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A simple method of preparing pure states of an optical field, of inplementing the
Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity

principle?
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A description is given of a device that periodically transforms a field from the vacuum state toa
pure excited state that corresponds to the propagation of two correlated photons. It employs the
phenomenon of parametric scattering, i.e., the emission of pairs of photons by a nonlinear crystal
excited by a pulsed coherent pump under phase-matched conditions. In accordance with the well-
known Einstein-Podolsky-Rosen gedanken experiment, the device can be used to observe the
correlation of either the transverse momenta of the photons (when the two detectors are located
in the far-field zone) or their transverse coordinates (when the detectors are in the near-field
zone). The device may be of interest in photometry, and also from the methodological point of

_.view as a clear demonstration of the EPR paradox and the complementarity of the transverse
coordinate and momentum of a photon.
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*“Every physicist thinks that he knows what is a photon. I have spent

my entire life trying to figure out what is a photon, and I still don’t know.”

1.INTRODUCTION

Consider the following experiment (Fig. 1) that is read-
ily carried out in the optical range. A plane pump wave of
frequency w, and wave vector k, excites a transparent pie-
zoelectric crystal which, because of its nonlinear polarizabil-
ity, radiates correlated pairs of photons (“‘diphotons’) in
accordance with the scheme w,— @, + w,, ko -k, + k,. The
radiation usually has a wide spectrum and is reasonably di-
rectional, being confined to a cone of the order of 10°. This
effect is referred to as spontaneous parametric scattering or,
in other words, spontaneous parametric frequency down-con-
version. The correlation between the photons is recorded by
two photon-counting photomultipliers, located at points r,
and r,, and a coincidence circuit.
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Albert Einstein

When the detectors are located at a large distance from
the crystal, or in the focal plane of an objective, they record
photons with particular angles of emission, and correlation
between their readings is observed only for p, = —p,,
where p=k, ={k,, k,}. This relationship may be looked
upon as a consequence of the conservation of the transverse
momentum of the photons, which is a consequence of the
assumed homogeneity of the model in the transverse plane
(the vector k, lies along the z axis and is perpendicular to the
plane-paralle} crystal).

On the other hand, when the detectors lie in the imme-
diate neighborhood of the plane-parallel crystal, or in the
region of its image produced by a collecting lens, the correla-
tion between the readings should be observed only at closely
spaced points with almost equal transverse coordinates:
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FIG. 1. Principle of an experiment demonstrating complementarity in
measuring the transverse coordinates q and momenta p of two photons:
a—the directions of emission of the photons, i.e., their transverse mo-
menta p, = — p, are measured with the detectors located in the focal
plane of the objective; /—incident wave (pump), 2—nonlinear crystal,
3—pump filter, 4—objective of focal length f, S—coincidence circuit; b—
the coordinate of the common point of creation of the photons,
q= —q, = — qg is measured with the detectors located in the region of
the real image of the plane crystal.

q, = q,, where g=r, ={x, y}. This “transverse bunching”
of photons is explained by the local character of the interac-
tion, which results in the emission of the two twin photons
from a common point in the crystal.

Thus, a correlation is observed either between the later-
al momenta or lateral coordinates of photons, depending on
the longitudinal coordinates z, of the detectors. Strictly
speaking, the second detector is superfluous because it does
not provide new information: if we record a count in the
“distant” detector 1 with coordinate r,, we may be sure that
the other photon has a plane phase front near the crystal,
with a definite transverse component of the wave vector,
givenby p, = — q,k,/r, (weassume that the modulus of the
wave vector is known). Similarly, when a count is recorded
in the “near” detector 1’ with the coordinate q;, we know
that a second photon with a spherical phase front has been
emitted from the same point.

By varying the longitudinal position of detector 1 (or by
observing the successive counts in the two detectors 1 and
1'), we indirectly measure the transverse coordinate or the
momentum of the second photon, without affecting it in any
way. In other words, we are preparing photons with a prede-
termined initial wavefront curvature.

In order to dispose of “spurious” photons that appear
because detector | has a finite aperture and imperfect effi-
ciency, an optical shutter, operated at the appropriate time
by the amplified output pulse of detector 1, can be inserted
into the path of the second photon.

The above arrangement reproduces the Einstein-Po-
dolsky-Rosen (EPR) gedanken experiment, proposed about
50 years ago' as a means of demonstrating the incomplete
character of the quantum-mechanical description of phys-
ical reality (the Einstein-Podolsky-Rosen paradox is dis-
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cussed, for example, in Refs. 2-9). However, the historical
irony is that such experiments are now regarded as direct
demonstrations of the validity of the quantum-mechanical
description. They constitute a clear manifestation of Bohr’s
complementarity principle? or, in Fock’s formulation,'® the
principle of relativity with respect to the means of observation.
According to Bohr, prior to a count, the photons in the pair
cannot be assigned any kind of attribute, such as, for exam-
ple, the direction of propagation or position of the point of
creation, and frequency or time of creation.

Many modified Einstein-Podolsky-Rosen experiments
have now been carried out (see Refs. 9 and 11-13) in which
the complementary observables are the orthogonal compo-
nents of spin (of photons or protons). These experiments
have attracted considerable attention because they have re-
vealed a violation of Bell’s inequality,'* which means that
the hidden variable theory (in its local version) cannot be
valid and the quantum-mechanical rule for calculating pro-
babilities is confirmed. Photon pairs are generated in these
experiments as a result of cascade transitions in free atoms, "'
or as a result of the annihilation of positronium,® so that the
polarization of the photons before measurement is undeter-
mined, but there is strict correlation between the measured
polarizations of the photons in a given pair (because of the
law of conservation of angular momentum). At the same
time, the angular correlation between the directions of emis-
sion of the photons is usually weak, but the points at which
photons in a given pair are created are always correlated.

In contrast to this, in spontaneous parametric scatter-
ing the type of polarization is fixed, but there is relatively
strict correlation either between the points of creation or the
momenta of the photons (respectively due to the local char-
acter of the crystal nonlinearity and the macroscopic dimen-
sions of the coherently radiating region, a3/, where a,, is the
radius of the pump beam and /is the crystal length), and also
between the times at which the photons are created or
between their frequencies. Spontaneous parametric scatter-
ing can thus be used to perform a new type of Einstein-Po-
dolsky-Rosen experiment, i.e., an experiment with a contin-
uous spectrum of mutually complementary observables g
and p (in accordance with the original idea of the experi-
ment) and, in principle, @ and t. An important feature of
spontaneous parametric scattering is the high degree of dir-
ectionality and the high intensity of the radiation, which can
usually be observed visually for a mean pump power of less
than 0.1 W.

