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The relationship between the problem of the symmetry of a plane tiling and the properties of
nonintegrable dynamic systems is reviewed. The formation of stochastic layers and a stochastic
web in the motion of linear and nonlinear oscillators subjected to a perturbation is discussed in
detail. Emphasis is placed on research on the symmetry properties of a stochastic web with a
fractal structure of a quasicrystal type. Structures with a quasicrystal symmetry form as a result of
an interaction of two types of symmetries: translational and rotational. Various characteristics of
structures with a quasicrystal symmetry are discussed: the distributions of stable and unstable
points, the state density, and the Fourier spectrum. Quasicrystal structures in solid state physics,
hydrodynamics, botany, and ornamental art are discussed.
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INTRODUCTION

After nearly twenty years of intense research on chaos,
we have grown accustomed to the idea that we must always
be prepared for surprises in this field of analysis. The chaos
phenomenon itself was so unusual for the stereotypes of
thought which had become established that a serious effort
was required in order to perceive the possibility that low-
dimensionality systems could be in a state of chaotic motion
without being subjected to random forces. Part of the expla-
nation here is that in order to reach an understanding of just
what chaos is it was necessary to find answers to a long list of
questions at once. In the course of finding answers to these
questions, we have also run into some new and unusual prop-
erties of very simple dynamic systems, and we have wit-
nessed the appearance of some new and unusual problems.

Research on certain subtle properties of chaos has now
unexpectedly linked the phenomenon of the diffusion of par-
ticles to the problem of the symmetry of the tilings of a space.

The path of a particle is capable of describing an unusually
complex structure in the arrangement of atoms, called a
"quasicrystal structure." It turns out that the methods of
nonlinear dynamics can reduce many of the symmetry prob-
lems of the physics of crystals to a study of the properties of
certain mappings which can be established quite simply.
Further development of these ideas leads to even more-unex-
pected interrelationships, since it establishes a correspon-
dence between the structural properties of crystals and qua-
sicrystals, on the one hand, and hydrodynamic structures
(e.g., Benard cells), on the other.

The present review is devoted to an analysis of these
interrelationships. The penetration of dynamic methods into
symmetry theory is not itself unexpected. For example, we
quote Weyl's comments on this subject: We still share his
(Kepler's) belief in a mathematical harmony of the uni-
verse. It has withstood the test of ever-widening experience.
But we no longer seek this harmony in static forms like the
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regular solids, but in dynamic laws.26 The actual realization
of these ideas, howevef, is not so simple. The example related
to quasicrystal symmetry turns out to be particularly in-
structive in this regard. Primitive tilings of a plane, in a
square or hexagonal grid, are fairly common in nature.
There is accordingly nothing surprising about the fact that
we frequently find them in nature and, for example, in a
hydrodynamic experiment. A quasicrystal symmetry is not
so obvious (although it is found fairly frequently in plants).
It stems from the real interaction of rotational and transla-
tional symmetries. The existence of a dynamic model for this
interaction makes it possible to take a considerably broader
look at both the properties of dynamic systems and the prop-
erties of structures.

The not altogether ordinary analogies which constitute
the subject of this review have yet another quality which we
should not fail to mention. Structures form in the phase
plane in invariant sets: stochastic layers. The thinner the
layers, the more regular the structures. The most unusual
point here, however, is that a single stochastic path forms a
nearly regular structure in the phase plane. The long-range
order in the phase plane originates from a chaotic motion.

Our review is organized as follows. In § 1 we present a
detailed description of the overall picture of the formation of
stochastic layers as nucleating regions of a chaos, and we
discuss various consequences of this phenomenon, including
Arnol'd diffusion. In §2 we consider degenerate cases, in
which a stochastic web can appear in phase space with a
minimal dimensionality (with 3/2 degrees of freedom). In
§3 we use the example of a resonance of a particle with a
wave packet in a static magnetic field to introduce a mapping
with a twisting, which generates a uniform web with a quasi-
crystal symmetry. In §4 we discuss various structural prop-
erties of the web, and we find an average Hamiltonian of the
structures. In §5 we discuss some other applications of
quasicrystal structures (in hydrodynamics, botany, and or-
namental art).

1. FORMATION OF A STOCHASTIC LAYER

In Hamiltonian systems a region of phase space near a
separatrix plays a fundamental role in the analysis of the
onset of chaos. In the simplest case of a single degree of
freedom, the separatrix is a special path which passes
through an unstable saddle point, where it is intersected by
another separatrix or intersects itself. A perturbation of the
system can be both weak and slow and can thus have a rather
weak effect on the dynamics of the system. However, the
effect of the perturbation always turns out to be marked if
the initial conditions of the system belong to some region
near the separatrix. It is in this region that chaos originates,
radically changing the properties of the system and render-
ing it nonintegrable in principle.

The formation of a complex dynamic picture near a se-
paratrix, due to a "splitting" of the separatrix, was pointed
out some time ago by Poincare.1 The first estimate of the
width of the splitting of separatrices was given in Ref. 2. The
existence of a stochastic dynamics near a separatrix was de-
scribed in Ref. 3-5, and the width of a stochastic layer was
analyzed for various perturbation cases. The idea of con-
structing a mapping near a separatrix based on the proper-
ties of a path of the system is described in Ref. 4. The rela-
tionship between nonintegrability and the existence of a

stochastic layer is discussed in Ref. 6. In the discussion be-
low we are following the method developed in Refs. 4, 7,
and 8.

1.1. Stochastic layer of a nonlinear pendulum

A nonlinear pendulum is a system which is typical of
many physical problems. Its Hamiltonian is

I0=-\-pZ — CO* COS X, (1.1)

where x is a dimensionless coordinate, p is the momentum,
and coa is the small-oscillation frequency of the pendulum.
The mass of the pendulum has been set equal to unity. The
perturbed problem in its simplest form can be written

H = Ha + V = 4- p2 - <oj cos x + e -^- cos (kx — Aorf),

Vs (1.2)

where e is a dimensionless parameter of the perturbation,
and k and Aco are respectively the wave number and frequen-
cy of the perturbation. Hamiltonian (1.2) generates the
equation of motion

x + (oj; sin x = ewjj sin (kx — Acoi). (1.3)

Figure la is a phase portrait of the unperturbed version of
problem (1.3), with e = 0. If the perturbation is slight (Fig.
lb), some of the invariant paths near the separatrix are dis-
rupted, and a stochastic layer is formed. An estimate of the
width of this layer is based on the following considerations.

At small oscillation amplitudes of the pendulum, the
pendulum may be regarded as linear (sirw~x). The oscilla-
tion spectrum of the pendulum thus consists of a single har-
monic with the frequency coa. In general, the nonlinear fre-
quency of the pendulum, a>(E), depends on its energy
E = //,,. At low values of E the frequency is cozz(oo. A special
path—a separatrix—corresponds to the energy Ec = col • As
E^EC the frequency tends toward zero, co(E) —0, and the
oscillation period becomes infinite:

T = •
(0{E)

oo (E • (1.4)

The typical number of harmonics in the spectrum of a pen-
dulum,

FIG. 1. Phase portrait of a nonlinear pendulum, a—In the absence of a
perturbation; b—in the presence of a perturbation. Regions of chaotic
dynamics near a separatrix can be seen.
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FIG. 2. Time evolution of the velocity of a pendulum for a path near a
separatrix. T—Period of the oscillations on the path; To—period of small
oscillations.

\r (00 T I j , 2ZI

a(E) ~~~T\ \ °~~a^ (1.5)

tends toward infinity. It follows from property (1.4) that the
velocity of the pendulum, p = x(t), has the form shown in
Fig. 2 at values of E near Ec. The reason that the velocity
behaves in this way is that the system traverses nearly the
entire width of the potential well quickly (in a time ~ To)
and stays near the saddle points for a long time (~ T^> Tft).
The condition iV> 1 near the separatrix thus makes it possi-
ble to switch from a differential equation to a finite-differ-
ence equation (a mapping) in perturbed problem (1.3).

It is written between two successive times tn and tn + ,
(Fig. 2), taken near the «th and the (n + 1) st passages near
any of the hyperbolic points. From the equation

E = Z(i>\x sin (kx — Awi), (1.6)

which is found by differentating E = Ho and using expres-
sions (1.1) - (1.3), we see that a change in the energy of the
pendulum occurs only in a region in which its velocity x is
nonzero. Such a region has a narrow time interval
~ TQ = 2w/a>0 (Fig. 2) and is equivalent to the brief applica-
tion of a force to the pendulum. The time interval which
elapses between successive "kicks" of this sort is

and it satisfies the condition that the collision is "instanta-
neous": T{) <£, At,,. The mapping which we need thus takes the
form, in the case E<EC = a>\, for example,

£B+1--::£,,+AEn, (1.7)

where

«,, = co (£„).

An expression for Ais is derived in Appendix 1. Using
that expression, and introducing the phased,, = Af,, for con-
venience, we can finally replace (1.7) in the case k = 1 by

sh (.nv)
32

sin6n, (1.8)

where

Aco
: o)0 In

32

E-- 1 - - Ec.-E (1.9)

The simplest estimate of the region of stochastic behavior is
found from the inequality7

• 1 . (1.10)

For the energy width of the stochastic layer we thus find
from (1.8)

If the perturbation in (1.2), (1.3) has a low frequency
0, we have

|<4v2e , (1-12)

and the width of the stochastic layer is at a maximum in this
case. If, on the contrary, the perturbation has a high frequen-
cy (A<y><y0), then

|£ s |<8 j t ev3exp(—y-) , (1.13)

and the width of the stochastic layer is exponentially small.

1.2. Interaction of resonances

We will need this simple example in the discussion be-
low. An "interaction of resonances" means the case in which
two harmonics, with approximately equal amplitudes and
periods but different phase velocities, act on a free particle.
The Hamiltonian is

=~2 p2 — M~0 cos x — coj; cos (x + Ao>t). (1 .14)

If Aco~ct)w the separatrix cells overlap in the phase plane,
and a large region of strong chaos appears.8 In the case
A<y>a>(), however, the parameter v is large, and as a result
the stochastic layer is thin. A comparison of (1.14) and
(1.2) yields e = 1 and k = 1. Our estimate of the layer width
in (1.13) then becomes

' - • ^ ) - ( 115 )

In other words, two greatly separated resonances
induce exponentially narrow stochastic layers in each other.

1.3. Stochastic layer of a rotator

A "rotator" is a system with a Hamiltonian //„ = p2/2
which is defined in a cylindrical phase space xe(0, 2ir),
pe( — oo,oo ) and f(x = 0, p) =f(x = 2TT, p) for an arbi-
trary function/ The quantities (p, x) represent an angular
momentum and a phase. Many problems lead to a perturbed
rotator with a Hamiltonian7"1'

H~~ p2 — or cos (x — nAo>/)

=-J5-- d-16)

In it, the rotator is perturbed by a periodic sequence of 6-
function pulses.

The equations of motion corresponding to (1.16) can
be written as the mapping

^= Pn — 7'owoSin"cn.

