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In gauge theories with left-right asymmetric fermion composition (e.g., in the standard model of
electroweak interactions), the fermion number F is not conserved because of the anomaly
^ j £ ~ ^ V Fftv. In models with small coupling constants, the amplitudes for processes with
anomalous nonconservation of the fermion number are exponentially suppressed under normal
conditions. It is shown that these are fast processes under extremal conditions, i.e., in the field of a
magnetic monopole and at high densities and temperatures. An F-nonconservation mechanism
associated with a level crossing phenomenon in external gauge fields is described. The theory and
the experimental consequences of the monopole catalysis of proton decay are discussed. It is
shown that both Abelian and non-Abelian gauge theories have a critical density above which cold
fermion matter becomes absolutely unstable. The absence of the suppression of the anomalous
electroweak nonconservation of fermion number at high temperatures is demonstrated, and the
cosmological consequences of this phenomenon are discussed. The strong nonconservation of the
fermion number in the decay of heavy fermions and technibaryons is also considered.
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1. INTRODUCTION

Modern theories of elementary particles are based on
the principles of gauge symmetry. The gauge theory of co-
lored quarks and gluons, i.e., quantum chromodynamics, is
now a generally accepted theory of strong interactions.
Weak and electromagnetic interactions are successfully de-
scribed by the standard electroweak theory. Definite ad-
vances have been made toward the unification of interac-
tions: several realistic grand unification models have been
constructed, in which strong, weak, and electromagnetic in-
teractions are the low-energy manifestations of a unified
gauge interaction. Attempts based on supergravity and
superstring theories have also been made to include gravita-
tion in the unification scheme.

In addition to attempts to broaden gauge theories, i.e.,
to unify the different interactions, efforts have also been

made to extend the theories "in depth," i.e., to investigate
effects associated with the complex dynamic properties of
gauge theories. It is now clear that the dynamic content of
gauge theories is not exhausted by perturbation theory even
in models with weak coupling. Among nonperturbative
aspects of gauge theories, we may emphasize the complex
structure of vacuum and the consequent nonconservation of
fermion quantum numbers (such as the baryon and lepton
numbers), and the existence of solitons, i.e., particle-like so-
lutions of the classical field equations, which correspond to
extended particles at the quantum level.

One of the most interesting predictions of unified gauge
theories is the nonconservation of the baryon number. At
least two possible mechanisms are being discussed at present
for the nonconservation of the number of baryons. The first
arises naturally in grand unification theories within the
framework of perturbation theory1'2 (see the reviews in
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FIG. 1. Two quarks transform into an
antiquark and a lepton as a result of
the exchange of a hyperheavy boson.

Refs. 3 and 4). In its simplest version, it is due to the ex-
change of superheavy vector and scalar bosons, as shown in
Fig. 1. Possible manifestations of this mechanism include the
spontaneous decay of the proton12 and neutron-antineutron
oscillations.5

Another mechanism arises already in the standard
electroweak theory6 and is due to the complex structure of
vacuum6"8 and the triangular anomaly.910 Under normal
conditions, the amplitudes with nonconserved baryon num-
ber that are due to this mechanism are suppressed by the
factors exp( - Sif/gl) ~ 10~77, where gl = e2/sin2/9w is
the coupling constant of the electroweak gauge group
SU(2)L [of the subgroup SU(2)L X U(1) ]. Direct observa-
tions of processes with electroweak 5-violation are impossi-
ble at low energies. However, there is a number of situations
in which the rate of anomalous processes with nonconserva-
tion of the baryon number may not be small. Reactions with
electroweak nonconservation of the baryon number can oc-
cur with high probability under extremal conditions, e.g., at
high fermion densities""14 and at high temperatures.15 The
fast nonconservation of the baryon number is also possible in
the decay of particles with large enough mass (A/S: 10

Effects associated with the complex structure of vacu-
um in gauge theories are also found to play a significant part
in interactions between fermions and magnetic monopoles.
These monopoles appear in grand unification theories as
static solutions of classical field equations, i.e., solitons21

(see the reviews in Ref. 22). In most grand unification mod-
els, the interaction of quarks and leptons with monopoles
leads to the decay of the proton with a high cross section (of
the order of the cross section typical for strong interac-
tions).23"25 This phenomenon, now called monopole cataly-
sis of the proton decay, is also an example of the strong non-
conservation of the baryon number under extremal
conditions (in the strong magnetic field of the monopole).
Similar properties should also be exhibited by drops of
anomalous matter that appear in Abelian V-A theories ">l4:
when they come into contact with ordinary matter, such
drops should absorb nucleons, and this should be accompa-
nied by the release of an amount of energy approaching the
rest energy of the proton.

It is therefore expected that a considerable acceleration
(by tens of orders of magnitude!) of processes with the non-
conservation of the baryon number will occur in many extre-
mal situations. Apart from its purely theoretical interest,
this possibility has also attracted attention in connection
with experimental, cosmological, and astrophysical applica-
tions. Monopole catalysis of proton decay, which should oc-
cur with a large cross section, comparable with the nuclear
cross section, and should be accompanied by the release of
an amount of energy approaching the rest energy of the pro-
ton, is one of the processes that can be exploited in the search
for monopoles.

In many cases, the characteristic energy scales (tem-

peratures, chemical potentials, and masses of decaying parti-
cles) are of the order of 102—104 GeV, which is much less
than the energies typical for grand unification theories (1015

GeV). There is therefore some hope of a direct verification
of the theoretical predictions. The search for magnetic mon-
opoles and for the monopole catalysis of proton decay is
being carried out at most underground installations. At
present, the best upper limit for the flux of ultraheavy mag-
netic monopoles has been obtained using the underground
scintillation-counter telescope at the Baksan Neutrino Ob-
servatory of the Institute of Nuclear Research of the Acade-
my of Sciences of the USSR26 and the Baikal underwater
detector.27 These installations can also be used to search for
drops of anomalous matter. Searches for heavy-particle de-
cays accompanied by the nonconservation of baryon number
can also be made on accelerators (although, it must be ad-
mitted, only in the relatively distant future).

So far, the only observational argument in favor of the
nonconservation of baryon number in nature is the baryon
asymmetry of the Universe2829 (see the review in Ref. 30).
The electroweak nonconservation of the baryon number,
which should proceed sufficiently rapidly at temperatures of
the order of a few hundred GeV or more, has a direct relation
to the problem of the generation of baryon asymmetry. It
may well be that the observed baryon asymmetry of the Uni-
verse arose precisely as a result of electroweak processes15"
at relatively low temperatures (of the order of a few hundred

' GeV). This possibility is closely related to the question of the
nature of the electroweak phase transition and the mass of
the Higgs boson. The fast nonconservation of baryon num-
ber at high fermion densities is significant for nonstandard
cosmological models with an intermediate cold stage (such
models have recently been proposed, for example, in connec-
tion with the supersymmetric unification theory32). Effects
connected with the nonconservation of baryon number can
lead to the formation of inhomogeneous anisotropic phases
in such models.33 The observable manifestation of the pres-
ence of such phases in the early Universe is the relatively
intensive gravity-wave relic noise.34

In this review, we shall examine theoretical ideas and
descriptions that lead to the conclusion that fast nonconser-
vation of the baryon number may be possible under extremal
conditions. The key property of gauge theories in this con-
text is the complex structure of vacuum and the associated
nonconservation of fermion quantum numbers. These ques-
tions are discussed in Section 2. This is followed by a presen-
tation of the results relating to concrete physical situations
in which the nonconservation of baryon number should oc-
cur with high probability, e.g., the monopole catalysis of
proton decay (Section 3), V-A theories at high fermion den-
sities (Section 4), the electroweak theory at high tempera-
tures (Section 5), and electroweak decays of heavy particles
(Section 6). Section 7 contains the concluding remarks.

2. GAUGE VACUUM AND THE NONCONSERVATION OF
FERMION QUANTUM NUMBERS

2.1. The structure of vacuum in gauge theories

The complex structure of vacuum is a common proper-
ty of four-dimensional non- Abelian gauge theories6'7 and of
a number of two-dimensional gauge models of field theo-
ry835 (see also the reviews in Refs. 36 and 37). To be specif-

917 Sov. Phys. Usp. 31(10), October 1988 Matveev et al. 917



ic, let us consider a four-dimensional model with the SU(2)
gauge group and Higgs field q>, which transforms in accor-
dance with some nontrivial representation TofSU(2) (this
representation will not be specified for the moment). We
shall use the matrix field

where g is the gauge coupling constant, A ° (a = 1,2,3) are
real vector fields, and T° are the Pauli matrices. Under gauge
transformations co(x) from SU(2), the fields transform as
follows:

An -»- Ap = (D^nGT1 + (o dyW-1,

qj-»- (fa= T (co)<p-

It is convenient to use the gauge Ao = 0. In this gauge,
there is a residual gauge freedom with respect to transforma-
tions with gauge functions «(x) that are independent of
time. We shall confine our attention to gauge functions that
tend to a direction-independent constant at infinity":

Una a (x) = w0. (2.1)
|x|-00

Under this condition, the gauge functions are characterized
by an integer (the topological number of the gauge transfor-
mation), namely,

r1). (2.2)
' - L ^ J — 2 4 l t 2

This number is the degree of mapping of the three-dimen-
sional space with an identified [by virtue of (2.1) ] infinity
into the gauge group SU(2). The gauge transformations
&>(x) and «'(x) can be obtained from one another by the
successive application of infinitesimal gauge transforma-
tions when, and only when, they belong to the same class,
i.e., n[a>] = n[o']. An example of a gauge function with a
topological number is provided by the function

(2.3)

where n = x/> and ft (r) is an arbitrary real function satisfy-
ing the conditions

(2.4)Qn = 0) = 0, Qn (r = oo) = Inn.

Classical vacuums, i.e., the field configurations with
minimum energy, are pure gauge configurations,
A = ado) \(p=T{o))<po, where <p0 is the value of the Higgs
field for A = 0. If we do not distinguish between configura-
tions that differ from one another by infinitesimal gauge
transformations, the different vacuums correspond to gauge
functions with different topological numbers. We thus have
a discrete set of classical vacuums labeled by the integer n
and differing from each other topologically, i.e., by nontri-
vial gauge transformations (Fig. 2).

An important feature of gauge theories is the height of
the energy barrier between neighboring vacuums. This
height is equal to the static energy of the saddle configura-
tion A* ,qf) (Fig. 2 shows only one direction in the func-
tional space (K,q>), so that (As ,q?s) looks like a maximum of
the static energy functional; in reality, (As,<ps) is a saddle,
since the static energy increases in other directions, not
shown in Fig. 2). The saddle point is an unstable solution of

FIG. 2. Schematic representation of the dependence of static energy on
boson fields. The minima correspond to classical vacuums. The point
(As ,<p') determines the height of the barrier between different vacuums.
It constitutes the saddle point of the static energy functional (the spha-
leron).

the static field equations. This solution was found (for a
model with a doublet Higgs field) in Ref. 39, and was redis-
covered in Ref. 40; the fact that the solution was unstable
was discovered in Ref. 41; the role of the saddle solution as a
configuration determining the minimum height of the bar-
rier between neighboring vacuums was elucidated in Ref. 42,
where this solution was called a sphaleron2' (from the Greek
a<paAepo£ = ready to fall, unstable). The sphaleron config-
uration has the form

(2.5)

where J" = g<por and the functions / (£) and A(£) have the
following asymptotic behavior:

/ (0) = h (0) = 0, / (oo) - h (oo) = 1.

The energy of the sphaleron (the height of the barrier be-
tween the vacuums) is given by the expression

2Afw
aw

(2.6)

where Af w is the mass of the vector boson which appears as a
result of the Higgs mechanism, A is the self-interaction con-
stant of the scalar field, and a w = g2/4ir. In the model with
the doublet Higgs field, the function B{A/g2) varies from
1.56 to 2.72 as A /g2 varies from zero to infinity.42 We note
that, in the standard electroweak theory (in which Mw ~ 80
GeV, a w =a/s in 2 0 w ;=l /3O) , the height of the barrier
amounts to E? =~10 TeV. We shall see later that this quantity
determines the energy scale for processes with fast noncon-
servation of baryon number.

Since, in theories with a small coupling constant, the
height of the barrier is much greater than the energy scale
Mw typical for perturbation theory, each classical vacuum
in the quantum theory corresponds to a state | n ) whose wave
function is concentrated near the nth minimum. In particu-
lar, the trivial classical vacuum (A = 0, cp = <p0) corre-
sponds to the perturbation theory vacuum |0). The state |«)
is obtained from |0) by the application of the unitary opera-
tor U[con ], which performs the gauge transformation with
topological number n. Because of the gauge invariance of the
Hamiltonian, the states \n) are degenerate among them-
selves.