We shall suppose that the crystal is pumped by individ-
ual identical and coherent (according to Glauber'®) pulses
oflength 274> 1/w,, so that, after each pump pulse traverses
the crystal, the scattered field undergoes a transition from
the vacuum state |0) to a particular and practically pure
“diphoton” state |2). This provides us with a relatively unu-
sual possibility of preparing an essentially quantum-me-
chanical object, i.e., the optical field, in a pure state with
macroscopic coherence scales. In the experiment employing
the optical shutter, we actually prepare the single-photon
state |1), which is not only of methodological interest, but
also provides us with new possibilities in quantum photome-
try,'*"!° data transfer, and so on.?"*2

In what follows, we give a simple theoretical descrip-
tion of the experiment and its various interpretations. Pho-
ton correlation in spontaneous parametric scattering
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has been analyzed for the far zone by a number of
workers.'®!"%3-25 The corresponding experiments are de-
scribed in Refs. 26-28. Some of the properties of the near-
zone field in spontaneous parametric scattering are dis-
cussed in Refs. 18 and 29. In this paper, the theory of
spontaneous parametric scattering is presented in a clear
space-time form, illustrating the Einstein-Podolsky-Rosen
paradox and the complementarity principle. The model is
distinguished by both experimental and theoretical simpli-
city, and appears to be the optimum model for discussing
**perpetual” problems and for refining concepts associated
with the Einstein-Podolsky-Rosen paradox, i.e., concepts
such as determinism, causality, locality, action at a distance,
elements of physical reality, and so on.?

2.SCATTERING OPERATOR

In a nonlinear transparent crystal without a center of
symmetry, the macrofield energy density contains the term
EP'"7, where P'? = yE ?is the quadratic polarization, so that
we can start with the following phenomenological interac-
tion Hamiltonian for the field modes:'’

Vit)= — S dBryES (x, 1) [EC (r, P+ he., (2.1)

where y is the contraction of the quadratic polarizability
tensor of the crystal and the field polarization unit vectors
(we neglect the dependence of y on the frequency and direc-
tion of the field), E, and E are operators representing the
pump field (w ~w,) and the scattered field (o <w,) in the
interaction representation, and the signs + refer to the posi-
tive and negative frequency parts.'® The rapidly oscillating
terms are not taken into account in (2.1). We assume that
the phase-matching condition ky~k + k’ is satisfied only
for the extraordinary pump waves and the ordinary scat-
tered waves. We note that the effective Hamiltonian (2.1)
with excluded matter operators yields the same results in the
crystal transparency region as the usual perturbation theory
for three-photon processes'’ or other forms of perturbation
theory.?

Spontaneous parametric scattering is described by the
scattering operator, taken in the linear approximation (see,
for example, Ref. 17):

1
St ty) =1 (ik)" S d' V(1)

ta

(2.2)

This operator determines the perturbed field wave function
|t) in the interaction representation in terms of the initial
wave function |¢,), and relates the operators in the Heisen-
berg and interaction representations:

| ) = S | to), Ep = S*ES. (2.3)

Suppose that the initial state of the field corresponds to
the coherent state'® of the pump modes® with the eigenvalue
% ,(r,t), so that we can replace the operators £§*’ with
classical quantities €$*’ [in moments normal with respect
to E {*’]. We shall suppose that the pump is pulsed, i.e.,
nonzero in the crystal interior only for times between — 7,
and 7, so that, for t > 7, the wave function is | ) =|) and the
scattering operator ceases to be time-dependent:

S=t4 o (A VEO? 42 OB =150 (2.4)
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where E,=E(x,), x,={r,,¢,}; the integral operators ;} +)

are defined by the rule

(@) =1 | ¢t @)1 ) (2.5)
(where the integral is evaluated over the excited volume of
the crystal, a3/, and over the time interval between — 7, and
7o). Equations (2.3)-(2.4) determine all the characteristics
of the scattered field that is produced as a result of the pas-
sage of the pump pulse through the crystal. At the same time,
the operators E 2 ensure that the initial state of the field
|to) acquires a small time-independent admixture S'"|¢,)
(for ¢ > 7, in the interaction representation).

3.MOMENTUM REPRESENTATION

To transform to the momentum representation, we
shall express the operators E ¢ £’ in terms of the operators
representing the creation [af~’=ga{*’] and annihilation
[a{*’=a,] of photons in mode k:

E®) (2) =3 ™ (2) ol (@), i (2)
k

= + Tlﬂ_ (hog)1/2 exiks; (3.1)
where kx=ker — a1, o, =c|k'|/ny, n, is the refractive in-
dex of the crystal, and the quantization length is chosen to be
27 (in which case, z R f
k
difference between n, and 1 will be taken into account only

in the difference k, — k — k'. The summation overkin (3.1)
and in the subsequent formulas is carried out only over
modes with frequencies smaller than w, — 1/7,,.

Suppose that the initial state of the field (ignoring the
pump modes) is the vacuum state [f,) = |0), so that the
pump pulse and the operator E ‘= [see (2.4) ] force the field
into the “diphoton”? state |2). The probability amplitude
for the appearance of one photon in each mode k and k' is
then equal to the matrix element of the scattering operator S,
relating the initial state |0) to the final two-photon state:

d>k...). For simplicity, the

k') = |ﬁ'-k>saﬁau*'10>: cod DDk Ok (3.2)

(the case k = k’ need not be considered because integration
over the modes is implied). According to (2.4) and (3.1),

(@ . )2 - . ,
A Pexp (— i (k+K) x].

(3.3)

(kK|S 10) = (kk'|2) =

The set of vectors |k-k’) forms an orthonormal basis of
the “two-photon subspace” (common Hilbert space of the
states of the field) to which the vector |2) — |0) belongs:

2 =100+ 37 kek') (k' [2) (3.4)
.

The prime on 2 indicates that terms obtained by inter-

changing k and k' must be taken into account only once
because the two photons in a pair are indistinguishable.
Thus, the field transforms from the vacuum state to the di-
photon state |2), which can be represented as a superposi-
tion of the vacuum |0) and the two-photon states [k-k’).
The amplitude (k'k’|2) of the state |k*k') is apprecia-
ble, according to (3.3), only for mode pairs satisfying the
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FIG. 2. The frequency-angle spectrum w(¢) in parametric scattering is
determined by the phase-matching conditions (conservation of energy
and momentum in the three-photon interaction), refractive index disper-
sion, and birefringence of the crystal. For a given orientation of the crys-
tal, collinear phase matching occurs for frequencies w, and o, close to half
the pump frequency wy/2 (&#,, ~5-10° is the maximum scattering angle,
Aw is the common frequency band, Aw, are the band frequencies radiated
in a narrow angular range; broken and dot-dash curves—boundaries
between signal and idler photon spectra for frequency and angular filtra-
tion, respectively; points / and 2 are connected by the phase-matching
conditions.

matching condition
lox takw—ao|to < 1, [P+DP'lao <1, Jh A~k 1
(3.5)

[where p={k,, k,}]. This condition gives a definite rela-
tion w (1) between the frequency and the scattering angle
Fd=arcsin(p/k). We are interested in the case where the
matching condition is satisfied for w ~wy/2 in a certain
range of scattering angles, between zero and ¢, (Fig. 2).
Usually, 7, ~ 5-10%) so that the quasioptical approximation
is valid.

