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The Casimir effect is analyzed. This effect consists of a polarization of the vacuum of quantized
fields which arises as a result of a change in the spectrum of vacuum oscillations when the
quantization volume is bounded or the topology of the space is non-Euclidean. Calculations of the
effect for manifolds of various configurations and for fields with various spins are reported.
Various definitions of the Casimir vacuum energy in the presence of walls are discussed. The
quantum field theory of Casimir forces is generalized to incorporate the dispersion properties of
the medium. Applications of the Casimir effect in various branches of physics are reviewed: from
the theory of molecular forces to cosmology and elementary particle physics, including the bag
model and supersymmetry.
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1. INTRODUCTION

Recent years have seen continuously increasing interest
in physical phenomena known collectively as the "Casimir
effect." This effect is essentially a polarization of the vacuum
of quantized fields which arises because of a change in the
spectrum of vacuum oscillations when the quantization vol-
ume is bounded or the topology of the space is non-Euclid-
ean. The list of the branches of physics in which the Casimir
effect is manifested is a very long one, ranging from statisti-
cal physics to elementary particle physics and cosmology.

Historically the first prediction of the effect was made
by Casimir in 1948 (Refs. 1 and 2): An attractive force

F = — (77^/240 )(/ic/a4), which can be expressed in terms
of Planck's constant fi, the velocity of light c, and the dis-
tance between the plates, a, should act on a unit area of two
conducting plane-parallel plates in vacuum. An attraction of
this sort was subsequently observed experimentally.3"6 For
plates 1 cm2 in area with a = 0.5 fim, the force was =0.2
dyn, in accordance with the theoretical prediction.

In quantum field theory the appearance of a vacuum
energy density and thus a force between ideally conducting
plates at absolute zero is explained in terms of a change in the
spectum of zero-point vibrations due to the vanishing of the
tangential component of the electric field at the plates.

The Casimir effect can be discussed as a manifestation
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of the van der Waals molecular-attraction forces at large
distances, where the retardation of the electromagnetic in-
teraction becomes important.32'37 The Casimir force is calcu-
lated in this case in terms of the characteristics of the fluctu-
ation electromagnetic field over the entire volume, including
not only the region between the bounding objects but also
these objects themselves. In several cases, however, it is
simpler to describe the effect by taking an approach which
makes it possible to replace the analysis of the field within
objects by some effective boundary condition.

Since 1948, several hundred papers on the Casimir ef-
fect have appeared in the literature, most of them in the past
decade. In addition to the interest in connection with re-
search on the vacuum forces between solid objects, the Casi-
mir effect has attracted interest because of the possibility of a
non-Euclidean topology of space-time. As in the presence of
material boundaries, the spectrum of zero-point vibrations
in topologically nontrivial spaces differs from that in the
case of Minkowski space, with the result that a nonzero
vacuum energy-density arises. This fact is important to the
problem of the cosmological constant45 and in connection
with inflationary cosmological scenarios.46

The Casimir effect has turned out to be extremely im-
portant in hadron physics, in the construction of a bag mod-
el65'66 in which quarks are confined as a result of the postulat-
ed absence of a current through the surface of a bag which is
bounding a hadron. The Casimir energy of the quark and
gluon fields must be incorporated in the total energy of a bag
in a calculation of the properties of hadrons.

The Casimir effect has extremely timely applications in
the supersymmetry field theories of the Kaluza-Klein type.
Here the Casimir effect must be taken into account in analy-
sis of the mechanisms for the spontaneous compactification
of the additional spatial dimensions (dimensional reduc-
tion).74

Finally, Casimir forces have turned out to be extremely
sensitive to the values of the supersymmetry breaking pa-
rameter and the masses of hypothetical light particles—
properties in elementary particle physics whose values need
to be refined.78 Atomic force microscopy holds great prom-
ise here.102

The present review covers all the research directions
listed above. In contrast with a recent review by Plunien
etal.,10 the present review focuses on the physical side of the
questions, including the application of calculation methods
using effective boundary conditions to real models of boun-
daries, an analysis of the numerous applications of the effect,
and a comparative analysis of the various approaches to the
interpretation of the effect.

In §2 we use the very simple example of a scalar field for
a detailed analysis of the fundamental physical and math-
ematical aspects of the Casimir effect. That section of this
review is a self-contained introduction to the subject. In §3
we present some specific results for real three-dimensional
problems for various types of fields. In §4 we analyze the
changes which are introduced by the specific properties of a
medium and the experiments which have been carried out.
In §5 we discuss some thornier questions: the Casimir energy
in a space-time with a non-Euclidean topology, including
applications in cosmology. Finally, in §6 we describe appli-
cations of the Casimir effect to various topics in elementary
particle physics. The appendices contain certain details of
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the regularization of the vacuum energy-momentum tensor.
We set Planck's constant fi and the velocity of light c equal to
unity. Any exceptional cases will be specified.

We dedicate this review to the memory of our friend and
colleague Sergei Georgievich Mamaev, who did a great deal
to develop the theory of the Casimir effect.

2. ALPHABET OF THE EFFECT: MODEL OF A ONE-
DIMENSIONAL SCALAR FIELD

2.1. Boundary conditions: idealized version of an exter-
nal field. As was mentioned in the Introduction, many inter-
esting quantum effects arise in the interaction of a vacuum of
quantized fields with external fields. The Casimir effect may
be counted as one of these effects. Let us recall a very simple
problem from classical mechanics: the reflection of a particle
from an elastic wall. Such a wall is evidently a limiting form
of a potential which increases rapidly along the coordinate as
the interval of the increase approaches zero. The potential is
then "remembered" only in the reflection condition, and the
motion between walls is free and can be described in an ele-
mentary way. An analog of this problem in quantum me-
chanics is the problem of a square potential well of infinite
depth, in which case the analysis of the limiting transition
(in terms of the well depth) makes it possible to eliminate
the step of finding wave functions for a given potential and to
restrict the analysis to solving a free Schrodinger equation
with homogeneous boundary conditions at the walls.

Replacing an external field by boundary conditions is a
suitable approach in many problems, including relativistic
problems. At the same time it allows one to concentrate on
the fundamental side of the effects, since the technical diffi-
culties are eased. One must of course bear in mind the limits
on the applicability of the method, as in any idealization;
e.g., in using the model of a well of infinite depth one cannot
in principle deal with a continuous spectrum.

An important point for the discussion below is that re-
placing an external field by a boundary condition is also pos-
sible for systems which have an infinite number of degrees of
freedom. A well-known example is a string whose ends are
fixed. Instead of explicitly incorporating in Newton's equa-
tion the forces which prevent a displacement of the bound-
ary points of the string, x = 0, a, one usually imposes bound-
ary conditions

y ( 0 , t) = y (a, t)=0 (2.1)

on the displacement y of the points of the string which are
parametrized by the coordinate x. The equation of motion,
on the other hand, is free:

dx* '
(2.2)

where p is the linear density of the string, and g is the elastic
constant.

The imposition of constraints which fix the distance be-
tween the particles of a system can also be reduced to the
limiting form of a potential which increases rapidly upon a
violation of the conditions of the constraint.

2.2. Quantum mechanics of a string. Let us take a de-
tailed look at the quantization of the displacement field y{x,
t) of a string as a transitional stage toward a description of
relativistic quantized fields in bounded spatial regions. This
subsection is basically pedagogical and can be skipped by
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those well-versed in quantum theory.
We rewrite (2.2) as a standard wave equation:

2y (*• t) T, t)
dx" = 0; (2.3)

where c = (g/p)U2 is the propagation velocity of the vibra-
tions in the string.

We seek a general solution of (2.3) under conditions
(2.1) as an expansion in the orthonormal system yn (x):

v, t)= >j an(t) yn(x),
(2.4)

Substituting (2.4) into (2.3), we find that each ampli-
tude an (0 satisfies a harmonic-oscillator equation

' o n = 0 , wn = ckn = - (2.5)

The linear energy density e, which is the sum of kinetic
and potential components, determines the total energy of the
string, E:

(2.6)

For brevity we set p = g = c = 1 at this point. Substituting
expansion (2.4) into (2.6), and making use of the orthonor-
mality of the functions yn (x), we find

= • = 2 (2.7)
71 = 1

The representation of the string displacement field y{x,
t) in terms of a set of oscillators a n as in (2.4) and (2.5) and
the representation of the energy E as the sum of oscillator
energies as in (2.7) make it possible to construct a quantum-
mechanical description of the motion of the string extremely
quickly. We find the Hamiltonian H of the system, as in the
case of an oscillator, from expression (2.7) for the energy, by
replacing an by a momentum operator83:

id
(2.8)

The Schrodinger equation

Hq (oi, o2, . . .) = Eq (ai, a2, . . .)

determines the wave functions ip and the possible energy lev-
els. Since the oscillators in (2.8) are independent, we evi-
dently have

(2.9)

The numbers wn>0 are called the "occupation
numbers" of mode n; the same set of numbers, {m,,}, speci-
fies the eigenfunctions: ip{mn}(al,a2,...).

A unique feature of an oscillator—the linear depend-
ence of the energy of each mode on the occupation number—
makes it possible to represent an oscillator in an excited state
(mn > 0) as a set of mn excitation quanta, each having an
energy con. For the case of a string, one speaks of a state with

mn quanta (phonons) in each of the modes. An important
point is that even the ground state, with the lowest energy
(mn = 0 for all n) has a nonzero energy83:

£ = £»-= 4" 2 ^>^°- (2-10)

A state with {mn} = 0 is called the "vacuum state" or sim-
ply the "vacuum" of the phonon field, while Eo is the zero-
point energy of the vacuum oscillations.

It is useful to note that the set con depends on the bound-
ary conditions. For example, under the boundary conditions

dy (0, Q __ dy (a, 0 __ Q
dx ~ dx

we find, in place of frequencies (2.5),

2» + l
CO.. = „ JT,

(2.11)

(2.12)

while the expressions for the energy remain the same as be-
fore. A string can serve as a one-dimensional model of oscil-
lations in a solid. The vacuum state with an energy Eo is then
reached at absolute zero11: T= 0.

We wish to call attention to the circumstance that in a
macroscopic medium there is a length scale—the wave-
length of the vibrations, A,, = 2-rr/k,,—which cannot be
shorter than the distance between atoms, d. The summation
in (2.10) is thus actually restricted to frequencies
a < ilsc/c?, so the value of EQ turns out to be finite. In the
sections which follow we will deal with infinite values ofEQ,
as in (2.10), with a summation over all n < oo. It is thus
necessary to develop procedures for calculating a finite dif-
ference between infinite quantities. In particular, one can
give meaning to the difference between the values of Eo with
frequency sets (2.5) and (2.12) by introducing, more or less
explicitly, a cutoff parameter of the c/d type in the interme-
diate stages of the calculations.

The arguments of wave function (2.8) are the displace-
ments of the oscillators, an; i.e., a coordinate representation
has been used. When the fields are quantized, it is more con-
venient to use another representation: the occupation-num-
ber representation (which is also called the "second-quanti-
zation representation"). We introduce the operators

(2.13)

(in the coordinate representation, the action of the operator
an reduces to multiplication by the number an, and
pn = — id /dan; in the momentum representation we have
pn =pn,an = id/dpn ). Working from the known commu-
tator [an ,pn ] = /, we easily find

[of, a±] = (2.14)

and all operators with different indices commute.
For the time being we will assume that there is only a

single oscillator, an (the nth mode). The wave function of
such an oscillator, ipmn {an) = \mn), which corresponds to
a number of quanta mn, is well known.83 By directly apply-
ing operators (2.13) to it one can verify the following rela-
tions83:

at,
ala«\mn)=-mn\mn). (2-15)
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The fact that the number of quanta is changed by the
operators a* justifies calling the latter "creation and anni-
hilation operators," respectively (in our problem, the entity
which is created or annihilated is a phonon), while the oper-
ator Nn = an

+ a ~ would naturally be called a "number-of-
quanta operator" or a "number-of-(quasi-)particles opera-
tor." Let us assume that the operators a* also act on the
wave function \{mn}) = ^m,,m,,... (aua2,...) of the set of os-
cillators. In (2.15), the occupation numbers of the oscilla-
tors with indices different from n do not change.