Gauge theories must satisfy the requirement that all
physical states must be invariant (to within the phase) un-
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der the gauge transformation. Invariance under topological-
ly trivial transformations, produced by the successive appli-
cation of infinitesimal transformations, is assured by the
imposition of the additional condition (Gauss's law) on
physical states:

(D,E, (2.7)

where E, = Fon FMV = d^Av — dvA^ + [A^ ,Ay], and J^ is
the gauge current of matter (in the present case, of the Higgs
field). However, condition (2.7) does not ensure invariance
under topologically-nontrivial gauge transformations. For
example, each of the |«> vacuums can be chosen so that
Gauss's law is satisfied for it, but the state |«) becomes
\n +«') under the gauge transformation C/[«^]. The
ground state (#-vacuum), which is invariant (to within the
phase) under all gauge transformations, is a linear superpo-
sition of the form

ie>= S e-
7 1 = - 0 0

\n) (2.8)

for which U[n]\d) =ein6\6).
Different ^-sectors of the theory split off because the

matrix elements of any gauge-invariant operator O between
vacuums with different values of 6 are zero:

(9' | 0 | 9 > = 0 for 9' ^ 9. (2.9)

Actually, the |«) vacuums can be taken in the form
\n) = U"\Q), where £/, = [/[&>,] performs the transforma-
tion with unit topological number (any other choice differs
from this by a topologically-trivial gauge transformation
that is insignificant by virtuejof the Gauss condition). For
the gauge-invariant operator O, we have O

<e'|6|9>= 2 eXp(-i7n9'-in9)<0|6t/J'-m|0),
n, m.

and hence (2.9) follows.
The vacuum angle 0 is thus seen to be a further param-

eter of the theory (in addition to the coupling constants and
the vacuum expectation values of the Higgs field). The ap-
pearance of this parameter is nonperturbative in character.
In some theories, for example in quantum chromodynamics,
it leads to the violation of CP symmetry. The possibility of a
solution of the strong CP problem by the introduction of
additional symmetry43 and the axion4344 was discussed in
the review given in Ref. 36b.

The structure of the vacuum (2.8) can be approached
somewhat differently by considering tunneling between n-
vacuums. The quasiclassical amplitude for the tunneling
transition between a trivial vacuum (« = 0) and a vacuum
with topological number n is determined by the minimum of
the Euclidean action on boson fields with the asymptotic
behavior

A - v O , <p->(p0, t-*• — oo,

A -»- wn do" 1 , <p - » T (coa) cp0, I -»- oo.

For these configurations, we have

<?[A(x, *)]= ralcoj = n,

where

(2.10)

is the topological number of the gauge field.45 Minimum ac-
tion is achieved on (many-) instanton configurations45 con-
verted to the gauge Ao — 0. We then have Smin =iv2\n\/g1

(inclusion of the Higgs field leads to small corrections to the
instanton value5), so that the tunneling amplitude is sup-
pressed by the factor exp ( — Sir21«| /g2).

Since tunneling between n-vacuums is possible, none of
them is an eigenstate of the Hamiltonian. The Hamiltonian
of the theory is gauge-invariant and can be diagonalized si-
multaneously with the operator Ut. The 0-vacuums (2.8)
are, in fact, the corresponding eigenstates.

The exponential suppression of the tunneling amplitude
means that, under normal conditions, the effects of the com-
plex structure of vacuum are exceedingly small. However,
we shall see later that they become significant under extre-
mal conditions. Before we proceed to the examination of this
question, let us pause to consider the mechanism responsible
for the anomalous nonconservation of fermion quantum
numbers.

2.2. Level crossing and the nonconservation of fermion
quantum numbers

The nonconservation of fermion quantum numbers will
now be discussed by considering the example of the gauge
model with the group SU(2) and left-handed massless doub-
lets of fermions $.'' (' = 1.—>«F ) t n a t do not interact with
the Higgs field (the necessary condition for the absence of
global anomaly46 is that the number nF of doublets is even).
The gauge-invariant current of each doublet
J^ — ^ L V ^ L " is conserved at the classical level, but is
anomalous at the quantum level9:

(2.12)

The right-hand side of this equation is the total divergence

1

(2.13)

where

We can therefore determine the conserved current which,
however, will not be gauge-invariant:

#> = / { » - * , , <U« = 0. (2.14)

Equation (2.12) indicates that the number of fermions
may not be conserved. Integrating (2.12) over the four-di-
mensional space between the three-dimensional hyperplanes
t = t, and / = t2, we obtain

N<*> (t2) - N^ (*,) = Ncs (i2) - Ncs (U), ( 2 . 1 5 )

where A'l;) = J Jo°d yx is the fermion number and

iVCs= \ #od3*

(2.11)

is the Chern-Simons number for the gauge field A. Relation
(2.15) was obtained on the assumption of a sufficiently rap-
id decrease in the field Afl at infinity (for a theory operating
in a finite volume, it is sufficient to assume periodic bound-
ary conditions for<4M ). Equation (2.15) implies that, if the
gauge field evolves so that its Chern-Simons number varies,
there is also a variation in the number of fermions in the
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FIG. 3. Fermion level crossing.

system. This nonconservation of fermion number arises as a
result of the phenomenon of level crossing (see Refs. 47-49
and the references therein). Let us now consider a system in
an external gauge field A (x,f) which changes adiabatically
from A (x,f i) to A (x,t2). At each intermediate time t, we can
calculate the fermion spectrum (the set of eigenvalues of the
Dirac Hamiltonian in the external field for fixed t). The
spectrum varies in the course of time, and some of the levels
cross zero from above and some from below. The difference
N+ — N_ between the number of levels crossing zero from
above (N+) and the number of levels crossing zero from
below (N_) is, in general, nonzero.

For each value of A, the ground state of the fermion
system is a state in which all negative-energy states are filled,
whereas positive energy states are unoccupied. A real fer-
mion corresponds to a filled positive level, and an antifer-
mion corresponds to a free negative level. The net effect of
the level crossing phenomenon is that the number of real
fermions will change (Fig. 3) so that, if, initially, the system
contains N fermions, the number of real fermions at the end
is given by

N (t2) = N - (N+ - N.).

The difference (JV+ — AL.) is due to the difference be-
tween the Chern-Simons numbers of the gauge field,
^ c s (t2) — Ncs (tx). We shall now consider two types of the
external field A (x,t) that are important for the ensuing anal-
ysis. In the first case, the gauge field of the group SU(2)
changes to a pure gauge:

A (x, f,) = A (x),
A (x, i2) = coA (x)<o-x +

Direct evaluation will verify that, for this field,

Arcs(f2) - []

(2.16)

where n [co] is the topological number of the gauge transfor-
mation. The consequence of the Atyah-Patodi-Singer
theorem50 is the equation

N+ — N. = — nlio),

which ensures that (2.15) is satisfied.
For the sake of simplicity, we have so far confined our

attention to adiabatically varying external fields A(x,f)-
However, the results can be extended to the case of rapidly
varying fields. They are also valid when the fields A(x,f)
arise spontaneously, e.g., during a tunneling transition be-
tween classical vacuums with different topological numbers.

A special case of a field with boundary values (2.16) is
the field with the asymptotic behavior defined by (2.10),
which describes a transition between topologically different
classical vacuums of boson fields. The sphaleron configura-
tion (2.4) plays an important role here. If the trajectory in
the space of the field passes through it at some time t0, we
have

IP* l

The crossing of fermion levels will then occur precisely at
time t0. The number of fermions is not conserved and

AiV<*> = n . ( 2 . 1 7 )

The alternative derivation of this relationship, which relies
on the properties of zero fermion modes in an instan ton-type
field, is given in the well-known paper by 't Hooft6 and in
subsequent publications.5'

We now introduce a few remarks in relation to this im-
portant result.

(1) Equation (2.17) appears in the theory with left-
handed fermion doublets. In the theory with right-handed
doublets, we have, instead, ANU) = — n. In general,

\N<£> = — AA >̂ = n, (2.18)

where AJV [''' (AN R° ) is the fermion number of the /th left-
handed (/'th right-handed) doublet. It follows that the fer-
mion number is conserved in vector-like theories (quantum
chromodynamics and quantum electrodynamics), but there
isaviolationofchiralityg5 = N^ — NR. The fermion num-
ber is not conserved in V-A theories.

(2) In theories with massive fermions, the result de-
pends on how the fermions acquire mass. If the mass is intro-
duced explicitly into the Lagrangian, the right-hand side of
(2.12) acquires an additioinal term that is proportional to
the fermion mass. For fields with space-time dimensions
greater than the fermion quantum wavelength, these contri-
butions cancel the anomalous term FF, in which case there is
no level crossing and the fermion quantum numbers are con-
served. In standard electroweak theory, fermions acquire
mass as a result of the interaction with the Higgs fields.
When the mass is introduced in this way, the level crossing
picture for fields with the asymptotic behavior defined by
(2.10) remains unaltered.17'52 In particular, (2.17) remains
valid for each doublet. This equation determines the selec-
tion rules for electroweak processes with nonconserved fer-
mion (baryon, letpon) number:

A7Ve = AN» = A iV T = . . . = « ,
AJVq = NcNgn,

(2.19)

where JVe (A^,...) is the electron (muon, . . .) lepton num-
ber, Nq is the number of quarks, Nc = 3 is the number of
colors, and Ng is the number of generations. Since n is al-
ways an integer, the baryon number must change by at least
3. The proton is stable in the electroweak theory, but the
deuteron can decay, at least in principle (although its life-
time is exponentially large). We also note that the
electroweak theory conserves B — L, where
L = Nc + Nt + NT + • • • is the total lepton number.

(3) The presence of massless fermions in the model
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completely suppresses the tunneling between vacuums with
different topological numbers (the same applies to the stan-
dard electroweak theory). Actually, when the system is in
the classical boson vacuum with n = 0 and, at the same time,
is in the fermion vacuum (no fermions or antifermions),
tunneling into the classical boson vacuum with n > 0 must be
accompanied by the creation of fermions in the system. This
process cannot occur spontaneously because of energy con-
servation. Let us elucidate all this in a somewhat different
way. Consider the conserved, but gauge-noninvariant, fer-
mion number

ing that

H (2.20)

where jhl is given by (2.14). Under the gauge transforma-
tion co(x), we have

U [to] N^U [or'] = Nf-n [ (2.21)

The gauge transformation operator Un with topological
number n carries nonzero NQ\ where

[N^, Un] = nUn. (2.22)

The vacuum \n) = Un |0) has NQ° = n, so that transitions
between different |«) vacuums are impossible. In the exactly
soluble two-dimensionless massless quantum electrodynam-
ics, the operators Un have been constructed explicitly8 and
relations such as (2.21) and (2.22) have been obtained as a
consequence of this construction.

Let us now consider a different case that is of impor-
tance in the present context, namely, the Abelian gauge field
of the form10'1314

A (x) = a ( d cos k - x — e 2 sin k -x ) , (2.23)

where k is an arbitrary vector and e, 2 are two real polariza-
tion vectors perpendicular to the one another and to k. The
fermion Lagrangian will be taken in the form

where

( ib(*. +)

* • >

is the doublet of left-handed fermions (ip[+ ' and if>l~ ' have
charges + i and — \, respectively). The analog of (2.15) is
then

AA'<?> = AA'cs,

where

v L_ f
C b 32n2 3

(2.24)

(2.27)

or, equivalently, a>&. Let us take the momentum k along
the first axis and eue2 along the third and second axes, re-
spectively. Condition (2.27) then signifies that near, say,
x = 0, the vector potential can be written in the form

A = a*! — (2.28)

i.e., the magnetic field can be regarded as uniform
HX=H2 = 0, H3 = H. The spectrum of left-handed fer-
mions in the external field (2.28) is characterized by two
continuous variablesp3 and/>2 [momentum along the third
axis and position of the orbit on the (x\x2) plane; Ref. 53]
and one discrete variable n = 0,1,2,... (number of orbits).
The energies are given by

n>0, E=-
(2.29)

For a given n, the number of levels in the interval is given
by53

2 (2.30)

(the factor 2 represents the presence of two types of fermion
in the doublet). Equation (2.29) shows that, when the am-
plitude is changed from a to a + da, fermion levels with
n = 0, a/2 <pi < (a + da)/2 cross zero from above and
there are no crossings of zero from below. In view of (2.30),
we find that the number of levels that appear in the Dirac sea
as the amplitude is varied from zero to a is

N -2 —H 1 da2 n 2 ~

which is in complete agreement with (2.24) and (2.26).
We now note an important difference between Abelian

four-dimensional theories and nonAbelian theories. In Abe-
lian theories, a nonzero Chern-Simons number requires the
presence of a magnetic field in the system [see (2.25) ]. The
number of fermions will change only when a magnetic field
appears in the system. This field "remembers" the initial
number of fermions: when the magnetic field is turned off,
the fermion levels again pass from the negative part of the
spectrum to the positive part, and the number of fermions is
restored. In non-Abelian theories, the Chern-Simons num-
ber is nonzero even for pure gauge fields for which all the
gauge-invariant quantities are zero. It follows that, in pro-
cesses such as transitions between topologically-different
classical vacuums, a fermion field vanishes without trace.