The square of the amplitude (k-k'|2) can be interpreted
as the joint probability that one photon will appear in each of
the modes k and k’. Multiplying it by the mode density, we
obtain the probability density for the detection of photons
(per unit frequency and solid angle intervals):

dP(kk')

_— e = o’ A1) 2
o do agaa — | (KK (2) ke |2

(3.6)

We note that the momentum representation describes
directly only those experiments in which the detectors are
located in the far region in the direction of k and k’. For the
usual types of spontaneous scattering by individual parti-
cles, we can confine our attention to this case because the
concept of the near region is meaningful only in the case of
macroscopic dimensions of the coherently excited volume.
In this respect, spontaneous parametric scattering, using a
laser pump, is a unique extended source of a countable num-
ber of optical photons with plane and spherical wavefronts
of arbitrary initial curvature and orientation (see below).
We note that spontaneous parametric scattering (SPS) is a
reversible process, i.e., by directing the diphotons onto a sec-
ond nonlinear crystal, we can again obtain a coherent field
wo, Ko (Refs. 29 and 30). The unusual statistical properties
of the SPS field can be examined not only by recording coin-
cidences between photons, but also by measuring the high
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efficiency with which they produce two-photon transi-
tions. 182930

4.SPACE-TIME DESCRIPTION

This description was first given in Ref. 31, where the
SPS intensity was determined in the far zone. Here, we shall
use a general formalism that exhibits certain properties of
SPS that are important for the purposes of interpretation.

Let us express the Heisenberg (“perturbed’’) operators
E,; in terms of the operators E in the interaction representa-
tion. In the linear approximation, (2.3) and (2.4) yield

EW =BV (B, Sw)=EY 4P DLEyY, (A1)
where
Dy,=D(x,. )= [EY". B (4.2)

is the Green function for the wave equation. When ¢, > ¢, it
is equal to the retarded positive-frequency field €{ * at the
point (event) x,, produced by a dipole-moment §-pulse from
the point x,, or the advanced negative-frequency field 5’
at the point x,, produced from the point x,. The same func-

tion determines the ‘“vacuum fluctuations:
(OIESTEY10) = — ihDy,. (4.3)

In the case of a homogeneous space (the effect of the lens is
discussed in Ref. 18),

(4.2

D, = 4;2 2 ok exp [ik (&, — x,)]-
Kk

Next, we must find the normally-ordered correlation
functions!® (normal moments) of the scattered field. The
first moment is nonzero if, apart from the pump, the crystal
intercepts a coherent field & (r,z) containing frequencies
less than w,,. Suppose that, in the zero-order approximation,
all the fields are in the coherent state, i.e., the initial wave
functions satisfy the equation

ECIa, 1) [ ) = €9, 1) | L),

so that (2.3) and (4.1) yield the mean perturbed fields at x,
fors, > 7y

EYDY = (| 1) = By =P 2 35PDL,¢ ). (4.4)

This formula provides the quantum-mechanical space-time
description of the well-known optical effect of difference-
frequency generation.

The second and fourth moments will now be deter-
mined for the vacuum initial state of the scattered field, i.e.,
for |t,) = |0) and |) = |2). From (4.1) and (4.3), we find
that, in the first nonvanishing approximations,

Gy= (ECET) = — ity DD D, (4.5)
Fip= (EYVEYY) = — ih;’.(;)Dszn- (4.6)
Gip= (Y B ETEC) = | Fyyl, (4.7)

where G, can also be expressed in terms of F (Refs. 18 and
24). We note that the operators E§]’ and E {3’ do not
commute for ¢, , < 7oand ¢, #t,,1.e., F,5F,,. This is one of
the reasons why it is convenient to assume a pulsed pump in
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the theory. This condition is probably not essential in the
actual experiments.

The ‘‘diffraction” integrals in (4.5)-(4.7) were esti-
mated in Ref. 18 for a number of typical cases (using the
approximate quasioptical Green’s functions for the near and
far zones and for the space behind the collecting lens).*
Here, we shall confine our attention to a qualitative analysis.

5.CONNECTION BETWEEN THEORY AND EXPERIMENT

According to photon counting theory (see, for exam-
ple, Ref. 15), the normal moments G are the link between
theory and optical experiments because it is precisely these
moments that determine the observable quantities, i.e., the
probabilities of photon counts at the photomultiplier output
and their coincidences. The essential point is that that proba-
bilities are expressed in terms of the field wave function
alone, i.e., without taking into account the reaction of the
detector, which can be looked upon as a classical object. We
shall determine the probabilities per pump pulse, i.e., the
ratio of the number of successful trials m, (when the pump
pulse is accompanied by a pulse at the detector output) to
the total number m of trials for a sufficiently large value of
the latter. The situation thus contains all the significant
components of any quantum-mechanical model, namely,
classical procedures for repeated preparation and observa-
tion of the object, and the quantum-mechanical object itself,
i.e., the electromagnetic field.

When the pump energy is low enough, each detector
produces zero counts in most trials and only rarely a single
count. Events in which one detector absorbs the entire di-
photon and produces two counts per pump pulse are also
described by first-order perturbation theory [see (4.7) with
r, =T,], but they can be excluded by frequency or spatial
filters that separate the field into two parts (i.e., distinguish
between the photons in the pair).” For example, only part of
the scattered field with frequencies @ > @,/2 may be directed
into detector 1 (this part will be referred to as the *‘signal
component”), whereas detector 2 intercepts the “idler’ field
with @ <wy/2. It is also possible to distinguish between the
photons according to the sign of the component &, of the
wave vector along one of the transverse axes (see Fig. 2).
Selection according to k, is preferable because of the sym-
metry and simplicity of implementation.

Let us begin by considering a perfect detector, i.e., a
detector with zero inertia and negligible size. This means
that T<¢,,, and A <aZ, , where T and 4 are, respectively,
the time constant and cross-sectional area of the detector,
and ¢, and a_, are the coherence time and radius of the
field, determined from (4.5) and (4.7). It can be shown'®
that, in the near zone (in the immediate vicinity of the crys-
tal or in the region of its image produced by the lens), ¢_,
~1/Aw, a,,, ~A /%, (Aw and ¢, are the widths of the
frequency and angular spectra in spontaneous parametric
scattering; see Fig. 2), whereas, in the far zone, ¢_;, ~ 1/Aw,
= |7, — 7;|/27 ~ 1 ps, where r; =1/u, are the times taken
by the signal and idler photons to cross the crystal, and u,;
are the group velocities at frequencies corresponding to col-
linear matching of w,, @,.

Suppose that the pump pulse length is much greater
than £, , so that we can define the “time of emission” of the
diphoton as lying in the range — 7. ..7,. the probability
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thatacount will be recorded at time #, + 7' /2 at the output of
detector 1, located at r,, is proportional to the second normal
moment of the field at x,={r,, ¢,}:

ny .V,

P(Ii)E"lliln el G, C = = ;

2nhe (5'1 )

where 7, is the quantum yield, ¥, =¢T 4, is the detection
volume, and @ ~ w,/2 is the mean frequency. The probabili-
ty P(x;) of a count in detector 2 has a similar form. It is
assumed in all this that the detectors do not shade one an-
other (it is convenient to use a lightguide to collect the light
flux).

The probability P(x,) for ¥, € V,,, is'’ of the order of
N U(CD?*V\/V o, Where T=7mkoy & o/2 is the parametric
gain exponent and &y, is the slowly-varying amplitude of
the pump in the region corresponding to x,. The necessary
condition for the validity of perturbation theory is that
P(x,) €1. The quantity (I'/) can be interpreted as the mean
number of photons per mode (or per coherence volume). It
reaches unity only for pump intensities of the order of 10
MW /cm?.