= x» + ToP,,+i (mod2Jt) ,
(1.17)

where the times are tn =nTo — 0. This mapping is also
called a "standard mapping" or "Chirikov mapping."8 Un-
der the condition
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K = d>J*>i, (1.18)

system (1.16) becomes highly stochastic, with the result
that there is diffusion of particles which is not bounded in p.
If K < 1, the stochastic regions are localized in phase space.
In particular, under the condition K4,1 there are exponen-
tially narrow stochastic layers. We can demonstrate this
point.

We restrict the original form of H in (1.16) to the terms
with n = 0 and + 1:

H « -5- P2 — ( 0 o c o s x — wo (cos (x + A«0 + cos (x — Aait)].

(1.19)
The first two terms correspond to the pendulum Hamilto-
nian Hf) given in (1.1). The last two terms give a perturba-

tion which is analogous to (1.14). They correspond to a
weak interaction of resonances, by virtue of the condition
a>o/Aco4>\. The sign of Aco in (1.19) is unimportant, so we
can immediately use (1.15) for the width of the stochastic
layer in (1.19):

\ES\ < 16nv3exp ( <r~)< (1-20)

If we were to take the terms with, for example, n = + 2
into account in sum (1.16), we would find not — w/2 but
simply — -irv in the argument of the exponential function in
(1.20). Since we have v> 1, such terms and also terms with
n > 2 contribute negligibly.

Figure 3 shows some examples of phase portraits of
problem (1.16) or (1.17) under the conditions K < 1 and
K>\. In addition to the main stochastic layer in the case
K < 1 there are an infinite number of considerably narrower
layers, which result from a disruption of the separatrices
from resonances of higher orders. We will pursue the discus-
sion of this example a bit further on.

1.4. Nontrivial discretization effects

The preceding example is very convenient for discuss-
ing one of the very serious questions which arise during a
stage of escalating use of numerical methods for solving var-
ious problems in natural science. Numerical analysis is
based on difference schemes, and for this reason we are ob-
liged to switch from differential equations to finite-differ-
ence equations. For example, the equation of motion of a
pendulum,

is replaced in the simplest version by the equation

xn+i - 2xn + xn_t + wj (At)2 sin xu ~ 0,

(1.21)

(1.22)

where At is the length of the time interval which is the ele-
mentary step of the difference scheme, and*,, = x(nAt). To
improve the accuracy of calculations, one chooses very small
values of At. Consequently, the following inequality holds:

£ = cuj (A*)2« 1 • (1-23)

To what extent can we control the errors in the switch
from problem (1.21) to problem (1.22)? This is of course
not a new question. The very first numerical simulations of
nonlinear physical problems began the discussion of just
what is lost and just what is added by introducing a discreti-
zation in a continuous problem.10 To a large extent, we be-
came able to answer questions of this sort82 only after it be-
came clear that chaos is possible in dynamic systems. The
example of discretization of Eq. (1.21) shows why this is so,
and it reveals some nontrivial effects of discretization.

We introduce

Pn =-^{xn— (1.24)

-rt

FIG. 3. Phase portraits generated by a standard mapping, a—K = O.i
b—K= 1.3.

Equations (1.22) and (1.24) can be written as the mapping

Pn + i = Pn — "o A* S i n Xn , xn+i ^ xn + &Pn + l (mod 2jl),

(1.25)
which is the same as (1.17). We can thus say at the outset
that the discrete analog of the equation of motion of a pendu-
lum has stochastic regions regardless of the discretization
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step At, while the original equation, (1.21), is exactly inte-
grable. In particular, this conclusion means that the switch
to discrete equations of motion (1.22) is equivalent to add-
ing a periodic external force due to the discretization.

It is not difficult to find an expression for the force due
to the discretization. For this purpose we note that mapping
(1.25) is generated by Hamiltonian (1.16), in which we
should set A&> = 2-ir/Lt. Under condition (1.23), it is suffi-
cient to restrict the sum to the first terms, with n = 0 and
+ 1; we arrive at Hamiltonian (1.19). We can thus immedi-

ately write the Hamiltonian of the discrete problem:

where //„ is the Hamiltonian of the original problem, (1.21),
and

F d l s c r = — 2ojj; cos x cos
2nt_
At

(1.26)

is a "discretization potential." This potential is a high-fre-
quency perturbation with an amplitude of the same order as
//„. All the rest of the analysis is obvious, since the phase
portrait of discrete problem (1.25) is known (Fig. 3a). All
the changes from the simple phase portrait of a pendulum
which must be made because of the discretization follow
from this phase portrait.

It is now clear that in general a discretization will gener-
ate some nonremovable chaotic zones, and a determination
of these zones bears directly on the nontrivial discretization
effects.

1.5. The KAM theory and Arnol'd diffusion

The Kolmogorov-Arnol'd-Moser theory" (the KAM
theory) determines the conditions under which the invar-
iant tori of Hamiltonian systems are conserved when a small
perturbation acts on a system. If a system with N degrees of
freedom is described by the Hamiltonian

Ho = / / „ ( / , , . . . , / w ) ,

which depends on N integrals of motion (actions) Ik, which
commute and are independent, then the path of the system
lies on an ^-dimensional torus.') The torus itself is an invar-
iant. The perturbed Hamiltonian of the system can be writ-
ten

H = Hn eV(Ilt

(1.27)

where the phases 6k are the canonical conjugates of Ik, and £
is a small perturbation parameter. At sufficiently small val-
ues of e, and in the absence of a degeneracy, i.e., under the
condition

Det
dlh SI i

¥=0, (1.28)

most of the invariant tori are conserved in a slightly de-
formed state. Some of the tori are disrupted in the process,
but the number of disrupted tori is small, and they are
squeezed between invariant tori.

This result is illustrated well by Fig. 3a. A system of the
type in (1.14) or (1.16) may be thought of as a system with
N — 3/2. Half-degrees of freedom are also assigned to the
periodic external perturbation. A torus is positioned in
phase space in such a way that its axis is the time; closure
along the axis occurs at the period of the perturbation, To;

and the (p, x) plane is perpendicular to the axis. Invariant
curves in the (p, x) plane lie in the cross section of the invar-
iant torus. Disrupted tori correspond to stochastic layers. In
the case N = 3/2 or N = 2, with K4,1, the phase space has a
complex structure, in which stochastic layers do not inter-
sect.

The possibility of an intersection of stochastic layers in
weak interaction with each other exists only aX N>2. As a
result, the phase space becomes tiled with a network of inter-
connected narrow channels within which the dynamics of
the particles is stochastic. The particles can move away an
arbitrarily long distance along this network; this phenome-
non has been labeled "Arnol'd diffusion"12 (Fig. 4). At
N =2 the condition for a resonance in the system is

+ «20)2 = 0, (1.29)

where n, and n2 are integers, and the frequencies of each of
the degrees of freedom, &>,, are given by the known expres-
sions

I*) (« = N). (1.30)

At A^= 2, condition (1.29) leads to a linear relationship
between <u, and a2. The surface of a given energy Ho = E
thus intersects the family of straight lines ax/co2 = const at
points (Fig. 4a). Near these points, the in variants are violat-
ed, and chaos appears. Small perturbations, however, create
small regions of chaos, which are not connected to each oth-
er. At N> 2, such a connection becomes possible (Fig. 4b),
and as a result a network which we will call a "stochastic
web" arises.

2. MINIMAL CHAOS AND THE STOCHASTIC WEB

The problem of minimal chaos is one of determining the
conditions under which small regions of stochastic dynam-
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ics arise from an arbitrarily small perturbation. The exis-
tence of minimal chaos implies that the system is nonintegra-
ble in principle, and there is the possibility of a transition
from minimal chaos to global chaos, which spans a signifi-
cant region in the phase space, as some perturbation param-
eter increases. Two coupled nonlinear oscillators with a
Hamiltonian

H = H, (lo + H2 (/2) + el5 /2, e2)
constitute a simple example in which there generally exists
minimal chaos at an arbitrarily small value off.

A stochastic web is a peculiar manifestation of minimal
chaos. The phase space breaks up into separate cells: struc-
tures which are separated from each other by stochastic lay-
ers. In other words, the web forms in phase space a mosaic of
a tiling of the phase space. The length scale of the elementary
mosaic structure determines not only the region in which
invariant tori exist but also their minimum dimensions. It is
thus interesting to determine the conditions under which a
stochastic web exists for at least the following reasons: 1) for
determining whether a diffusion can occur along the chan-
nels of the web at arbitrarily small values of e, 2) for deter-
mining an upper limit on the diameter of the invariant tori at
arbitrarily small values off, and 3) as an explanation of the
internal symmetry of the phase space of the system which
arises at arbitrarily small values of e.

These questions are discussed below.

2.1. Perturbation of a linear oscillator

Certain physical models are quite universal. An exam-
ple is the perturbed nonlinear oscillator which was intro-
duced in Eqs (1.2) and (1.3). Its Hamiltonian contains two
plane waves. This model can be used to explain the funda-
mental and typical properties of the formation of a stochastic
layer. On the other hand, equations like (1.2) and (1.3)
arise in many physical applications, so the latter equations
can be classified as "standard" equations.

We introduce yet another standard equation:

x + cojjz = eo>j sin (kx — Aioi), (2.1)

which describes a linear oscillator perturbed by a plane
wave. The Hamiltonian which leads to (2.1) is

It arises, in particular, in the motion of a charged particle in a
static magnetic field BQ (directed along the z axis) and in the
field of an electromagnetic plane wave which is propagating
along the x axis.13"15 Problem (2.1) has been studied exten-
sively1^18 in connection with the problem of a wave-particle
resonance. The perturbation contains a nonlinearity, which,
expanded in a Fourier series, leads to a large number of har-
monics. Resonances are possible between these harmonics
and the frequency of the external perturbation, A«:

reco = Aw, (2.3)

where coa has the meaning of a Larmor frequency
(&>„ = eB0/mc). A specific feature of problem (2.2) is that
its unperturbed part is linear. For this reason, if condition
(2.3) holds then nondegeneracy condition (1.28) will not
hold, and the KAM theorem is immediately inapplicable.
The result is the formation of a stochastic web.19

2.2. Simplest structure of a stochastic web

We are interested in the case which is near exact reso-
nance (2.3) at a certain value n = n0. We introduce a ca-
nonical change of variables:

(2.4)

x = —2— cos -2- Acoi ,
V G>o / \ n0 I

p=(2n0/o30)'/2sin(-^ Acoi) ,

where (/, <p) are action-angle variables.
Hamiltonian (2.2) is transformed by (2.4) to

Jn(kp)

( 2 -5 )

where Jn(kp) are Bessel functions, and the quantity

»-(-¥•)"" («>
has the meaning of a Larmor radius if we take «,, to be a
Larmor frequency.

The purpose of the introduction of variables (2.4) is to
separate the slow motion from the fast motion near the reso-
nance. At exact resonance (2.3), we write (2.5) in the form

(2.7)

jy0 = e-^-/B.(Ap)cos<F,

- i )A«*].

The situation which arises here has already been encoun-
tered, in the preceding section of this paper. The unper-
turbed motion is described by the Hamiltonian //,,. This mo-
tion has some singular paths or separatrices, which are
disrupted by the perturbation V, with the result that stochas-
tic layers form.

The singular points are found from the conditions

dl • = 0 , • = 0 .