< = - - J r r \ d3^H • A (2.25) 3. MONOPOLE CATALYSIS OF PROTON DECAY

is the Chern-Simons number of the Abelian field. For the
configuration defined by (2.23), we have H = k A, so that

•ka2, (2.26)

where L is the linear size of the box in which the system is
located.

Let us now explicitly follow the level crossing, assum-
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We begin our discussion of processes with fast noncon-
servation of baryon number with the decay of the proton,
induced by a magnetic monopole in grand unification theo-
ries. The basic idea will first be illustrated by considering the
example of the SU(2) model (Sections 3.1-3.4). We will
then consider the interactions of fermions with the simple
(fundamental) monopole of SU(5) theory (Secton 3.5). In
Section 3.6, we briefly touch upon the question of the model
dependence of the catalysis effect.
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3.1. Magnetic monopole in the SU(2) model

We first recall the basic properties of the monopole so-
lution of t' Hooft and Polyakov2' in the model with the
SU(2) gauge group and a triplet of Higgs fields (see the
reviews in Ref. 22). We shall use the matrix notation for the
Higgs field, i.e., q> = -fq>" (a = 1,2,3), so that the vacuum
expectation value in the unitary gauge will be {<p ) = v-r3. In
this gauge, the vector bosons V± = (1/V2~) (Al

M ±iA]l)
acquire mass My =gv and the boson A * remains massless
("photon"). Under the gauge transformations a>, the field <p
transforms as follows: <p->a>q>a>~1. In the unitary gauge, the
unbroken subgroup U (1) EM has the generator r3 that com-
mutes with (<p >. This model is unrealistic, but it is useful to
discuss it before the results are generalized to realistic theo-
ries.

In the gauge in which all th e fields are regular, the
classical monopole configuration is

«Cl Q

cpcl =
(3.1)

The functions K and H satisfy equations that follow from the
classical field equation and have the asymptotic behavior

K(0) = H (0) = 1.
K(oa) = H (oo) = 0,

(3.2)

and K and H tend to zero exponentially. The characteristic
size of the region (monopole core) in which K and H are
nonzero is of the order rM~MV' (if the mass of the Higgs
boson is MH ~MV ). The mass of the monopole [classical
energy of the configuration (3.1)] is MM ~Mv/a, where
a = g2/Air. It will be important for the subsequent discus-
sion that the configuration (3.1) is spherically symmetric if
rotations in space are simultaneously augmented by global
gauge transformations.

In the regular gauge (3.1), the unbroken subgroup
U(1)EM has the generator (rn) that commutes with <pcl.
When r> rM, the field tensor for (3.1) is

(3.3)2ir2

This field does actually describe ajnonopole with magnetic
charge Awg~{: the magnetic field S^ is directed along the
radius vector n in ordinary space and is proportional to (m) ,
i.e., it has only the electromagnetic component.

3.2. Absence of suppression of nonconservation of fermion
number

In contrast to the vacuum sector, processes with non-
conservation of the fermion number are not suppressed
when the magnetic monopole is present. We now present
some simple arguments in favor of this assertion.23-24 We
shall include nf left-handed massless fermion doublets in the
SU(2) model. As discussed in Section 2.2, the nonconserva-
tion of the fermion number is due to transitions between
states that differ by topologically nontrivial gauge transfor-
mations. In complete analogy with the vacuum sector, let us

consider monopole states \M,n) = U[con ]|Af,O), where
\M,0) is the monopole state in perturbation theory. Transi-
tions between the states \M,0) and \M,n) are described by
configurations of boson fields with the following asymptotic
behavior3' (as before, we use the gauge Ao = 0):

A (x, t) -*-Acl (x), <p (x, t) ->-q>cl (x) (3.4)
( * - » - oo),

A (X, t) -*• (0nAcl (x) (i>nl + «n d(s)n',

(p (x, I) ->- <on<pcl (x) o)^1, n [wn] = n

(?->- + 0 0 ) .

We shall show that the Euclidean action for Euclidean
configurations with this asymptotic behavior can be as small
as convenient. This will mean that the transition process will
not be a tunneling transition and will not be suppressed ex-
ponentially. Since the fermion number is not conserved in
this process [we note that the fields (3.4) are a special case of
(2.16) ], the nonconservation of the fermion number is also
not suppressed.

As an example, consider the configuration

Ao = 0 ,

A = hA^h-1 + hdh-1, (3.5)
(f = feqjc'ft"1 = cpcl,

where

k(x, <) = exp (i™S{r, i ) ) . (3.6)

To ensure that (3.5) has the asymptotic behavior de-
fined by (3.4), we must ensure that S has the following
asymptotic behavior:

5 (r, t) •
S (r, t) •

- 0 npH t -»- — oo,
-Q n (r) npii t ->- + oo,

wherefln (r) is an arbitrary function satisfying (2.4). When
the action is evaluated, we must take into account the mass
of the monopole, i.e., we must consider 5 — SM, where
SM = MMT, and Tis the normalizing time. We thus obtain

— S M = - ^ \' d* \" (3.7)

Since K( 00 ) = 0 , this integral is finite (this is not the case in
the vacuum sector in which K = 1: since d,S(r= 00 ) ^ 0 ,
the analogous integral diverges). The action (3.7) can be
made as small as convenient by a scaling transformation of
time t^Xt, for which (S-SM)^X ~ ' ( 5 - 5 M ) .

Thus, action for configurations such as (3.5) can be as
small as convenient, and there is no exponential suppression
of processes with nonconservation of fermion number. In
other words, configurations such as (3.5) provide a large
contribution to the functional integral for the Green func-
tions that produce the nonconservation of the fermion num-
ber. Let us now consider the configurations (3.5) in some-
what greater detail.

If we select S(r,t) so that this function is nonzero only
outside the monopole core, the field tensor for the configura-
tion (3.5) assumes the form

Fu = Fti\, (3.8a)
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= ndTdtS.

(3.8b)

(3.8c)

It follows from (3.8c) that the "electric" field is radial
and points along gfx in group space. In other words, this field
is of purely electromagnetic origin. The possibility that pure-
ly electromagnetic radial fluctuations in the "electric" field
will produce nonconservation of fermion number in SU(2)
is a specific property of the monopole sector. Actually, it is
precisely because of the presence of the radial magnetic field
that the topological number of such fluctuations is nonzero:

Qoc \ 3x At oc \ Idrdi .

The monopole sector is special because, in contrast to the
vacuum sector, the gauge functions (2.3) now commute
with qf1, i.e., they lie wholly in U( 1 ) E M .

The absence of suppression of transitions with noncon-
servation of the fermion number signifies that neither per-
turbation theory nor the standard quasiclassical method can
be used to investigate the monopole-fermion interaction. We
shall discuss later some of the approaches to the investiga-
tion of this interaction. For the moment, we shall examine
these interactions on the basis of selection rules.

3.3. Asymptotic states of fermions in the presence of a
monopole

In order to consider the scattering of fermions by a
monopole with allowance for nonconservation of the fer-
mion number, we must first find the asymptotic states of
fermions in the presence of the monopole. Let us therefore
consider the Dirac equation in the external field of the mono-
pole, well away from the monopole core. In a regular gauge,
this equation is

iai»(^ + < ) * L = 0, (3.9)

where a41 = (l,cr) and ^L is a two-component Weyl spinor.
As noted in Section 3.1, the field of the monopole is invariant
under rotations in space, augmented by global SU(2) trans-
formations. We therefore have conservation of angular mo-
mentum:

J = (3.10)

where L and S are the usual orbital angular momentum and
the spin angular momentum, respectively, and T operates on
the SU(2) indices. Because of the presence of the additional
term T/2 ("spin from isospin" 5 4) , the angular momentum
(3.10) must assume integer values. This agrees with the
well-known result reported by Tamm55 to the effect that the
angular momentum in the field of the Dirac monopole must
be an integer.

In the unitary gauge, the fermion doublet contains the
left-handed fields a+ and b_ with electric charges + g/2
and — g/2, respectively. The charge operator in this gauge is
identical with r3 (to within the factor g/2). In the regular
gauge (3.1), the charge operator is (rn). It may be verified
that, well away from the monopole center, this operator
commutes with the Dirac operator o^(dfl +Afj, i.e., the
fermion charge does not change as it moves away from the
monopole center. Near the monopole center, the fermion

charge is not conserved at the level of quantum mechanics.
This is due to the presence of the charged fields V± in the
monopole core, and these fields appear in (3.9) as external
classical fields. We shall return to this question later.

Let us now consider the solutions of the Dirac equation
with the lowest angular momentum (s-waves, / = 0). The
most general form of the spherically symmetric wave func-
tion contains two radial functions;^ 2 (r,t) (Ref. 54)

(3.11)

where a — 1,2 and / = 1,2 are the Lorentz and SU(2) in-
dices. We now introduce the column

and write the radial equation outside the monopole core in
the form

(iy°df-\-iyidr)x = O, (3.12)

where y0 = r ' and y = — ir3 are two-dimensional y-matri-
ces. In terms of this notation, the electric charge operator is
equal to the two-dimensional ^-matrix y5 = r2. Its conser-
vation is obvious from (3.12).

An important property of s-wave fermions that distin-
guishes them from fermions with higher angular momenta is
the absence of the centrifugal barrier. Outside the monopole
core, the independent solution of (3.12) has the form

(3.13a)

(3.13b)

When E>0, the solution given by (3.13a) describes a posi-
tively charged fermion a + , whereas (3.13b) describes the
negatively charged fermion b+. It follows from (3.13) that
X+ contains only the incident wave and^f_ only the reflect-
ed wave. The left-handed positively charged s-wave fer-
mions can only fall on the monopole, whereas the negatively
charged can only issue from the center.56-57 For right-hand-
ed s-wave fermions (in our model, these are antifermions),
we have the reverse situation: positively charged fermions
are emitted by the center and negatively charged fermions
are incident on the center. The possible asymptotic states of
the s-wave fermions are listed in Table I. These properties
are also valid for massive Dirac fermions, in which fermion
helicity plays the role of chirality.5657

The absence of the centrifugal barrier and the proper-
ties of asymptotic states of s-wave fermions listed in the table
lead to two important consequences. First, the s-wave fer-
mions, even those with low energies, can readily "explore"

TABLE I.

Fermion
charge

+
+

Chirality (helicity
for m7VF^0)

Left-handed (-|-)
Left-handed (-L)

Right-handed (— )
Right-handed (—)

Direction
of motion

Toward the center
Away from the center

Toward the center
Away from the center
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the structure of the monopole core. Actually, the solutions
given by (3.13) are valid everywhere outside the monopole
core, and it is only the interactions at short distances (of the
order of the size of the monopole M) that lead to the trans-
formation of the incident into the reflected wave. Secondly,
the scattering of waves by the monopole cannot be investi-
gated within the framework of fermion quantum mechanics
in an external monopole field. At the level of the Dirac equa-
tion (3.9), the left-handed fermion cannot be transformed
into a right-handed antifermion. This means that, at the
quantum mechanical level, the scattering of the incident s-
wave fermion a+ looks as follows (we recall that there are no
right-handed fermions in our model; the reflected s-wave
can only be associated with the fermion b_):

a+ (3.14)

This process is in conflict with the law of conservation of
electric charge. This conclusion is confirmed by the explicit
solution58 of the Dirac equation (3.9): at large distances
from the core, the s-wave is a superposition of solutions
(3.13a) and (3.13b) with equal amplitudes. The scattering
of a fermion by the monopole can be desribed only within the
framework of quantum theory if the interactions between
the fermions and the boson-field fluctuations are taken into
account. Processes involving nonconservation of the fer-
mion number, which are due to the ground-state anomaly
and complex structure, then play a fundamental part.

We note that these properties are characteristic only for
s-wave fermions. Fermions with higher angular momenta
have both an incident and a reflected wave associated with
them, whatever the sign of the charge. They are reflected
from the monopole because of the centrifugal barrier well
before they reach the core.

3.4. Scattering of s-wave fermions: selection rules

Since the process defined by (3.14), which arises at the
level of the Dirac equation in the external field of the mono-
pole, is in conflict with the conservation of electric charge,
we must consider alternative final states for the scattering of
the s-wave a + by the monopole, taking into account quan-
tum field theory effects.

(1) a+ transforms into b_ and the surplus charge is
shifted to the monopole (the monopole becomes a dion, i.e.,
an electrically charged monopole). However, the dion is
heavier than the monopole, the mass difference being of the
order of g2/rM. Consequently, this process is in conflict with
the conservation of energy for incident-fermion energies that
are small in comparison with g2/rM (in grand unification
theories, g2/rM ~1013 GeV).

(2) The s-wave a + can transform into a + with a higher
angular momentum as a result of the emission of a photon.
This process was examined in Ref. 59, where it was shown
that its amplitude was small (proportional tog2 and finite).
Processes involving a change in the angular momentum are
thus seen to play an insignificant role.