The relative number of doubly successful trials, m,,,
when both detectors produce one count in a given trial with-
in time intervals ¢, + (7,/2) and t, 4 (T,/2), is propor-
tional to the fourth normal moment of the field (4.7):

My
m

(5.2)

P(z,, z,)= lim 22— C,C,G,,.
“Random coincidences,” occurring with probability P, P,,
and other effects that are quadratic in the pump are not tak-
en into account because they can be excluded by reducing
VVolEl

The ratio m,,/m, can be interpreted as the conditional
probability

P (24, 73)

P (5.3)

P(zyl2y) =
It is natural to define the effective field of photon 2 that
describes the space-time distribution of the probability am-
plitude for its detection for fixed x, by the condition
C,| &{ > =P(x,|x,), from which it follows (apart from a
constant phase factor) that

Py F
(50 = B EDE R = (54

In the system incorporating the optical shutter that is
open at the appropriate time by the amplified output pulse of
detector 1, the probability of a count in detector 2 is also
given by (5.2) (this requires, of course, that, in any frame of
reference, #, > t,). Here, the shutter replaces the coincidence
circuit, and the ratio of counts in the two detectors, m,/m,,
is equal to the quantity given by (5.3).

According to the postulates of quantum theory, the
number of a successful trial and the position of a count with-
in the time interval r,/c 4 7, are unpredictable. However,
once a count has appeared in detector 1 at some time ¢,, the
count in detector 2 can appear in the same trial only within a
certain interval (Fig. 3), determined by (4.7) to within

+ 1., (see Ref. 18). Of course, this precision is unattaina-
ble in practice because, TR Ins> f., ~ 1ps for currently
available photomultipliers. To allow for the last inequality,
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FIG. 3. The frequency spectrum of the SPS field consists of two parts
(o ~w, and w ~w, ), propagating inside the crystal with different group
velocities, so that the difference between their emission times in the crys-
tal, 2, — ¢, is determined by the position z, of the point at which the
diphoton is created inside the crystal.

we must arrange the moments G over the corresponding in-
terval (see Ref. 18). In practice, it is much easier to measure
the correlation between the spatial components of the points
at which the photons are detected.

Similarly, for 4, > A4, we must average G over the
detector cross sections.'® If detector 2 can then easily “see”
all the modes coupled by the matching conditions to the
modes of detector 1 (in other words, 4, covers the entire
beam of the effective field &,), then (5.3) gives 7,. This
means that, after a count is recorded in Ref. 1, the second
photon must definitely enter detector 2, which enables us to
perform an absolute measurement of its efficiency, using the
formula , = m,,/m, (Refs. 16-19 and 27).

6.DIFFERENT INTERPRETATIONS

So far, the formulas given above have been confirmed
experimentally only in the case where the pump is contin-
uous and the detectors are located in the far zone,?*2® but
there are no reasons for doubting their validity in the more
general case. Any interpretation of such experiments must
not, therefore, be in conflict with the joint distribution of the
points of detection of the two photons that follows from
(4.7) and (5.2):

P(zy, &) ~ |Fpl*= iy § 42D (2, 2) D (3 D)€ @)1

(6.1)

This formula, taken together with (4.5) and (5.1), de-
scribes completely all the observed spontaneous effects, i.e.,
effects of the first order in the energy of the pump pulse, and
the role of quantum theory is exhausted once the formula has
been derived. The theory claims to predict only the average
results of the entire experiment that involves a large number
of trials. The direct result of the experiment with fixed x, x,
takes the form of a certain set of pairs of numbers {M,, M,}
that assume values O or 1. Questions such as “What is the
structure of the field & (x) produced under the influence of a
given pump pulse?” or “What happens to the field after the
count has been recorded in detector 1?” are regarded as in-
correct in quantum theory, and remain unanswered.

However, this “‘quantum agnosticism” is incompatible
with the familiar classical ideas about the existence of a field
with certain objective parameters that are independent of the
detectors. This conflict is also reflected in the terminology
used, i.e., instead of the more correct ““a state of the field has
arisen”® we say “a photon has been emitted” or “a pair of
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photons has been emitted”, and imagine a wave chain (wave
packet) propagating from the source. It is difficult to avoid
the temptation to describe the field as in some way ““objec-
tively existing” in an individual trial within the time interval
t,, &, between the times at which the pulses appear in the
detectors. However, we cannot then avoid acknowledging
that detector 1 then has a mysterious “influence” on this
field.

The violation of Bell’s inequality,'* discovered in the
1970s and confirmed very reliably in a number of EPR polar-
ization experiments,''™"* has demonstrated that hidden-
variable theories with a local interaction (i.e., without the
above “influence’’) cannot be valid. The remaining possibili-
ties are: either (1) locality (“separability””) must be aban-
doned, and we have to accept determinism with hidden vari-
ables and classical statistical theory, or (2) we must
reconcile ourselves to the quantum-mechanical rules for cal-
culating the probabilities of observable events. The Copen-
hagen interpretation of these rules is essentially local (see,
for example, Ref. 32 and the discussion given below), but a
nonlocal treatment of these rules is also possible and presup-
poses a certain instantaneous ‘“‘nonforce”**** and “nonin-
formative”*® interaction and even the possibility of telekine-
sis*® and telepathy (see Ref. 7, p. 218). Einstein and
Schroedinger rejected the possibility of influence, referring
to it as “telepathy’’” and “‘magic” (see Ref. 38) (this was
before the experiments on the verification of Bell’s inequal-
ities).

In EPR experiments with photons, the events x, and x,
are separated by a space-like interval (Fig. 4) and the influ-
ence-both classical and quantum-mechanical-can propa-
gate along two paths: either with velocity of light through
the common past according to the scheme x,-»x—x, by
means of an advancing wave*****' or, with the velocity
greater than that of light, along the “straight line”” between
x, and x,. The latter variant means that we abandon the
basic postulate of relativity theory and return to action at a
distance,® whereas the former variant involves a departure
from the principle of causality.

The unusual nature of EPR experiments can be clarified
with the aid of the following coarse analogy. Suppose that
two identical telegrams are sent out simultaneously from
Moscow to Kiev and to Vladivostok. As soon as he receives
his own telegram, the Kiev recipient will instantly recognize

FIG. 4. When two photons are simultaneously emitted in different direc-
tions r, and r, from a single point x,, the coordinates and times of their
detection, x, and x,, are separated by a space-like interval (broken line),
so that the events x, and x, cannot be causally related. The broken line
represents the effect of a mirror delay line that must be used to transmit
information by modulating the state of the light field.
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that the same telegram will be received in Vladivostok after a
particular interval of time (from the standpoint of an observ-
er in suitable motion, the telegram will reach Vladivostok
before it reaches Kiev). Let us now suppose that this proce-
dure is repeated periodically, but the text of the telegrams is
altered randomly each time. If we admit that the Kiev ad-
dressee can decide in advance the text of the successive pair
of telegrams, we shall have some idea of the significance of
the violation of Bell’s inequalities."* The case where the deci-
sion is made after the telegram has been sent corresponds to
“retarded sampling” experiments.'?

An elementary description of EPR polarization experi-
ments and of Bell’s inequalities is given in Refs. 42 and 43.