It remains to express the Hamiltonian operator H in
(2.8) in terms of a*. Solving (2.13) for pn, an, we find
[using (2.14)]

Any arbitrary solution of (2.17), (2.18) can be expanded in
<p *, and the coefficients can be determined with the help of
(2.20):

Or. t) = £ r, t) + a*(f^(x, t)). (2.21)

On an infinite axis, i.e., in the absence of boundary con-
ditions (2.18), the solutions of (2.17) obviously are not
quantized; i.e., all values 0<« < oo are allowed. These solu-
tions are conveniently written in the form of traveling waves,

-exp [ + i (<ot — kx)} (— oo

(2.22)

which are normalized by means of the replacement Snn,
— S(k — k') in (2.20). Expansion (2.21) is then replaced by

The application of H in (2.16) to the function \{mn }>
immediately gives us the earlier result, (2.9), for the energy.

After all the operators are expressed in terms of a*,
relations (2.14) and (2.15) completely determine the prop-
erties of the system, and we can forget about specific realiza-
tion (2.13) of the operators a*.

In the occupation-number representation, only the
number-of-particles operator Nn and functions of it reduce
to ordinary numbers (c-numbers). The other quantities, in-
cluding an and the displacement fields (x, t) which is related
to it in a linear way [see (2.4) ], become operators (the sys-
tem of functions yn of course remains a c-number system).

2.3. Complete sets of solutions of the Klein-Fok equation.
In calculations on the Casimir effect, extensive use is made of
eigenfunctions and eigenvalues of the corresponding field
equation. We begin our analysis of relativistic problems with
the very simple case of an uncharged scalar field which is
defined on an axis (the dimensionality of the space-time is
D = 2). This field obeys the Klein-Fok equation (below we
set fi = c = 1)

'r2'( (.r. 0 (2.17)

here m is the mass of the field, i.e., of the particles which
make up the field (for the phonons in Subsection 2.2 we
obviously have m = 0), and V(x) is an external scalar field
which interacts with the field qp. Taking the same approach
as in the preceding subsections, we set V=0, taking account
of the interaction by means of a boundary condition of "im-
penetrability" at the edges of the segment:

<F (0. t) = q> (a, t) = 0. (2.18)

Solutions of (2.17) with V= 0 and conditions (2.18)
can be found easily:

1
(aa>n)V2 sin k.x.

(2.19)
* „ = • l, 2,

The functions (2.19) have been orthonormalized in ac-
cordance with the well-known indefinite scalar product for
Eq. (2.17) (Ref. 83):

(/, g)=\ [f*dtg-g*dtf]dx.
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(2.20)

tf (a-, t) = \ dk. (2.23)

It is also useful to find solutions for a periodic boundary
condition

(x, t) = (f, (x - j - a, t),

A(p (x, t) = dx(f (x J- a, t),
(2.24)

which reflects the identical nature of the boundary points or,
more clearly, the coiling of segment (0, a) into a ring. The
length of the segment must now be equal to an integer num-
ber of wavelengths [a half-integer number would also be
permissible for (2.18)].

One family of solutions is the same as (2.19) in the case
kn = Ivn/a. Now, however, there can be another family,
with q> 7^0 at the points x = 0, a. This family has the same
frequencies kn = 2-rrn/a and reduces to the replacement
sin £„.*-> cos knx in (2.19). The number of modes has thus
doubled from that corresponding to conditions (2.18) (in
addition to the change in the spectrum).

These solutions can be represented by traveling waves
instead of standing waves:

(2.25)
(— oo • ;oo).

It is a simple matter to take the limit a — oo, of an un-
bounded space, in system (2.25).

2.4. The infinite energy of zero-point oscillations depends
on the boundary conditions. The clearest characteristics of
the Casimir effect are the average values of the energy-mo-
mentum tensor of the quantized field under consideration in
the vacuum state. The energy-momentum tensor of a real
scalar field in a two-dimensional space-time is7'83

(2.26)

In the occupation-number representation, the ampli-
tudes a* in field expansion (2.21) must be regarded as cre-
ation and annihilation operators with commutation rela-
tions (2.14). When we then substitute field expansion
(2.21) into (2.26), we find the energy-momentum-tensor
operator:
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\ 2 IK
(2.27)

with corresponding expressions for the other components.
We have immediately discarded from (2.27) products of op-
erators with unlike indices as well as terms of the type
an

+ a +, a~a~, since they vanish when the energy-momen-
tum tensor is averaged over any state, by virtue of relations
(2.15) and the orthogonality of states with noncoincident
sets {mn}.

The unrenormalized energy density is found as the ex-
pectation value (OIToo |0);using (2.16), we find that the last
set of parentheses in (2.27) givesus (O|27V,, + l|0) = 1 after
the expectation value is taken. The distinctive features of a
particular problem are contained in the choice of the func-
tions cp *. The result is simplest for periodic conditions
(2.24), since cp * cp ~ = const follows from (2.25):

<0 I no I 0> = 4- 2 «V (2.28)

conditions, even if the values of the length a are the same, it is
tempting to state that the energies of the vacuum oscillations
also depend on the boundary conditions.

One must proceed with caution here, however. The rea-
son is that the frequencies con increase without bound in the
limit n -> oo, so the quantities in (2.28)-(2.31) diverge, and
there is no finite value which corresponds to them. One can
hope to give meaning to the assertion that the values of the
vacuum energies are unequal by proceeding in the following
manner: We adopt some function fa (« )< 1 of such a nature
that we have/a (co) -> 0 as a> — oo for all a ^ 0, while for a = 0
the value i s / a (<u) = 1, regardless of a. As an example we
could use/a (<y) = exp( — aco). Calculating the vacuum en-
ergy for each of the sets of frequencies, a1*1, we make the
replacement con -*confa (mn) in the sums. The sums fora # 0
then converge and have a finite value which depends on
a.The "difference between the vacuum energies" is natural-
ly taken to be the limit

(2.32)

Since (2.28) is independent of the coordinate (as we would
expect in view of the translational symmetry) the total ener-
gy E can be found by simply multiplying (2.28) by the length
of the segment, a.

When there are walls, set (2.19) gives rise to terms with
both sin 2A:nxandcos 2knx'm (2.27). Since the sum of these
quantities is equal to unity, we can put the results in the form

0> = (2.29)

The tension is given by the same expression in the two
cases:

<oirI 1 |o> = - ^ - 2 — • (2-30)
n

Finally, for the empty space (the axis) we find from
(2.22)

where we have introduced the 2-vector A:o = a, k, = k.
In all cases, the off-diagonal components T0l and Tl0

have vanishing expectation values.
It can be seen from (2.29) that the presence of boundar-

ies gives rise to an additional term in the energy density,
which depends on the coordinates, if the field has a nonvan-
ishing mass. The contribution of this term to £ will be dis-
cussed in Subsection (2.9); here we would simply like to
note that A has a nonzero value at all interior points of the
segment (0, a), while the expectation value over the segment
is A = 0. Accordingly, regardless of the mass of the field, its
energy in the vacuum state is

Generally speaking, we should except A£ ^ 0 . The
question of the existence ofa limit in (2.32) and the question
of its independence from the nature of the function fa of
course require a separate analysis.

2.5. An observable quantity: the regularized energy dif-
ference of the zero-point oscillations. If we are interested in
the value of the vacuum energy or its density, we would natu-
rally subtract the contribution of Minkowski space from the
vacuum expectation value of the 00 component of the ener-
gy-momentum tensor, in order to give it meaning. In other
words, we define a renormalized energy density e by

e = lim«0 | Tm | 0>a-(0M | T00 | 0M>o),
0

(2.33)

where the index a is used to specify the same procedure as in
(2.32). The renormalized energy i? is defined as an integral
of e. The forms of the spectra in the two components in
(2.33) may be different: e.g., denumerable if there are boun-
daries and continuous in empty space.

We can show that £ from (2.33) does indeed have a
finite value; at this point we will restrict the discussion to the
case of a massless scalar field. Here it is convenient to use the
Abel-Plana summation formula88'93

•At. (2.34)
' - 1

As the function F( n) weadopt/a («„ )«„. Itis not diffi-
cult to see that the integral in (2.34) corresponds to the
contribution of an unbounded space, (2.31), and it drops out
of difference (2.33). Consequently, the following regular-
ized value should be assigned to the diverging series after the
cutoff is eliminated, a->0:

reg 2 F (n) = F(0) i \ At. (2.35)

Since the sets of frequencies depend on the boundary
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Because of the rapid convergence of the integral in
(2.35), we can immediately set/ a = 1, i.e., a = 0, and the
result does not depend on the particular choice of/a.
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In the important case of a massless field with boundar-
ies, we have <on = irn/a, and it is an elementary matter to
carry out the summation:

tit
2 1 < _ 1 24a3 (2.36)

Calculating the renormalized tension (or pressure)
P= (0\Tu |0)reg from (2.26) in a corresponding way, we
find P = e. For the renormalized energy W —ae
= — ir/2Aa we thus find

P «L
da '

i.e., the usual thermodynamic relation for elastic strain. One
might say that the vacuum behaves as a Maxwellian elastic
ether (with a negative energy and a negative tension).

As the distance between the walls changes, the energy of
the internal region, &, changes. The energy of the external
regions, on the other had, does not change as the walls move,
even if this energy is nonzero because of the presence of a
boundary, as can be seen simply from the absence of a finite
parameter. The total energy of the system thus falls off as
%> a~l as the boundaries (the "plates") close on each
other. In this manner a force (pressure) equal to /• arises and
tends to move the plates (boundaries) together.

It is an effect of this sort which has been observed ex-
perimentally as metal plates which are (nearly) imperme-
able to an electromagnetic field are moved toward each oth-
er.3

2.6. The boundary conditions model the topology. For
periodic conditions (2.24) modeling a circleSl, i.e., the sim-
plest space with a nontrivial topology, it is a simple matter to
derive the following expression in place of (2.37):

In this case the fourfold difference from the version with
homogeneous conditions, (2.36), can be explained in a naive
way: as a consequence of the doubling of the number of
modes and the doubling of the frequency in each nth mode
which we mentioned back in Subsection 2.3. The next exam-
ple, however, shows that qualitative arguments concerning
infinite sums can lead to errors. Let us impose the antiperio-
dicity condition

(f (,r -'- a , t) = — cp (x, t).

The allowed frequencies are then

_ 2.-r[n-L (1/2)1 _ ,

(2.37)

(2.38)

In order to sum over the half-integers in (2.38) we need
to use not Abel-Plana formula (2.36) but its analog12

dt, (2.39)

which differs, in particular, in the sign in front of the inte-
gral. A calculation from (2.39) yields

i.e., even the sign off changes for frequency set (2.38).
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FIG. 1. a, b—Versions of the topology in the one-dimensional case.

Configurations of fields with condition (2.37) are
called "twisted." They correspond to a so-called globally
nontrivial stratification.14'89 A case of a field with a self-ef-
fect is discussed in Ref. 23, among other places.

Let us attempt to clarify condition (2.37), which we
have introduced in a formal way. As we have already men-
tioned, the ordinary periodicity condition cp{x-\-a,t)
= cp(x, t) corresponds to the diagram of circle^1 in Fig. la.

Under condition (2.37), we return to the previous value of
the field, <p(x, t) = <p(x + 2a, t), only after we have traveled
a path 2a, i.e., only after we have made "two revolutions"
(see the diagram in Fig. lb). In reality, a continuous path of
this sort is traced out by a pencil on a two-sided surface: a
Mobius sheet. We might also recall that a spinor wave func-
tion also returns to its previous value after two revolutions,
i.e., after a rotation through Air. We will see below that anti-
periodicity conditions and summations over half-integer
values do indeed arise in a natural way in problems involving
a field on a Mobius sheet and problems involving spinor
fields (these problems are of course not one-dimensional).

2. 7. The Casimir effect as a polarization of vacuum. The
examples above show that the vacuum of a quantized field
has a certain nonzero energy when there are boundaries. In
standard field theory for an unbounded space we know that
the energy of the vacuum is assumed to be zero; this assump-
tion reduces to a change of co/2 in the origin for the energy
scale for each mode.2' The motivation for making such a
transformation is that the energy is determined entirely,
within an additive constant, and it is formalized by the oper-
ation of a normal ordering of the operators of physical quan-
tities. This operation reduces to the replacements
H->N(H), Tik -*N(Tik ), etc., where N means the transposi-
tion of operators a~af — a + a~ as commuting operators. It
can easily be seen from (2.16) that in this case the half-
frequencies disappear. A further argument in favor of as-
signing zero values to the energy and other observables in
vacuum is the circumstance that only for these values is the
vacuum state invariant under the Poincare group (i.e., dis-
placements and Lorentz transformations).