The hyperbolic points {p., <p.) are defined by the equations

/no(*P*) = O> <P«= ± 4 j - . (2.8)

and the family of elliptical points (/?„, <pa) are defined by the
equations

po) = 0, <p0 = 0, n. (2.9)

The family of separatrices which pass through points
(2.8) have the structure of a web (Fig. 5). This web consists
of 2n0 rays and concentric circles with radiipiH) in the {x,p)
plane, where the kpis) are various roots of the Bessel function
/„ . To reach an understanding of the physical situation, it is
sufficient to consider only the case of high'particle energies,
kpo^>nf). We can then write

(2.10)

where p =p — p() 4p0, and the choice of sign depends on the
phase of the elliptical point with coordinates (2.9).

The period of the oscillations of the particles within one
cell of the separatrix in Fig. 5 is found from (2.10) to be
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where AT(̂ ) is the complete elliptic integral of the first kind,
and

(2.12)

Near the equilibrium position within a cell of the web, a
particle undergoes small oscillations with a period

T _ _M 4A(o
0 ~ I 2 (2.13)

and for the oscillations of the particles near the separatrix
(/ / ( ) -0) we have

T - (a ) ' / 2 4At0t0 ( fo )»/«In f 4 e m° f 2
h l W L k*Htt V nfcp0

and the period diverges logarithmically. This result means
that the perturbation Fin (2.7) is a high-frequency pertur-
bation ( A« r > 1 at sufficiently small values of Ho). This per-
turbation disrupts the separatrix network and gives rise to a
stochastic layer of exponentially small width:

(see the derivation of this expression in Appendix 2).
An unbounded network of channels thus forms in the

phase plane (Fig. 5), and particles can escape along these

FIG. 6. Distribution function on a stochastic web
forEq. (2.1) with E<O\/k = 0.1, k = 15, Aco = 4<u,,
and a computation time 2- 104-2nVA&).
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channels. The velocity of the particles increases with dis-
tance from the center. At the same time, however, the width
of the web decreases. According to expression (2.15), the
width of the web falls off exponentially with increasing ener-
gy of the particles, since we have po~EW2 [see definition
(2.6) ]. Accordingly, although the web is formally unbound-
ed, the probability for the particles to reach the high-energy
region by a diffusive penetration is exponentially small. This
circumstance is reflected quite well in the form of the distri-
bution function19 (Fig. 6).

The picture drawn here for the formation of a stochastic
web remains valid when we are not very far from the reso-
nance:

6co = n0a>0 — Aco =/= 0.

As a simple estimate of the values of Sco for which the
web does not disappear we can use the limitation

2JI _ / J M 1 ' 2 /cecojjBQ
~7\T~ \~n) 4A(o(fcpo)

3/2 '6co<

The existence of a stochastic web was found at the low-
est possible number of degrees of freedom, N — 3/2, at
which the system can still be nonintegrable. We can thus
assume that in Hamiltonian systems there exists a universal
and unbounded embryonic chaos if certain conditions, con-

cerning a sufficiently strong frequency degeneracy, are satis-
fied.

2.3. Stochastic layers of a nonlinear oscillator

A nonlinearity in a system automatically lifts a strong
degeneracy. Resonance conditions may, nevertheless, lead
to the retention of a certain part of the web.19 To find an
explanation for this effect, we go back to Eq. (1.3).

At small oscillation amplitudes x the nonlinear oscilla-
tor is approximately a linear oscillator. We should therefore
expect to see the appearance of elements of a stochastic web
in the main cell of the separatrix of a nonlinear oscillator.
This is indeed what we do see at sufficiently large values of k
and e, if resonance condition (2.3) holds. A numerical anal-
ysis shows19 that a disrupted separatrix system with a sym-
metry imposed by the order of the resonance does indeed
form at small values of x (Fig. 7). As e varies, this part of the
web changes in structure, undergoing a succession of differ-
ent bifurcations. The size of the separatrix cells of second
order is of the order of 2-ir/k, i.e., of the order of the perturba-
tion wavelength. An internal structure of this sort is thus
possible only at k > 2. Between the inner cell of the web and
the ordinary stochastic layer in the plane of the main separa-
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FIG. 7. Phase portrait of perturbed nonlinear oscillator
(1.3) underthe resonance conditions Aco = 4a>0 and k = 15,
with e = 1/30. a—General view of one cell of the separatrix;
b—details of the inner region of the cell shown in part a.
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trix (Fig. 7a) there are ordinary invariant tori, in accor-
dance with the KAM theory.

Consequently, even in the nonlinear case, which lacks
an exact degeneracy, an external resonance may cause an
anomalous pattern, disrupting the invariant tori and setting
the stage for transverse diffusion. The adiabatic invariant for
the particles within an element of the web may change sub-
stantially.

A similar picture arises in a study of the dynamics of
charged particles in the field of an electromagnetic wave
which is propagating at a phase velocity equal to the velocity
of light {.co = kc) in the direction across a uniform magnetic
field20 (Appendix 3).

3. STOCHASTIC WEB WITH QUASICRYSTAL SYMMETRY

After it became clear that a stochastic web exists in the
case of minimal nonintegrable dimensionality of a dynamic
system, the problem of determining its possible typical and
exceptional cases seemed important. Among the exceptional
cases is a web which has a roughly uniform thickness
throughout an infinite phase plane. Such a case is possible5;
it arises in the class of problems which contain wave-particle
resonances in a static magnetic field. This case is of particu-
lar interest because it is a peculiar generator of a new type of
symmetry,21 which we will be discussing in detail below.

3.1. Mapping with twisting

We again consider an oscillator, but now one which is
subjected not to a single plane wave, as in (2.1), but to a
packet of an infinite number of plane waves, with identical
amplitudes and a constant frequency shift:

a = (o0T0 = - (3.5)

x = — 8«: (3.1)

It is convenient for the discussion below to set

6 = kx — at

and to write (3.1) in the form

(3.2)

using the same notation, A« = 2v/T0. The Hamiltonian of
system (3.1) or (3.2) is

(3.3)

The physical meaning of this Hamiltonian can be seen easily
by comparing this case, (3.1)—(3.3), with two problems
which we have already discussed, (1.16) and (2.2). Instead
of the smooth periodic perturbation as in (2.2), the oscilla-
tor is subjected to periodic <5-function pulses, i.e., instanta-
neous "kicks," as in the problem of a perturbed rotator
(1.16). Furthermore, Eq. (3.3) corresponds to a plane mo-
tion of a charged particle in a static magnetic field B0Lz and
in an electrostatic field directed along the x axis:

E(x, t) = - e<r 0 s in0 Tl 8(t-nT0). (3.4)

where p and q are integers (below we will assume simply
p<q). Resonance condition (3.5) means (for/? = 1, for ex-
ample) that over the time taken by a particle to complete an
orbit in the magnetic field (2ir/co0) it will be kicked precisely
q times by the wave field.

Equation of motion (3.2) can be integrated once; as a
result we find a mapping which relates the values of (/>, x)
after a time interval To:

T:

Pn+i = [Pn + ew^os i n (n(aT0 — kxn)] cos a— a>oxn sin a,

xn+i = xn cos a + — [pn + e(,ilT0 sin (na>T0 — kxn)\ sin a,

(3.6)

where a = cooTo. At coo = 0, mapping (3.6) becomes stan-
dard mapping (1.17). The presence of a constant average
velocity co/k for wave packet (3.4) leads to a particle accel-
eration effect, as we mentioned earlier. A more symmetric
case arises at a> = 0. In this case, mapping (3.6) becomes a
so-called mapping with a twisting through an angle a (Ref.
5):

Pn+i = (Pn — ew^0 sin kx.,) cos a — a>oxn sin a,
1 (3.7)

•Tn+i = xn cos a + — (Pn ~ EO)jr0 sin kxn) sin a.

It is also convenient to introduce the dimensionless variables

u = kp/ioo; v = — kx (3.8)

and to write Ma in the form

Ma:
un+1 = (un + KH sin vn) cos a + vn sin a,

vn+i= — (u,,+KH sin vn) sin a+ vu cos a,

where

(3.9)

KH = z«>0T0. (3.10)

We denote the cases of resonance (3.5) With/? = 1 by

ao = -^~- (3.11)

As we will see below, these cases play a particularly impor-
tant role. The parameter KH is a measure of the strength of
the interaction of the particle with the waves. If K H = 0, the
mapping Ma describes a rotation through an angle a over
one step. ^

We can get an idea of the properties of Ma by the fol-
lowing qualitative approach: We write the parameter a in
the form

The degeneracy can now be particularly pronounced at
resonances:

where pm and^(0) are integers, and 8a is the part of a which
is not related to a rationality. Furthemore, we choose pW)

and qm in such a way that qm is minimized. If we are far
from the main resonances, i.e., if qm ^ 1,...«, where n is an
integer and not too small, and if |<5a| S \/n, then the map-
ping (3.9) will be much the same as a standard mapping,
regardless of the value of p0. This result mean that for
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K = eu>\ 7"o ~ 1 there will be strong chaos in it, while at K < 1
there will be only some narrow stochastic layers over a sig-
nificant region of the phase space.

The situation changes when condition (3.11) holds.

3.2. Resonance Hamiltonian

If the parameter KH is small, we can put Hamiltonian
(3.3) in a more convenient form under resonance condition
(3.11). Using the notation in (3.5) and (3.8), we rewrite
this Hamiltonian as (within a constant factor)

+ 00

H^-^-ag^ + v^-KftCosv 2 6(T —«), (3.12)
7 1 — - O O

where r = t /To. We write {u, v) in polar coordinates:

u = p sin (p, v = — p cos cp,

where/? is a dimensionless Larmor radius. Using the gener-
ating function

F = (q>-o,T)7, / = 4-«,P2>

we transform to a coordinate system which is rotating at a
frequency- aq. In terms of the new variables, the Hamilto-
nian is

+ 0O

-^-= — #Hcos[pcos(cp — a,T)] 2 8(i—n).

(3.13)
We transform the series of ^-functions:

; = 1 7 7 1 = - O

Substituting this expression into (3.13), and using the repre-
sentation

+ +
2 HT-j-mq)=± 2

we easily find

q

Hq^-±-KH 2 cos6,,

(3.14)

q oo

Y, cos £< T, cos

where

(3.15)

Here £, = Re^, where R is a state vector in the (u, v) phase
plane, and e, is a unit vector which defines a vertex of a
regular q-gon.

We call expression Hq a "resonance Hamiltonian." It
determines a certain integrable Hamiltonian system. The
second term in H describes a perturbation Vq which acts on
Hq. This perturbation, in particular, disrupts the separa-
trices in Hq, forming narrow regions of chaotic dynamics.21

In the more general case, (3.12) would be replaced by
the Hamiltonian

(3.16)

where/(u) is some arbitrary function. Corresponding to
this Hamiltonian is the resonance Hamiltonian

3=1

where the system of vectors

onto which the state vector R = (u, v) is projected, forms a
regular "star." In yet another generalization of (3.17), the
"star" ej could be irregular; i.e., e, would be a set of q arbi-
trarily directed unit vectors.