7.CHOICE OF SUBASSEMBLIES AND HIDDEN VARIABLES

When certain types of experiment are described, the
concept of “influence” (of the position of one instrument on
the readings of another) can be avoided if we use the usual
theory of probability and assume that the crystal radiates
photon pairs with random (but a priori determined) param-
eters, and that the detectors simply select certain subsets of
particles. These parameters can be regarded as predictable,
at least in principle (in the theory of hidden variables; see,
for example, Refs. 5 and 9), or unpredictable (“statistical”
interpretation of quantum theory*®).

For example, consider the case where a correlation is
observed between the readings of two detectors in the far
zone of the radiating volume (see Fig. 1a), and both detec-
tors produce a count in a given trial (pump pulse) only when
they point in directions related by the condition p, + p, = 0.
It is natural to suppose that a pair of photons is radiated in
each such trial in the two directions linked by this condition,
and that these directions fluctuate randomly from pulse to
pulse. In the arrangement involving the optical shutter, we
simply wait for the successive successful trial, when we are
lucky and the photons are radiated in the required direction,
i.e., detector 1 performs a selection of a certain classical sub-
ensemble. The distribution density

P (p;, p2) = P (p)0? (p, + po)

measured by performing a large number of trials, can be
calculated from (3.6) and, in principle, a more complicated
model with hidden variables can be constructed.

Similarly, when the detectors are located in the near
zone, we may suppose that successive points with transverse
coordinate q in the plane-parallel crystal radiate spherical
waves that are focused by a lens on the detector in each suc-
cessful trial (Fig. 1b). This procedure presupposes that
there exists a distribution density for the points at which the
photons are created, namely,

P (4, 42) = P (@y) 6 (q; — q5).

However, if we wish to describe both these types of ex-
periment simultaneously within the framework of a single
theory, we encounter difficulties: we must introduce the
joint distribution p(q,, p,), i.e., assume that the crystal radi-
ates sometimes spherical and at other times plane waves.
The question is then: how can we describe all the continuous
sets of intermediate cases covered by (6.1)? Clearly, we must
assume that the crystal radiates randomly a succession of
pairs of all the possible converging and diverging spherical
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waves with centers covering all space. This quite artificial
model must be further augmented by matching conditions
relating pairs of centers that are mirror-symmetric relative
to the plane of the crystal (see below). Such schemes clearly
lose out in comparison with the simplicity and elegance of
quantum theory.

A similar difficulty arises also when we attempt to use a
model for choosing subensembles of two types of experiment
in which the times ¢, , of recorded counts or the frequencies
o, , are determined. In terms of classical concepts we have
to assume that the crystal radiates sometimes short wave
trains (at random times in the range |¢,| < 7,) and at other
times long wave trains (with frequencies @, and
@, = @, — @, that fluctuate from pulse to pulse in the range
0 — w,). Wave trains of intermediate length must, of course,
also arise.

These qualitative considerations show that the result of
quantum-mechanical calculations based on (6.1) can hardly
be described by a classical probability scheme within the
framework of “local realism” or “latent determinism”,
without resorting to the idea of probability amplitudes and
interference between them.

8. INFLUENCE THROUGH A COMMON PAST

We shall confine our attention to a single model of influ-
ence that is distinguished by clarity and predictive power. It
follows naturally from the structure of (6.1), which gives
the probability that each of the two detectors will record a
count in one trial.

Suppose that the position vector r, of detector 1 and the
time ¢, at which the count appears are fixed, and that we wish
to find the conditional probability distribution P(x,|x,) for
acount in detector 2 as a function of its positionr, and time ¢,
of the count (the detector may be located behind the shut-
ter). In the system without the shutter, the two detectors are
equivalent, and the “influencing” detector 1 may be located
further away from the crystal than detector 2.

Comparison of (4.4) and (4.6) shows that the effective
field (5.4) for fixed x, is identical with the classical field
#'*)(x,) produced during the parametric transformation in
the same crystal of a fictitious field with negative-frequency
part £ 7)(x)= — iiG [ *D(x,, x). It follows from (4.2)
that this field is a pulse with a spherical wave front that
converges onto the point r, at time ¢, (Fig. 5).

However, we are equally entitled to assume that this
pulse is “‘radiated into the past” by means of an advanced
Green’s function from a point source at r,. The fictitious

FIG. 5. If a photon is detected at the point x, = {r,,?,}, the effective field
& , of the other photon is formed by a parametric transformation of the
spherical wave &, that converges on x,. This transformation can be re-
garded, approximately, as specular reflection by the crystal of an ad-
vanced diverging wave emitted at x, into the past.
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FIG. 6. “Influence™ of the point of detection r, of one photon on the
effective field &, of the other photon. When r, lies near the plane crystal
(a) or in the region of its real image produced by the lens (b), &, is a
spherical wave radiated from r,. If, on the other hand, r| lies in the far-
field zone, or in the focal plane of the lens (c¢), &, is a plane wave with a
diffractive divergence. A field with arbitrary initial wavefront curvature
and beam axis orientation can be formed by moving the lens in front of the
detector (d).

field €'~'(x) radiated from the point of detection of the
single photon, x, = {r,*¢,}, reaches the point r inside the
crystal at a past instant of time # < ¢, and “beats” with the
pump field & ’(x), creating the transformed field
&'*)(x,), in accordance with (4.4). The latter determines
the probability of finding the second photon at x,.%)

The parametric transformation of the fictitious ad-
vanced field &, of the detected photon into the retarded field
& , of the other photon can be looked upon approximately as
areflection from the crystal (in the case of the near zone, this
occurs at a definite plane inside the crystal; see Fig. 3). Actu-
ally, if we neglect the difference in frequency from w,/2,
then, according to (3.5), the “reverse” angle of incidence is
equal to the angle of reflection: &, ~,. Thus, the point at
which one photon is detected is, after reflection from the
crystal, the effective source of the field of the other photon
(Fig. 5).

This recipe for finding P(x,,x,) for a given x, can also
be used when lenses (Fig. 6) or other transparent optical
elements are present. As a result, coincident counts should
occur with maximum probability when the lens is used to
image (with allowance for “reflection” by the crystal) the
detector apertures one on another (Fig. 7). The collecting
lens in front of detector 1 focuses photon 2: its effective field
is concentrated in an Airy circle in a plane z,(z,), deter-
mined by the lens formula (subject, of course, to the condi-
tion that 4,, /, and the chromatic aberrations on “reflection”

FIG. 7. Mutual focusing of photons in stimulated parametric scattering.
If the apertures of the 2N perfect (3 = 1) photon counters are imaged by
the lens, one unto another in pairs (taking into account the “‘reflection” by
the crystal), the output pulses in conjugate counters must appear only
simultaneously in a given trial (provided the detector apertures and sepa-
rations are much greater than the corresponding coherence lengths).
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are sufficiently small). This phenomenon can be referred to
as “mutual focusing of photons.”

In the scheme involving a shutter, we can place differ-
ent lenses and frequency and space filters in front of the con-
trolling detector to prepare photons with arbitrary initial
curvature (positive or negative) and wavefront orientation,
and an arbitrary frequency spectrum in the range 0 — ;. It
is clear that, by varying the filter parameters in time, it is
possible to produce partial modulation of the radiated light
and transfer of information (see below).