In the circle of problems which we are considering here
there is—even under fixed boundary conditions—an infinite
set of different vacuum states for different volumes (differ-
ent values of a) of the system. These states transform into
each other in the course of an adiabatic change (i.e., a
change which does not involve the excitation of quanta) in
the parameters of the system (the value of a). This is precise-
ly how the force acting between boundary plates is deter-
mined. Clearly, it is physically incorrect to assign prespeci-
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fied values (even identical zero values) to the energies of
several states between which transitions can occur. Further-
more, the argument based on Poincare invariance does not
work: Clearly, there is no such invariance if there are boun-
daries.

We thus see that it is logically unavoidable to use as a
characteristic of the vacuum state the changes caused by the
external field (or the boundary conditions) in the energy-
momentum-tensor expectation values themselves rather
than the expectation values of the normally ordered energy-
momentum tensor. The possibility that the vacuum will have
quantized fields of a nonzero energy-momentum tensor was
derived in detail in Ref. 45 (see also Subsection 5.4 in con-
nection with the problem of the cosmological constant).

It should be kept in mind that in problems involving
calculations of forces, i.e., derivatives of <?, there is still some
arbitrariness in the values of "S: A result will not change if all
of the 'S are changed by the same constant. When gravita-
tion is taken into account, however, and the renormalized
energy-momentum tensor itself is substituted into the right
side of Einstein's equations, even an arbitrariness of this type
is impermissible. In such problems, characterized by a non-
zero curvature of the space-time, rather than by boundaries,
logically the only possibility is to subtract the vacuum of the
tangent Minkowski space during the renormalization of the
energy-momentum tensor (§5).

The appearance of nonvanishing local observables (the
energy-momentum tensor) in a vacuum state is naturally
called a "polarization of vacuum" by analogy with well-
known effects in quantum electrodynamics, e.g., the polar-
ization of the electron-positron vacuum in the Coulomb field
of a nucleus.86

The global nature of the vacuum is clearly manifested in
the problems which we are considering here. The oscillation
spectrum and, along with it, the local energy density e(x)
are functionals of the values of the external field F(x)
throughout the space, including at the boundaries. For this
reason, even inside the region, i.e., at points with V{x) = 0,
the energy density is sensitive to the behavior of V(x) at all
remote points. This circumstance turns out to be important
in §5 in an analysis of cosmological applications of the Casi-
mir effect.

2.8. A more realistic model: semipermeable walls.
Boundary conditions (2.8) have absolutely impermeable
walls, so the external space is completely isolated from the
volume between walls. We now incorporate the external
field V(x) explicitly by means of Eq. (2.17) (Ref. 40).

We assume that the potential V(x) = VA (x) is zero at
all internal points of a segment and depends on the param-
eter A in such a way that in the limit A -» oo we have complete
impenetrability: i.e., the regions outside and inside the seg-
ment (0, a) are independent. These conditions obviously do
not fix VA (x) unambiguously; the arbitrariness can be uti-
lized to simplify the calculations.

We choose VA (x) to be the sum of two <5-functions. For
symmetry considerations, it is convenient to shift the origin
of coordinates to the center of segment (0, a):

V , » = A.(6 ( ^ - T ) ^ 6 ( X ~ T ) ) -
 ( 2 - 4 1 )

As has been established, impermeable walls at the
points x = + a/2 correspond to A -» oo. At all finite values

of A the walls x = + a/2 are semipermeable; i.e., solutions
of wave equation (2.17) with potential (2.41) span the en-
tire space and do not necessarily vanish at the walls.

In this problem we have only a continuous spectrum
0 < co < oo. On the basis of symmetry considerations we
should seek solutions in the form of two families: even and
odd in x, with wave numbers fc>0. For a massless field we
would have co = k, so we will write co in place of k every-
where:

•/„„ =-4, sin I

(.? = 1 - 2). (2.42)

(2.43)

The second family, \2lll, differs from the first by the substitu-
tions sin->cos,Ax —A2,and(5, -><52 [wehavee(x) = + 1 at
x^.0]. The unit coefficient of the sine function in the region
|JC| > a/2 provides the correct normalization (in terms of the
flux).

In the complete absence of a wall (A = 0) there is no
phase shift at the boundary (Sj = 0), so the continuity ofXja
at the points x = + a/2 (which also holds in the case A ^ 0)
tells us that we have Aj = 1 in the empty space.

Using the general equations of Subsections 2.4 and 2.5,
we can find an expression for T^ and for the renormalized
energy density e between the walls, which are determined by
families of functions with index j :

E i ~ —r \ Q (A] — 1) (1Q (2 44)
o

Here and below we are using the dimensionless parameters
fl = aco/2 and A = Aa/2. Expression (2.44) corresponds to
(2.33): Subtracting the contribution of the vacuum of the
empty space gives rise to the term — 1 in the parentheses.
According to the discussion above, in the case A = 0 we have
Aj = 1 and thus £,- = 0, as we should.

The quantities AJt like Sjt can be found by elementary
but slightly tedious calculations, by substituting (2.42) and
(2.41) into the wave equation. After some manipulations,
we can write A {, for example, in the form40

1= —Aim

An expression of this form makes it a simple matter to calcu-
late ex, by rotating the integration contour through TT/2 (the
infinite fourth quadrant of the circle makes a vanishing con-
tribution ):

i=-l=r\
ye-y Ay

yeV -\~ A sh (2.45)

The total energy density is e = el + e2 <0 for all A,
since e2 differs from (2.45) by a sign and by the replacement
sinh -> cosh, and for all arguments we have sinh y < cosh y.

The switch to impenetrable walls is made by taking the
limit A -• oo. It is easy to see that in this case we have £ = e i
+ e2 = — TT/24 a2, in accordance with (2.36).

An advantage of this method is that spectra of identical
form (continuum) are being compared. Furthermore, since
the spectrum stretches out to the same region, 0 < Cl < oo, for
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all values of A, including empty space (A = 0), we can carry
out a renormalization in a mode-by-mode fashion, first sub-
tracting the vacuum contribution of Minkowski space in
each mode [this step reduces to the replacement
CIA j-*il(Aj — 1) ] and only then carrying out the integra-
tion over frequency. When the operations are carried out in
this order, no divergent quantities appear at all. Clearly, a
mode-by-mode subtraction of this sort would not be possible
in a comparison of denumerable and continuous spectra in
(2.34)—or in a comparison of different denumerable spec-
tra (2.32). Here we are obliged to deal with infinite sums and
integrals as entire entities and to give some meaning to their
diiference by introducing some regularization method or
other.

It is instructive to derive from (2.45) the energy density
for a weak boundary potential. If A is so small that the condi-
tion | In A | > 1 holds, then we have40

e « —

We have e->0 in the absence of walls, i.e., A->0, as we
should have. The fact that (2.46) is not analytic at A = 0 is a
signal that the expression for e is not valid at A < 0 (where
we have Im e^O). For a massless field, any negative poten-
tial will lead at small values k^O to a negative square fre-
quency co2 < 0. This point is particularly clear in the case of a
wide potential well of small depth V(x) = — Vo. If we for-
get about the edges of the well in a first approximation, with
kj^O and m = 0 we find the value a2^. — Vo <0 from
(2.17). One of the functions <p ± now increases as e|a)|' with
the time. This instability leads to a boson condensation: the
creation of a macroscopically large number of particles and a
change in the structure of the vacuum.86 This creation of
particles is favored from the energy standpoint. This phe-
nomenon, which is related to phase transitions accompanied
by the formation of an order parameter (0|<p |0}^0, was
studied in Ref. 40 for the problems in which we are interested
here.

The renormalization procedure which we have de-
scribed, is not sufficient for finding a finite value of e at
points with V(x) ^ 0 , i.e., in the wall region. Here we also
need to subtract terms of the type /,V(x) + J2OV(x),
where Jn are certain infinite integrals over the spectrum.42

For a massless field, e = P — 0, we have x < 0, and x > a
throughout the external region, regardless of the value of A,
even in the case of impenetrable walls, A -» oo.

2.9. Massive field. We will first find the renormalized
total energy f. As we mentioned back in Subsection 2.4, the
additional term A in (2.29), which arises with m / 0 and
when there are boundaries, disappears when we integrate
over the volume, i.e., over the segment (0, a), so it makes no
contribution to the energy.

Calculations with frequencies a>n = (m2 + b2n2)U2,
where b = tr/a, for a massive field lead to the following re-
sults, which are different from those in the massless case.
First, the term F(0) = m in (2.35) is now nonzero. Second,
the functions F{ ± it) = [m2 + b 2( ± it)2]W1 must now be
assumed to be the same except at t > m/b. As a result we have

. m 1 i'
A Aim ' (2.47)

where fi = ma. With m = fi = 0, we reproduce (2.36).
The first term in (2.47) does not depend on the geome-

try. It can be omitted in any problem in which we are in-
volved with forces, i.e., derivatives d%'/da. After a finite re-
normalization of this sort, we find the following result from
integral (2.47) with/x = ma> I

4 \ no (2.48)

The fact that the vacuum energy is exponentially small
at /z> I, i.e., when the dimensions (a) of the system are
much larger than the Compton length /n ', is a general
property. In the opposite case of small masses we have, at
logarithmic accuracy,

24a 32.™ (2.49)

The deviation of (2.49) from analyticity in the case
(2.46) /J, = 0 is of the same nature as in (2.46).

We would now like to evaluate the component of the
energy density e which comes from A in (2.29), which is
nonzero only for a massive field in regions with boundaries.

We find a simple asymptotic expression for A under the
condition fi = ma < I:

A(m, (2 sin — ) . (2.50)

It follows from (2.50) that the sign of A changes at
x = a/6 and 5a/6; near the walls, the function A has an inte-
grable singularity. For example, near the x = 0 wall we have

A m2 i 2JT:E ^ ,-.x -=— In < 0.zn a (2.51)

The nature of singularity (2.51) stays the same regard-
less of the value ofy*. In a case with// = ma%> I, by replacing
the summation over the slowly varying variable n/fi by an
integration in (2.29) we find, near thex = 0 wall (mx< I),

(2.52)

where Ko is the modified Bessel function.
Singularity (2.51) arises because of the replacement of

a potential by an impenetrable wall. For semipermeable
walls of the type in (2.41), for example, a new dimensionless
parameter, f = m/A, appears. Using the method of Subsec-
tion 2.8, we easily find that ln(x, a) is replaced by In f, i.e.,
by a constant in (2.51) under the condition x/a < f. For all
nonzero values of f, i.e., for A =̂  oo, the growth of A and,
along with it, the energy density near the wall comes to a
halt.

2.10. Physical meaning of the Casimir vacuum energy.
As was mentioned in Subsection 2.7, for a given configura-
tion of boundaries the total Casimir energy is determined
within an additive constant which does not depend on the
distance and thus does not influence the value of the force. In
Subsections 2.8 and 2.9 it was shown in some specific exam-
ples that this component of the energy stems from walls
which are totally or partially impenetrable. An integration
of the vacuum energy density (2.32) over the entire space
gives us, generally speaking, the total Casimir energy of the
vacuum, including the energy of the walls.

In calculations of the vacuum energy it is frequently
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convenient to carry out subtraction procedures which elimi-
nate not only the leading divergence ~pD (p is the cutoff
momentum, and D is the dimensionality of the space-time),
but also—partially or completely—the energy of the walls.
For the analysis below, we need to consider how the values
found for the Casimir energy in this manner are related to
each other and to discuss their physical meaning.

We introduce the shorthand

t (m, X, a; x) = <0 | ro o (x) | 0>

for the expectation value of T^ in the vacuum state, with a
specification of all the parameters of the problem. As before,
we denote by e( m,A,a;x) the renormalized value of the ener-
gy density, found through a subtraction of the contribution
of Minkowski space, (2.33). We recall that this normaliza-
tion is actually carried out through a mode-by-mode sub-
traction, (2.44), or, for walls which are initially not trans-
parent {A. = oo), by discarding the divergent integral in
(2.34).

The total energy of the vacuum over the entire space
when there are semitransparent walls at the points
x = + a/2 is

ttot(m, I, a; JC)— { e (m, X, a; x) dx

= \ (t(m, k, a; x) — t(m,k=O, a; x)) dx. (2.53)
— oo

Here we have allowed for the circumstance that with
A = 0 we return to an empty Minkowski space, so the differ-
ence between the values of t in the parentheses in (2.53) is
the same as in (2.33). The energy Wlot{A) may be interpret-
ed as the work performed on the deformation of the vacuum
during an adiabatic decrease in the transparency of the walls
at a constant distance a. In the limit A -> oo the entire space is
broken up into three independent regions, and we can re-
place (2.53) by

iftot = lim g t o t a ) = 2^1/,-f-g, (2.54)

-o/2 a/2

ti/2= \ s{m, oo, a; x)dx, % = \ e(m., oo, a; x) dx,
-oo —a/2

where <f 1/2 is the renormalized energy of the half-space
bounded by the wall, and we have made use of the circum-
stance that e is an even function of x.