(3) The only remaining possibility is that the scattering
process occurs with nonconservation of the fermion number,
due to the complex structure of the ground state and the
anomaly. This conclusion is in total agreement with the ar-
guments presented in Section 3.2, which show that this non-
conservation process proceeds intensively in the absence of
the monopole.

The scattering of s-wave fermions by the monopole can
be found in many models by starting with the selection rules
and the properties of asymptotic states.60"62 For example,
consider the SU(2) model with two left-handed fermion
doublets (the number of such doublets must be even in order
to cancel the global anomaly46)

( M, 2)
+

b<M>

It follows from the properties of s-wave fermions listed in the
table and from the conservation of electric charge that inci-
dence of an a + on the monopole leads to the appearance of a
b in the final state (the antifermion b is right-handed and
positively charged). This process occurs with nonconserva-
tion of fermion number and arises because of the complex
structure of the ground state and the anomaly. Next, it fol-
lows from the selection rule (2.17) that the change in the
number of fermions of the first and second type should be the
same. The only possible process involving the s-wave a(1) in
the initial state is therefore the process

ad) + b<2> + M (-f bb-pairs).

The cross section for this is determined by the probability of
finding the s-wave fermion a(~ " in the incident plane wave.
It is given by57

o,.i, = - g r , (3.15)

where k is the momentum of the incident fermion. It follows
that the cross section for processes with nonconservation of
fermion number is actually quite high: it does not contain
suppressing factors due to the small magnitude of the cou-
pling constant or the size of the monopole core.

A somewhat more complicated situation arises in the
model with four left-handed fermion doublets. Here, the
conservation of electric charge and the selection rule (2.17)
do not allow a single final state with a definite (integral)
number of fermions for the incident s-wave o(l). This para-
dox is resolved in the theory with strictly massless fermions
by the fact that, when the monopole is present, the theory
allows states with fractional fermion numbers.6162 In the
strictly massless theory, the allowed process occurs with
nonconservation of fermion quantum numbers and has the
form

When the fermion masses are finite, but small, there are no
asymptotic scattering states with fractional fermion
numbers. However, part of the selection rules (2.17) is then
violated by the mass terms. Processes such as (3.16) arise as
intermediate processes, at distances from the center that are
smaller than mf ' and, in the final state, the number of fer-
mions is always an integer. However, in theories with mas-
sive fermions, anomalous nonconservation of fermion quan-
tum numbers is also very considerable. This is clear from the
fact that, at distances from the center much smaller than
mf \ the fermion masses can be neglected.

As already noted, systematic studies of interactions be-
tween fermions and monopoles are possible only within the
framework of quantum field theory. Standard perturbation
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theory and quasiclassical methods are invalid for this prob-
lem. Nevertheless, a relatively detailed analysis can still be
carried out. It is based on the fact that the properties of the
fermion-monopole interaction are related to spherically-
symmetric fluctuations in boson fields (see Section 3.2) and
the s-wave fermion degrees of freedom. We can therefore
confine our attention to the s-wave sector of the theory and
include fields with higher angular momenta. There is a num-
ber of results24'59'63 showing that the influence of fields with
high angular momenta on s-wave dynamics is actually small.

In the s-wave approximation, the system becomes effec-
tively two-dimensional, i.e., the angular dependence of all
the fields is known explicitly, and the only significant vari-
ables are the distance to the center of the monopole and the
time. The methods developed for two-dimensional quan-
tum-field models have been used to investigate the situation.
An exact solution is possible in the theory with massless fer-
mions.23~25 In particular, it is possible to calculate the
Green's functions with nonconservation of fermion number.
In the model with four left-handed doublets, the simplest
operator bearing the fermion number and satisfying the se-
lection rules (2.17) is the four-fermion operator
a(l)al2)b(3)b(4), where all the fields are taken at a single space-
time point. The expectation value of this operator over the
state of the monopole (fermion condensate) is nonzero and
is equal to

const (3.17)

where the numerical constant is of the order of unity. The
functional integral for the condensate (3.17) contains con-
tributions of Euclidean configurations of boson fields with
Q= 1 (Refs.23and24).Thefactthatthesizeoftheconden-
sate is not suppressed is a further argument in favor of fast
nonconservation of fermion number.

Condensates that conserve the fermion number, but are
associated with a change in the fermion flavor, are also non-
zero in the field of the monopole. For example,64

const (3.18)

The great importance of these expectation values is also due
to the properties of the interaction between fermions and the
monopole: analogous Green's functions arise in the vacuum
sector because of the exchange of heavy vector bosons V *,
and are suppressed by the inverse powers of M v . In the mon-
opole sector, the fermions interact intensively with the mon-
opole core, which contains heavy bosons, and this leads to
the absence of suppression.

The s-wave dynamics in the theory with massive fer-
mions is not amenable to exact solution. However, a number
of qualitative results can be obtained in this case by using the
bosonization method.25 We shall not pause to consider these
results, and refer the reader to the original papers of Refs. 25,
61,65.

3.5. Monopole catalysis of proton decay in SU(5) theory

The model with the SU (5) gauge group2 is one of the
simplest grand unification models. The colored SU(3) and
weak SU(2) groups are embedded in SU(5) as follows:

and the electromagnetic charge matrix is

The left-handed fermions and antifermions in each genera-
tion form 5- and 10-plets. For example, for the first genera-
tion, we have

ve)L,

10 =

where the bar indicates an antiparticle and the indices 1, 2, 3
refer to the color.

SU(5) breaks down to SU(3)C XU(1)E M in two
stages. In the first stage, the breaking down continues to
SU (3) c X SU (2) X U (1) as a result of the formation of the
Higgs 24-plet condensate (associated representation):

(cp24) = V diag (2, 2, 2, - 3 , - 3 ) ,
V ~ 1015 GeV.

In the second stage, SU(3)C XSU(2) XU(1) breaks down
to SU (3) c X U (1) EM. The simplest method is to introduce
.the Higgs 5-plet with the vacuum expectation value

v ~ 250 GeV.

Although the minimal SU(5) is probably excluded by
searches for proton decays,66 we shall examine it for the sake
of simplicity. The discussion can be extended to other var-
iants of the model.

The Higgs 24-plet does not directly interact with the
fermions. The fermions acquire mass as a result of the inter-
action with the 5-plets.

The simplest (fundamental) monopole in the SU(5)
model67 is essentially the same as the monopole discussed in
Section 3.1, which belongs to the group SU(2)M embedded
inSU(5) as follows:

SU(2)M = SU (2)M

The only unbroken SU(2)M generator in the unitary gauge
(analog of r3 in Section 3.1) is the generator

0, 1, 0) = (3.19)

where Yc is the color hypercharge. In accordance with
(3.19), the fundamental monopole has both ordinary and
colored magnetic charges. The massive vector bosons X of
the SU(2)M groups (analogs of V^ of Section 3.1) are su-
perheavy (Mx ~ 10l4 GeV), so that the mass of the mono-
pole and the size of its core are determined by the grand
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unification scale:

M M* 1016 GeV, 10"28 cm.

The first-generation fermions form four left-handed
doublets with respect to SU(2)M:

d»/L

Other first-generation fermions are singlets with respect to
SU (2) M and do not interact with the monopole at distances
greater than the size of its core. They will be of no interest to
us here. If we neglect fermions belonging to subsequent gen-
erations, and interactions not included in SU (2) M, the mod-
el will be exactly the same as the SU (2) model with four left-
handed doublets, which was discussed in Sec. 3.4. The
condensates (3.18) include those that violate the baryon
number, for example,

const (3.20)

Nonconservation of baryon number is also found to occur in
condensates such as (3.18). An example of this is

(3.21)

The quantum numbers of these condensates correspond to
the following processes (monopole catalysis of nucleon de-
cay):

p + M ->-e + + M (+ pions),
n + M -»-e+ + ji~ + M ( + pions).

(3.22)
(3.23)

Large values of these condensates signify that these pro-
cesses occur with high cross sections. Since the only signifi-
cant energy scale is the characteristic scale of strong interac-
tions, it is expected that the cross sections for processes
(3.22) and (3.23) will be of the order of the cross sections
typical for strong interactions.23"25

The fast nonconservation of baryon number can also be
seen at the level of selection rules. Reactions such as (3.16)
include processes with the violation of baryon number, e.g.,

l + l — — l

The quantum numbers of this process correspond to the re-
action

p + M-v-^-e+ + -^-p + M. (3.25)

The final-state wave function is interpreted as a linear super-
position of a proton and a positron: the process defined by
(3.25) effectively describes the following two reactions:

P + M-
P + M-

- e + + M,
-P + M,

which have roughly equal cross sections. It is particularly
clear in the scattering picture that processes with nonconser-
vation of baryon number occur with high cross sections. We
recall that (3.24) is the only possible reaction for the initial
d3^ (in the limit of massless fermions).

The inclusion of fermions belonging to the subsequent
generations leads to the appearance of other channels of

monopole catalysis236068 [in addition to (3.22)]:

p + M ^ e + + n > " + M, (3.26a)

P
P

M
M

K» + M,
K+4- n- M.

(3.26b)
(3.26c)

It is expected that the cross sections for these processes have
the same order of magnitude as the cross section for (3.22)
[in particular, (3.26a) is not the radiative correction to
(3.22)].

Effects due to interactions not included in SU(2)M

were taken into account in Refs. 25, 69, and 70. It was shown
there that the main conclusion, i.e., that the catalysis cross
section was high, remained in force although some of the
details of the behavior of the fermions near the monopole
were altered.

The catalysis cross section is quite difficult to estimate
and only partial results are available at present. The problem
is that we have to match large distances ( r> 1 fm), at which
nucleons interact with the monopole because they have a
magnetic moment, to intermediate distance (r~l fm), at
which the quark structure of the nucleon comes into play,
and short distances ( r< 1 fm), which are responsible for the
nonconservation of the baryon number. Electromagnetic in-
teractions lead to a specific dependence of the cross section
on the relative velocity of the monopole and the nucleon at
low velocities. This dependence is different for the proton
and the neutron6071:

a —-£°- ft- —
«n — o » P — , •

(3.27)

The P 2 dependence for the proton is analogous to the en-
hancement of the inelastic cross section by the attractive
Coulomb potential [ cf., (3.15) ]. We note that, for some nu-
clei, the dependence on 0 is weaker for the neutron.71 The
range of validity of formulas such as (3.27) is examined in
Ref. 71.

Another effect of interactions at large distances is that
the monopole can capture a proton or nucleus into a quasi-
stationary orbit.72 The cross section for this process is of the
order of 1-0.1 mb for 0~ 10~3. This effect can lead to a
higher catalysis cross section.

There is only one published73 calculation of the con-
stant a0 in (3.27), based on the nonrelativistic quark model.
According to the results reported in Ref. 73, <ro~0.1 mb.
However, much more work has to be done to obtain a more
reliable estimate.

3.6. Model dependence of monopole catalysis

We have seen that, in the SU(5) model, proton decay
stimulated by the fundamental monopole should occur with
a high cross section (of the order of the cross sections typical
for strong interactions). The existence of magnetic mono-
poles is a common property of grand unification models
based on simple or semi-simple gauge groups.74 The question
therefore arises as to which unified theories and which types
of monopole typically involve the monopole catalysis of pro-
ton decay.

A large number of publications has been devoted to this
question. It has been shown that, in the SU(5) model, pro-
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ton decay is stimulated not only by the fundamental mono-
pole but also many other types of monopole.60'75 Actually,
this model, does not provide a single example of a monopole
that does not lead to catalysis. Supersymmetrization of the
model does not alter the properties of the catalysis process76:
the cross section has the typical hadronic scale, as before,
and (3.22), (3.23), and (3.26) remain as the principal
modes. We note that the principal proton decay modes in the
supersymmetric SU(5) theory are p ^ K + v^, p-»K°// + .
Monopole catalysis will also occur in the SO( 10) model75

and in the SU(4) XSU(2) xSU(2) Pati-Salam model. "Ca-
talysis will probably occur in all models that do not contain
exotic heavy fermions.7578 However, catalysis may be absent
from a model with exotic heavy fermions.69>75 An example of
this type of model is provided by the SU(5) theory with
twice the number of generations, suggested in another con-
text in Ref. 79. It has been shown69 that monopole catalysis
will not occur in this model, at least not for low relative
velocities of the proton and monopole. Monopole catalysis
of proton decay is thus seen to be a model-dependent effect.

Another aspect of the question of model dependence is
that of catalysis in Kaluza-Klein type models, in which mon-
opole solutions are also known.80 The solutions of the Dirac
equation in the field of a monopole in the five-dimensional
Kaluza-Klein model were examined in Refs. 81 and 82, and
it was shown that the nonconservation of charge, which oc-
curs at the level of the Dirac equation in the field of the
t'Hooft-Polyakov model, did not occur in the Kaluza-Klein
model. Instead, there was nonconservation of chirality. This
has been regarded8182 as an indication for the absence of the
catalysis process. However, the question cannot be regarded
as finally settled because the above five-dimensional model
has a number of features that make it unrealistic (the pres-
ence of a massless scalar field interacting with fermions, vec-
tor coupling of the gauge field to the fermions instead of the
V-A coupling, and so on). These undesirable features of the
model are also very significant for interactions between fer-
mions and monopoles. It may well be that monopole cataly-
sis of proton decay will occur in more realistic Kaluza-Klein
type models.