9. EINSTEIN-PODOLSKY-ROSEN PARADOX

We now return to Fig. 1. Suppose that we have two
detectors 1 and 1’ with longitudinal coordinates f and 2f.
When detector 1 records a count, we indirectly recognize
that the momentum of the photon is 2p, (we assume that
# = 1). The above rule for constructing the effective field &,
(Fig. 6¢) can now be used to estimate the uncertainty in this
measurement: it is clear that this uncertainty is limited by
the diffractive divergence of the plane wave, Ap~1/a,,
where a, is the cross section (we omit the subscript 2). If, on
the other hand, detector 1’ records a count, we determine the
transverse coordinate of the point at which photon 2 is creat-
ed with an uncertainty limited by the width of the angular
spectrum: Aq'~1/Ap’~A /Ad; in the limit, Ad~1 and
Aqg' ~A. Hence, we find that

Ap-Aq'~—£—<<1, (9.1)
which would seem to be in conflict with the uncertainty rela-
tion. By increasing the pump-beam diameter and the trans-
verse dimensions of the crystal, we can determine p to any
desired precision for a constant precision in the measure-
ment of g. The uncertainty relation is thus invalid for the
standard deviations Ag and Ap’, measured for the two series
of experiments that differ by the position of the detectors
(Fig. 1). In each series, one of the detectors is fixed and the
other is displaced in the transverse plane.

Similar considerations have led Einstein, Podolsky and
Rosen to the conclusion that the wave function does not
provide a complete description of physical reality (since
both p and g can be measured). This aspect of the EPR para-
dox can readily be explained within the framework of quan-
tum mechanics: photon 2 does not have “its own” wave
function prior to the count in detector 1 and, on its own,
itcan be described only by the density matrix
P2 =58p,(]2)(2|) (this was immediately noted by Fock in
the introductory paper** to the EPR paper translated into
Russian;' see also Refs. 4, 45, and 46). It is only after the
count has been recorded by the detector at x, that it can be
assigned an individual characterization, namely, the func-
tion &, ~F,, {see (5.4)]. Naturally, the parameters Aq, Ap
of the effective field %, for different x, are not connected by
an uncertainty relation and are functions of z, (Fig. 6).

When the two detectors 1 and 1’ are present in the near
and far zones, we cannot predict which of them will “fire’” in
successive trials and, by the definition given by Einstein, Po-
dolsky, and Rosen themselves, this means that we cannot
associate with ¢ and p the elements of physical reality. It is
only after a count has been recorded in one of the detectors
that either g or p assumes reality, but this occurs in different
trials.
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Thus, the EPR experiment does indeed show that the
description based on the wave function of a particle that has
interacted with another quantum object is incomplete. We
note, at this point, that the same conclusion is valid in the
case of a closed system. The point is that |# ) is a single-time
characteristic of the system, so that, to find the multiple-
time correlation functions G(¢,,,, . . .), we must also know
the time dependence of the operators (in the Heisenberg or
interaction representation). Thus, knowledge of |2) is not
sufficient to enable us to calculate P(x,,x,) for ¢, #¢,: the
operators E(¢,) and E(?,) must be determined. In other
words, G(¢,t,, . . .) is not covered by the Schroedinger rep-
resentation (except for ¢, = ¢, =...). On the other hand, it
may be supposed that, by specifying |¢,) and |¢,), we impli-
citly determine the evolution operator U(¢,,t,) that relates
E(t))to E(¢y).

10. COPENHAGEN INTERPRETATION

The essence of this point of view, shared at present with
certain variations® by the great majority of physicists, can be
described in relation to the experiments considered here as
follows. In general, it is meaningless to speak of the param-
eters of photons in a given pair (momenta, frequencies, posi-
tions, times of emission, and types of polarization) prior to
measurement. These concepts classical in origin character-
ize not the photons themselves, but the type of macroscopic
instrument with which the photons interact. Thus, when we
record a photon transmitted by a polarizer with its axis lying
along the x direction, we cannot maintain that the photon
was x-polarized prior to entering the polarizer.'” The results
of the experiment depend on the experimental procedure, by
analogy with the length of an object in the special theory of
relativity.>1°

The unique and exhaustive characterization of the scat-
tered field after the passage of a given pump field is its state,
i.e., its membership in some particular statistical ensemble.
When the pump and the crystal are stable, we may suppose
that a particular purestate |2) is prepared during each pump
pulse (fluctuations in the pump or crystal parameters lead to
a mixed state which can be detected by measuring the vari-
ance of the number of counts in several series of trials).

The state vector |2) = §|0) is thus the objective and
maximally complete characterization of the field that is in-
variant under the measurement procedure. It does not de-
pend on the coordinates of the detectors or lens parameters,
and is determined entirely by the “preparing” part of the
system, i.e., the pump and the crystal. As a result, the field
does not have any space-time structure. The structure
emerges as the “‘diphoton field” F,, in the eight-dimensional
space x,'x, only after the lens parameters have been speci-
fied, and as the effective field & , in ordinary space-time only
after the coordinates of one of the detectors have been fixed.
We emphasize that F,, is a collective characteristic of both
photons, which otherwise have no structure. We may sup-
pose that, at ¢, = ¢,, F,, plays the part of the diphoton wave
function in the coordinate representation.?* We note that the
expression given by (4.6), looked upon as a function of the
single argument x, (or x,), satisfies the wave equation, and
its modulus changes little within the coherence intervals.

1t is clear that the information encoded in |2) and F,, is
objective in character because it is determined by the macro-
scopic definition of the experiment and is therefore the same
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for all observers and is independent of their presence or ab-
sence.

The experiment illustrated in Fig. 1 clearly demon-
strates the complementarity principle and the idea of indi-
rect quantum-mechanical measurement. In each trial in the
interval 7,...t, (i.e, so long as the diphoton is “on the
way”’), the concept of transverse coordinates q and mo-
menta p of the photons has no operational meaning. It is only
the detection of a photon in detector 1’ that enables us to
assign its twin a definite coordinate q, = q, of the point of
creation (of course, only to the extent allowed by diffrac-
tion). In the same trials in which detector 1 “fires,” the sec-
ond photon “acquires” a definite transverse momentum
p. = — p,. By displacing detector 1 from the near zone to
the far zone, we can form photons of an intermediate type,
with arbitrary wavefront curvature.

In a system incorporating a shutter, the latter can be
controlled by detector 1 or detector 1’, as desired, and the
shutter can be operated in the inverval 7. . .f, (“retarded
selection” experiment'?). From the point of view of “local
realism,” the photons acquire a particular wavefront shape
after creation.

Complementarity manifests itself here in that the emit-
ted photon cannot have simultaneously a plane and a spheri-
cal wavefront. The question “what happens to the field at the
time ¢, of the count?” is usually either refused by the follow-
ers of the Copenhagen school,'” or they say that there is a
change not in the field, but only in our information about it.
The potential possibility (in our case, the possibility that the
photons can have a spherical wavefront with any curvature
that can be described by a function of two arguments F,,)
becomes areality'? in the form of one of the alternatives ( the
function F, for fixed x, ). This change in information is con-
veniently described as the reduction of the wavefunction.

