%x + F%E + 2F0XF0E cos cp)"*;

here, FOr is the amplitude of mechanical vibrations and F0E

is the amplitude of oscillations of the electrical force acting
on a crystal via charged dislocations with its direction de-
pending on the sign of the dislocation charge. The values of
A calculated using this expression agreed with the experi-
mental curves in Fig. 11. The influence of an electrostatic
field on translational motion of edge dislocations along rays
of a dislocation rosette in KC1 was observed101 under hf vi-
bration conditions. The main effect of the field was to in-
crease the distance traveled and the number of displaced
dislocations. The influence of the field was manifested also
when E was parallel to the lines of edge dislocations, but in
this case the field should not affect directly the charged dis-
location. According to Ref. 101, an electric field acts not
only on charged dislocations, but also on dipole pinning
centers. At large amplitudes of ultrasonic vibrations an elec-
tric field facilitates ultrasonically induced multiplication of
dislocations in alkali halide crystals.102 Figures 12a and 12b
show the results of etching of mirror-smooth cleaved faces of
two KC1 samples which were subjected to the same ultra-
sonic treatment, but one of these samples was additionally
subjected to an electric field (Fig. 12a). A comparison of
Figs. 12a and 12b shows that the field activates new sources
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FIG. 12. Influence of an electric field on the deforma-
tion of KC1 crystals during irradiation with ultra-
sound. The figure shows the results of etching of the
surface of a sample after vibration in an electric field
(b) and mirror-smooth cleavage surface of the same
sample in the absence of a field but subjected to the
same ultrasonic irradiation (a). Here, r0 = 7.8 MPa,
fr = 73 kHz, and E = 0.3 MV/m.

in block boundaries which do not operate in its absence. It
was typical that even in the case of those crystals in which
the sources at block boundaries did not operate in the ab-
sence of an electric field, we found that in the presence of a
field the process of plastic deformation began with the oper-
ation of such sources. An electric field also activated the
sources located near the surface of a crystal. The role of the
field was to alter the electrical state of a surface or a block
boundary. This resulted in a redistribution of charged de-
fects and increased the^probability of appearance of sources
of the optimal length L, operating under an influence of ul-
trasound of different frequencies.103 Further studies of the
effects described in the present subsection are desirable in
order to obtain information on plasticization of materials
under the influence of an electric field.

3.4. Influence of an electric field on mechanical properties of
alkali halide crystals

An electric field alters those mechanical properties of
alkali halide crystals which are associated with the presence
of charged dislocations (creep, yield stress, elastic com-
pliance defect, internal friction, etc.).

The influence of an electric field on the creep curves of
alkali halide crystals, i.e., on slow flow of crystals under a
constant load, was first reported in Ref. 104. The application
of a field accelerated the flow and the creep curves exhibited
small deformation jumps. The dislocation density in a sam-
ple increased considerably, i.e., an electric field facilitated
plastic deformation; additional data would be required to
identify the mechanism of this effect. The influence of an
electric field on the yield stress of alkali halide crystals sub-
jected to a mechanical load (electroplastic effect) was re-
ported in Refs. 105-108. The application of a field reduced
the stress needed to maintain a constant strain. The method
gave a quantitative estimate of the dislocation charge Q, [ see
Eqs. (2.56)-(2.58)]. According to Ref. 108, the charge was
higher than Q ™ax and one of the possible reasons for this
result could be a change in the electrical state of the surface
under the influence of the field. An electric field influences
also the damping and the elastic compliance defect of alkali
halide crystals. This influence had been observed in the am-
plitude-independent109"011'113"4 and amplitude-depen-
dent"1"3 regions. The increase in the amplitude-indepen-
dent damping in an electric field was observed in Ref. 109 in
the hertz and kilohertz frequency ranges. It was concluded
in Ref. 109 that the field did enhance detachment of disloca-
tions from a compensating cloud of point defects. The influ-

ence of an electrostatic field on the amplitude-independent
decrement 8 and on the elastic compliance defect
A S m i / S l m at amplitudes fo~10~8-10~7 at 80 kHz was
described in Ref. 110. The application of a field increased
both 8{t) and (ASnu/Snu)(t). When the field was
switched off, the decrement first increased and then began to
fall reaching values close to those observed initially. A model
of thermally activated detachment of segments of charged
dislocations from Debye-Hiickel clouds and subsequent
modification of these clouds was used to explain the ob-
served effect. In the absence of a field such charged disloca-
tion segments are assumed to vibrate symmetrically within a
charge cloud. When a field is applied, the force exerted by it
displaces a segment and its vibrations relative to a cloud
become asymmetric. In high fields a dislocation is in a region
with a low concentration of defects and this enhances the
decrement and the elastic compliance defect. As a result of
subsequent modification a cloud assumes a symmetric shape
relative to the new position of the dislocation and this re-
duces the damping. When the field is switched off, a disloca-
tion segment returns to its initial position and exhibits vibra-
tions in a cloud free of defects. Therefore, immediately after
the field is switched off the damping increases and then
modification of the cloud causes relaxation to the initial
state. An amplitude dependence of the damping and of the
Young modulus defect AM /M was reported in Ref. I l l for
alkali halide crystals subjected to strain of amplitudes e0 in
the same range as in Ref. 76. An estimate of the displacement
of a vibrating dislocation obtained using an expression put
forward by Baker"2

y 2 (hM/M) £Q
t — Kb

demonstrated that f was close to the radius of a charge cloud
calculated from Eq. (2.15). The amplitude dependence was
explained in Ref. 111 by the motion of a vibrating dislocation
segment projecting beyond the limits of a cloud. In the pres-
ence of an electric field the onset of the amplitude depen-
dences 8(£0) and (AM/M) (e0) shifted toward lower values
of e0. The influence of the field on the damping and the mod-
ulus defect at amplitudes e0 in the region of detachment of
dislocations from weak pinning centers was investigated by
Belozerova et a/."3114 Figure 13 shows the influence of the
field on the amplitude dependence 8(e0) of a KC1 sample at
a frequency 73 kHz taken from Ref. 114. Clearly, the ampli-
tude dependence 8{e0) for a sample in an electric field began
at lower values of e0 than for a control sample. We found no
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FIG. 13. Influence of an electric field on the amplitude dependence of the
damping."4 Curve 1 represents a sample in an electric field and curve 2
represents a control sample. Curves 3 and 4 demonstrate establishment of
steady-state damping at points K, and K2. Reduction of the damping at
high values of e0 (curves 5 and 6) is due to pinning of dislocations con-
trolled by bulk diffusion in KC1. Here, / , = 73 kHz and E = 1.6 X105

V/m.

published data on the influence of an electric field on the
damping in alkali halide crystals in the region where disloca-
tion multiplication was possible. A study of the influence of
an electric field on plasticization of crystals containing
charged dislocations, which include semiconductor materi-
als, is not only of scientific but also of practical interest. The
internal friction provides a convenient and sensitive method
for investigations of this influence.

4. CONCLUSIONS

Less than thirty years have passed since the publication
of the first results of investigations of charged dislocations.
Such investigations are now proceeding on a wide front and
they have revealed new information on the influence of
charged dislocations on mechanical and electrical properties
of alkali halide crystals. Such information is essential in the
preparation of materials with precisely specified properties,
which are used in many branches of science and technology,
and in forecasting the behavior of materials under various
test conditions. The authors are grateful to I. A. Yakovlev
for his interest and valuable advice.
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