4. NONCONSERVATION OF FERMION NUMBER IN A COLD
DENSE FERMION MEDIUM

In many ways, effects associated with nonconservation
of the fermion number and the triangular anomaly deter-
mine the properties of a cold dense fermion matter in V-A
theories." l4 Here, we shall examine both the case of fer-
mion matter that is neutral in all the gauge charges (Sections
4.1-4.3) and the case of a fermion medium with nonzero
density of Z°-charge in the standard electroweak theory
(Section 4.4).

4.1. Instability of normal symmetric fermion matter at high-
densities11

The instability of normal neutral matter at sufficiently
high fermion density arises both in Abelian and non-Abelian
V-A theories. For simplicity, let us consider the Abelian V-A
model with left-handed fermions, and assume that the vector
fields acquire mass as a result of the Higgs mechanism. The
Lagrangian for the model is

1

where

and the fermions ip^ ± ) have charges + g/2. The condition
for a symmetric fermion medium is

where N F'-± > are the numbers of positively and negatively
charged fermions of type i for A = 0. We shall assume that
the system is placed in a large box of sixe L, so that NF is
large but finite.

As noted in Section 2.2, the appearance of the classical
gauge fields (condensates) leads to the level crossing phe-
nomenon, so that the number of real fermions may change. It
is therefore necessary to distinguish between the initial num-
ber ./Vp offermions and the number NR of real fermions. The
basic parameter of the system under investigation is NF,
which, by definition, is conserved. The physical meaning of
NF is quite clear. Suppose that the system was initially in a
very large volume (L ' )3 , L ' >L, so that the fermion density
was low and matter was in the normal state with boson con-
densates cp = c, A = 0. In this state, NF is the number of real
fermions in the system. As the size of this box is reduced
from L ' down to L, a condensate of the gauge field can ap-
pear within the box, and the number of real fermions can
change, but the properties of the system are determined by
^ p , as before.

In non-Abelian theories, the normal states will, in gen-
eral, have boson fields of the form

cp = r(w)(p0, A =

where co is a gauge function. The number of real fermions is
then given by

where«[&>] is the topological number (2.2) and./V,, is deter-
mined by (2.20). It follows that NF is a gauge-invariant
quantity [see (2.21) ]. States with different co are physically
indistinguishable, so that we may suppose, without loss of
generality, that co = 1. Hence,

NF = 7V0.

Outwardly, this relation defines TV F as a quantity invariant
under topologically nontrivial gauge transformations, but
this invariance is not, in fact, required because we have put

The instability of normal matter against the formation
of the condensate of gauge fields arises at high enough densi-
ties for the following reasons. The appearance of the conden-
sate with negative 7VCS leads to a reduction in the number of
real fermions, according to (2.24). This, in turn, leads to a
reduction in the energy of the fermions by the amount

(4.1)
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where^0 is the chemical potential (Fermi energy) in the
normal state. At the same time, the energy of the boson field
increases, but this increase does not depend on the fermion
density.41 It is clear that the gain in energy (4.1) is much
greater than the increase in the boson energy for sufficiently
large yU0, so that the precipitation of the condensate is energe-
tically favored at high densities.

In accordance with the foregoing, the effective Hamil-
tonian for static boson fields in the one-loop approximation

32n2 -] • (4.2)

where we have used the unitary gauge and assumed that the
field A is small and that the characteristic momentum of the
gauge field is fc<u0. It then follows from (4.2) that, when
/">Merit, where

Hxrit =

the normal state becomes unstable: a negative mode of the
form

A = a (ex cos k • x — e2 sin k • x) (4.3)

with k = Mv is found to appear (a is a small amplitude and
e12 and k form an orthogonal basis). We shall see in Sections
4.2 and 4.3 that this instability leads to significantly different
states in Abelian and nonAbelian theories.

4.2. Drops of anomalous matter in Abelian V-A theories11-14

It was noted in Section 2.2 that, in Abelian V-A theo-
ries, the crossing of the fermion levels and the vanishing of
real fermions require the appearance of a magnetic field in
the system. The final state to which the development of in-
stabilities leads is therefore characterized in the Abelian case
by nonzero classical magnetic fields. The ground state is in-
homogeneous'4: drops of "anomalous matter" are found in
this state and are surrounded by normal vacuum, whereas a
gauge field condensate with the structure given by (4.3) is
formed in the interior of the drops. This condensate ensures
that practically all the fermions pass into the Dirac sea, so
that there are practically no real fermions either inside or
outside the drops.

The properties of the drops can be determined as fol-
lows. Suppose that a gauge field condensate with the struc-
ture indicated by (4.3) has appeared in a region of size R,
and that the amplitude a and momentum k of the condensate
have not as yet been determined. If the appearance of the
condensate leads to the transfer of N F fermions to the Dirac
sea, its Chern-Simons number should be NF/f:

• C S ' 16jl*
(4.4)

The energy of the drop is determined by the energy of the
boson field (the contribution of the Dirac sea to the energy
can be neglected for small coupling constants). When A 4,g2,
the vanishing of the scalar condensate is energetically fa-
vored. It is then found that <p = 0 inside the drop (when
A >g2, the boson field condensates have a more complicated
structure, analogous to the mixed state of a superconductor

of the second kind in a magnetic field; the final formulas for
A^g2 are not very different from those reproduced below).
Consequently, the energy of the boson fields contains two
terms associated with the energy of the magnetic field and
the energy of the Higgs field for <p = 0:

(4.5)

where we have discarded constants of the order of unity and
have neglected surface terms (this approximation is valid for
NF>\).

Minimization of the energy with respect to k for fixed R
and subject to the additional condition (4.4) shows that k
assumes the smallest possible value

k~ IP

It then follows from (4.4) that

a • (
R \ t

(4.6)

(4.7)

For these values of the momentum and amplitude, we find
from (4.5) that

Minimization of this expression with respect to R deter-
mines the size and energy of the drop:

(4.8)

The magnetic field inside the drop does not depend on NF:

H ~V\gc*. (4.9)

The energy of the drop of anomalous matter is thus seen
to increase with NF more slowly than linearly. This means
that the coalescence of drops is energetically favored, and
the state with the lowest energy is that corresponding to a
single drop. Next, the chemical potential of the fermions
inside the drop is small:

dE (4.10)

so that there are actually practically no real fermions either
inside or outside the drop. In theories in which fermions
acquire mass as a result of interaction with the Higgs field,
the relation given by (4.10) signifies that, for sufficiently
high NF, the drops are stable even when there are no fer-
mions in their exterior. The stability condition is then

dE (4.11)

where NF is the fermion mass. This condition is satisfied
when

f'g' \ mF

We note that, for parameters (coupling constants and vacu-
um expectation values) of the order of the parameters of the
standard electroweak theory, the number of fermions, the
drop size, and the drop mass on the stability boundary are of
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the order of 7VF ~1016, A/-101 5 GeV, and / J - I O " 1 2 cm,
respectively.

Stable extended objects in the form of drops of anoma-
lous matter are thus seen to arise in Abelian V-A theories. It
follows from (4.11) that the energy of a fermion inside the
drop is lower than the rest energy of the free fermion. Conse-
quently, such drops should absorb fermions when they come
into contact with ordinary matter. This process should be
accompanied by an energy release of the order of the fermion
rest mass.

The above results are valid not only for V-A theories,
but also for other Abelian models that do not have a vector
structure. Among known interactions, these properties are
exhibited by the interaction associated with the U( l ) sub-
group of the standard gauge group SU (2) X U (1). However,
it has the same selection rules as the SU(2) interaction, but
is characterized by a smaller coupling constant. It is there-
fore problematic as to whether the drops of anomalous mat-
ter associated with the SU (1) subgroup can actually be
formed. Abelian interactions that do not have the vector
structure, and differ from U( 1), are predicted by a number
of grand unification theories, including models based on su-
perstrings.83

4.3. Fate of the anomalous state in non-Abelian theories14

In non-Abelian gauge theories, nonconservation of the
fermion number due to level crossing can occur as a result of
a transition of the system to the topologically nontrivial
gauge vacuum. The ground state of the symmetric medium
with NF fermions is therefore actually the state without real
fermions above the vacuum with topological number NF/f
[in the SU(2) model with left-handed doublets, / i s the
number of doublets]. At low densities, the normal state (de-
generate Fermi gas) is metastable, but the number of fer-
mions in the system decreases as a result of instanton-type
tunneling transitions, and the lifetime of the normal state is
exponentially long.

The question then arises as to whether the anomalous
Abelian matter discussed in Section 4.2 is metastable or
whether it can undergo a fast (classical) transition to a state
with a small fermion number above the topologically nontri-
vial value. This question is discussed in Ref. 14, where it is
shown that the second possibility occurs in non-Abelian the-
ory. We note that a wholly analogous result occurs in two-
dimensional gauge theories with complex structure of vacu-
um and nonconservation of fermion number,1213 namely,
they also exhibit a classical transition to the normal state
with a small number of real fermions above the topologically
nontrivial vacuum.

In four-dimensional nonAbelian theories, absolute in-
stability of Abelian anomalous matter arises in the following
way. Consider the SU(2) model, in which the anomalous
Abelian state is characterized by a gauge condensate with
A' = A2 = 0, A3 = a (e, cos kx — e2 sin kx), and the ampli-
tude and momentum are given by (4.6) and (4.7), respec-
tively. It then follows from (4.8) and (4.9) that the magnet-
ic field is almost uniform and HU2^>k. In a uniform
magnetic field H \ perturbations of the fields A12 have nega-
tive modes.84 These modes have the property that their exci-
tation does not alter the Chern-Simons number of the gauge
field."14 Consequently, the excitation of negative modes re-
duces the energy of the boson fields and does not alter the

number of real fermions (which is practically zero) or their
energy, which means that the anomalous state is unstable.

It can be shown (see Ref. 14 for further details) that the
development of this instability leads to a transition of the
system to a state with low (much lower than the critical)
number of fermions above the topologically nontrivial vacu-
um. It follows that, in the non-Abelian four-dimensional
theory, the density of cold symmetric fermion matter cannot
exceed the critical value

~ 3rt2 ^erlt) •

The attainment of critical density is followed by intensive
nonconservation of fermion number with the result that the
system undergoes a transition to the normal state with a low
density of fermions.

The foregoing results are directly applicable to the stan-
dard electroweak theory without right-handed neutrinos.
The neutrality condition in this theory has the form

„(«> _ „<«) _ „ _ „ — (4.12)

where n^"' is the density of u-quarks of color a (a = 1,2,3),
and so on. In the standard model, with three generations of
quarks and leptons ( / = 12), the critical density

«cr l t = 3-1012 fm-\

which is greater by roughly 12 orders of magnitude than the
nuclear density.

4.4. Nonsymmetric matter: anisotropic condensate of W-
bosons

In the asymmetric case in which fermion matter has
nonzero density of Z "-charge, there is another mechanism
that leads to the instability of the normal state and to the
Bose condensation of W-bosons.85 For example, consider
the SU(2) XU( 1) model with a single doublet of leptons
(without quarks). Only the neutrinos are present in the elec-
trically neutral normal (without the W-boson condensate)
fermion medium. When the chemical potential (Fermi ener-
gy) of the neutrinos exceeds M w + we, the following reac-
tion becomes energetically convenient:

ve-»-W+ + e".

As a result of this reaction, electrons appear in the medium
and the W-bosons produced in this way precipitate into the
condensate. This is a second-order phase transition.85 The
critical value of the chemical potential is M w + we and is
much smaller thanyucrit of the symmetric neutral medium.

An analogous situation is also found to arise in standard
electroweak theory (in which there are both leptons and
quarks) in the case of an asymmetric medium for which
(4.12) is satisfied. The W-boson condensate that forms if we
ignore the nonconservation of the fermion number is homo-
geneous and isotropic.85 Inclusion of this nonconservation
leads to a qualitatively new effect, namely, the W-boson con-
densate becomes anisotropic33 and has the structure

A = a (d cos k - x — e2 sin k- x), (4.13)

where the amplitude a varies slowly in comparison with the
homogeneous case, and
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The appearance of the anisotropic condensate can be
explained as follows (see Ref. 33 for further details). If we
neglect effects associated with the nonconservation of the
fermion number, the effective bosonic Hamiltonian can be
schematically written in the form (using the unitary gauge)

(4.14)

where A and F°j is the vector potential and the strength of
the W-boson field, q> is the Higgs field, and ^ is a relatively
complicated function that includes both the classical energy
of the bosonic fields and contributions that arise due to the
interaction between fermions and the condensate. The pres-
ence of the W-boson condensate is due to the fact that °k has
a minimum for

| A | = a ,fc 0.