A distinctive feature of representation (3.14) is the
presence of the interaction parameter KH in the average
Hamiltonian Hq and in the time-varying part of Vq. In other
words, the reduced Hamoltonian H is proportional to the
constant KH, vanishing in the case KH = 0. The structure of
the phase plane for a system with the Hamitonian Hq thus
exists only because of the combined effect of the magnetic
and electrostatic fields on the particle (in other words, the
structure stems from an interaction of the translational and
rotational symmetries). The effect of Vq, however, may be
either small or large, depending on the relation between the
frequency of the perturbation Vq and the unperturbed fre-
quency of the oscillations described by Hamiltonian Hq.
This frequency is evidently of the order of AT,, and the fre-
quency perturbation of the Vq is of the order of unity. Ac-
cordingly, in the case KH < 1 a perturbation is always a high-
frequency perturbation and leads to small corrections. In the
case KH k, 1, in contrast, we would expect a strong interac-
tion of resonances and the formation of a large region of
chaotic dynamics.

The Hamiltonian Hq thus describes the expression for
H averaged over the period of the Larmor revolution.

3.3. Trivial resonances

The values q = 1,2 and q = 3, 4, 6 correspond to cases
of trivial resonances. The reasons will become clear below.

With q= 1 we find from (3.14)

H1 = — KH cos v. (3.18)

The average Hamiltonian Hq describes a free motion
with a momentum v and a periodic dependence of the energy
Hq on v. A dispersion law of this type arises, in particular, in
periodic lattices. The equations of motion

v = 0, u~-KHsinv

lead to the solution

v = const = v0, u = u0 + tKH sin v0. (3-19)

This solution describes an acceleration along the x axis due
to a so-called cyclotron resonance; it is the same as the exact
solution found from mapping Ma in (3.9).

With q = 2 we find from (3.14) H2 = / / , ; i.e., this case
is the same as the preceding case. It corresponds to a half-
integer cyclotron resonance (we are assuming/? = 1 every-
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where, although this value can also be arbitrary).
With? = 4 we find (Ref. 5)

F4 = — £24 (cos v — cos u) cos nx,

(3.20)

(3.21)

and the other terms in F4, which contain cos(mwr) with
m > 1, can be ignored, as we will see below.

The unperturbed motion of a particle is characterized
by the Hamiltonian Hi and the normalized energy integral

£ 4 = cos v + cos u.

Corresponding to stable equilibrium positions are the ellipti-
cal points

| 2?4 | = 2, v = nn, u = nm,

m + n = 21 (I = 0, ± 1 , . . .).

Unstable hyperbolic points are determined by the con-
ditions

Et = 0, v = jt«, M = JTTO,

m + n = 21 + I (1=0, ± 1 , . . . ) .

The separatrices which pass through them tile the entire
phase plane with a square network determined by the equa-
tions

v = ± ( H + it) + 2nn (n = 0, ± 1 , . . .). (3.22)

The path of the average motion in the case \E4 | <2 is

*; x ] ,

where as? = C«/G?« is the ratio of elliptic functions with mod-
ulus

Incorporating the next term in the perturbation V4 in
the Hamiltonian H [see (3.18) and (3.20)] leads to a dis-
ruption of separatrix network (3.22) and to the formation of
a stochastic layer of thickness5

Atfw^exp JF—\. (3.23)

The layer now tiles the entire phase space, having a
form which is approximately a square network, with a finite
uniform thickness AH given by (3.23). Figure 8a shows an
example of a stochastic web with q = 4. It is slightly modula-
ted by the perturbation F4. The perturbation parameter
(which determines the modulation depth) is ~ill. If we
had retained the following terms in the perturbation F4 in
(3.21), they would have provided an additive contribution
with a decay index higher than that in (3.23). This circum-
stance justifies our ignoring these terms. With increasing K,,
< 1, the width of the stochastic web increases. Its modula-
tion depth increases simultaneously. Its shape becomes pro-
gressively less similar to a square network, although the
symmetry under a rotation through ir/2 is retained. In this
manner, a stochastic sea is formed from the web.

At q = 3 we find a similar picture (Fig. 8b). The shape

Y > V

o

/ • • " •

FIG. 8. Stochastic web in the case of "trivial" resonances in the (u, v)
phase plane, a—q = \ (square lattice), K,,=0J, size of square
24jrX24j7-; b—9 = 3 ("kagome" lattice), Ktl=0.&, size of square

of the web formed in this case is called a "kagome lattice,"
which is associated in some simple way with a honeycomb
lattice. The Hamiltonian

(3.24)

determines the dynamics of the particles, which can produce
"triangular" or "hexagonal" invariant curves in the phase
plane. They are separated by a separatrix network deter-
mined by the equations

v=---n{2ni+ I). v= | / 3 U - 2 J T ( 2 « 2 + 1).

n.2, n3--=0, ± 1 , . . . ) .
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These equations create the kagome lattice. On the separatrix
network the energy integral

E3 = cos v + 2 cos -̂ - • cos -^— uu (3.25)

has the value E{
i
c) = — 1. For values in the interval

— 1 >E3 > — 3/2 the motion of a particle occurs within the
triangles of the lattice; for 3>£'3> — 1, the motion occurs
within hexagons. The pattern in Fig. 8b has one unique fea-
ture: On the one hand, it is a hexagonal "snowflake," which
can be generated through a growth of crystals. On the other
hand, we are dealing with a typical Koch fractal,23 which is
not produced by some formal algorithm but is instead
"mapped" by the path of the particle in fields of fairly simple
configuration: The particle "draws" a fractal in these fields.
The case q = 6 leads to the same Hamiltonian, (3.24), and
thus contains no new information. Consequently, there exist
two types of lattices in the plane in the cases 9 = 3 and q = 4,
which create structures with translational and, simulta-
neously, rotational symmetry. We know23 that there are no
other structures which have similar symmetry properties. It
is for this reason, that all the cases listed above, of resonance
Hamiltonians Hq with q = 1, 2, 3, 4, and 6, were called "tri-
vial."

They describe very simple structures.

3.4. Nontrivial resonances and a web with quasicrystal
symmetry

In all other cases of a resonance, in which q does not
take on the values listed above, a nontrivial situation devel-
ops. In such cases it is not possible to tile the plane with a
network which would have translational and rotational sym-
metry simultaneously. The new structure of the stochastic
web is very specific; it falls in the category of structures hav-
ing a symmetry of a so-called quasicrystal type. Figures 9a,
9b, and 10 show examples of webs for^ = 5, 7, and 8. The
web is a set of points of a mapping Mq over a fixed time
interval. The structures in these figures are formed by a ran-
dom walk of the mapping point in the phase plane. Since the
point cannot go outside the channels of the web, we will, over
a long time, acquire fairly detailed information about the
structure of the web. This structure, however, develops in a
very nonuniform way over time. Figure 9a shows a web
which is drawn nearly completely over the time it is observed
(the computation time). In Fig. 9b we see an entirely differ-
ent picture. Over more than 106 mapping steps, a window
remains in the web in the form of a fractal five-point star.
The window overgrows the web at times r > 1.3-106. Win-
dows of various sizes and shape appear, depending on the
choice of initial conditions. The order of events in the forma-
tion of a "snowflake" from a web is very sensitive to the
initial values; this circumstance is in turn related to the exis-
tence of Cantor tori,24 which inhibit certain diffusion direc-
tions.

The growth of the web occurs in the following way.
First, a random walk of the point in the plane creates some
irregular figure, e.g., a star whose points have not all grown
to the same extent. The structure of this star then converts
into a regular structure, and in the next stage of the growth of
the web a large star begins to form. The boundaries of these
stars of course have a complex shape, and they form fractal
curves in the limit ?-> oo. For this reason, we will also call a

FIG. 9. Stochastic web in the case of a fivefold symmetry (q = 5). K,,
= 0.7, size of squares 256-rrX 256JT.

stochastic web with quasicrystal symmetry a "fractal web."
A fractal web has an unclosed central window in the

form of a regular ^-gon if q is even or a 2g-gon if q is odd.
Inside the central window there are also separatrices and
stochastic layers, but these entities do not reach the edge of
the window and do not connect with the main web. The rea-
son is that the phase space inside the window has a structure
which is most reminiscent of the phase portrait of a standard
mapping.8|'6 With decreasing KH, the size of the central win-
dow increases.5 With decreasing KH, and also with increas-
ing q, the web becomes thinner, and its cells wider.

3.5. Diffusion of particles in a magnetic field

The problem of a stochastic web has a dynamic aspect
as well as a structural one. In particular, the dynamic aspect
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FIG. 10. Stochastic web in the cases of sevenfold and eightfold symme-
tries, a—q = 7, KH = 0.5, size of square 647TX 64TT; b—q = 8, K,, = 0.6,
size of square 128;rX 128T7\

is related to how the particles diffuse along the channels of
the web. The analogy with a random walk makes it a com-
paratively simple matter to write a kinetic equation for the
case of trivial resonances (q = 3, 4, 6). This situation is dif-
ferent for nontrivial resonances, in which case the structure
of the web is very complex. If AT,, is large, the particle diffu-
sion can be described in the customary way by means of a
Fokker-Planck-Kolmogorov equation.5

We go back to our original Hamiltonian, (3.3), and
introduce some action-angle variables:

<p = arc tg (3.26)

The quantity / is , within a constant factor, the energy of the
particle (or oscillator). For small perturbations £ the

changes in the energy upon each kick can be relatively small;
i.e.,

A/ | = | In+1 - /„ I « /„. (3.27)

Inequality (3.27), however, may be compatible with the
condition [see (3.10)]

KH = (3.28)

because of the large factor co0T0 in it. Accordingly, there is a
rapid mixing in the phase q> by virtue of (3.28). Condition
(3.27) means that there is a slow diffusion change in the
action. If F(I, t) is the distribution function with respect to
the action, the corresponding diffusion equation is

SF 1 9 n t n dF ^ ( 3 2 9 )

where the diffusion coefficient is

£ ) ( / ) = ^_ < C (A/ )2> , (3.30)

and < . . . > means an average over the phases.
From mapping Tin (3.6) and definitions (3.26) we

find

M = 2e - ^
K

sin cp • sin (kp cos <p)

= - ^ . (3.31)

Substituting (3.31) into (3.30), and carrying out some sim-
ple calculations, we find

(3.32)

where 7, is a Bessel function. For motion in a magnetic field,
p would have the meaning of a Larmor radius. If kp > 1
(weak magnetic fields), the diffusion coefficient D contains
an oscillating factor. If kp > 1, then we have

D = &$-TJ, (3.33)

and the average energy of the particle increases in propor-
tion to the time:

</> =Dt + I0.