The quantity % is the Casimir energy minus the "outer"
part of the wall energy, 2 % 1/2. This energy was actually en-
countered above [see, for example, (2.47) for the massive
case]. The quantity WXM {A) is the most natural characteris-
tic of the vacuum energy of a massive field when there are
semitransparent walls, since in this case the vacuum energy
density is nonzero throughout the space for all values A =/0,
including A - oo (Ref. 40). The introduction of ftot is also
necessary for a massless field in problems with curved boun-
daries (Subsection 3.3).

Obviously associated with an isolated impenetrable
wall is the energy of the two half-spaces:

?w = 2g1/2 = Jm, (2.55)

where / is a dimensionless quantity. The proportionality be-

tween <?w and the mass of the field follows from the absence
of any other dimensional parameters for an isolated wall
[correspondingly, the energy density outside the opaque
walls in (2.54) is also actually independent of a ] .

One can introduce yet another physically grounded
procedure for deriving the vacuum energy. This procedure
contains neither the "outer" nor "inner" parts of the wall
energy:

g' (m, a) = Km (g (m, a) - % (m, a')). (2.56)

The quantity <?f has the meaning of the work which is per-
formed when walls originally an infinite distance apart are
brought together adiabatically to a distance a [here we are
assuming that the walls are opaque, but (2.56) is actually
also meaningful for any A = const].

In the one-dimensional case the difference between the
quantities % and fr reduces to terms of the type — m/4 in
(2.47). In discussing massive fields in multidimensional re-
gions below, however, the quantity % generally turns out to
be infinite since the energy density renormalized in accor-
dance with (2.33) has a nonintegrable singularity,
e(x) -» oo, as the walls are approached. In the multidimen-
sional case, subtraction procedure (2.56) thus becomes non-
trivial and makes it possible to avoid an infinite energy of the
walls, which does not influence the values of the Casimir
forces.

To find the relationship between % and i?f, we move the
walls apart in such a way that the condition ma! > 1 holds in
(2.56); i.e., the walls are moved to an essentially infinite
separation (Fig. 2). The energy E(m,a') is thus, at an
asymptotic accuracy, the independent sum of the energies of
the two regions bordering the walls on the inside; i.e., we
ha.yeW(m,a')-^2WU2 = Wv (see Fig. 2b; we recall that by
definition % ignores the energy of the external region).

As a result we find

P = % - gtot _-

The vacuum energy <?tot is thus the additive sum of the
"topological" energy of formation of the walls at an infinite-

-a'/z a'/Z
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ly great distance, 2<^w, and the energy acquired as the walls
are brought together, Wf.

Definition (2.56) of Wcan be put in a form more con-
venient for practical applications. Specifically, according to
dimensionality considerations we can write

where <p and x a r e dimensionless functions whose explicit
form is not important here. It follows that we have ^ ( m ,
ba) = £?(bm, a)/b for any positive b and for m ^ 0 . We can
thus set a' = ba in (2.56) and rewrite <ff in the form

a)=lim
6-»-oo

, a)) , (2.57)

so that now we are comparing identical intervals but differ-
ent masses of the quantized field.

Writing ff! in the form in (2.57) makes it possible to use
a spectral representation for & to carry out a mode-by-mode
subtraction procedure.

For calculating the forces in one-dimensional problems
and also in multidimensional problems with plane boundar-
ies, all the energy definitions given in this subsection of the
paper are equivalent, since they differ by only a constant of
the type in (2.55). In practice it is more convenient to use the
quantity <ff, since it does not contain a contribution of the
wall energy. For problems with curved boundaries the quan-
tity Wtot is an adequate characteristic of the vacuum energy.
This is true, in particular, because moving curved boundar-
ies off to infinity, like taking the limit in (2.56), is unavoida-
bly accompanied by a deformation of these boundaries, so Wf

is stripped of any direct meaning.
In cosmological problems, on the other hand, where it is

necessary to substitute an unambiguously defined vacuum
energy-momentum tensor into the Einstein equations, there
are no boundaries, so there is no problem with the energy of
boundaries.

3. THE CASIMIR EFFECT FOR VARIOUS FIELDS AND
SPATIAL REGIONS

3.1. Scalar field between plates. In this section of the
review we examine the Casimir effect for fields with spins of
0, 1/2, and 1 and for various spatial regions: the space be-
tween plane-parallel plates, a sphere, a parallelepiped, etc.
We begin with the case of scalar field between plates.

Let us examine the energy-momentum tensor of a real
scalar field for a configuration of two parallel plates at
x = ± a/2 with an arbitrary transparency A given by poten-
tial (2.41). The corresponding expression is found from
(2.26) by adding derivatives with respect to all three coordi-
nates. It is called a "canonical energy-momentum tensor"
T™". It turns out, however, that a more appropriate quantity
for multidimensional problems is the so-called metric ener-
gy-momentum tensor90

Tik = TT - \ (dtdh - gi^d1) <p2, (3.1)

where £ = £. = (D - 2)/4(X> - 1), and D is the dimen-
sionality of the space-time (in one-dimensional problems we
have £. = 0; at D = 4 we have gc = 1/6).

Formally, all values of gare permissible in (3.1), since
energy-momentum tensors (3.1) for different values of § dif-

fer by a 4-divergence. The basis for the choice £ = £c is dis-
cussed in §5 and also in Ref. 78.

For all values A ^ oo the spectrum of the problem is
continuous, and by proceeding as in the one-dimensional
case (Subsection 2.8) we find the following expression for
the energy density in the region |x| <a/2 (Ref. 40):

8 = IS?

oo

21c**)

X(Al-A*) cos 2kxy, (3.2)

here <y2 = q2 + m2 + k2, q is a two-dimensional momentum
vector in the plane of the plates, £c = 1/6, and the values of
Aj are found by a procedure like that in Subsection 2.8.

We now rotate the integration contour through v/2 and
first calculate the integrals over q. Here is the result in the
limit A -» oo (opaque plates):

e = ef + A (m, a, x),

where

e ' = - 7 (p-w
J e 2 t _

, a, J V-
I

(3.3)

(3.4)

(fi = ma). The integral of £ over the range — a/2<Jc<a/2
evidently gives us the energy i? per unit area of the plates
(since the volume of the system is infinite, we cannot speak
in terms of a total energy). The arguments of Subsection
2.10 remain in force for the quantities Sf, ^ f , and %"ot per
unit area. Because of the altered dimensionality, we should
simply assumed (AM, a*) = W(bm, a)/b} in (2.57) and ^ w

= Jm3 in (2.55).
For a massless field we would have A = 0, since we have

if = aef. From (3.3) with /n = 0 we find the following ex-
pressions for 8f and for the force /"acting on a unit area of the
plates (the pressure):

1440a3 m
da

480a4 (3.5)

(these results were derived by another method in Ref. 15).
In the opposite case, // = ma > 1, we find the exponen-

tially small value W exp( — 2fi). Essentially all the re-
sults written here can be extended to plates of finite area S
under the condition a -4SW2.

We can also write all components of the vacuum ener-
gy-momentum tensor of the scalar field in the case m = 0
(Ref. 15):

1440a4
- 3 (3.6)

As was discussed in Subsection 2.10, in the general case
m =fi 0 the quantity Wf derived by recipe (2.56) is an adequate
characteristic of the vacuum energy. Since the quantity iff

from (3.3) falls off exponentially in the limit a' -> oo, we find
the following result with the help of (2.56):

%l(m,a) = as.t(m,a) + R{m,a), (3.7)
1/2

\

-1/2
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In the integrals with A, the change of variables
x/a'-»f has been made.

We now change the order of integration in R, making
use of (3.4). We would then expect that for any value ofy the
integral over the variable f in (3.8) would vanish, so we
must set R(m, a) = 0 and take %* = ae{ with £rfrom (3.3)
for all values of m.

The integral of A(m, a, x) over the coordinate does not
depend on the value of a. It determines the wall energy <<?w
(Subsection 2.10). A direct calculation leads to an infinite
value of <̂ w because of the increase in A~ — m2[x + (a/
2)] 2 near the wall. In the case A ̂  oo (semitransparent
walls), we asymptotically have3' A m2[a(x ±a/2]~'
(Ref.40).

3.2. Vacuum energy of bounded three-dimensional vol-
umes. Research on the Casimir effect in the case of regions
with a complicated multiparameter geometry required the
development of some nontrivial analytic methods which
make it possible to work effectively with multiple divergent
sums and integrals.

Let us consider the vacuum energy of a massless scalar
field in a parallelepiped with edges a, b, and c and with ho-
mogeneous conditions at the faces ( the/ XI XI topology).
A calculation of this energy, which is conveniently carried
out through the repeated use of the Abel-Plana formula,
yields the following result'' (see Appendix I for the details of
the calculations, including those associated with the pres-
ence of the faces and edges of the parallelepiped):

t 2 , £(3)
1440a4 "T" 32:ia3

96a26<
(3.9)

Here f (3) = 1.202 is the value of the Riemann zeta func-
tion, and a represents certain integrosums which are expon-
entially small under the conditions c>6>a, proportional to
exp( — 2rrc/b) andexp( — 2-irb /a). Without loss of genera-
lity, we can always choose to denote the sides in an order
such that we can completely discard a (the contribution of a
is less than 1%, even for a cube). In a cubic configuration,
with a = b = c (and with allowance for a), we have

%= — 0.015 (3.10)

Under the conditions a 4 b, c, the quantity & /be from
(3.9) is asymptotically equal to the energy per unit area in
the case of infinite plates (Subsection 3.1).

Other versions of the topology, specified by replacing
the homogeneous conditions along one or several variables
by periodic conditions,'' can be studied in a corresponding
way (§5).

As in the one-dimensional case, the energy turns out to
be exponentially small for a massive field under the condi-
tion ma > 1.

3.3. Electromagnetic field between plates. An electro-
magnetic field has the distinctive features that it is transverse
and that so-called natural boundary conditions are imposed
at the wall: the vanishing of the tangential components of the
electric field,

E,=0. (3.11)

The vacuum energy and the force per unit area were in

fact derived by Casimir1 for the very simple case of unbound-
ed plane-parallel plates separated by a distance a under con-
dition (3.11):

120a3 240a*
(3.12)

This result can be found easily by taking limits in the
more general results for the electromagnetic field vacuum
inside an ideally conducting parallelepiped (Subsection 3.4)
and between plates of a real metal (Subsection 4.2). In ac-
cordance with (3.12), the plates tend to move toward each
other, as in the case of a scalar field.

Here are all the components of the vacuum energy-mo-
mentum tensor of the electromagnetic field between parallel
plates, with conditions (3.11) at these plates:

<Tik) = 720a4

— 1
o

The trace of the energy-momentum tensor, (T\), van-
ishes, as it should for massless field.

The vacuum energy-momentum tensor of an electro-
magnetic field can also be calculated for other sufficiently
symmetric configurations. For example, the energy density
inside a dihedral angle, with conditions (3.11) at the faces,
is16

where the notation is explained by Fig. 3. When we take the
limits a -> 0 andp -» oo under the condition ap = a, we return
to the case of parallel plates, (3.12) (see also Ref. 21).

3.4. Electromagnetic field in bounded three-dimension-
al volumes. The eigenfrequencies of a parallelepiped with
conditions (3.11) at the walls are the same as those for a
scalar field:

\ a 2 + ft* ^ c 2 I •

Condtion (3.11) does not require that all the components of
the electric and magnetic fields vanish at the walls. Accord-
ingly, and in contrast with the case of a scalar field, we can
have oscillations with «, = 0 , n2 / 0 , and «, ^ 0 and with
interchanges of the «,. The oscillations with the entire set «,
^ 0 , on the other hand, are doubly degenerate.84

Here is the result of a calculation of 'S for a square
resonator under the assumption a = b (Refs. 11 and 13):

% 1 [ n2 Id) n_£i
n2r a4 L 720 + 16it 24 c J '720 + 16it

_£i! "LI
720 48 \ a

£(3)

(3.13)

Pi P?

FIG. 3. The parameters characterizing the wedge-shaped region.
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For a cubic volume (with corrections of the a type) the
total vacuum energy of the electromagnetic field is

8 =
0.0916

(3.14)

This result differs by a sign from the corresponding quantity
for the scalar case, (3.10).