11. REDUCTION OF WAVE FUNCTION

In a photon-counting experiment, a reduction can be
visualized as follows. Suppose we measure the correlation
function

K, = (2|E7f (t,) EYP(2). (11.1)
Iff (t,) = E{"’E{*’, thenK,,is equal to G,, and describes
the correlation between the counts produced by the two pho-
ton counters (in principle, f'can also be a multiple-time oper-
ator). The averagein (11.1) is evaluated over the time-inde-
pendent state |2) of the free field, prepared at t < ¢, ,, and the
operators are taken in the interaction representation.
The definition (11.1) can be rewritten in the form

Ko=1f )|y, )= E{"(2). (11.2)

This form of the correlation function (it is also suitable for
t, < t,) enables us to use the following treatment: at the time
at which the count appears in detector 1, the initial state of
the field |2) is transformed by the operator E { *’ into a new
single-photon state |1), and the observable fis then deter-
mined by this new reduced state.'®

We must now stipulate that, usually, the word “reduc-
tion” is used in quantum mechanics in a somewhat narrower
sense, i.€., it is taken to mean the result of the reaction of the
measuring instrument on the wave function when the instru-
ment shows a particular value of some observable (the re-
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duction is then formally accomplished by the operator
|&){#|). Here, the detector no longer measures the field
strength, so that |1) is not the eigenstate of the operator &
(i.e., it is not coherent).

According to (11.2), it may be considered that, when
detector 1 produces a count in the system incorporating the
shutter, the system prepares the field in the pure single-pho-
ton state |1), i.e., it radiates a photon with a known space-
time structure (Fig. 8). In momentum representation, (3.1)
and (3.4) show that this state is

1) =2 1k k|1,

k

(11.3)
where

) , (o)t ~ ik
k)= D) ul? (z }kek'|2) = 5 Ks Dgem ™o
"

and |k)=a."]0) =|1),]|0),... . In contrast to |2), the
state |1) is not normalized and does not have the vacuum
component |0). The latter means that the photon is definite-
ly emitted [but, according to (11.3), its momentum is unde-
termined]. If we apply the operator E {*’ to (11.3), and use
(3.1) and (4.6), we obtain |0)F,,, which is in accordance
with the previous results.

When VR V_,, we must integrate (11.1) over all
points x, in the detector with a certain weight 77(x, ). Replac-
ing the integral with the sum, we obtain

Kyp=210(2) Kip=Splp (t) f (t)], (11.4)
where
0 (h)z? [1yn(zy) (1] (11.5)

is the diagonal matrix with elements 7 (x,), which plays the
part of the density matrix for the output field. We may there-
fore suppose that, in the general case, the scheme incorporat-
ing the shutter prepares the field in the mixed state that is
determined by the density matrix (the weight of the different
pure states |1)).

It is natural to consider the reduction |2) —|1) and the
transformation from the joint probability P(x,,x,) to the
conditional probability P(x,|x,) as a change in the way we
see the role of detector 1: the detector and shutter (if pres-
ent) are then looked upon not as the measuring part of the
system, but as the preparing part. This approach immediate-
ly exposes the weak link in the EPR paradox, i.e., when we
measure g, and p,, we are dealing with different states {1)
and |1),  of photon 2, whereas the uncertainty relation con-
nects the parameters of a single state.

When the shutter is absent, detectors 1 and 2 are equiva-
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FIG. 8. Transmission of information by modulation of the photon
state vector: a—transmission using a binary code [““1” and ““0” are
transmitted when photomultipliers 7 and /' are connected to the
optical shutter (OS), respectively; M—modulator used to switch
the photomultipliers, DL is the delay line]; b—transmission of a
two-dimensional image in which the transparency T is imaged
(with allowance for reflection by the crystal) on the photocathode
of an image converter (IC), opened only when a count is produced
at the photomultiplier output.

lent and it may turn out that the function |1), (like &,) is
subjective because it reflects only the information possessed
by observer 1; from the point of view of observer 2, on the
other hand, we have a different reduction, namely, reduction
to the function £ §*°|2) =[1),,. This terminology does not,
however, take into account the operational significance of
the symbols, namely, that the actually observed quantity,
i.e., the number of coincidences m, given by (5.2), requires
the counting of the readings of both detectors. The introduc-
tion of the functional |1}, signifies simply a different se-
quence of the evaluation of the moment G,,, which is sym-
metric in the indices 1, 2. The functions &, and &,
correspond to different normalizations of the number of co-
incidences, i.e., m,,/m, and m,,/m |, that can be interpreted
as the conditional probabilities P(x,|x,) and P(x,|x,). The
apparent subjectivism, due to the asymmetry in the indices 1,
2, is removed by the statistical nature of the predictions of
quantum mechanics.

The description in terms of reduction (the |2) —|1) re-
placement) and the influence through the past (fixed argu-
ment x, in the function F|,) are, of course, mathematically
equivalent. However, since the reduction occurs “instanta-
neously” at the time at which the count is recorded, and the
wave function describes the field throughout space, it would
appear that we are again dealing with nonlocality, this time
action at a distance® (instead of the “telegraph into the
past,” we now have the “‘superlum:inous telegraph”). How-
ever, if we look upon the wave furction simply as informa-
tion, a change in this function is not a process in real space-
time, so that the reduction is not a manifestation of
nonlocality (a change in the infor.nation that we have when
we receive, say, a telegram can, of course, cover space-like
intervals, as well). This point of view is supported by the fact
that information cannot be transferred at superluminous ve-
locities in EPR-type experiments.

12. QUANTUM CORRELATION AND THE TRANSMISSION OF
INFORMATION

The fact that the system incorporating an optical shut-
ter enables us to control indirectly the structure of each emit-
ted photon by manipulation in the reference channel, can be
looked upon as providing a new method of modulating light
(““quantum modulation” or ‘“modulation of state’”). Figure
8a illustrates an application of this method to signal trans-
mission in binary code. It is clear that two-dimensional im-
ages can also be transmitted and can be recorded with the
help of an image converter in which a controlling electrode
replaces the optical shutter (Fig. 8b) and performs partial
frequency modulation. Modern electronics can readily cope
with an average photon-counting rate of about 10°s™ ! in the
modulator, which produces a comparable flux of photons at
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exit from the shutter. If the beam cross section is of the order
of 1 cm?, this flux can readily be recorded on the screen of an
image converter, or even directly by eye.

Experiments such as those illustrated in Fig. 8 can be
treated as the selection by the detector of a certain subensem-
ble of diphotons but, here again, it is natural, for the sake of
uniformity, to adopt phrases such as “reduction” or “modu-
lation through the common past.”

We emphasize that, although the time at which each
successive pulse appears is a random quantity, the transmis-
sion of information in the presence of a shutter is not, in
principle, a random event: when 7, = 1 and the aperture of
the receiving detector is large enough, each modulator pulse
in Fig. 8a is accompanied, with suitable delay, by a pulse at
the output of detector 2 or 2'. It is only when 5, < 1 that
photon-counting statistics contribute a Poisson noise to the
transmission. The possibility of transmission of information
with superluminous velocity was considered earlier in con-
nection with EPR experiments (Refs. 8 and 46). Actually,
the formula given by (6.1) involves the field propagation
functions D(x,,x), so that the events x, x, rely on the same
light cone with apex at x inside the crystal, i.e., they are
separated by a space-like interval (Fig. 4). The “influence”
of x, on x, must therefore propagate with superluminous
velocity.