FIG. 11. The mapping point generates a diffusion fractal tree in the phase
plane in the case of strong chaos, which preserves a ^-fold symmetry.
9 = 5, KH — 20, size of square 4- 10V, time of 4-10" mapping steps.
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If the resonance condition a>0T0 = 2irp/q holds, the
overall picture of the diffusion will retain a ̂ -fold symmetry,
although the web is disrupted at A"H > 1 (Fig. 11). A fractal
tree forms in the phase plane. The various forces acting in the
equations of motion result in an unusual clustering of the'
diffusion. At large wave amplitudes (large values ofKH), a
particle moves rapidly in the radial direction, forming q dif-
fuse rays of irregular shape. The spreading of the rays in the
azimuthal direction occurs comparatively slowly. Accord-
ingly, if we adopt an initial condition such that the diffusion
occurs primarily along other radii then the new fractal tree
(cluster) will undergo no or almost no intersections with the
preceding tree for a very long time. In this sense the phase
plane is "clustered," i.e., broken up somewhat arbitrarily
into certain fractal regions of diffusion, which overlap each
other slightly.25

4. STRUCTURAL PROPERTIES OF A WEB

4.1. Which structures are possible?

When we attempt to learn why snowflakes have a hex-
agonal rather than, say, pentagonal shape, we find that we
need to carry out a thorough study of the subtle geometric
properties of objects produced by nature. Is it true that the
laws of geometry forbid certain shapes for physical objects?
In one form or another, questions of this sort date back to
antiquity, and the use of symmetry laws in physics has be-
come a completely customary method of analysis. Crystal
physics is apparently a field in which the use of geometric
ideas is particularly graphic. Orthodox crystallography is
based on the representation of periodically repeating struc-
tures which fill a space or plane. More formally, a packing of
one or several structural cells having translational symmetry
with respect to displacement by a certain vector occurs in
crystals. In such cases one speaks of the existence of a long-
range order in crystals. In addition to translational symme-
try there can simultaneously be a rotational symmetry
through angles23

<*„ = ~ (?=3, 4, 6) (4.1)

[ conditions (4.1) are the same as those in the case of a web
with trivial resonances]. The problem of realizing various
types of crystal lattices is related in an obvious way to the
problem of mosaics or tilings of a space or plane with a given
type of symmetry. This problem belongs to the field of geom-
etry, and it has been the subject of extensive research (see
Refs. 26-29, 77, and 80). Although we can assign a fairly
arbitrary shape to an individual cell, as can be seen from the
inventive pictures of the Danish artist Escher,30 we can use
them to pave a plane only in a completely definite number of
ways if we wish to preserve long-range order in the process.

In the long list of studies of tilings, packings, mosaics,
ornaments, crystallography, etc., the number 5 always
seems to occupy a special place. Attempts to learn to what
extent a regular pentagon can be incorporated in tilings can
be found even in the studies by Kepler and Diirer. While we
find numerous Islamic ornaments which contain regular
pentagons and decagons, we simultaneously find many as-
sertions in the specialized literature that crystals with a five-
fold symmetry axis cannot exist.

The concept of order is presently evolving. To a large
extent, we can attribute these changes to progress in research

FIG. 12. Example of a Penrose parquet.

on nonlinear dynamics, where a given system may execute
either a regular or a chaotic motion, depending on the values
of its parameters. Accordingly, a given algorithm for distrib-
uting atoms in a row (for example) can generate either a
periodic arrangement of atoms or a stochastic arrange-
ment.31'32 The particular type of distribution of atoms may
be determined exclusively by the values of a single param-
eter: the potential of an external field. There are also other
distributions of atoms, which are in a sense intermediate
between regular and chaotic distributions. In particular, the
so-called incommensurate phases33 fall in this category.

For some time now, crystallography has seen attempts
to break away from the orthodox views of just what a crystal
should be. Schrtidinger34 was the first to offer a well-argued
case for the need for such a reexamination. In order to ex-
plain the structure of a large molecule which constitutes a
single gene, he introduced the concept of an aperiodic crys-
tal, for which the genetic code serves as the algorithm which
specifies the order in the arrangement of atoms and groups of
atoms. Many attempts to expand the old order schemes were
concentrated around a search for structures with fivefold
symmetry.3536 A special role was played by Penrose's con-
struction,37 to which interest was attracted to a large extent
by Gardner's paper.38 Penrose's parquet is an example of a
new type of ordered structures which have come to be called
"quasicrystals." It can be made up of two types of rhombi36

(Fig. 12) and in this case has a symmetry axis.
The first quasicrystal with fivefold symmetry was dis-

covered by Schectman et al.i9 in some experiments carried
out for the purpose, involving a rapid cooling of an Al-Mn
alloy. X-ray diffraction patterns revealed a sharp (not dif-
fuse) system of spots which was evidence of the existence of a
fivefold symmetry and a long-range order. The problem of
the properties of quasicrystals has now been studied in many
places (see the materials of a working conference on aperi-
odic crystals40). Here we will discuss only certain specific
aspects of these problems which (first) are directly related
to the properties of a uniform stochastic web and (second)
are related to the plane case.

4.2. The projection method and dynamic generation of
structures

One of the first methods for producing quasicrystal
structures was based on the projection of close-packed N-
dimensional cubes from an TV-dimensional space onto some
Z)-dimensional (D<N) space. With D = 2 and N= 5, the
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result was a Penrose parquet. The projection technique,
which was begun in Ref. 41, was developed systematically in
Refs. 42—48. Let us outline its basic idea.

We consider a system of orthogonal unit vectors {e,}
(/'= 1 q) which emerge from a common point. With
each vector e, we associate an unbounded system of equidis-
tant parallel (q-1)-dimensional hypersurfaces in a #-dimen-
sional space. This family of hypersurface is called a "grid."
A set of q grids forms a multigrid of order q. The intersec-
tions of hypersurfaces form a ̂ -dimensional generalization
of a square lattice. The projection of a multigrid onto a D-
dimensional space generates a tiling or mosaic. It is in this
manner that a Penrose parquet arises, and it can be proved
that this parquet has no "holes" or intersecting rhombi.41

In a more general case, a grid can be constructed in a
more complex way (e.g., with certain gaps), but it is clear
that the projection operation is linear. This important con-
clusion means that in the course of the projection regular
multigrids create a complex parquet of ordered structures
which definitely have a long-range order. As we will see,
however, the long-range order in this case is due not to a
periodicity but to a near-periodicity (a finite number of in-
commensurate periods) or a conditional periodicity (an infi-
nite number of incommensurate periods) of the structures.

There are further generalizations of the projection idea
for generating aperiodic structures. For example, the system
of vectors {e^} can form an arbitrary (irregular) star, and a
family of straight lines can be curved in a certain way.78

The most important property of a Penrose parquet and
of other tilings which arise during the projection of lattices is
a local isomorphism4878: If we focus on any finite part of a
parquet, we will find it again an infinite number of times in
the entire parquet.

The Fourier transform of a Penrose parquet36 is the
same as the x-ray diffraction patterns of real quasicrys-
tals,39'40 which are also called "shectmanites." Nevertheless,
the relationship between quasicrystals and the structures
generated by a projection method is still a formal one and
does not follow from first principles. A particular conse-
quence of this circumstance is that it is not possible to specify
the positions of atoms in a real quasicrystal lattice.49

Another approach to structures of the quasicrystal type
starts from Landau's theory, according to which, for exam-
ple, the electron density rj(r) must have the same symmetry
as the crystal lattice. The density can accordingly be written
as the expansion44'49"53

n(') = S %eikr. (4.2)
it

where the vectors k form a reciprocal-lattice basis. In the
plane case there are five such fundamental vectors kt

{i = 1, . . . ,5), and we find an expression like (3.14), (3.17)
for Hq, although with a different content.

A third approach to the analysis of quasicrystal symme-
try starts from the use of a real dynamic model which gener-
ates this symmetry.5>21'25'5^ The symmetry generator is a
mapping with a twisting, Mq [see (3.9) ], under resonance
conditions (3.11):

The mapping Mq acts in the two-dimensional space (u, v),
and at small values of KH its disrupted separatrix network
(stochastic web) forms an invariant tiling of a plane with a
9-fold quasicrystal symmetry. In accordance with (3.14)
and (3.15), we write the average Hamiltonian Hq for map-
ping (4.3) in the following form (within a constant factor):

= - S eos(e,R);.

R=(i ' , u), ej= (cos—;, s i n — ; 1

(4.4)

-"
u = (u + KH sin v) cos \- v sin — ,
v= — (u + KH sin v) sin f- v cos — .

(4.3)

It is not difficult to establish an analogy between (4.4) and
(4.2), but we now have some additional information which
allows us not only to treat Hq as a Hamiltonian but also to
study a perturbation of it by the methods of Hamiltonian
mechanics.

Arnol'd83 has recently mentioned yet another approach
to the problem of the symmetry of partitionings, in which a
relationship is established among quasicrystal symmetry,
Markov partitionings, and the theory of singularities.

4.3. Smoothed structures

The concept of the symmetry of the tilings which are
generated by expression (4.4) is based on the structure of the
separatrices and the arrangement of the singular points
which are generated by the Hamiltonian Hq. Let us consid-
er, for example, the contour lines Hq = E. This is a family of
a large number of closed invariant curves of various sizes and
shapes. The structures which are generated by the phase por-
trait of Hq will be called "smoothed with respect to the sto-
chastic web," which contains considerably more small de-
tails. Despite this simplification in the research on webs, the
problem of the phase portrait of an integrable dynamic sys-
tem with Hamiltonian Hq remains a complicated one.

Figure 13 shows the distribution of the number of ellip-
tical points/?t, for various energies in the cases of fivefold and
sevenfold symmetry (the normalization ofpc, is arbitrary).54

The region of values E = Hq > 0 corresponds to stable points
(the bottom of the potential relief), while the region
E = Hq <0 corresponds to unstable points (the top of the
potential relief). Figure 14 shows a corresponding distribu-
tion of hyperbolic points ph. In contrast with the case of
trivial resonances with q = 3, 4, and 6 (i.e., the cases of ordi-
nary crystal lattices), where the singular points of the energy
relief lie on surfaces with strictly fixed energy values, there is
now a spread in the distribution of these points. A web of this
sort is usually characteristic of disordered systems. In the
case at hand we are seeing it in a system with a long-range
order; this fact is somewhat surprising.

It is now clear that there are very many separatrices and
that they lie at different energy levels. Some of them have
parts which run close to each other. Even a very small per-
turbation will disrupt the separatrices. In their place, sto-
chastic layers of finite thickness will form. The narrow gaps
between close-lying sections of separatrices grow and form a
large network. This network is the basic stochastic web of
the generator of structures in (4.3). We have described the
basic element of coupling between the original dynamic sys-
tem, specified by Eqs. (4.3), and the average system with a
smoothed structure, defined in (4.4). If we wish to observe
this smoothed structure, we should proceed in the following
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FIG. 13. Energy distribution of elliptical_points. a—q — 5; b—q = 7. The
points at H > 0 are stable, and those at Hq < 0 are unstable.

-7

FIG. 14. Energy distribution of hyperbolic points, a—a = 5; b—a = 1
(Ref. 54).

way: We consider a narrow energy layer L.E which lies near
that energy Ec which corresponds to the maximum of the
hyperbolic points {Ec = 1 for q = 5 and Ec :s — 1 for
q = l). The (u, v) points which lie on the paths of the system
with the Hamiltonian Hq and with an energy EeEc + Ais /2
determine thejsmoothed equivalent of the stochastic web of
the generator Mq. We call the set of these points the "energy
relief of the structure." Figure 15 (Ref. 21) shows examples
of energy reliefs for the cases q = 5,1; Fig. 16 shows exam-
ples for 9 = 8, 12. These reliefs constitute a simplified ver-
sion of the stochastic web shown in Figs. 9 and 10. A quasi-
crystal with a 12-fold symmetry was observed in Ref. 55, and
quasicrystals with eightfold symmetry were observed in Ref.
81. One might imagine that the function Hq(u, v) deter-
mines a two-dimensional potential relief in the (M, V) plane.