\y e turn now to the vacuum energy of the electromag-
netic field in the presence of a sphere of radius R, at which
boundary condition (3.11) holds. Casimir initially suggest-
ed2 that in the case of a sphere the force caused by the vacu-
um energy would correspond to an attraction, as in the case
of parallel plates, and might thus counterbalance the Cou-
lomb repulsion. This suggestion raised the hope it would be
possible to realize a model of an elementary particle in which
the fine-structure constant a could be found unambiguously
from the equilibrium condition (in literal accordance with
Feynman's prediction that it would sometime become possi-
ble to express a in terms of the roots of Bessel functions).

The vacuum energy of a sphere was actually calculated
in Refs. 25-27. Because of the irregularity of the distribution
of eigenvalues of the Laplacian for a sphere, this problem
was solved by numerical methods. The result is

t = 0.09235/27?,

very close to the value given in (3.14) for a cube of side
a = 2R (one might say that the vacuum energy "does not get
into" the corners of the cube).

The fact that the energy of a sphere is positive means
that the sphere is tending to expand (repulsive forces); this
circumstance is quite different from the case of two parallel
plates. Accordingly, Casimir's suggestion was not con-
firmed (incidentally, see Subsection 6.1).

There is considerable interest in the behavior of the re-
normalized vacuum energy density £ as a function of the
distance from the center of the sphere. It turns out that as we
approach the surface of the sphere, r = R, the energy den-
sity £ increases without bound28:

const (3.15)

where p = R — ,
How do we reconcile the presence of a nonintegrable

singularity in e near the boundary with the finite value given
above for ^ for a sphere?

The distribution of eigenvalues of the Laplacian for a
three-dimensional region of volume F which is bounded by a
surface of area S with an average curvature AT is given asymp-
totically in the limit k— oo by91

» ( * ) = • (3.16)

A subtraction of the contribution from Minkowski
space, which is carried out explicitly or implicitly in each
regularization procedure, definitely removes the first term
from (3.16), which is proportional to V. The term propor-
tional to S stems from the "surface" energy of the boundaries
and various possible definitions of f for a massive field
(Subsection 2.10 and Appendix II).

The average surface curvature K has opposite signs for
the inner and outer sides of a boundary. In calculating the
energy density for the external space, we find a singularity

near the surface of this sphere which is the same as in (3.15),
except that it has the opposite sign [this circumstance is
naturally incorporated in (3.15), when we note that we have
p<0on the outside].

In summary, the value given above for the energy of a
sphere agrees with WXM in the terminology of Subsection
2.10: $ = %M. In other words, i3 is the vacuum deforma-
tion energy over the entire unbounded space during an adia-
batic decrease in the transparency of a spherical boundary
from A = 0 to A. = oo. In evaluating the integral ote over the
entire space in the principal-value sense these singularities
cancel out, so we find the finite value for the energy which is
given above (see also Ref. 20).

5.5. Can the Casimir energy cross zero? It follows imme-
diately from (3.13) that the vacuum energy of the electro-
magnetic field in a parallelepiped with sides a X b X c is posi-
tive ifa = b — c (i.e., for a cubic volume), but it changes sign
when the resonator is "stretched out." For example, in the
particular case of a square cross section, b = c, the energy is
positive in the interval

0.408 < ~ < 3.48,

crosses zero at the ends of this interval, and is negative out-
side it. A corresponding behavior of the energy is observed
for certain other topological types, including the case with-
out walls, i.e., with periodic conditions along all the coordi-
nates (Subsection 5.2). A change in the sign of the vacuum
energy should also be expected upon the deformation of a
sphere into a fairly prolate ellipsoid.

As was mentioned earlier, in Subsection 2.10, in prob-
lems without walls the determination is unambiguous, and
there is no arbitrariness associated with terms of the type in
(2.55) or with the surface term in (3.16). Consequently, the
assertion regarding the sign of "S for such problems is abso-
lute (different methods yield the same values for if; see, for
example, Refs. 11 and 17).

When there are boundaries, on the other hand, the ener-
gy is determined within a constant. The choice of this con-
stant which was made above, however, is physically ground-
ed since both the forces and the energy tend toward zero as
the dimensions of the system increase without bound.

In discussing the possibility that the Casimir energy
crosses zero it is also useful to note the case of a conducting
cylindrical surface. In a sense, such a surface is an intermedi-
ate case between the configuration of two parallel plates and
the configuration of a sphere, and the two latter configura-
tions differ in the sign of the vacuum energy. Indeed, ap-
proximate methods did lead to a vanishing result for a cylin-
der in Refs. 29 and 30. A more recent paper,31 however,
found a negative energy per unit length of the cylinder,
roughly twice the value for a resonator of square cross sec-
tion. See Ref. 103 regarding another approximate method.

3.6. Spinor field. The formulation of an impenetrability
condition at walls requires a separate study in the case of a
spinor field. In order to derive a physically grounded bound-
ary condition, we need to work from a model of an interac-
tion with a specific field.18 In the case of a discontinuous
scalar potential V= V06(x), which simulates a boundary
(wall) at x = 0, Dirac's equation takes the following form,
after we extract the time dependence:

((ov° + JVV - m - V0Q (x)) i|5 = 0. (3.16')
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Impenetrability of a wall corresponds to the limit Vo

-• oo. The term with Vo can obviously be canceled only by a
derivative of i/r, i.e., at x> Owe have ^~exp( — Vox). Since
ijj is continuous at x = 0, the following condition holds at
boundary T:

= 0, (3.17)

where n is the normal to the boundary.
If, on the other hand, we determine the condition at the

boundary with the help of a more realistic field—the 0-com-
ponent of the electromagnetic vector potential—we find that
it is not possible to arrange impenetrability of a barrier of a
given height U for all values of the energy. The reason is that
under the condition \U—o)\>m (o> is the frequency of the
mode) we run into the well-known Klein paradox92; i.e., ac-
cording to the present interpretation, particle and antiparti-
cle currents appear and cancel each other out. For a configu-
ration of two infinite parallel plates at x = 0 and x = a, we
can seek particular solutions of (3.16) in the form

(3.18)

where u and v are constant spinors, <x is the vector of Pauli
matrices, and q and p are 2-vectors in the plane of the plates.
With the functions if> from (3.18), conditions (3.17), im-
posed at the two plates, are compatible only if

/ (ka) == |x sin ka + ka cos ka = 0. (3.19)

If fi = ma = 0, we find the values kn = (v/
a)[n + (1/2)] from (3.19). In calculating the energy we
must therefore use a formula for summing over half-integer
numbers, (2.39). We then find the following value for the
vacuum energy per unit area of the plates66:

2n2 r*
6 3a3 .1 »2*V+ 1 2880a3 (3.20)

For completeness, we also write all the components of
the energy-momentum tensor of a neutrino field:

{J ih) ~ 5760a* I 1 I •
\ - 3 /

In the case m =^0, we use an argument principle for the
summation over the roots of Eq. (3.19). This principle is
based on the equality93

2sr § » l n f <z - 2 q> (« (3-2D

where the summation is over the zeros (the points z0) and
poles (the points zx ) of the function/ (z). The contour C is
chosen in such a way that all the roots of the function/ (z)
from (3.19) are enclosed by the contour.

As a result we find an expression for the vacuum energy
^defined in (2.56) (Ref. 18):

In the case^ = 0, this expression is the same as (3.20), while
at /z>l it gives us ^f ~e~2/x.

To conclude this subsection of the paper we note that
for a spinor field the simplest boundary condition, if> = 0,
cannot be imposed at the boundary, since it would contra-
dict Dirac's equation. Condition (3.17), on the other hand,
not only is compatible with the Dirac equation but also satis-
fies the natural requirement that the current of particles
across the boundary must vanish.

4. INCORPORATING THE REAL PROPERTIES OF THE
MEDIUM BOUNDING THE QUANTIZATION VOLUME

4.1. Fluctuation van der Waals interaction: relationship
with the Casimir effect. Since in certain problems the Casi-
mir force may be thought of as a particular or limiting case of
molecular (van der Waals) forces, we will take a brief look at
the reasons for the appearance of, and methods for calculat-
ing, the latter forces.3637

Let us assume that two macroscopic objects are separat-
ed by a characteristic distance a. Most of the energy of the
objects is determined by the interactions at atomic distances
d, i.e., by the short-range interaction, so the energy is pro-
portional to the volume of the objects. There is, however, a
small component of the energy which depends on the shape
and relative positions of the objects. For two isolated atoms
this energy, ff ~{d/a)b, corresponds to the interaction of
two mutually polarizing dipoles which arise as a result of
quantum fluctuations of the charge distribution in the
atoms. In solids, a macroscopically large number of atoms
participate in the interaction because of the long-range ef-
fects. It is thus convenient to calculate forces in terms of the
fluctuation electromagnetic field, which is determined at
equilibrium by the permittivity e and the magnetic perme-
ability /J, of the objects (although the average values of the
fluctuation fields are zero, the energies and forces are deter-
mined by quadratic combinations of these fields, i.e., by their
correlation functions).

The force was originally defined in the literature as a
component of the stress tensor due to fluctuation fields.32

Later, a linear relationship between the correlation
functions of an equilibrium field and the temperature
Green's functions Dik (r,r') of a photon in the medium was
used. The stress tensor was thus found from Dtk through the
use of some linear differential operator.3336 The divergence
A* (Mo-
ment

was eliminated through the replac-

Dlk (r, r') -* Dih (r, r') - Dih (r - r'), (4.1)

where Dik is the Green's function of a homogeneous and
unbounded auxiliary medium which has the same permittiv-
ity as the real medium at the point under consideration. This
procedure was justified as the removal of the contribution
from short-wave fluctuations of length scale d, which are not
pertinent to the given problem.

The Casimir force for a gap between metals is found
from these calculations by taking the limit \e\ -• oo, which
does not depend on whether e is real or imaginary.

Finally, a simpler and more constructive method for
calculating the force was proposed.35'37 That method is to
calculate the force as the derivative of the free energy J^ of a
system of oscillators whose resonant frequencies a>a (a) are
determined by the geometry and also by £ and /i, i.e., by the
solution of the classical electrodynamic problem. The equi-
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librium occupation numbers of the oscillators,

l 1
n (u<" ~ T + exp(caa/T) —1 ' (4.2)

become the characteristic halves of zero-point vibrations in
the temperature limit T—0 (as T—Q, the free energy be-
comes equal to the energy). Since the sum over the frequen-
cies which determines !F diverges, a regularization proce-
dure having the same meaning as those used above is
employed in order to find a finite result.

Barash and Ginzburg35 found proof that this approach
is valid even when there is absorption, in which case simple
expressions such as (4.2) are meaningless. Speaking some-
what loosely, we could say that since ^ is ultimately deter-
mined by the behavior of £ at the imaginary axis in the com-
plex co plane, where the relation Im e(ig) = 0 always holds,
the presence of damping, i.e., Im e(a>) ^ 0 , on the real axis, is
unimportant to the applicability of the method.

A calculation of the forces in terms of the eigenfre-
quency spectrum is similar in terms of the ideas involved to
the theory of the Casimir effect, but it brings into considera-
tion the entire medium in the unbounded volume, with prop-
erties which depend on the coordinates.

It is thus useful to have, to supplement the methods
outlined above, a simpler method which generalizes the ap-
proach presented in §2 and §3 to the case of nonideal boun-
daries through a modification of the boundary condition
which would incorporate all the properties of the medium to
the minimum extent necessary. There would then be no need
to consider explicitly the region occupied by the medium;
the result would be to simplify the calculations, especially
for curvilinear and complicated regions.

4.2. An impedance boundary condition reflects the prop-
erties of the medium. We know84 that the penetration of an
electromagnetic field into a real metal can be dealt with ef-
fectively by imposing an "impedance" condition at the
boundary:

E t = Z (<o) [Ht n ] , (4.3)

where Et and Ht are the tangential components of the elec-
tric and magnetic fields, and n is the inward normal (into the
medium) to the boundary (Fig. 4). The impedance Z(co)
can be expressed in a simple way in terms of the permittivity
e(a>) and the magnetic permeability fi(co) of the medium:
Z{co) = (fi(a))/£(co))l/2. The relation |Z |«1 usually
holds. Boundary condition (4.3) also holds in cases in which
E(CO) and fi(co) do not have a direct meaning, e.g., in the

FIG. 4. Penetration of a field into a real medium.
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region of an anomalous skin effect or for low-frequency su-
perconductors.