The inclusion of effects associated with nonconservation of
the fermion number leads to the appearance in the effective
Hamiltonian of a term that is linear in the derivative of the
gauge field:

eft pefJ(O), rreH(l)

where

(4.15)

where fi~fi (the explicit expression for fj. is quite complicat-
ed and will not be reproduced here; see Ref. 33). The origin
of (4.15) is the same as that of (4.1): when the gauge field
with nonzero Chern-Simons number appears, the energy of
the fermions in the medium is reduced because of level cross-
ing and the reduction in the number of real fermions. The
expression given by (4.15) can be obtained formally by eval-
uating the leading contribution to the one-loop polarization
operator in the fermion medium.

It follows from (4.14) and (4.15) that configurations
such as (4.13) do, in fact, minimize the effective bosonic
Hamiltonian, where k =#2/16ir2^ and the amplitude a is
found by minimizing the function

It can be shown that the second term in this expression is a
small correction to the first, so that inclusion of (4.15) does
not alter the amplitude of the condensate in the leading order
ing.

The state with the anisotropic boson condensate is sta-
ble with respect to small perturbations near it, but unstable
with respect to transitions to a state with a smaller number of
fermions above the topologically-nontrivial vacuum.33 In
contrast to the case of a symmetric medium, such transitions
can occur only by tunneling. The problem of evaluating the
probabilities of these transitions is very complicated and it
may well be that the rate of these tunneling processes will
turn out to be much higher than the rate of instanton transi-
tions in vacuum.

The anisotropy of the energy-momentum tensor in the
state with the W-boson condensate (4.13) is of the order of
10~4 in the standard model. In standard cosmological mod-
els with an intermediate cold stage, this anisotropy is suffi-

cient to generate the relic gravitational noise with amplitude
of 1CT'MCT20 in a period of 3h-10 d.34 This is one of the
most powerful possible sources of gravity waves in this
range.

The detectors of gravity waves that are being discussed
at present have sensitivities that will be sufficient for the
detection of noise with these parameters (see Ref. 34 and the
references therein).

5. NONCONSERVATION OF BARYON NUMBER IN THE
STANDARD ELECTROWEAK THEORY AT HIGH
TEMPERATURES AND BARYON ASYMMETRY OF THE
UNIVERSE

5.1. Rate of processes with nonconservation of fermion
number at high temperatures

The electroweak nonconservation of the baryon num-
ber due to the complicated structure of vacuum should be
very intensive at high enough temperatures.15 Whereas, at
zero temperature, transitions between topologically differ-
ent vacuums (for example, with n = 0 and n — 1; see Fig. 2)
are tunneling processes, such transitions can occur at non-
zero temperatures as a result of thermodynamic fluctuations
occurring above the barrier.

Let us examine one of the equilibrium configurations of
gauge and scalar fields at a temperature T that is small in
comparison with the height Es of a barrier located "near" a
vacuum with n = 0. The system can "jump over" the barrier
as a result of a thermodynamic fluctuation, and may find
itself near the n = 1 vacuum. This process is accompanied by
a change in the fermion (baryon, lepton) number.

Let us estimate the probability of this hop in the high-
temperature approximation in which 7> A/w. We shall con-
sider a quasi-equilibrium thermodynamic ensemble con-
structed above one of the gauge-equivalent vacuums, say,
the n = 0 vacuum. (We shall suppose that the only nonequi-
librium processes are those with B-nonconservation.) The
probability of thermodynamic fluctuations with Aw = + 1
is then equal to the rate of decay of this metastable state."
The latter is determined by the probability that the system
will be found in the neighborhood of the saddle point As ,qf,
i.e., the probability of forming the sphaleron configuration.
Roughly speaking, this probability is determined by the
Boltzmann factor exp( — E?T), where £* = (2M w / a w ) B
is the energy of the sphaleron. This estimate can be improved
by taking into account the fact that the expectation value of
the scalar field (and, hence, of M w ) depends on tempera-
ture,86'87 so that the exponential suppression factor is15

(5.1)

where we have neglected the slow (logarithmic) dependence
of the coupling constant on temperature. The evaluation of
the pre-exponential factor is very laborious.

The general formula for the probability of decay of the
metastable state per unit volume per unit time in the one-
loop approximation6' (which, in our case, is the same as the
probability of transition between topologically different va-
cuums) is88"91

s 27")
exp(--f), (5.2)

where a>\ are the eigenfrequencies of the Bose excitations in
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the background field of the sphaleron, co°k are the corre-
sponding eigenfrequencies in the absence of the sphaleron,
and of is the only negative mode (the sphaleron is unstable
in the "direction" of the change in the topological number).
The factor Zo represents the normalization of the zero
modes. The basic effect due to a>\ is the renormalization of
the zero-temperature parameters of the sphaleron, which
leads to the replacement of M w with the temperature-depen-
dent effective mass [see (5.1)],15 i.e., (see also Refs. 92 and
91),

1 1 sinh((o?/27')

x e x p ( — ^ y B) (5.3)

where the factor (2A/W (T) )3 is the effective reciprocal vol-
ume of the sphaleron429' and has been introduced to ensure
the correct dimensions of T,x~ 1, i.e., it is a slowly-varying
function of the ratio {A / a w ). The factor Zo was found in
Ref. 91:

-N N
(5.4)

The numerical values of Nu and NTM are given for the special
case A = g2 and the result is, in fact, a slowly-varying func-
tion of the ratio A /g2. Altogether, the sphaleron has six zero
modes, three translational modes, and three modes associat-
ed with the nonin variance of the configuration (2.5) under a
combination of space and isotopic SU(2) rotation.

The final expression for the probability of thermody-
namic fluctuations is

r = MW(T) \ 4n
N

X exp (
aw(T)

Es IT)

)
(5.5)

This form of the pre-exponential factor in F was obtained in
Ref. 91, and a renormalization scheme in which the determi-
nant in (5.2) leads to the parametrization of (5.3) was noted
in Ref. 92. An evaluation of the analog of the parameter x for
the two-dimensional model theory is given in Ref. 93.

Formula (5.5) is valid in a relatively narrow tempera-
ture interval:

A/

At low temperatures, the main contribution to processes
with nonconservation of the fermion number is provided by
tunneling transitions. On the other hand, when F ~ (a w T)4,
we can no longer use the analysis of the decay of metastable
states with allowance for only the saddle point of the energy
functional."8

It follows from (5.1) and (5.5) that the exponential
suppression factor decreases with increasing temperature
both because of the presence of the factor \/Tin the expo-
nential and because of the reduction in MW(T). When
T> Tc [ Tc is the phase transition point with the breaking of
the SU (2) X U (1) group ], the W-bosons become massless
and the argument of the exponential becomes formally zero.
This leads to the conclusion that the rate of processes with
nonconservation of B is not exponentially suppressed for
7> Tc although it cannot be calculated in the quasiclassical

approximation. The fact that the "electric" components of
the gauge field have a mass of the order of gT for TZ Tc

(Debye screening) is not significant for estimates of the ar-
gument of the exponential: the sphaleron contains only the
"magnetic" field components. The natural mass scale for
static magnetic components is the quantity aw T (Refs. 94
and 95), which is none other but the unique dimensional
coupling constant of the three-dimensional gauge theory
that is the high temperature limit of the four-dimensional
theory. In approximate estimates, we can replace A/w in
(5.5) with a w T, i.e., F ~ (a w T)4 for TZ Tc. Of course, this
type of discussion cannot be regarded as a derivation of the
formula for the probability of fluctuations above the phase
transition point. The exact evaluation of F for T> Tc re-
mains an open question.

5.2. Fate of the baryon asymmetry that arises in GUT1596

Fast electroweak processes with nonconservation of the
baryon number at temperatures of the order of a few
hundred GeV or more have a significant effect on the baryon
asymmetry of the Universe (BAU). Two possibilities are of
particular interest in this connection.'5 First, the baryon
asymmetry that is produced at GUT temperatures (of the
order of 10" GeV) may be masked by electroweak pro-
cesses. Second, BAU can arise directly in electroweak theo-
ry3' or a modification of it (see Section 5.3).

The kinetic equation describing the washing out of the
baryon and lepton charges has the following form for mass-
less fermion - •

(5.6)

= B— BB, AL = L — L0,

= B0-(B-L)in,

27" •I,

where B and L are the densities of the baryon and lepton
numbers, respectively, and (B-L)m is the initial value of the
(B-L) asymmetry. The parameters £ and f assume the fol-
lowing values for 7"S M w , M H :

66JVf + 39

(5.7)

A very nontrivial dependence of the right-hand side of (5.7)
on the number A r̂ of generations arises when we take into
account the fact that, in B-L asymmetric plasma, its electri-
cal neutrality is attained for nonzero chemical potential of
the scalars.7'

It follows from (5.7) that the characteristic time for
processes with nonconservation of B is

2T3

13N(TI • (5.8)

The fact that TA > 1/Tfor TZM w explains the impossibility
of calculating the effect just discussed within the framework
of the Matsubara formalism for the temperature Green's
functions. In this formalism, fields are periodic (antiperio-
dic in the case of fermions) functions of the Euclidean time
tE with period B = \/T. The analytic continuation of the
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approximate answer for the Matsubara Green's function to
large real times is an exceedingly complicated problem that
has not as yet been solved. In the formalism used here for the
decay of the metastable state, the problem is formulated
right at the beginning in real time (Refs. 88 and 90), and
there are no difficulties with the analytic continuation.

The solution of (5.7) for the case of an expanding Uni-
verse with initial conditions

To obtain the observed value A~10 9, we must demand
that the microscopic asymmetry in leptoquark decays

gives

(5.9)

where the time is related to temperature by Tv = Mo/T
2,

Mo = MP1/1.667V^2, and Neff is the number of massless de-
grees of freedom. Since A > 1, only the 2?-Z,-asymmetric part
of BAU is found to survive.

This conclusion has to be modified to some extent for
plasmas that are asymmetric in the quark and lepton fla-
vors.96 The BAU that arises in GUT is usually proportional
to the Yukawa coupling constants between fermions and
Higgs fields (and, thereby, the quark and lepton masses).97

Thus, at the time of the grand unification, BAU is concen-
trated mostly in the third generation of fermions. If the GUT
interactions do not lead to an effective breaking of the con-
servation laws (2.18), the surviving baryon asymmetry will
also be nonzero in GUT with B-L conservation (b-l)in = 0
(Ref. 96):

(5.10)
13n2

where A°UT are the asymmetries relating to the quantum
numbers Z,, — B /N{ that are conserved in the electroweak
theory, L, is the electron, muon, etc., lepton number, rh) is
the mean square of the mass of the rth generation lepton, and
Tm is the temperature of quenching of anomalous
electroweak processes with nonconservation of B, deter-
mined from the condition rA = t v . We shall see in Section
5.3 that 71,, =TJOTMH SMcrit ^45GeV (Refs. 3land92)
and T^ < Tc for A/H ~ -Went (•WH ' s t n e mass of the Higgs
boson). When T^>TC, the fermions acquire mass due to
one-loop corrections. The increment that is asymmetric in
the flavors and contributes to (5.10) has the form
(M H <A/ c r i t ) :

(Tt) n\t (0)

n ~ 3 MW(O) •

If, on the other hand, M H S; Mcrjl, then

" V r * ) _ r n a w 2 / 4 5 « w \ 2 - | "«?, (0)
I1! ~"L 3 "•" 3 V 2B M Afw(0) •

In the case of three fermion generations, we have81

A = 8.10-'A?UT, MH^Mcrit,

= (2-4.5).10-«A?UT, MH^MCTlt. (5.11)

Ox = (5.12)

should be of the order of unity, which seems unnatural. (We
recall that BAU in leptoquark decays is A ~ 10~3 Sx; Refs.
28-30.) The situation becomes significantly simpler in mod-
els with a heavy fourth generation of fermions, where, say,
mT< 7z 100 GeV. Here, it is sufficient to have <5X =; 10"3.

The observed BAU in models with three generations
can therefore be due to grand unification, but only if B-L is
not conserved in the grand unification theory (moreover,
this nonconservation must be sufficiently intensive to ensure
that the B-L asymmetry of the Universe is large enough).
This is a further stringent criterion for choosing between
grand unification theories. For example, the SU(5) model
does not satisfy it. In grand unification theories that do not
conserve B-L, it is natural to expect the suppression oiB-L-
violating processes such as neutron-antineutron oscillations,
the decay of the nucleon along "nonstandard" channels such
as p->vir, vK, n — eir+, e~K + , double neutrino-free/^-de-
cay, neutrino oscillations, and so on.

We also note the closely related BAU scenario using
fast electroweak nonconservation of the baryon number.9"
This mechanism is based on the assumption that there is a
heavy lepton (with mass greater than a few tens of TeV) in
whose decays the lepton number is not conserved. This leads
to the generation of a leptonic asymmetry at higher tempera-
tures, which is then transformed into the baryon asymmetry
as a result of electroweak processes. The model predicts the
existence of processes with the nonconservation of the lepton
number at low energies (double neutrino-free /?-decay,
fi-*ey decay) with rates approaching the experimental lim-
its. Another possibility of generating the baryon number by
electroweak processes in the modified theory is discussed in
Ref. 15. We shall not pause to consider the possibility of
constructing a grand unification theory with the required
properties, and proceed directly to discuss the possibility of
BAU arising directly within the framework of the standard
electroweak theory.