The atoms should then lie near stable elliptical points. If we
retain only those points which lie near maxima of the pe

distribution in Fig. 13, we find, in the case q = 5, an example
of a structure (Fig. 17)54 which a two-dimensional quasi-
crystal might have. The large dark spots mean that the re-
gion where there might be an atom has a certain size. This
circumstance is in turn a consequence of the flat bottom of
the potential well. Figure 17 thus gives an idea of the struc-
ture of a plane quasicrystal film with a fivefold symmetry.
The smoothed structures which are generated by the energy
reliefs have a symmetry under rotation through an angle ir/q
ifq is. odd (Fig. 15) or through an angle oiltr/q \iq is even
(Fig. 17). On the contrary, the structures which are formed
by the web always have a <?-fold symmetry. Everywhere be-
low we will be speaking in terms of a <?-fold symmetry, hav-
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FIG. 15. Energy reliefs, a—9 = 5, size of square 64TJ-X 64JT; b—q = 7, size
of square 8OTTX8OJ7\

FIG. 16. Energy reliefs, a—q = 8, size of square 48TTX48)7-; b—q = 12,
size of square 56JTX 56fl\

ing in mind the defining number q in the tiling generator
(4.3) or in the average Hamiltonian (4.4).

Smoothed structures have a scale invariance, but this
property has not been studied adequately.

4.4. Quasisymmetry, decoration, underlattices, and
sublattices

As we have already mentioned, a stochastic web is frac-
tal, so its detailed shape is very complicated. The more pre-
cisely we wish to determine the shape of its boundaries, the
more complicated the pattern which is observed. This prop-
erty is inherent in any stochastic layer. Consequently, we can
hardly speak in terms of any point symmetry. The interac-
tion of translational and rotational symmetries should dis-

rupt both, even if the coupling constants KH are small. Sym-
metric defects may be weak, however, so a symmetry will
exist in some approximate and perhaps poorly defined sense.
We understand at an intuitive level that a certain degree of
coarsening of a web will make it more regular, i.e., more
"symmetric." It is accordingly useful on occasion to move
away from a determination of some "pure" symmetry and to
use in its place a "quasisymmetry." This is the role which is
played by the mapping Mq, which may be thought of as a
generator of tilings with a "quasisymmetry" of the "quasi-
crystal" type. In this sense the smoothed structures specified
by Hamiltonian (4.4) are more "regular." When we go from
a web to smoothed reliefs, there is some smoothing out of
lines, and certain elements disappear. It can thus be assumed
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FIG. 17. Example of a plane fivefold quasicrystal lattice.54 The dark spots
correspond to the most probable regions for the localization of atoms. The
size of the square is the same as in Fig. 14a.

that a relief is a certain decoration of a web.
In general, a set of different tilings can be constructed

on the basis of a web or relief if we use some additional algo-
rithm to connect the different points of the main figure. This
operation is naturally called a "decoration." A Penrose par-
quet can be found easily as a decoration of the structure in
Fig. 15a (Ref. 21). Correspondingly, we can generate a se-
venfold mosaic (Fig. 18) as a decoration of the relief in Fig.
15b, by using simply three rhombi with acute angles ir/1,
2n/l, and 3TT/7. Parquets of the type in Fig. 12 or 18 can in
turn be decorated, with the result that we obtain new tilings
with the same symmetry.51

Certain decoration ideas are associated with the forma-
tion of stars of the type in Fig. 9b. Such stars are Koch-curve
fractals, and their fractal dimensionality is D = 1.44 (Ref.
56).

FIG. 18. Example of a sevenfold mosaic.
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In the smoothed structures in Fig. 15 we can distinguish
a system of straight lines which form a multigrid, i.e., a sys-
tem of parallel straight lines which are rotated q times
through an angle of 2ir/q. Let us consider, for example, the
pentagrid in Fig. 15a. The system of straight lines in it has a
different thickness, and the distance between any pair of ad-
jacent straight lines is an = aar"0, where aQ is the minimum
distance, r0 = (I + -/5")/2 = 2 cos(w/5) is the golden sec-
tion, and n is any integer. We define a filter process as fol-
lows: We shall delete, for example, all the straight lines in
Fig. 15a except those which form a pentagrid with only two
possible distances between neighboring parallel lines: an and
an-\ («>l ) , where the number n is fixed. The pentagrid
formed in this way is also called an "Ammann lattice." The
coordinates xm of the parallel lines in an Ammann lattice
satisfy the simple rule48

where m is an integer, a and (3 are constants, and [ . . . ]
means the greatest integer.

Another way to depict the sequence of alternations of
two distances aQ and b0 between lines in an Ammann lattice
involves the use of the mapping48

which acts on the column vector (a,,, b0). It generates

«i = a0 + b0, bx = a0,

a0, — ax = aa
b0 . . . .

The sequence limn_ „ an, in which the order of alternation of
lines aQ and b0 is fixed, is called a "Fibonacci sequence." It
determines an Ammann lattice jn the case q = 5.

With q = l, the operator r 7 is nonlinear, and the se-
quence of lines in the lattice is determined not by a single
number, as in the q = 5 case, but by two numbers, e.g., r,
= COS(TT/7) and r2 = cos(2w/7).

The lattices generated by the filtering are naturally
called "underlattices." They also represent a certain primi-
tive type of decoration. The very fact that a filtering process
exists reflects the property of scale invariance of the original
structures.

One important property of quasicrystal symmetry is the
possibility of distinguishing sublattices as one does in ordi-
nary crystals. We denote by 3fq\f{9)\ the generalized
Hamiltonian which generates a quasicrystal tiling of a plane:

(4.5)

(4.6)

(4.7)

where/is an arbitrary function, and

Qj = ejR.

We then have the following identity:

(=0

where n is an integer. We thus see that from a ^-fold lattice
we can, through an «-fold rotation through an angle of 2ir/n,
form a ̂ '-fold lattice where q' = nq. The Hamiltonian of the
resulting lattice is a simple superposition of the Hamilto-
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nians of the sublattices. This property is important for con-
structing models which contain an interaction of sublattices.

4.5. Fourier analysis of structures

Fourier analysis is an important tool for studying the
structural properties of a stochastic web and of reliefs in the
phase plane. Furthermore, x-ray analysis of real crystals re-
veals information about their symmetry properties. The pic-
ture of the Fourier spectrum of a structure in a case of a
fivefold symmetry (a Penrose tiling) appeared in Ref. 35
before the corresponding pattern was found experimental-
ly.39 A comparison of the Fourier spectra of structures
formed by the energy reliefs of a Hamiltonian H5 with ex-
perimental spectra was carried out in Ref. 79. All these re-
sults support the suggestion that a Fourier spectrum with
the pattern of a tiling of a plane conveys quite well the sym-
metry properties of the tiling, although it does not allow one
to reconstruct the tiling unambiguously.

We denote by Sr the set of points which belong to some

figure (or structure) in a phase plane of size P. We also
assume

6 ( R - R , ) = 1, s£Sr,
= 0, s<tSr,

where R is the vector of an arbitrary point in the F plane, and
Rs is the vector of a fixed point s. The Fourier transform of
the structure is then given by

JLL-- J eikR6 (R _ R ) dR (4.8)

In reality, we are always dealing with a finite region F. We
thus have some additional boundary effects in the form of
S(k). For periodic structures S, they can sometimes be dis-
tinguished easily. In the case of aperiodic tilings of a plane,
however, it is not possible to distinguish a "single crystal."

*

• r\.

L 1

r -i *

FIG. 19. a—Element of a web for q = 5 (the radius of the circle is 50n-);
b—its Fourier transform.

FIG. 20. a—Element of an energy relief for q = 5 (the radius of the circle
is 32ir); b—its Fourier transform.
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In such a case, however, one can use the property of rota-
tional symmetry and the property of simiarity of structures
of the quasicrystal type.

Figures 19b and 20b show Fourier spectra for, respec-
tively, the stochastic web generated by M5 and the energy
relief of the same smoothed structure generated by H5. The
region F was chosen to be a circle; this choice gives us a fairly
good approximation of the web in Fig. 19a. The patterns in
Figs. 19b and 20b are similar. This is a very important conse-
quence, since it confirms that it is possible to introduce a
symmetry analysis of infinite webs of dynamic systems, as is
done for crystals or quasicrystals. A corresponding equiv-
alence can be seen in the q = 7 case from Figs. 21 and 22.

We now choose two regions of the relief: one in the cen-
tral part of the structure, with q = 11 (Fig. 23a), and the
other somewhere else in the plane, far from the center (Fig.
24a). From the external appearance of the latter we can say
nothing about either the symmetry of this region or the de-
gree of order of the entire structure of which it is part. How-

ever, the corresponding Fourier spectrum of this region
(Fig. 24b) is essentially identical to the Fourier spectrum of
the central region (Fig. 23b). This property of quasicrystal
structures reflects a new idea about possible types of order
with rotational symmetry.

4.6. Singularities in the energy dependence of the phase
volume (Van Hove singularities)

The Hamiltonian of the smoothed structures, Hq, can
be used to analyze certain subtle structural characteristics of
a stochastic web. Among these characteristics are Van Hove
singularities, which are associated with the existence of ellip-
tical and hyperbolic singular points in phase space.22 Let us
assume, for example, that a system with a single degree of
freedom executes a finite motion with an energy E. The

• . . * • • • •

• '_* *

•->•

• ' i •

* m

. » • • - • •
• . • • •

' ' . • ' . " * • • • • . ' • ^ ' . : • - * " / . ' *

* • - : • * ' ' % * • : "

•• • . • I :

FIG. 21. a—Element of a web for q = 7 (the radius of the circle is 24?r);
b—its Fourier transform.

FIG. 22. a—Element of the energy relief for q = 7 (a circle of radius 32ir);
b—its Fourier transform.

906 Sov. Phys. Usp. 31 (10), October 1988 Zaslavskfie/a/. 906



• *

1 • . ^ ' •

FIG. 23. a—Central part of the relief with q = 11; b—its Fourier trans-
form.

FIG. 24. a—Noncentral part of the relief with q — 11; b—its Fourier spec-
trum.

phase volume T(E) bounded by the hypersurface (in this
case, a curve)

H (p, x)=E

is

T(E) = J dpdx=§p(E, q)dq,

(4.9)

(4.10)

where the integration contour in the latter integral is a path
on hypersurface (4.9). The number of states with energies
<£• is known22 to be equal, apart from a constant, to the
phase volume F(E), and the state density is

p (E) = const • = const•§ ~-dg. (4.11)

For a single degree of freedom we have

p (E) = const -T (E), (4.12)

where T(E) is the period of the oscillation of a particle with
an energy E. It is then immediately clear that the singular
points of the state density are singular points of the oscilla-
tion period in this case. For a single degree of freedom near
the elliptical point there is a discontinuity of the nature of a
jump in the function, associated with the boundary of the
region of permissible values of the energy; near the hyperbo-
lic point there is a logarithmic singularity associated with a
divergence of the oscillation period at the separatrix.