The impedance Z(co) is frequently replaced by the
function 8{co) = iZ(co)/a>, which has the meaning, in the
case 8 = Re 8, of the depth to which the electric field pene-
trates into the plate material. If there is an Im 8^0, the at-
tenuation of the field in the medium is taken into account.
An ideal metal evidently corresponds to the case Z = 8 = 0,
and condition (4.3) becomes (3.11).

Let us examine the vacuum energy and Casimir forces
between two parallel plates made of a real metal and mod-
eled by half-spaces separated by an empty gap
- a / 2 < x < a / 2 ( F i g . 4).

Finding the complete system of solutions of Maxwell's
equations which satisfy boundary conditions (4.3) at
x = + a/2, we find dispersion relations for the spectrum con

(Ref. 38):

sin

and also

cos — — ox sin -5- = 0,

(4.4)

sin-^ + fixcos-y^O. (4.5)

Here Q is a two-dimensional vector in the plane of the plates
(.y,z),andx2=a)2~Q2.

The eigenfrequency spectrum in the Casimir effect can
also be defined in terms of the reflection coefficients for elec-
tromagnetic waves, which can be expressed approximately
in terms of a surface impedance.39

If the values of 8 and, along with them, the eigenfre-
quencies con are real, it is convenient to determine the vacu-
um energy E = (1/2 )1n con by means of the argument prin-
ciple (3.21). Taking this approach, we find

(4.6)

where Q = |Q|, and where we have made the substitutions
co-*i£;, x-*i(g2 + Q2)U2 = iR. The function D vanishes on
each solution of Eqs. (4.4) and (4.5). We could takeD to be
the product of the left-hand sides of these equations.

For arbitrary complex 8, the eigenfrequencies
co = (x1 + Q2)w2 found as the solutions of (4.4), (4.5) have
an imaginary increment. As was mentioned in the preceding
section, the results calculated for the vacuum energy depend
only on the behavior off (and 8) on the imaginary frequency
axis, where they are definitely real. Accordingly, expression
(4.6) is also valid in the case of complex con after a rotation
of the contour, co — ig, the integral in (4.6) is obviously real ].

In order to give E a finite value in this case, we use
procedure (2.56). As a result, a finite value of Wris found
from (4.6) by replacing the function D by

4ari ri2 V \

where

1 "I r
e 2 R a _ 1 J [_

, 46fl

(4.7)

A,= l-exp(-2/?a). a = -^-.

The value of the attractive force acting on a unit area of
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the plates can be determined from the relation F = — d"Sf/
da, as usual.

For ideal plates with S = 0 we have Z)reg = D j , and
from (4.6) and (4.7) we find results which have already
been established, (3.12).

In the case 5^0 , it is most convenient to carry out spe-
cific calculations of the corrections to the energies and the
Casimir forces for the nonideal nature of the metal making
up the plates by using a perturbation theory in powers of the
small parameter 8/a. At the distances (a) between the plates
which are ordinarily used in the experiments, in the micron
range, we can assume S(co) = So = fl ~ ' for metals, where fl
is the effective plasma frequency.85 For the force acting be-
tween the plates we then find, in the first two orders in S0/a,
the following expression38:

(4.8)16 60 2 , i 6 0 \ 2 - i

The first-order correction from the right side of (4.8) was
found in Ref. 33 with a coefficient which differs by a factor of
about five from the actual value, which was first derived in
Ref. 41.

Since at a ~ 1 ^m we have So ~ 0. la, the corrections to
the Casimir forces for the nonideal nature of the plate mate-
rial are fairly important. Corrections for the roughness of
the plates were found in Ref. 104.

This method was applied to various frequency depen-
dences of the impedance Z in Refs. 38 (corresponding to the
cases of the anomalous skin effect, the normal skin effect,
superconducting plates, metal-plates coated with an insula-
tor, and plates made of an anisotropic material). It was
found that in all cases this method yields simple and graphic
expressions for the corresponding corrections to the Casimir
forces (see also Refs. 43 and 44).

In discussing the corrections to Casimir's classical re-
sult, (3.12), we should also mention the deviations from it
which arise if the plates are not strictly parallel and also
because of the finite areas of the plates. For example, if plates
of width l = p2 —P\ (Fig. 3) make an angle a with each
other, we find the following expression24 for the force acting
on a unit area of the plates from the result for the dihedral
angle (Subsection 3.3):

F- l 1 1 0 ( a ( (4.9)

where a is the average distance between the plates. With
/ = 1 cm, a = 1 /urn, and a S 2", the correction to the force
for the deviation from a parallel arrangement is less than
1%.

Comparing (3.13) for the Casimir energy of a parallel-
epiped with (3.12), we can estimate the corrections to
(3.12) for plates of finite area S. The minimum deviations
from force (3.12) occur when lateral metal screens are
placed right up against the plates; the relative magnitude of
these deviations is of the order of lOaVS for square plates.
With S = 1 cm2 and a = 1 /jm, for example, this quantity is
equal to 1CT 5%.

4.3. Temperature corrections. There are two ways by
which the temperature can affect Casimir forces. First, the
temperature can have a direct effect through the tempera-
ture dependences e(T) and/J,(T). These dependences obvi-
ously disappear in the limit of the ideal case, \e\ — oo. Sec-
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ond, at T ^=0 the force is determined by the derivative not of
the energy but of the free energy 5 r , which is a function of
the temperature (the definitions of the energy and the free
energy are the same only at T = 0). There is also a depend-
ence J*" = JF (T) in the case of ideal, impenetrable boundar-
ies. It is this case which we will discuss below in the example
of the electromagnetic field between ideally conducting
plates. For convenience in the discussion below, we will ex-
plicitly introduce ft and c in the equations in this subsection.

A characteristic parameter is Te = fie/2a (we are tak-
ing the Boltzmann constant to be equal to unity). From the
general results36 we easily find the following expression in
the case with T/Te 41 and \e\ — oo:

(4.10)J ~~ 240a*

Expression (4.10) has been derived previously by a
slightly different method.34

The opposite limit, T/Te > 1, corresponds to aT^fic.
Substituting in the characteristic frequency co~c/a, we find
the condition for a semiclassical situation, fuo4,T. We would
therefore expect ft to drop out of the expression for the force.

This is what we indeed find, and in the limit \e
have36

oo we

F= - (4.11)

Temperature corrections to the Casimir forces have
also been studied for other configurations of the boundaries,
e.g., for a sphere.29

4.4. What is measured in an experiment? The Casimir
forces between two parallel metal plates were first measured
by Sparnaay,3 who found qualitative confirmation of theo-
retical result (3.12) for the attractive force. The plates in
that study were made of chromium or of chromium-plated
iron and were separated by a distance a ranging from 0.5 to 2
^m. The plates were first brought into contact and then
pulled apart by a special mechanical system. A spring coun-
terbalancing the plates was stretched by the Casimir forces,
with the result that the capacitance of capacitor C changed
(see the experimental layout in Fig. 5). Measurements of C
made it possible in turn to determine the attractive force {F)
between the plates beginning at values ~ 10 " 4 dyn.

The relative error in the measurements of F in Ref. 3
was of the order of 100%, since the hysteresis in the mechan-
ical system used there introduced an error Aa ~ 0.3 /im in the
value of a. This circumstance prevented a rigorous quantita-
tive confirmation of result (3.12).

Later experiments were carried out to measure the at-
tractive forces between dielectric objects, since it was possi-

Counterweight

T

Mechanical system
for moving plate

FIG. 5. Layout of an experiment to measure the Casimir force.
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ble to measure distances more accurately for such objects.
For example, Derjaguin et al.4 used an ampere-balance ap-
paratus with feedback to study the attraction between a
spherical lens and a flat plate, both made of quartz. The error
in the measurement of the distance between the objects was
Aa~0.01 jum. The results of the measurement of the force
(obtained with a relative error ;s20%) turned out to agree
well with the theoretical predictions (Subsection 4.1).

Some even more precise experiments were described in
Refs. 5, where the forces between the lateral surfaces of two
mica-clad glass cylinders, arranged perpendicular to each
other, were measured. Multibeam interferometry and the
method of equal-chromatic-order fringes made it possible to
measure the distance between the cylinders within an error
Aa =; (2-3) • 10 ~ 4//m. The relative error in the measurement
of the forces between the cylinders was 5-10%. Within these
errors, the results agreed with the theoretical predictions
(the literature on measurements of van der Waals forces is
reviewed in Ref. 6).

In all these experiments, what was actually observed
was a force caused by the existence of vacuum oscillations of
the electromagnetic field. The zero-point oscillations of the
electron-positron field are also observed experimentally, in-
directly, through their contribution to the Lamb shift and to
the anomalous magnetic moment of an electron in the Cou-
lomb field of a nucleus.

In summary, although the fluctuation forces between
solid objects have now been studied in some detail experi-
mentally, the actual result derived by Casimir regarding the
forces between plane plates of a good metal has received only
qualitative confirmation. Since this is the most characteris-
tic case, from the standpoint that the force is independent of
the microstructure of the plates, it would be interesting to see
some new and precise experiments to measure the Casimir
forces between metals.

How experiments carried out to measure fluctuation
forces might be useful at the frontiers of elementary particle
physics is discussed in Subsection 6.4 of this review.

5. NONTRIVIAL TOPOLOGY OF SPACE-TIME AND
COSMOLOGICAL APPLICATIONS

5.1. The Casimir effect on a Mobius sheet. A Mobius
sheet is the simplest two-dimensional nonorientable mani-
fold; i.e., it has a nontrivial topology. A graphic model of
such a sheet can be devised by cutting a cylinder (Fig. 6a)
parallel to its axis, twisting it, and cementing it back together
(Fig. 6b). A Mobius sheet has no inside and no outside.
When we draw a line at the center of the strip and make one
revolution we come back to our starting point, but on the
opposite side of the strip; after two revolutions we close the
line.

fl A'
a b c

FIG. 6. Mobius sheet and a cylinder.
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This graphic representation requires going into a third
dimension. If we remain in a two-dimensional manifold, we
must formally specify a Mobius sheet through an identifica-
tion of the boundary points of the "strip" in such a way that
we have a=/3' and /?=a ' (for a cylinder, we would obvious-
ly have a=a'and/3=fi'; Fig. 6c). The corresponding condi-
tions for the field on a Mobius sheet, which replace the peri-
odicity condition along the length on a cylinder, take the
form

<p (0, y) = cp (a, b — y), cp (x, 0) = cp (x, b) = 0,
dx<f (0, y) = dx(f (a, b — y). (5.1)

Satisfying conditions (5.1) by means of a product of
trigonometric functions, we find two families of frequencies:

2 l 1/2

21 1/2
(5.2)

where we have — oo < m < oo everywhere.
The renormalized energy found by applying formulas

of the Abel-Plana type, (2.35), (2.39), is (at exponential
accuracy)12

16na
(5.3)

where l=b /a.
Corresponding calculations for the surface of a cylinder

yield12

I

l> y,
1

K y.

24a
i ' 2

Consequently, the difference in energies disappears at a
small value of/ (in practice, at /< 1/2); i.e., the topological
distinctions cease to play a role when the topologically none-
quivalent boundaries are removed.

A projection of a cylinder or a Mobius sheet onto a
plane, a circle S', is called a "stratification base," and the
segments / which make up the width of the strip are "lay-
ers." The cylinder in Fig. 6a is the direct product S1 XI, and
the Mobius sheet is not; i.e., there is a nontrivial stratifica-
tion (cf. Subsection 2.6).

5.2. The 3-torus and other topologies. Three-dimension-
al problems provide several versions of a change in topology
through the formal replacement of one or more segments / in
a parallelepiped / X / X/by a circle S\ Detailed results for
various types of fields and topologies are given in Refs. 9 and
11.

As an example we consider the average vacuum energy
density for a massless spinor field in the 3-torus configura-
tion S1 X5' X51, obtained through an identification of oppo-
site faces of the parallelepiped. Here there are no walls. The
periodicity conditions lead to the following result for the
vacuum energy density under the conditions a

8 =
2it2

45a*

(as in Section 3, exponentially small terms have been dis-
carded).
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We obviously have e > 0 here for all relations among the
sides (we have £~3.23a~4 for the case a = b = c). For an
electromagnetic field in the same configuration, however,
the sign of e changes upon a change in a relation between
sides. For example, with a = b = c we have e = 0.0932/a4,
while with a = b ^ c the energy retains its sign over the inter-
val 0.478 < c/a < 3.26.