However, even if we admit the instantaneous nature of
the reduction process, or the existence of influence through
the past, the “superluminous telegraph” is still unattainable.
This is clear from Fig. 8a: in the absence of the shutter, detec-
tors 2 and 2’ will “‘fire” independently of the position of the
modulating switch, and there will be no transmission of in-
formation. We need the shutter to select at the output of the
transmitter the sequences of units and zeros defined by
switching detectors 1 and 1. When the shutter and the opti-
cal delay line in channel 2 are both present (the latter is
necessary to compensate for the delay in the electronics), the
time taken to transmit information between the shutter and
the receiver of information is determined by the velocity of
light (Fig. 4).

If we wish to detect the correlation between counts pro-
duced by the two detectors in the absence of the shutter, we
must connect them in the usual way to a coincidence circuit.
The event ‘‘coincidence of pulses” is then separated from the
point of transmission by a time-like or space-like interval.

13. CONCLUSION

We must emphasize once again that the choice between
theinterpretations examined above (except for the model of
choosing the subensembles) is a matter of taste, since they
are all operationally equivalent to (6.1) and there is no
doubt that experiment does not enable us to identify which is
to be preferred. The great wealth of experience accumulated
by experimental quantum physics is evidence for the “vic-
tory of formalism against modelism.”*® In Feynman’s

words,® *“for many people . . . this circumstance [i.e., the
absence of a procedure for measuring the attributes of a pho-
ton—D.K.] is very worrying . . . . However, in all probabili-

ty, nature does not notice this paradox.”

There is, naturally, some doubt as to the usefulness of
an examination of interpretations that do not admit of an
experimental confirmation or refutation. On the other hand,
we must admit the potential usefulness of some treatments
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(and of the related interpretational or semantic paradoxes)
in education, in the development of physical intuition, in the
refinement of terminology and of concepts, and in the un-
avoidable process of change in existing paradigms (a well
known historical example is provided by Faraday’s lines of
force). For example, the treatment involving the advanced
wave enables us to predict qualitatively the results of differ-
ent experiments with diphotons, using conventional optical
ideas (Fig. 6).'Y

Essentially, the EPR paradox has two aspects, usually
examined separately: the contradiction within the formal-
ism of quantum mechanics, formulated in Ref. 1 (apparent
violation of Heisenberg’s inequalities) and the conflict with
“common-sense” (violation of Bell’s inequalities). The lat-
ter contradiction is a true paradox, demanding the abandon-
ment of “local realism” and “hidden determinism” in favor
of the Copenhagen interpretation (or, if you like, action at a
distance). It has been estimated*® that these two aspects
have been discussed ~ 10° times.

Nevertheless, it seems that the model proposed here de-
serves attention since the case of the continuous spectrum
leads to a clearer picture of the two contradictions. It may
also be found useful in the teaching of quantum physics.
Finally, we note the simplicity of the system: it does not
require vacuum technology or tunable lasers.

Several experiments with two-photon radiation were
carried out in the recent past.®' They can also be described
by formulas such as (6.1) and, accordingly, can be clearly
interpreted in terms of advanced waves. We note the experi-
ment of Rarity ef al.,>? which implemented the idea of the
generation of a controllable number of photons, using spon-
taneous parametric scattering and an optical shutter.'®?
We also note the bibliographic review of recent work on the
EPR paradox and the interpretation of quantum mechanics,
given in Ref. 53.

The connection between stimulated parametric scatter-
ing and the EPR paradox first emerged in the course of a
discussion of the coherence properties of the SPS field with
R. V. Khokhlov in 1976. Sadly, this was our last discussion
... . However, ever since then, I have continued to think
about this connection, and have come to the conclusion that
macroscopic nonlinear optics, which owes so much to
Khokhlov, offers us an unusual possibility of elucidating the
basic concepts of quantum mechanics in optical terms famil-
iartoall. At any rate, I now know exactly what a photonis: a
photon is the entity designated above by the symbols & (x;)
and |1), which can be prepared in a pure form by stimulated
parametric scattering.

In conclusion, I wish to thank V. B. Braginskii and G.
Ya. Myakishev for fruitful discussions.

1 Based on a paper read by the author to a seminar held in memory of
R. V. Khokhlov at Moscow State University on 23 May 1986.

2> We can proceed to a more general case by averaging the final results
with the aid of the P-representation of the density matrix.'*

3 We use this designation to distinguish the real multimode state |2) from
the stationary basis state with two excited modes, |k-k').

) In the case of the far zone, (4.7) gives a result equivalent to (3.6). The
effect of lenses, prisms, mirrors, etc., is taken into account by replacing
plane waves in the expression given by (4.2') for the Green’s function
with the eigenwaves of the corresponding boundary-value problem.

) In some crystals with large birefringence, the two photons in the pair
can have different polarizations (phase-matching of the form ki = kS

+k3).
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® This means that a field in a given trial belongs to a certain statistical
ensemble of fields described by the wave function |2).

7 Separability implies the absence of superluminous influence.

8 We note the similarity between (6.1) and the Feynman perturbation
theory formulas, in which it is assumed that positrons [in our case,
negative-frequency field '] are electrons propagating backward in
time (see Refs. 36, 39, and 40).

%) There does not appear to be unanimity as to precisely what the Copen-
hagen interpretation is supposed to be. Sometimes, it is understood to
mean a general conjunction of the views of Bohr and Heisenberg.*'4748
Cramer*' has formulated the Copenhagen interpretation in the form of
five basic concepts, including the interpretation of a wave function as an
expression of an observer’s information and reduction as a change in
this information. He also gives a detailed analysis of the weak (includ-
ing subjective) points of the Copenhagen interpretation, and proposes
an alternative interpretation (see also Refs. 48-50). The most common
is undoubtedly the objective variant of the Copenhagen interpretation,
which, to use Einstein’s expression, denies the necessity of an observer
for the existence of the Moon.

192 1n the case of single photons, all that we can say is that the photon had
some particular polarization. On the other hand, if it was created to-
gether with another photon, then even this statement has no meaning.

' 1t is, of course, possible to describe the interaction of the field with
detector 1 in terms of formal quantum theory, but this provides us with

a common wave function for the field and the detector and, if we do not
postulate reduction (which enables us to speak of the wave function of
a single field), the question posed above remains unanswered.

12 Similar ideas, developed by Heisenberg, can be traced back to Aristotle
(see Refs. 7, 10, 48, and 50).

13) The effective wave function | 1) describes the state of the second photon
after the count. Prior to the count, the photon did not have “its own”
wave function, i.e., it was in a mixed state,

' An interesting treatment of different quantum-mechanical paradoxes,
using an “‘advanced wave function” W"(x) in the coordinate represen-
tation, propagating in real space, has recently been developed by
Cramer.*' We hope that the realistic experiment proposed here, with
its transparent formal description provided by (6.1), will serve as a
good “touch-stone” for this and the others treatments described in Ref.
41 (we note that it is incompatible with the “neoclassical” field theory;
see Refs. 9 ad 24).
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