5.3. Baryon asymmetry of the Universe in the standard
electroweak theory

The observed baryon asymmetry of the Universe may
turn out to be wholly due to electroweak processes with non-
conservation of the baryon number. A grand unification the-
ory does not then need to be brought in to explain it. In
principle, all three conditions for the generation of the bar-
yon asymmetry are satisfied in the Universe at temperatures
of the order of a few GeV, namely, (1) the baryon number is
not conserved because of electroweak processes, (2) CP vio-
lation is also present in the standard electroweak theory
(Kobayashi-Maskawa mechanism), and (3) thermody-
namic nonequilibrium is present because of the expansion of
the Universe. The question then is whether the baryon asym-
metry is generated at the observed level.91 A complete an-
swer to this question has not as yet been given and only par-
tial results are available. It is shown in Ref. 15 that the
standard model does not ensure the generation of the baryon
asymmetry of necessary size if the phase transition in this
model (accompanied by the formation of the Higgs conden-
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FIG. 4. Effective potential for the sca-
lar field near the critical temperature.

sate) is a second-order phase transition. The reason is that
the nonequilibrium is too weak in the case of a second-order
phase transition, and this leads to a relatively small baryon
asymmetry. The appearance of the baryon asymmetry in the
standard model is not, therefore, excluded, but only in the
case of the second-order phase transition which will occur in
models with a sufficiently light Higgs boson, i.e., MH ~ 10
GeV (Ref. 15).

A scenario for the generation of the observed asymme-
try within the framework of the standard model was pro-
posed in Ref. 31. It was based on the assumption of a high-
temperature degeneracy in the Chern-Simons number of the
ground state of gauge theories. Let us examine this in greater
detail.

We begin with the structure of the ground state for
T> Tc and T< Tc in the case of the second-order phase tran-
sition (throughout our discussion, Tc will be the tempera-
ture at which the barrier between the phases with (q>) = 0
and {<p ) — <p() disappears). During the expansion of the Uni-
verse, the system is in the state with (tp ) = 0 up to T = Tc

(Refs. 87 and 99), and thereafter this state becomes abso-
lutely unstable and (cp ) increases to <p0, which corresponds
to a minimum of the effective potential (Fig. 4). The ques-
tion is: what happens to the gauge field during this transi-
tion? When T<TC, symmetry is spontaneously broken, and
W- and Z-bosons are massive. This means that the ground
state of the system is dominated by configurations in the
form of small deviations from pure gauges. When T> Tc, the
vector bosons have zero bare mass. This leads to strong
(power type) infrared divergences in the sector of static
SU(2) magnetic fields and, apparently, to the existence of a
nontrivial structure of the ground state. Thus, the authors of
Refs. 94 and 100 have put forward arguments showing that
the non-Abelian plasma can contain a nonzero SU(2) mag-
netic field H~g3T2 at finite temperatures, and that the cor-
responding characteristic dimension of inhomogeneities is
(g2 T)~'. This structure of the ground state must vanish dur-
ing the first-order phase transition, i.e., the quantity

V (5.13)

must, in general, be nonzero for some characteristic equilib-
rium initial configuration. By virtue of (2.12), B is none
other than the baryon number (apart from the factor Nt),
created as a result of the SU(2) phase transition from some
specific initial configuration. As usual, the integral in (5.13)
is the difference between the Chern-Simons numbers of the
initial and final states. The quantity JVCS (r0) can be estimat-
ed from

F(8) F(B)

0

a
o
b

0
c

FIG. 5. Possible shapes of the effective potential for the density of the
Chern-Simons number.

and the baryon number density is3'

(5.14)

Of course, for T>TC, the electroweak plasma has configura-
tions that decay both into baryons and antibaryons, and the
total BAU is obtained after averaging over all the admissible
states. Analysis of these states is conveniently based on the
concept of the effection potential with B as the variable (the
effective Chern-Simons number of the initial state). The po-
tential V(B) can be introduced31101 since B depends only on
the initial state at time t0 (and, in general, on the shape of the
scalar potentiall0)). Figure 5 shows three possible shapes of
V(B). We note that the symmetry of V(B) under the re-
placement B-> —Bis dictated by CPT-invariance.

We still do not know which of the possible shapes of the
potential is realized in nature. Preliminary results'02 ob-
tained within the framework of the lattice formulation of
gauge theories show that the high-temperature electroweak
plasma is populated by quasiparticles, i.e., collective excita-
tions of gauge and scalar fields, whose decay during the
phase transition gives

In other words, the decay of a quasiparticle leads to the cre-
ation of twelve fermions (or antifermions) because of the
triangular anomaly. Monte Carlo calculations'02 provide a
very rough numerical estimate for the concentration of such
quasiparticles:

; 0.1—0.2 (5.15)

When the Bose-Einstein condensate of quasiparticles is pres-
ent, the potential for B is of the form indicated in Figs. 5b and
c, which correspond to the spontaneous breaking of global
symmetry responsible for the existence of the quasiparticles
and antiquasiparticles. The possibility of condensation of
quasiparticles can be settled by calculations using large lat-
tices (say, 503), which can be done, at least in principle,
using modern computers.

Let us now consider the cosmological properties of all
three types of potential V(b) (Refs. 31 and 101). In the first
case (Fig. 5a), the state of the Universe before the phase
transition is CP-symmetric. Consequently, the BAU that
arises should be proportional to the measure of CP-violation
in processes involving the nonconservation of baryon num-
ber. The breaking of C- and CP-symmetry in electroweak
theory at high temperatures arises because of the Yukawa
interaction between quarks and the Higgs fields. This part of
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the Lagrangian is

.c), (5.16)

where Q £ are the left-handed quark doublets, a is the gener-
ation index, U ̂  and D K

a) are the right-handed quarks with
electric charges of 2/3 and — 1/3, respectively, K is the Ko-
bayashi-Maskawa matrix, and Ma and Md are the diagonal
mass matrices of the fermions. It is well known2""30 that the
amplitude for the CP-violation is proportional to the prod-
uct of the imaginary part of the diagram (without the cou-
pling constants) and the imaginary part of the product of all
the coupling constants on the same diagram. It is readily
seen that, in our case, in which we have to sum over the
quark flavors, the imaginary part of the product of the
Yukawa coupling constants arises only in twelfth-order per-
turbation theory3' (Fig. 6). However, the sum of all the dia-
grams in this order does not manifest the effects of CP-viola-
tion because of the mutual cancellation of graphs with the
replacement uR<-*dR, cp+Mp, q>, = eocp* (Ref. 101). Thus,
CP becomes significant beginning with the fourteenth order
in the Yukawa coupling constants hk (or twelfth order in hk

and second order in the hypercharge interaction). Numeri-
cally,

D = Im Tr oMla.

gw ' 7

2M^
S i n &m

(5.17)

where s, = sin #,,#, is the Cabibbo angle and 8 is the CP-
violation phase. We have used the upper limit'03 for the
product s]s2s3 S 3X 10~4, sin 5 s 1. Despite the large num-
ber of diagrams contributing to 5-nonconservation (the
combinatorial factor is ~ 104), the number 10~22 seems too
small to explain BAU in the case of the 5-trivial structure of
the high-temperature ground state'").

The potentials of Fig. 5b actually correspond to sponta-
neous CP-violation at high temperatures. In the case of Fig.
5b, domains with different B will be formed throughout the
Universe. Baryon asymmetry will arise in regions with B>0,
and antibaryon asymmetry in regions with B < 0. Genera-
tion of the observed baryon excess is possible, in principle,
but a mechanism has to be found for stretching the domains
to dimensions of the order of the visible part of the Universe.
This question is discussed in detail in Ref. 101. We note, at
this point, that this stretching is not possible during standard
inflation ")4 because an exponential reduction in temperature

FIG. 6. Fermion loop of the lowest nonvanishing order that arises when
CP-violation effects are described for processes with nonconservation of
baryon number. Broken lines correspond to scalars.

leads to the vanishing of the gauge fields. New domains with
dimensions O ( a w T) ~~' form during the subsequent heating.
The vanishing of the domain structure and the formation of
the "pure" state [in one of the minima of the potential V(B)
throughout the Universe] is possible in the presence of a
strong CP-nonconservation ( ~ 1) at ultrahigh tempera-
tures (T - IO 1 5 GeV).

If the ground state is infinitely degenerate in B at high T
(Fig. 5c), BAU can arise in the standard model even for a
very small [such as in (5.17)] CP-violation amplitude.31

The point is that, when T>TC, the nonequilibrium expan-
sion of the Universe and the CP-violation in interactions
with nonconservation of baryon number lift the degeneracy
in B. The resulting increment in V{B) is

AF: (5.18)

where <5ms is the microscopic asymmetry in processes with
nonconservation of the baryon number, which is proportion-
al to D in (5.17). It follows that, depending on the sign of <5ms

(related to the sign of the CP-violation in kaon decays), the
state with minimum (maximum) value of B becomes the
most favored one energetically. It may be shown that,
when31

" " 2 ^ 1 (5.19)

the system will be in the state with the maximum (in abso-
lute value) value of B, independently of the position on the
plateau from which it started. At the same time, the magni-
tude of the BAU will not depend on the CP-violation ampli-
tude (it is determined exclusively by the infrared properties
of the gauge theories), whereas the sign of BAU is related to
the sign of the CP-violation in neutral-kaon decays.

The final answer for the BAU is

(5.20)

where S(MH) is the factor representing the macroscopic
suppression of asymmetry, taking into account the heating
of the Universe after the first-order phase transition and the
washing out of the baryon excess by processes with noncon-
servation of baryon number.

The evaluation of the magnitude and sign of <5ms (and,
thereby, of the parameter/?) is difficult because of the high
perturbation-theory order. Rough estimates show that
<5ms ~ 10" 16-10-22,12) which leads t o p - lO-lO"2. If we use
the numerical result of Monte Carlo calculations to estimate
the condensate of Chern-Simons density, we find that

A « (10-6 - 10-11) S (MH), (5.21)

which is not too far from the observed result Aobs =; 10 K-
10~10 (Ref. 30). The dependence of the suppression factor
on MH is very specific31 (Fig. 7). When MH £Afcrit s:45
GeV, the temperature after the phase transition is found to
be higher than the quenching temperature for anomalous
electroweak processes, and practically the entire BAU dis-
appears. On the other hand, when MH ~ M C W ( M c w is the
mass of the Higgs boson131 in the Coleman-Weinberg theo-
ry'05), the phase transition occurs with the production of
entropy,'06107 which again reduces the ratio nB/nr. BAU
generation within the framework of the electroweak theory
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FIG. 7. Macroscopic asymmetry-suppressing factor S(MH ) as a function
of the mass of the Higgs boson for m, S M w .

is therefore possible only for3'

Mait » 45 GeV. (5.22)

If the entire observed BAU is due to the anomalous
electroweak nonconservation of baryon number, the in-
equality (5.22) must be looked upon as a cosmological re-
striction on the mass of the Higgs boson. A discussion of the
analogous restrictions, taking into account the mass of the t-
quark, is given in Ref. 92, where it is found that the value
^cnt ~45 GeV is practically independent of mt and is not
sensitive to the emission of new fermion generations (the
discussion is based on the standard theory with one Higgs
doublet). The case where BAU without the macroscopic
factor S(MH ) is greater than the observed value Aobs is also
discussed in Refs. 31, 92, and 101. Here, cosmology gives a
practically unambiguous prediction for the mass of the
Higgs boson (MH s J / c w or MH xMcrit). We also repro-
duce the relation that arises in a Coleman-Weinberg-type
theory between the theoretical BAU without taking into ac-
count the entropy release Amax, the temperature of the phase
transition in SU(2) XU(1), which, in this case, is equal to
the temperature Tch for chirality violation in quantum chro-
modynamics with six massless quarks,l07 and the mass of the
Higgs boson

nTlh I

; 250 GeV.
15

1/2 / Am a x \
\ Aobs /

2/3
(5.23)

This is discussed in Ref. 101.
We note, in conclusion of this Section, that a confirma-

tion of the above scenario of the emergence of BAU in
electroweak theory would require Monte Carlo calculations
analogous to those performed in Ref. 102, but using larger
lattices.

6. ANOMALOUS ELECTROWEAK DECAYS OF HEAVY
PARTICLES

The fast nonconservation of fermion quantum
numbers, due to transitions between topologically different
vacuums, is possible not only at high densities and tempera-
tures, but also in the decay of heavy particles.16>17 The energy
necessary to overcome the barrier shown in Fig. 2 is then
provided by the mass of the decaying particle. To prevent the
suppression of the decay process by the tunneling exponen-
tial, the necessary mass must exceed the height Es of the '
barrier (in electroweak theory, this is of the order of 10
TeV).