For the dynamic systems which we are examining in
this paper [see, for example, Hamiltonian (4.4) ] the motion
is organized in a more complex way. Corresponding to hy-
persurface (4.9) is not a single closed loop but an infinite
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number of closed loops, which lie in the H = E plane and
form a corresponding structure in it. Accordingly, expres-
sion (4.10) for the phase volume is replaced by

(E) = 2 § p (E, q) &q, (4.13)

where the sum is over all closed phase loops. Expression
(4.13) diverges. We will thus use a different representation
for the state density. We consider the rectangle (\p\ <P0,
\q\ < Qo). In place of (4.11) we define

Po, Qo-°o dE
(4.14)

where To = P0Q0, and/>0 is the normalized state density. We
expect that the similarity property of the phase portrait gen-
erated by the Hamiltonian of the smoothed structures, Hq

[see (4.4) ], will lead to the existence of a limit in (4.14). In
the cases q = 3, 4, and 6 (the symmetries of crystals) it is
sufficient to consider only a single cell of the structure in the
calculation of p0, since the structure is periodic. In the case
of quasicrystal symmetry, however, the comment regarding
the possible use of expression (4.14) becomes nontrivial.

The main property of the quantity po(E) is that it can be
found from the classical (i.e., not quantum-mechanical) ex-
pressions, as we can see, in particular, from (4.12). We will
first write some simple analytic expressions for q = 4 and

For q — 4 we write

Si — cos p + cos x.

Hence

(4.15)

where K is the complete elliptic integral of the first kind. As
| E | — 0 and | E \ — 2, i.e., near hyperbolic and elliptical points,
respectively, we find from (4.16)

= 2n,

\E\

\E\

•0 ,

•2.
(4.17)

Figure 25b shows the form ofp0(E) for q = 4, illustrating
the numerical method used.

For q = 3 we write

From (4.18) and (4.14) we find

(4.19)

There exist two energy intervals with different expressions
for po(E).

In the interval — 1 < E<3 we find from (4.19)

(4.20)

Hence

£->3,
(4.21)

\E + i\ '
In the interval — 3/2 < £ < — 1 we find from (4.19)

FIG. 25. State density and Van Hove singularities in the case of crystalline
symmetry, a—q = 3; b—q = 4 (the absolute values of p are in arbitrary
units).

po(E) =-A|- {[1

• • * (

Hence

= 4 / 3 In
(4.23)

\E+
- 1 .

Values E< — 3/2 are not possible for Hamiltonian (4.18).
The corresponding form of po(E) found numerically is
shown in Fig. 25a.

In cases of quasicrystal symmetry (q = 5, 7, 8, etc.),
there are no analytic expressions for po(E). A numerical
analysis54 leads to the distributionspo(E) shown in Fig. 26.
We see that for those values of E for which the distributions
of the elliptical and hyperbolic points have maxima (cf. Figs.
13 and 14) there are clear traces of Van Hove singularities.
Now, however, they are smoothed out to a great extent, and
the entire pattern is more reminiscent of a liquid than a crys-
tal. Beginning at q — 7 the distribution po(E) is essentially
the same as that in the cases with q > 7. The smoothing of the
singularities in the case of a quasicrystal symmetry can be
classified as a distinctive property of this symmetry. Various
decoration methods can significantly deplete the structure
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FIG. 26. State density and Van Hove singularities
in cases of quasicrystal symmetry, a—q = 5; b—
q = l; c—q = 8.

and intensify the manifestation of Van Hove singularities.
This is the situation, for example, with a Penrose parquet.57

4.7. Comment regarding the spectral properties of
structures

Until recently, our picture of the nature of possible
structures was comparatively simple. It included the con-
cepts of crystals and liquids; the various disordered media
were usually included with the liquids. The appearance of a
quasicrystal symmetry requires clearer and sharper defini-
tions. More precisely, it is necessary to build a more definite
meaning into what we should call an "ordered structure"
and just what we should call a "disordered" or "amorphous"
structure. The situation is that quasicrystal structures
should have been classified as structures with a long-range
order, as can be seen, for example, from their x-ray diffrac-
tion patterns or Fourier spectra. However, the form of the
state density po(E) with smoothed Van Hove singularities is
evidence more of a disordered entity than of a crystal.

Part of the reason for the paradoxes which arise is that
the configuration of the structures in the quasicrystal case is
specified by an algorithm which is more complicated than
that in the crystalline case. We thus need to apply the more
precise definitions regarding the concept of order to an algo-
rithm which specifies the method for building a structure.
Such definitions already exist in the theory of dynamic sys-
tems, and they can be used in describing the properties of
structures.

Let us assume that the vector § specifies the position of
some structural element, while the position of another ele-
ment "q is determined by some operator T:

(4.24)

Equation (4.24) determines a dynamic system in the phase
space ( | ) if all the structural elements %n are numbered in
some way. This is possible, since the set of these elements is
countable. In the coordinate system which we have intro-
duced we can thus write in place of (4.24)

ln+m=ffn(n)ln. (4.25)

The "spectrum" of dynamic system (4.25) is the quantity
^F(k), which is the Fourier transform of the correlation
functionR{f,f \ x):

MU, /|x)

M{f, g\m)tm

where/and g are arbitrary integrable functions. The entire
question about the nature of the structure now reduces to the
form of the spectrum ^? (k).

If the mapping (4.25) determines only an ergodic
"path," its spectrum ^F(k) is discrete:

^ ( k ) = S^vS(k—kv) , (4.27)
V

where the set of wave numbers kv determines possible per-
iods of the structure. In the case of a periodic chain, for
example, there is only a single value, k0 (if we do not count
possible values nk0). For any Ammann quasicrystal lattice,
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however, two values, kx and k2, which are incommensurate
appear.

Another possibility stems from the circumstance that
the spectrum ^?(k) may be continuous. This case corre-
sponds to the case of uncoupling of the correlations in
(4.26); a situation of this sort should be classified with disor-
dered structures. The degree of chaos of such structures de-
pends on how rapidly correlation function (4.26) becomes
uncoupled in accordance with a power law or exponentially.
Structures with an exponential decay of the correlation func-
tion correspond to turbulence in a dynamic system.

A Penrose parquet apparently corresponds to case
(4.27) with two basic incommensurate periods. All other
cases require a careful analysis.

5. QUASICRYSTAL SYMMETRY

It is now clear that we have encountered a new type of
symmetry ,^which has so far received little study. The tiling
generator Mq and the average Hamiltonian Hq are possible
means for expressing this symmetry. Here again we are natu-
rally led to ask just how universal is a symmetry of the quasi-
crystal type and just where we can observe it, other than in
real quasicrystals. Some possible applications will be men-
tioned in this section of the paper.

5.1. Hydrodynamic structures

The appearance of structures in various hydrodynamic
flows is one of the earliest experimental observations.
Among them, the most regular pattern is associated with
convection cells, which can take the form of one-dimension-
al rollers or can produce a square or hexagonal network on
the surface of a layer (Benard cells). According to the gen-
eral understanding of the appearance of structures, the rea-
son for their appearance lies in various stages of the change
in the state of a medium as it goes into turbulent motion. The
more regular and simpler the structure, the higher is its sym-
metry, and the more ordered is the state of the medium. A
turbulent state is the most homogeneous state (because of,
for example, a local instability), and its symmetry is consid-
erably higher than that of a structurally ordered medium.
The greatest symmetry occurs in the case of highly devel-
oped turbulence. The path to the nucleation of turbulence is
an exceedingly complicated one. It is determined not only by
a complicated temporal sequence of bifurcations, which ulti-
mately result in chaos and a continuous temporal spectrum,
but also by a less complicated sequence of spatial changes in
the structure of the medium, which lead to the appearance of
spatially disordered structures. The latter circumstance
gives rise to a continuous spectrum in terms of the spatial
coordinates. The picture of the appearance of turbulence is
thus a complicated path to the creation of spatial-temporal
chaos. These ideas are being seen increasingly frequently in
the current literature 58~61

There have been many experimental and numerical
studies of possible structural organizations of a medium
(see, for example, the collections of reviews in Refs. 62-64,
although the materials there do not come close to covering
all the conferences on this subject). The structures which are
easiest to analyze are the various two-dimensional structures
which arise in problems of thermal convection or electrody-
namic convection, which may also include parametric exter-

nal excitation.62'63'65'67 The list of problems of this sort is
exceedingly long: the structure of foam, convection cells in
the atmosphere of Jupiter,68 structures in vortex arrays,
structures in shear flows, etc. Along this path, structures
with a quasicrystal type of symmetry may play an important
role in hydrodynamic media in an analysis of the onset of
turbulence.21 Let us clarify why this may be so.

We turn to the two-dimensional hydrodynamics of an
incompressible liquid. The equation of motion is

P- = 0, (5.1)

where ^ is the stream function (vx = d^l/dy, vy = —
dx), A is the two-dimensional Laplacian, and Re is the
Reynolds number.

We now consider ip in the form

(5.2)

Expression (5.2) for the function ip, which may be called a
"quason," has the property

= 0. (5.3)

By virtue of (5.3), the nonlinear term in (5.1) vanishes iden-
tically, and we have

i.e.,

(5.4)

If, however, there is a pump, the quason may be a steady-
state solution, and the question becomes one of determining
the region in which such solutions are stable. This region
may be related to various factors which have been neglected
(compressibility, heat conduction, etc.). At the outset, how-
ever, we should not exclude solutions like (5.2), especially
since they contain square and hexagonal networks as partic-
ular cases.

An equation analogous to (5.1) arises in the case of a
rotating liquid69:

where u is the height of the liquid layer, fl is the rotation
frequency, Ro = (gS)' /2/ft is the Rossby number, u is the
average value of the height u, g is the acceleration due to
gravity, VR = Ro

2[ Vft, z°] is the Rossby drift velocity, and
z° is a unit vector along the rotation axis. The same equation
corresponds to drift waves in a plasma,70'71 where the role of
il is played by the Larmor frequency in a magnetic field.

The studies carried out in Ref. 72 show that in the case
of heat convection there is a stability region of quasons with
an eightfold symmetry (9 = 8). The transition from regular
structures to spatial chaos may be accompanied by a se-
quence of spatial bifurcations, and among them the develop-
ment of structures with a quasicrystal symmetry may be
quite probable. Regular structures with a complex order
have been observed, for example, in experiments on the exci-
tation of capillary ripple waves60 and in a numerical analysis
of the two-dimensional model described by the nonlinear
Ginzburg-Landau equation.73
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5.2. Structures in nature and in ornaments

How "often" can a quasicrystal type of symmetry be
found in the world around us? As usual, this question pre-
supposes an understanding of the extent to which this phe-
nomenon is typical or easily realized. How often can a fairly
random confluence of circumstances lead to the survival of
structures with a quasicrystal symmetry? It turns out that
such phenomena are not exceedingly rare. Kepler74 noted
certain regular properties in the structure of flowers, at-
tempting to compare them structurally with snowflakes or
honeycombs. He also pointed out a distinctive structural fea-
ture of pomegranate seeds, assuming it to be a consequence
of certain conditions (forces) under which the seeds grew.