For a massless scalar field in a 3-torus configuration
with a = b = c we have the result19 £ s — 0.8375a4 (see Ap-
pendix II regarding the cases of the S1 XS" and the S1 XS1

X/J1 configurations). Interestingly, for a spinor field with
antiperiodic conditions in the identification of opposite faces
of the parallelepiped [such conditions are more natural for a
spinor field; see (2.37) and the corresponding discussion in
terms of the variables y, z] we again find a negative density
for the Casimir energy. For a two-component neutrino
field,56 for example, we have £=; —0.3914c 4. In other
words, a twisted configuration of a spinor field is preferred
from the energy standpoint.

Other results, in particular, for the S1 X / X / configura-
tion, which is equivalent to an ordinary torus, are given in
Refs. 9, 11, and 19.

5.3. Casimir effect on a sphere. We now consider the
vacuum energy on a sphere S2, i.e., a two-dimensional
spherical surface. This example is interesting not only be-
cause it presents a new type of topology but also because it
has a curvature. This example is useful as a simple analog of
cosmological problems.

The metric on a sphere of radius a is

ds2 = a2 (dn2 — d92 - sin2edcp2), (5.4)

where we have introduced the time variable rj = t /a. The
scalar curvature is R = 2a~2.

To find the frequency spectrum we first need to genera-
lize the Klein-Fok equation to the case of an arbitrary metric
gik. The simplest method is to replace the ordinary deriva-
tives dk by covariant derivatives V^:

(VftV
/l + m2) cp = 0. (5.5)

This method for incorporating the curvature of a space
in the equation for a scalar field is called "minimal cou-
pling." In this case the equation does not satisfy the require-
ment of "conformal invariance"; i.e., there is no field trans-
formation <p -»q> of such a nature that the wave equation
retains its form under the mapping {m = 0)

8ih~*~ 8th = e Sik- (->.O)

Physically, conformal invariance means that the behav-
ior must be identical in Riemann spaces (5.6) of massless
particles which do not introduce into the problem the scale
m~l. This invariance holds for the "conformal-coupling
equation" (m = 0)94

(VhV
h + IR + m?) cp = 0., (5.7)

where £ = | c = {D - 2)/4(Z> — 1) is the same as the con-
stant which was introduced in §3. A variation over the met-
ric of the Lagrangian corresponding to (5.7) yields a metric
energy-momentum tensor (see Subsection 3.1 for the case of
Minkowski space).

For a real scalar field we have
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(5.8)

With | = 1/8 (since Z)= 3),Eq. (5.7) becomes

and has the following eigenfunctions and eigenfrequencies:

(5.9)

where Ylm are the spherical harmonics.
In this problem the energy-momentum tensor is clearly

independent of the coordinates. Working from (5.8) and
(5.9), and renormalizing, we find12

IT -1 ( r o a )

Sn (H) = J (1 - P2)n/2 P lexp (2njm) + 1]"' dp.

(5.10)

It follows from (5.10) that for a massless field the Casi-
mir energy on a sphere vanishes. In limiting cases we have

I. (5.11)

The behavior in (5.10) and (5.11) is different from the
behavior examined above and also different from the behav-
ior in the corresponding problem with D = 4 (Subsection
5.4).

5.4. The Casimir effect in cosmology. Cosmology offers
us perhaps the most grandiose example of the use of a space
with a non-Euclidean topology in physics. In inflationary
models of the universe, the 3-space is known to be closed46

(or bounded by the wall of a bubble), so the vacuum energy-
momentum tensor contains a contribution of topological na-
ture, which becomes important in the early stages of the evo-
lution.

In this subsection we present the results calculated on
the Casimir effect in the most important case for cosmology:
that of homogeneous and isotropic models of a closed type
(cross sections t = const are 3-spheres with topology Si).
We will discuss a possible role of the Casimir energy density
in research on the universe.

In comoving coordinates, the metric of a homogeneous
and isotropic closed space-time is95

= a2
 (TI) (drf - (5.12)

where r\ — $dt /a(77), and dl2 is the metric of the 3-space
with a curvature of + 1 ( 0 < J < T T ) , given by

<U2 = 7apdxada:P = dx2 + sin2% (d82 + sin29 dcp2). (5.13)

For power-law scale factors 0(77), (5.12) and (5.13)
constitute the metric of a closed Friedmann model, while in
the case a = ao/cos 77 = aoch(? /a0) it is that of a de Sitter
model, which corresponds to an exponential "inflation" of
the 3-space [we recall that a{t) has the meaning of the radius
of curvature of the 3-space at time t].
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In contrast with all of the problems discussed above,
which were steady-state problems, here the quantity a,
found through a solution of Einstein's equations, depends on
the time. As a result, in addition to the Casimir component
of the vacuum energy-momentum tensor (associated with
the deviation of the topology of the 3-space from a Euclidean
topology) there are some additional polarization terms,
which depend on derivatives of the scale factor. There are
also terms which describe the creation of particles from the
vacuum by the gravitational field.

The fundamental questions associated with the creation
of particles from vacuum by external fields have been stud-
ied in Refs. 47-49, 61, and 62. For our purposes it is impor-
tant to note50 that the very possibility of such an effect in a
gravitational field stems from the violation of energy domi-
nance conditions in quantum theory:

e>0, \P\<£,e + 3P>0
(f is the energy density, and P is the pressure of the quan-
tized fields in the vacuum state). These conditions start to
hold only after the "final" conversion of the virtual particles
into real particles.

The polarization of the vacuum determined by the de-
rivatives of a is related to terms in the effective Lagrangian of
the gravitational field which are quadratic in the curva-
ture.96'97 The energy dominance conditions may also be vio-
lated for this polarization. A complete theory of the effects of
particle creation and vacuum polarization in a gravitational
field is given in Refs. 7 and 8; here we will consider only the
Casimir effect itself, which also occurs in the case
da/drj = 0.

Separating variables in the Klein-Fok equation (5.7) in
metric (5.12), (5.13), and calculating the vacuum expecta-
tion value of the energy-momentum tensor (5.8), we finally
find

«2<on, con = (m*a*
n = i

(5.14)

The same expressions are found for a plane Minkowski
space (the sums are replaced by integrals from 0 to oo).

A regularization of results (5.14) is carried out by pro-
cedure (2.33), i.e., by discarding the contribution of the
Minkowski space tangent to the Riemann space under consi-
deration at the given point. Through the method of dimen-
sional regularization one can demonstrate51"" that such a
procedure is precisely equivalent to a renormalization of the
cosmological constant A in the effective Lagrangian for the
gravitational field (the physical value of Aren is discussed in
Ref. 45). In practice, procedure (2.33) corresponds to the
use of Abel-Plana formula (2.35). As a result we find54

1 r A,8 (A.2 — mW)l/'dX

- l f
— 6 J I V )

(5.15)

The quantities in (5.15) are defined unambiguously, since
the space-time under consideration here has no boundaries.

For massless particles, the integrals in (5.15) can be
evaluated analytically19'55:

<* oo> — 1440jiaaa VaP- (5.16)

The distribution with respect to A. in (5.15) with m = 0
is the same as a Bose spectrum with an effective temperature
TcS = l/2ira (Refs. 54 and 63).

For m 7^0, the values found for (Tik ) in Ref. 55 by nu-
merical methods lay in the interval 0<mo< 1.5. It turned out
that at ma £0.5 the Casimir energy-momentum tensor of a
massive field ceases to satisfy the energy dominance condi-
tions. At mfl> 1 the following can be found with the help of
Watson's lemma:

-2*ma

In the case of a massless spinor field, the results corre-
sponding to (5.16) are19'55

17 ,rr, > 17
' <*P' ~ 2880ji8a2 (5.17)

The spectrum is a Fermi spectrum, with the same effective
temperature Tcfe as for a scalar field.

The existence of Casimir contributions of the type in
(5.16) and (5.17) to the vacuum energy-momentum tensor
demonstrates once again that the global structure of the
space-time is reflected in the local properties of the physical
vacuum. This fact poses the intriguing possibility in princi-
ple of reconstructing the topological structure of the uni-
verse as a whole, in particular, solving the finiteness-infinite-
ness problem of 3-space on the basis of the results of purely
local measurements.

Casimir terms (5.16) and (5.17) in the overall vacuum
energy-momentum tensor play an important role in the con-
struction of so-called self-consistent models of the universe,
in which the gravitational field is produced by the vacuum
energy-momentum tensor as a source in accordance with
Einstein's equations, while the vacuum, conversely, is polar-
ized by this gravitational field itself.57"59 The discovery of
such models has provided a serious scientific basis for ana-
lyzing the hypothesis that the entire universe around us ori-
ginated from a physical vacuum.60

Another reason why the Casimir effect is pertinent to
cosmology is the possible topological nontriviality of the 3-
space of the universe. For example, Zel'dovich and Staro-
binskii56 have studied the quantum creation of a universe
with a plane 3-space having the topology of a 3-torus. In this
case, substitution of the Casimir energy density summed
over all the fields, e= —Aa~4(A>0; Subsection 5.2), into
the right side of Einstein's equations makes it possible to find
a nonsingular cosmological model of the inflationary type.
The Casimir effect in supersymmetry and supergravity theo-
ries was also studied in Ref. 64 in connection with the prob-
lem of quantum creation of the universe with a nontrivial
topology.

6. THE CASIMIR EFFECT IN ELEMENTARY PARTICLE
PHYSICS

6.1. The vacuum energy in the bag model. A simplified
and phenomenological description of the structure of ha-
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drons in quantum chromodynamics (QCD) gives us the so-
called bag model,65 according to which the hadrons are bub-
bles in a QCD vacuum which enclose quarks and gluons,
whose currents through the walls of the bubble are zero (in
other words, there is confinement). Since the QCD vacuum
has a negative energy density, its absence from a bubble is
equivalent to a positive volume energy. The relation between
the latter and an energy of a surface-tension type (if ~a ~ ' ) ,
which also has a Casimir component, determines the bubble
radius a, the hadron mass, and other observable characteris-
tics.

In the absence of real quarks, the Casimir energy of a
bag would be caused by quantum fluctuations of the quark
and gluon fields. Two contributions to this energy come
from the quark field described by the Dirac equation and the
color gluon field which approximately satisfies equations
analogous to Maxwell's equations in which the roles of the
electric and magnetic fields are interchanged.10

For a spherical cavity of radius a, under impenetrability
conditions of the type in (3.17) at a boundary, and with
quark masses ignored, the following result has been found67:

A A

(6.1)I ~ i ~ 144.TO

The term in (6.1) which diverges as the cutoff param-
eter is allowed to go to zero is canceled by a term of the
opposite sign for external modes68 (i.e., £?tot remains finite;
cf. Subsection 3.4). An analysis of the contributions of both
the inner and outer regions in Ref. 68 led to a positive final
result:

0.02
(6.2)

In the case of gluons, when the conditions for the color
electric field E and the color magnetic field B at the bound-
ary

nE | r = 0 , tnB] | r = 0, (6.3)

are taken into account (n is the outward normal), the fol-
lowing expression was found2267'68 in place of (6.1):

11 4
E,,; (6.4)

This expression depends on the cutoff parameter S (see also
Ref. 70).

The finite energy of the gluon field, &?'g
ot, can be found

from the known result for the Casimir energy of a sphere
with a permittivity e, and a magnetic permeability fi, situat-
ed in an infinite medium with e2 and/i2 under the condition
£,//, =£^2 = 1 (Ref. 69):

( f ) 2 [ (6.5)

where / / , ,=/ / , / / / 2 , %""' (a) ~0.092/2a is the same as the
energy of an ideally conducting sphere, from Subsection 3.4.

It can be seen from conditions (6.3) that the Casimir
energy of a gluon field is found from (6.5) under the condi-
tions jtt, = l,/x2 -» oo, i.e.,/4,2 -»0; this energy is the same as
Wlm(a). The result incorporating the contributions of all
components of the gluon field is 8^"" (a).

Dividing the energy

by the mass of a gluon with a radius a ~ 1 fm, we find an
estimate of the relative role played by the Casimir energy in
the bag energy, s; 9%. We note, however, that in practice the
values of the parameters which determine the bag energy are
treated as adjustable parameters and are used to fit the spec-
trum and the magnetic moments of the hadrons.