Let us illustrate this possibility by considering the de-
cay of a technibaryon in the technicolor model. l6~20 Techni-
color108 (Refs. 4 and 109) is an alternative to the Higgs
mechanism of spontaneous symmetry breaking. Instead of
the Higgs field, this model introduces massless techniquarks
(in the simplest case, the U, D that transform under the
action of the electroweak group SU(2) X U( 1) in the same
way as ordinary quarks u, d). It is assumed that the techni-
quarks interact with one another by new strong (technicol-
or) interactions that are completely analogous to the ordi-
nary color forces except that the scale of the technicolor
interactions, ATC, is of the order of a few hundred GeV (in
contrast to chromodynamics, in which AKXD ~ 100 MeV).
It is considered that all this leads to vacuum expectation
values (UU) = (DD ) ~500 GeV, i.e., there is spontaneous
breaking of chiral symmetry. Since these expectation values
break down the electroweak group SU(2) XU(1) as well,
the W- and Z-bosons acquire mass. The longitudinal compo-
nents of these bosons are the technipions (which would be
massless goldstone bosons in the theory without the
SU (2) X U (1) gauge interactions).

The model predicts the existence of a large number of
technihadrons, i.e., particles consisting of techniquarks by
analogy with ordinary hadrons.141 In particular, there
should be technibaryons containing NTC techniquarks (iV~Tc
is the number of technicolors). In the simplest variant, the
lightest technibaryon is stable if we ignore the anomalous
electroweak nonconservation of the technibaryon color. Its
mass can be of the order of 10 TeV. Let us consider whether
the decay of the technibaryon due to the triangular anomaly
and the complex structure of vacuum in electroweak theory
can occur without exponential suppression.

It will be convenient to describe the technibaryon with-
in the framework of the Skyrme model110 (see also Ref.
111). The main field in this model is the nonlinear sigma-
field V(x) with values in SU(2). In terms of the technipion
fields IF (a = 1,2,3), it can be written in the form V
= exp(/r° Ha /2FW ), where Fu is the technipion constant
(the analog of / „ = 186 MeV). In the absence of
electroweak gauge fields, the technibaryon is a static topolo-
gically stable soliton (the skyrmion). The topological num-
ber of the field V(x), which is identified with the technibar-
yon number, has the form [see (2.2) ]

In the absence of gauge fields, the Hamiltonian for the
Skyrme model in the case of static configurations of the field
Fis

- - 3 2 ^ T r [ (6.1)

where eTC is the dimensionless techniskyrmion constant
[the last term in (6.1) is necessary for the stability of the
soliton with respect to contraction to a point). We note that,
in the limit of a large number of technicolors, the Hamilto-
nian for the sigma-model is proportional to NTC, so that
r,] ~iv T C , eTC ~ i/iv T C .

In the model with the Hamiltonian given by (6.1), the
topological soliton (skyrmion) is a minimum of the energy
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functional in the sector with topological number n [ F] = 1.
The mass of the skyrmion can be estimated as follows. Sub-
stituting y = Fn eTCx, we have

E = 16eT C

. (6.2)

The expression for the topological number is the same as
before. The integral in (6.2) does not contain any param-
eters, so that the energy (mass) of the soli ton is

16eT C
c,

where Cis of the order of unity. As already noted, the soliton
is a model of the technibaryon. In the limit as Nrc -» oo, its
mass is proportional to iVTC, as predicted by technicolor dy-
namics."2

We must now include weak interactions. For the sake of
simplicity, we shall ignore the subgroup U( 1) of the group
SU (2) X SU (1), i.e., we shall assume that sin2 0 w is a small
parameter, and will work in the lowest order in this param-
eter. The Lagrangian for the Skyrme model is invariant un-
der global SU(2)L XSU(2)R transformations, where the
field V transforms as follows: V->coL Vco^'.

When electroweak interactions are taken into account,
SU (2) L becomes a gauge group and «L = a>L (x). The ordi-
nary derivatives of the field Fin the expression for the action
are then replaced by the covariant derivative
DnV= ( ^ + A^) Fand the expression for action takes the
form

S = J d»* {-^r Tr Fly - - § • Tr (D

It will be convenient to take the unitary gauge with V = 1. In
this gauge, we have

(6.3)

It is clear from this expression that the vector bosons acquire
mass (in the limit as sin2 9w -»0, we have Mz = Mw ):

and the technipions disappear from the spectrum and be-
come the longitudinal components of the vector bosons.

The energy functional for static fields, which corre-
sponds to the action given by (6.3), is

324

n Tr
, jg- i r

,., A,]*), (6.4)

where we have put^40 = 0 (it may be shown18 that this does
not result in a loss of generality in our subsequent discus-
sion). In the limit as g->0, the skyrmion is restored in this
gauge, as follows.r6-17 The configuration energy of the field A
is finite in this limit, provided A is a pure gauge field:

k—VdV '. For such configurations, the first term in the
integrand of (6.4) must vanish, and the second and third
must be identical with the Hamiltonian (6.1), whose mini-
mum in the sector with n [ V] = 1 is, in fact, the skyrmion.

It is clear that, for small but finite g2, the skyrmion min-
imum of the energy functional will exist as before. However,
the skyrmion will be unstable with respect to instanton-type
tunneling transitions.'13 Actually, when gjs small, the skyr-
mion is a configuration of the form A = VdV~1 with topolo-
gically nontrivial V(x). The instanton transition transforms
this configuration into the A = 0 vacuum (Section 2.1). We
shall show that, when the mass of the skyrmion is high
enough, the energy minimum ceases to exist, i.e., the techni-
baryon becomes classically unstable.1617

Substituting^ = Fu eTC x, 5 , = At /Fn eTC, we find that
the Hamiltonian (6.4) can be written in the form

E =z
16eT C H -

(6.5)

In the limit as eTC/g->0, the first term in the integrand van-
ishes, and the remaining two decrease under the scaling
transformatioin B^-AB. The functional (6.5) does not have
minima in this limit.

It is thus clear that the technibaryon becomes classical-
ly unstable for

4c <l icrit' (6.6)

where a w = g2/Aw and £crit is a critical value. Numerical
calculations18 yield ^crit = 10.35. For fixed g and F n (the
constant Fn is fixed by the mass of the W-boson), the insta-
bility condition (6.6) reduces to the following condition for
the skyrmion mass:

> C,Ciit
aw

The numerical result is Ccrit = 6 (Ref. 18), which corre-
sponds to the maximum mass of the metastable techniskyr-
mion, approximately equal to 14 TeV. The technibaryon is
classically unstable when its mass is large. Rough estimates
of the technibaryon width for masses of this order yield17

r T B ~Af w .
It is natural to expect that, when the mass exceeds the

critical value, the lifetime of the metastable technibaryon
will be a rapidly-varying function of the mass, and will be
suppressed by the factor exp( — 4ir/aw ) for small masses.
Numerical calculations,19 performed within the framework
of the Skyrme model, are in complete agreement with this
picture: a reduction in MTB by only 17% produces an in-
crease in the lifetime by more than 20 orders of magnitude,
and the lifetime exceeds 1 sec. When MTB~ 10 TeV, it is of
the order of the lifetime of the Universe.

Of course, numerical estimates depend on the choice of
the techniskyrmion model. However, calculations20 based
on another soliton model show that the critical mass of the
technibaryon is not very dependent on the model param-
eters, and varies between 10 and 15 TeV.

The nonconservation of the technibaryon number that
we have considered occurs because of effects associated with
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the structure of vacuum and the triangular anomaly in
electroweak theory. Technibaryon decay is accompanied by
the formation of an SU(2) gauge field configuration with
topological number Q(A) equal to — 1. As discussed in Sec.
2, this process occurs with the creation of ordinary quarks
and leptons, subject to the selection rules given by (2.19). In
other words, the decay of the technibaryon is the many-par-
ticle process

where qt and 7, are antiquarks and antileptons in the z'th
generation and the ellipsis denotes W-bosons, photons, qq, 7/
pairs, and so on. The perturbative production of a technibar-
yon-antitechnibaryon pair for high enough MTB should lead
to a relatively exotic event, namely, the production of a large
number of leptons and quarks (jets) with high transverse
momenta.

The possibility of the fast anomalous decay that we have
examined in the technicolor model is probably not entirely
realistic. Actually, inequality (6.6), under which this decay
occurs, can be satisfied only for a very large number NTC of
technicolors. The necessary number of technicolors can be
estimated as follows. As already noted, erc <x N ^c

ul, so that

e TC JVc_
A'TC '

(6.7)

where Nc = 3 is the number of colors in chromodynamics
and ec is the Skyrme constant for strong interactions. Dif-
ferent estimates"5-"6 show that ec = 3.2-4.5. Using (6.6)
together with (6.7), we obtain

JV.TC, erit ' = 25 — 50.

Another method of estimating this number is based on
the fact that Fu <x N\^, MTB <x NTC, so that

(6.8)

where MB is the nucleon mass and / , , is the pion decay
constant. We then find that (6.8) leads to the following esti-
mate for the critical number of technicolors: NTC_crit ~ 90. In
any event, the necessary number of technicolors appears to
be too high.

Whether realistic models with heavy particles are capa-
ble of undergoing fast anomalous decay with nonconserva-
tion of baryon and lepton number is still an open question. In
particular, it is not clear whether elementary fermions inter-
acting with the Higgs field with a high Yukawa constant can
undergo this decay. The last question is answered (positive-
ly) at present only in the two-dimensional theory.' '7

7. CONCLUSION

We have seen that, in many models, extremal external
conditions lead to intensive nonconservation of baryon num-
ber. In standard electroweak theory, the characteristic scale
for the chemical potentials, i.e., the masses of the decaying
particles, is of the order of 10 TeV. The nonconservation of
the fermion number at temperatures ~ 100 GeV is a fast
process. The question therefore arises as to whether it is pos-
sible to have fast nonconservation of the baryon number in
collisions between ordinary particles at energies of the order

of a few tens of TeV. This question has not as yet been an-
swered, but there are some arguments48 against this possibil-
ity. This question has been attracting increasing attention
because electroweak processes with nonconserved baryon
number are many-particle reactions for which the selection
rules (2.19) are satisfied. These processes would lead to very
exotic events involving tens of quarks and leptons with high
transverse momenta in the final state.

It may well be that the nonperturbative mechanisms for
nonconservation of the baryon number that we have dis-
cussed in this review do not exhaust all the possibilities. The
gauge theory dynamics may turn out to be much richer than
appears at present.

"This restriction may turn out to be too strong in some models.1* The role
of transformations that do not satisfy this condition is still not clear.

2lAn estimate for the height of the barrier between the vacuums was ob-
tained independently in Ref. 17.

"Transitions between the states \M,0) and \M,n) are literally forbidden
by the selection rule (2.17) and by energy conservation (see the discus-
sion in Section 2.2); here, we have in mind transitions between excita-
tions above jA/,0) and \M,n).

"'Strictly speaking, we are assuming that there is no screening of magnetic
fields in the cold medium (Meissner effect) at the two-loop level, i.e.,
that there is no term of the form g2/*,2, A2 in the effective Hamiltonian for
the boson fields. Arguments suggesting that there is no Meissner effect in
perturbation theory are given, for example, in Feynman's book."4

"Formally, the last term in (4.2) is obtained by evaluating the one-loop
contribution to the polarization operator for the field A in the leading
order in momentum"; of course, it is exactly the same as the result given
by (4.1).

6IA systematic scheme for evaluating higher-order corrections has been
constructed by S. Yu. Khlebnikov and one of the present authors
(M.E.Sh.).

7)We are indebted to S. Yu. Khlebrikov for drawing our attention to this
fact. We note that the kinetic equations obtained in Refs. 15, 92, and 91,
and the free energy obtained in Ref. 96, do not take into account the
effect of asymmetry in the scalar sector. However, this has no effect on
the numerical results.

"'The conclusion that, for MH SMcm, the baryon asymmetry in B-L-
symmetric GUT will vanish was reported in Ref. 96 in the tree approxi-
mation for the masses of the fermions, and is violated by quantum-me-
chanical corrections; see (5.11).

''There is also the hope that we will be able to relate the sign of the baryon
asymmetry (excess of the number of baryons over the number of antibar-
yons, but not vice versa) and the sign of CP-violation in neutral-kaon
physics.

""It may be shown"" that the dependence on the form of the scalar poten-
tial will be lost when the vacuum expectation value of the scalar field
after the phase transition is high enough.

'"There is no summation over the flavors of the initial and final states
when CP-violation is considered for neutral kaon decays. This explains
the difference in the numerical values of the amplitudes of CP-violation.

12lElectroweak theory with four generations of fermions or two Higgs
doublets" leads to much larger values of <5ms.

"'We recall that, in the standard theory with one Higgs doublet and three
generations of fermions, J f J , = (3/&ircr)(2M4

K + M*, — 4m4),
where a— 250 GeV. For the "light" t-quark m, S M W ) Mcw —10
GeV.
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