The structural order which is manifested in the arrange-
ment of flowers, grains, leaves, etc. (e.g., in sunflower seeds
and daisies), is called "phyllotaxy".26 The regularities here
have been discussed by botanists for a comparatively long

mm
FIG. 27. a—Typical element of an Islamic ornament (in Tbilisi) with a
decagonal element; b—its "deciphering" with the help of a relief with a
fivefold symmetry.

time (Charles Bonnet, 1754). The objects of phyllotaxy
usually have cylindrical and conical structures which are
very strongly reminiscent of quasicrystals. The many analo-
gies between phyllotaxy and quasicrystals were pointed out
in Refs. 75 and 76. The most important of these analogies,
however, may concern the properties of inflation and defla-
tion. Through some simple partitionings and connections of
the rhombi in a Penrose parquet (Fig. 12), one can convert it
into exactly the same parquet, but now consisting of rhombi
either larger (inflation) or smaller (deflation) in size.38'48

The property of a self-similar structural transformation
must be embodied in plants by virtue of their genetic code,
although the structures themselves must have a similar self-
similarity property. As a result, only certain structures are
selected, and the limitations which stem from the need for a
cylindrical symmetry immediately point out the reason for
the appearance of elements of a quasicrystal type in phyllo-
taxy.76

As we have already mentioned, the products of ancient
artisans and artists include samples of many methods for
tiling a plane with very complex ornaments. Included here
are all 17 methods for the periodic paving of a plane. Kepler
also took up the problem of patterns, carrying out a funda-
mental study of mosaics in his work entitled De Harmonice
Mundi (1619). Islamic paintings provide one of the richest
examples of various tiling methods. A fivefold symmetry is a
rare element and has been found in paintings in Alhambra
palace in Granada, Spain. Various pentagonal and deca-
gonal elements are also very common in many ornaments.
Figure 27a shows a typical part of an Islamic pattern in
which a regular decagon plays a basic role. These decagons
are arranged on a regular rhombic lattice; the space between
them is filled with suitable elements. The scheme for the
formation of an ornament of this sort is shown in Fig. 27b
through the use of a quasicrystal relief for q = 5 (Fig. 15a).
This scheme illustrates a fairly important assertion: The re-
liefs generated by a quasicrystal symmetry open up new and
exceptional opportunities for the creation of patterns, which
the artists could hardly have imagined. An ornament with,
say, a 17-fold symmetry could serve as an example of a situa-
tion in which, sad to say, the master has been surpassed by
the computer.

CONCLUSION

We have reviewed known cases in which Hamiltonian
systems contain a minimal chaos, manifested by the forma-
tion of universal regions of disrupted stochastic layers in
place of the separatrices of the unperturbed dynamic system.
A system of stochastic layers may tile the entire phase space,
regardless of the strength of the perturbation and regardless
of the dimensionality of the phase space greater than unity.
As a result, a stochastic web arises, and an unbounded sto-
chastic acceleration and diffusion of particles occurs along
the channels of this web. For particles undergoing a random
walk along the channels of the stochastic web, the adiabatic
invariant may change substantially.

Another aspect of this phenomenon concerns the struc-
tural properties of the stochastic web, which may have a
symmetry of a quasicrystal type. The formation of structures
with a quasicrystal symmetry stems from an interaction of
two types of symmetries: translational and rotational. Such
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structures occupy an intermediate position between crystal-
line structures and amorphous structures. Quasicrystal sym-
metry is rather common in nature, being seen outside the
realms of solid state physics and biology. The hydrodynamic
equations also allow the existence of a class of solutions
which have a quasicrystal symmetry. We can thus expect
that such structures may arise in a transition to a state with
spatial chaos.

These results show that we have encountered a univer-
sal phenomenon of nature, which is manifested in a variety
of physical entities. It can be formulated briefly as follows: A
weak interaction between mutually exclusive rotational and
translational symmetries gives rise to a minimal chaos in
regions with a quasicrystal structure.

We wish to thank Ya. G. Sinai for useful comments.

APPENDICES

1. Determination of Affor a pendulum

The Hamiltonian

(Al. l )

corresponds to equation of motion (1.3). Integrating (1.6)
over time, we find the following expression for the change in
the energy of the unperturbed motion:

AE = \ dt&G>lxsin(kx — Aat). (A1.2)

With e = 0, the motion along a separatrix is described by

x (t) = 4 arctg exp [coo (t — tn)] — n, (A1.3)

where tn is the time at which the x = 0 surface is intersected
for the wth time. Substituting (A 1.3) into the right side of
(A 1.2), and integrating over time, we find the change in the
energy to be

+ 00

AE=2eco;! [ dt^J—- sin (4A; arctg e""'— Aat — kn — Aa>tn).
— oo

(A1.4)

We rewrite the right side of (A 1.4) in the more compact
form (v> 1)

where v = Aco/a>o, and we evaluate the integral

2. Derivation of expression (2.15) for the thickness of a
stochastic web

To evaluate the thickness of a stochastic web, we retain
only the terms with n — n0 + 1 in sum (2.7). We restrict the
analysis to particles with a fairly high energy (Apo>no), and
we use an asymptotic expansion of the Bessel function. The
Hamiltonian of the problem then simplifies considerably:

D n i v W ae(oo

1/2

(A2.1)

where p =p — p0 4pQ, and a ~ ± 1, depending on the coor-
dinate of the elliptical point.

The change in the energy of the average motion at «„> 1
is given by the expression

Ho
8Ho

dH<>
dl

Motion along the separatrix is described by

cos a) - dr»coscp-cn (A2.3)

where tn is the time at which the <p = 0 surface is crossed for
the Mth time. Substituting the path of the motion of the parti-
cle from (A2.3) into the right side of (A2.2), and integrat-
ing over time, we find the change in the average energy over
half an oscillation period:

(A2.3')
The period of the oscillations of the particles in a cell

near a separatrix is given by (2.14). Relations (2.14) and
(A2.3) lead to a separatrix mapping which describes the
dynamics of a particle as it moves along a stochastic web:

(A2.4)
1/2 2 i/2 1

where \pn = coQtn plays the role of a phase variable. Stochas-
tic motion arises under the condition of local phase instabil-
ity, | cWn + , /</*„ - 11 > 1. We thus find an estimate of the
thickness of a stochastic web: \E \ <E,, where

In particular, if k is an integer, we have (A2.5)

r=l

(A1.7)

In the case k = 1 we find the following exact expression
from (A1.4):

AE = - 4 W V, , sin(A(of,t).0 sh (nv) v " '
(A1.8)

3. Stochastic acceleration of relativistic particles in a magetic
field

The Hamiltonian H describing the interaction of a
charged particle with a linearly polarized wave with a vector
potential A = eyA sin (/ex — cot) in a transverse magnetic
field B = e2fl0is

i/= sin (&:E-CDO)2]1/2. (A3.1)
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The corresponding canonical equations of motion are

x = c2pH'1, p— — e2H-i[B0 + kA cos (fcr — co/)]

:x-o)i)]. (A3.2)
Figure 28 shows the results of a numerical analysis20 of sys-
tem (A3.2). The numerical calculations show that the dy-
namics of high-energy particles with an energy ^ > w c 2 is
chaotic, and there is an unbounded stochastic acceleration of
relativistic particles. For particles of sufficiently low energy,
"S ~ me1, on the other hand, there are regions of regular mo-
tion. The dynamics of low-energy particles becomes particu-
larly interesting in the case of a resonance between the fre-
quency of the electromagnetic wave and the nonrelativistic
cyclotron frequency: co = ncoH. A system of relatively large
stability islands appears on the phase portrait at low ener-
gies. In Fig. 26a, which corresponds to the case co = 2coH,we
also see some stability islands, which correspond to cyclo-
tron resonances of second, third, and fourth orders. In the
regions between stability islands, stochastic layers form. At
small values of the parameter eA /me2, the stochastic layers

surrounding cyclotron resonances are separated from each
other by invariant curves. As the energy of the particles in-
creases, the invariant curves between layers disappear, and
something reminiscent of a stochastic web arises (Fig. 28b).
This web, however, quickly breaks up as the energy is in-
creased, because of a pronounced nonlinearity of the motion
of a relativistic particle in a magnetic field, and the particles
are in a regime of unbounded stochastic acceleration. The
threshold particle energy W lhT, at which stochastic accelera-

tion arises, is

163 -£-
me' (A3.3)

Diffusion in the phase plane of particles with an energy
above threshold (A3.3) can be described in the standard
way by a Fokker-Planck-Kolmogorov equation. To derive a
diffusion equation, we take the approach of Ref. 7, switching
to the action-angle variables of the unperturbed problem, (/,
9), in the Hamiltonian (A3.1). The unperturbed problem
corresponds to the free revolution of a relativistic particle in
a magnetic field:
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x = p sin 6, p = pm<oH cos 6, (A3.4)

where/? = (2c/ /eB0)
W2 is the Larmor radius. In terms of the

new variables, the Hamiltonian (A3.1) becomes

H(J, 6, t) = \Hl + 2ezB0ApsmQ.sin(kpsiRQ — at)

—^-cos(2fcpsin6 —2ort)l1/2 , (A3.5)

where
1/2 (A3.6)

is the Hamiltonian of the unperturbed problem. For parti-
cles which have a sufficiently high energy % %-eA, expression
(A3.6) simplifies slightly and can be written in the form

H(J, 6, t) = H0- *
+ OO

/;(fcp)cos(ne-arf),

(A3.6)

where J '„ (kp) is the derivative of the Bessel function with
respect to its argument. The motion of particles with an en-
ergy above the threshold energy in (A3.3) is chaotic and is
characterized by a rapid mixing of phases and a slower diffu-
sion over action. The diffusion equation, which incorporates
the finite correlation uncoupling time in the approach of
Ref. 7, is

(A3.8)

where D(J) is the diffusion coefficient, given by

(A3.9)

Here il = SQH /dJ is the nonlinear frequency of the unper-
turbed motion, and rc is the time scale of the uncoupling of
the phase correlations.20 Evaluating the integral over time
on the right side of (A3.9), we find

+ OO

2 h-fr
- l

(A3.10)

The series on the right side of (A3.10) can be summed with
the help of the identity

As a result we find the following expression for the diffusion
coefficient in the limit (Clrc ^ 0 ) :

v2 m» .,, „ . (A3.12)
= ~2\—H 1 ~Q°~ " / a )

If the phase velocity of the electromagnetic wave is equal to
the velocity of light, co = kc, expression (A3.12) simplifies
at high energies, and Eq. (A3.8) becomes

(A3.13)df _ „ 3 , v« df

where v0 = gA W/3eV('B 6"
 5 / 6c"5 / 6 , and the numerical co-

efficient is

^~~ ra (1/3) *

A solution of Eq. (A3.13) with initial condition
/ ( f = 0) = /„ ( / ) is

49V
(A3.14)

at large times t, solution (A3.14) becomes a self-similar so-
lution, "forgetting" about the initial conditions:

where N = fdJf is the density of particles. The energy distri-
bution of the particles is also of a self-similar form:

/(g, fl~gr6/7exp(-const;87/3). (A3.16)

Consequently, the average energy of the particles, ('S),
increases over time in accordance with

m<*>ts'7. (A3.17)
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an m-dimensional cylinder.
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