6.2. Multidimensional field theories of the Kaluza-Klein
type. Interest in the development of field theory models of
the Kaluza-Klein type has revived and strengthened in re-
cent years. Despite the diversity of such models, all are based
on one leading idea: The actual dimensionality of the space-
time is D = 4 + N> 4, but N> 0 of the dimensions "spon-
taneously compactify," i.e., form an ̂ -dimensional compact
space whose geometric dimensions are of the order of Planck
dimensions, a^zlpe = G1/2 s; 10 ~~33 cm (G is the gravitation-
al constant). In the simplest models, the limit a-»0 is in fact
taken. These additional N dimensions are not directly ob-
servable, but their presence has an implicit effect on the form
of the equations of motion found for the 4-space from the
original equations of the (4 + N) -dimensional theory. In
this connection one would say that ordinary four-dimen-
sional physics is a low-energy approximation of the more
general (4 + N)-dimensional theory.74'87

The first theory of this type was proposed by Kaluza71

and pursued by Klein.72 That theory dealt with a unification
of gravitation and electromagnetism in a five-dimensional
theory of gravitation.

We would like to discuss a very simple but nontrivial
example which illustrates the possibilities of a theory of this
type.73'74 The action for the gravitational field in a five-di-
mensional space-time is

1
16JIG 5 .'

(6.6)

where RiD) is the scalar curvature, and gAB is a five-dimen-
sional metric, which we choose in the form

gAB An
(6.7)

here n, m = 0, 1, 2, 3; and the functions An are certain 4-
vector functions. The topology of a given manifold is M4

XS\ where Sl denotes as before a circle of radius a (along
the fifth coordinate, x4). Assuming that gAB is independent
of x4, as is customarily done for models of this sort, substitut-
ing (6.7) into (6.6), and integrating over x4, we find the
effective action

(6.8)

in which a U{\)-gauge term with Fmn —dmAn —d,,Am,
which is characteristic of the electromagnetic field, has aris-
en "spontaneously."74

In the usual notation, the role of the gauge field in (6.8)
should be played by the quantity A = {l6irG)'~U2A. It thus
becomes possible to relate the electric charge of a particle to
G and to generate qualitative estimates of probable values of
a (Ref. 74).

Compactification ideas are presently used widely in
various versions of supersymmetry theories, including su-
pergravity theories.87 One possible mechanism for spontane-
ous compactification is related to a self-consistent incorpo-
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ration of a Casimir energy-momentum tensor on the right
side of Einstein's equations (see the following subsection).

6.3. Compactification due to the Casimir energy. In a
(4 + N)-dimensional space-time, Einstein's equations take
the form

= G{D) ({TA (6.9)

where RAB is the Ricci tensor, G<D) is the gravitational con-
stant, which is related to the usual quantity G by G{D)

= GV(SN), where V is the volume of the ^-dimensional
sphere SN, and (TAB) is the renormalized Casimir energy-
momentum tensor.

We seek a solution of (6.9) which corresponds to the
manifold M4 XSN. Correspondingly, the metric and the
Ricci tensor become

(6.10)

where rjmn is the metric of Minkowski space M4, g^v is the
metric on an ./V-dimensional sphere of radius a, and R is the
scalar curvature on it.75"77

Expressions (6.10) are compatible in form with Eqs.
(6.9) if the energy-momentum tensor is also of block form,
and we have

\ ' m ?i / (6.11)

As usual, we assume that the trace of the energy-mo-
mentum tensor vanishes: gAB {TAB) = 0. We set Tl equal to
the density of the Casimir energy of quantized fields: T,
= (Too )• From dimensionality considerations for massless

fields we have Tx = C/aD. Substituting (6.10) and (6.11)
into (6.9), we find the following conditions which must be
satisfied by the adjustable parameters a and A:

a2+N= -
A'(A'-l)

_ N(N-l)(N+2). _

The condition C < 0 must obviously hold. Values of C
for boson fields, Cx zz — 1-10"4, and fermion fields, C2

SS9-10"4, are given for the case N = 2 in Ref. 77 (G'6)

= 4ira2G). Consequently, within a constant determined by
the sum of C, over all possible fields, we find a~G[/2. In
other words, in this model, with a sufficiently large number
of boson fields, we do indeed have a spontaneous compactifi-
cation with a length scale of the order of the Planck length.
The case of odd values of N was studied in Ref. 76.

A compactification in cosmological theories of the Ka-
luza-Klein type due to the Casimir effect was studied in Refs.
82b in connection with the possible onset of an inflationary
regime in the evolution of the universe.

6.4. Refinement of the constants of particle physics on the
basis of the Casimir effect. In modern elementary particle
theory, a large number of hypothetical light or massless par-
ticles have been introduced (the axion, the scalar axion, the
arion, the axino, etc.; see the review by Ansel'm et al.79). In
particular, light scalar particles should arise because of a
breaking of any global symmetry in a supersymmetry theo-
ry.

The presence of light or massless particles gives rise to
some new (i.e., not electromagnetic or gravitational) long-
range forces between macroscopic objects.82a These forces

can be detected in experiments carried out to measure Casi-
mir forces, if one observes differences between the experi-
mental value of the force and the corresponding theoretical
prediction. In any case, measurement of the Casimir forces
make if possible to impose limitations on those additional
(non-Casimir) forces between macroscopic objects which
would arise as a result of the exchange of hypothetical light
particles. It thus becomes possible to find limitations on the
constants of such particles.

Analyzing the results of some old studies carried out to
measure Casimir forces between a plane and a spherical
lens,5'6 Kuz'min etaV* found a limitation on the mass m and
on the Yukawa coupling constant of a light scalar particle
with fermions,/:

J L < 10-1
m3 (6.12)

If we apply this limitation to a supersymmetry theory of
grand unification with a unification scale ~ 1017 GeV, which
contains the Peccei-Quinn U( 1) symmetry, which is broken
at the same scale, then by taking the light scalar particle to be
a scalar axion we find the estimate M> 103 GeV for the scale
over which the supersymmetry is broken78 (in models with a
supersymmetry which is not broken, there is no Casimir ef-
fect80). This is the best estimate which has been obtained by
any method (including those based on astrophysical data);
see also Ref. 81.

As was shown in Ref. 78, the Casimir effect is in general
the best tool for seeking long-range forces caused by scalar
particles over broad ranges of the coupling constants,
10- 1 8 < /<10- 9 , and masses, 1 0 " eV <w<10 eV. The
Casimir effect was used in Refs. 82c to refine the most strin-
gent known upper limits on the constants of hypothetical
long-range forces which fall off in accordance with a power
law F~r~" (the refinements were by an order of magnitude
in the n = 3 case and by a factor of 200 in the n = 4 case).
Accordingly, new and precise experiments to measure Casi-
mir forces could be decisive in tests of the predictions of
supersymmetry theories.

7. CONCLUSION

As was shown above, the long list of phenomena in
which a vacuum of quantized fields acquires a certain energy
density as a result of the boundedness of the quantization
volume or a deviation from a Euclidean topology of the
manifold can be interpreted in a common way and described
as the Casimir effect. The appearance of a Casimir force be-
tween macroscopic objects is essentially a macroscopic man-
ifestation of the zero-point osciliations of the electromagnet-
ic field. Although it is observed in local measurements, this
effect turns out to be a unique source of information about
the topological structure of the universe as a whole. It is thus
not surprising to note the diversity and benefits of the var-
ious applications of this effect: in macroscopic physics, cos-
mology, hadron physics, supersymmetry and supergravita-
tion, and the refinement of the constants in elementary
particle physics.

Great things are expected of the Casimir effect: It may
become a new testing ground for the predictions of funda-
mental physical theories.

Not all the problems which involve calculations of Casi-
mir energies and forces have been solved satisfactorily at this
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point. For example, we need a further refinement of the
problem of surface divergences. Much more will undoubted-
ly be accomplished in the development of approximate
methods for calculating the Casimir effect for more-complex
configurations of boundaries.

Our purposes in this review have been to present the
physical and mathematical foundations of the Casimir effect
and to point out its most important applications. In the sec-
tion of the bibliography on each of these effects one can find
voluminous additional material containing model-depen-
dent results and details.

In conclusion I wish to thank the late Ya. B. Zel'dovich
for support of the idea of writing this review and for several
useful comments which he offered regarding the contents of
this review in the spring of 1986.

APPENDIX I

We wish to illustrate the method for calculating the
vacuum energy through the repeated use of the Abel-Plana
formulas. We use e.s an example the double sum

S
n = l

*„= 2 (A.I)

where the coefficients of n and m have been set equal to unity
for brevity.

First holding n fixed, we evaluate the sum over m with
the help of (2.35):

*„= Un2 + i
o

- ~ + 2/ (n),

(A.2)

exp(2.i() —1 '

We now carry out the summation over «. We apply the
Abel-Plana formula to the second term on the right side of
(A.2), and we do the same to the first term, changing the
order of the integration and the summation. As a result, us-
ing / as defined in (A.2), we find

OO OO

S = [ dx [ j dy (z2 + y-)</2 - | + 2/ (*)]

(A.3)

Through a regularization, we should discard the infi-
nite integrals in (A.3), so that the final contribution, reg S,
comes from all the terms in (A.3) which con tain I(x),I(n),
and 7(0).

A regularization of the sum (A. 1) over frequencies in a
region (a rectangle) with boundaries requires discarding the
contributions of unbounded spaces,

oc

(A.4)

of both the same dimensionality as the region under consi-
deration {J2) and lower dimensionality ( / , ) .

The discarding of J, may be thought of as the elimina-
tion of a certain infinite energy which is associated with the
presence of a boundary on the region (cf. Subsection 3.4).

Other functions of many variables are regularized in a
corresponding way.

Sums of the type in (A. 1) can be expressed in terms of
Einstein's zeta-function, which is defined for a/j-dimension-
al sum of squares by

(s) = 2 ' [(m+ g)2]-pV2 exp (2iu (m, h)). (A.5)

Here we have introduced/^-dimensional vectors g, h, and m;
the vector m has integer components (wz,=0, + 1 ,
+ 2 , . . . ); and in the summation we omit the term with

m + g = 0 if such exists. In the case pertinent here, h = 0,
the functional equation98

= Z P| _ -£ ) (A.6)

holds, where a = 1 — s.

APPENDIX II

The sums of certain multiple converging series of the
type in (A.I) can be calculated efficiently with the help of
the Jacobi 0-function.99100 As an example we follow Ref.
100, considering the series

S(r)= (A.7)

at r> 1 [a term with m = n = 0 has been omitted from
(A.7)]. Using the obvious identity [a Mellin transforma-
tion of exp( — bt)]

we can put (A.7) in the form

5 {r) = T(r) 5 r"1 2 ' exp[-(m* + na)t
0 m, n=-oo

Now using the definition

93 (0. q)= 2 <lm*

and setting q = exp( — t), we find from (A.8)

(A.8)

( A ' 9 )

where the subtrahend in the outer set of parentheses stems
from the absence of a term with m = n = 0 from (A.7). The
known representation98

1 (of,
oo cc

2 22 2 ( - i)J" gi(2in)

i = i i ---0

leads, after substitution into (A.9) and an integration, to

ft i* — V (~W
3=0

(A.10)

where f (/•) is the Riemann zeta-function.
We thus see that the double series (A.7) has been trans-

formed into a product of known one-dimensional series.
Let us consider, for example, a scalar field on the 2-
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torus S1 XS\ i.e., on a square of side a, with an identification
of opposite sides. The unregularized energy density

diverges, of course. However, if we use (A. 6) as a definition
of the regularized value of the sum, we can express (A. 11) in
terms of Z2 (3/2); then making use of (A. 10) with r = 3/2,
we find

e = —

Using f(3/2) = 2.612 and £(3/2) =0.8645, we find
£ = — 0.718/a3. The same numerical value can be found by
taking Fourier transforms of (A.I 1); the regularization re-
duces to discarding the term with zero momentum."

The energy density in the topology S1 XS1 XR' is also
expressed in terms of the sum (A.7) with r = 2 after a di-
mensional regularization of the integral with respect to a
continuous variable. The result is101 e = — G/3a4, where
G = 0(2) =;0.915 is the Catalan constant.

"Zero-point vibrations in a solid are manifested as a consequence of the
fluctuations in the positions of the atoms which make up the string:
7 2 T ^ O . Light is scattered by these fluctuations: if the fluctuations are
large, J2~d, where d is the distance between atoms, a crystal cannot
form (this is the typical situation for light atoms, e.g., He), etc.

2)This redefinition of the energies of course does not eliminate the actual
effects of the zero-point oscillations of vacuum, e.g., the Lamb shift.
Interestingly, Feynman"' has given a qualitative explanation of the
Lamb shift involving a redefinition of the vacuum energy of a closed
region.

3)In the case i^g^, even for a massless field, a singularity
A ~ (£ — £.) [x ± (a/2)] ~4 appears," and it should also be assigned to
the wall energy.

The Casimir effect was predicted in:
'H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).
2H. B. G. Casimir, Physica 19, 846 (1953).

Experimental observation
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