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The development of modern technology to produce
semiconducting materials with superstructures is without a
doubt based on physical advances. Yet conversely this tech-
nology has become one ofthe main sources of new research
fields in semiconductor physics. One such new field is me-
soscopic physics1—the physics of intermediate-sized semi-
conductor superstructures. The word "superstructure" re-
fers to the fact that in addition to the periodic potential ofthe
crystalline lattice there exists in the system an additional
potential, which is usually periodic as well. The characteris-
tic scale and period ofthe additional potential are much larg-
er than the lattice constant, so this potential may be de-
scribed by macroscopic parameters, such as the permittivity.
At the same time the potential scale is small enough for the
existence of quantum size effects. In semiconductors the
quasiparticle effective masses are usually much smaller than
the free electron mass, whereas the Coulomb interaction
between the quasiparticles is weakened by the permittivity.
Consequently, the characteristic interaction energies are
much smaller than atomic energies and corresponding
length scales reach ~ 102 A—the scale at which semicon-
ductor superstructures may be described as mesoscopic.

Until recently experimental limitations confined physi-
cists to studying semiconductor superlattices with a one-di-
mensional additional potential. The concept of such a super-
lattice was originally formulated by L. V. Keldysh in 1962,
when he suggested that the periodic crystalline potential be
modulated by an intense ultrasound wave.2 In 1970, L. Esaki
and R. Tsu proposed3 and subsequently realized a composite
superlattice—a superstructure produced by thin alternating
layers of different semiconductor materials. In 1978, R. Din-
gle, H. Stormer, A. Gossard, and W. Wiegmann succeeded
in selectively doping the superlattice4 by intentionally dop-
ing selected superlattice layers. In 1981, K. Ploog, A.
Fischer, G. Dohler, and H. Kunzel were the first to create a
doped superlattice5 in which the additional potential was
introduced to the superconductor matrix by one-dimension-
al periodic modulation of donor and acceptor distributions.
To date so many papers have been published on the subject of
superlattices that even a list of review articles only would
amount to a sizeable bibliography. A detailed discussion of
this topic may be found in Refs. 6-8.

The 1980s witnessed the first attempts to create a more
complex additional potential in the superlattice. Petroff and
co-workers9 were the first to realize experimentally the so-
called "thread-like quantum well structure"—a system of

semiconducting GaAs threads of up to 200 X 200 A in cross-
section imbedded in a Ga Ux Al^ As matrix. Carrier motion in
such a system is quasi-one-dimensional. Other recent results
in the field include the creation of a "surface superlattice" in
the inversion layer at the Si-SiO2 interface,10 deposition of a
GaAs/GaAs,.^Px superlattice with controlled variation of
composition x in the plane of the layers,11 as well as the
production of two-dimensional heterostructure islands with
in-plane diameter of —50 ^m12—the so-called "quantum
discs," and so forth.

The possibilities of creating thin structures with ever
smaller elements and ever more complex geometries have
prompted many designs of new electronic devices: devices of
minute size, working at higher speeds, requiring less power.
In his introduction to a collection of papers [Ref. 8] L. Esaki
termed the groundswell of activity in this field "the rebirth
of semiconductor physics."

The concept of a "superatom"—a quasiatomic semi-
conductor heterostructure, first suggested by H. Watanabe
in 1986, may prove quite important for the evolving "submi-
cron" electronics.13 In this paper we wish to discuss this
concept, indicate the usefulness of quantum-mechanical
theorems for superatomic calculations, and touch on the
possible practical applications of these structures.

The superatom can consist of a selectively donor doped
spherical semiconducting nucleus surrounded by an un-
doped semiconductor matrix with a smaller band gap. Do-
nor electrons then escape to the matrix and the nucleus ac-
quires a positive charge determined by the number of donors
Z. Depending on the density of donors in the nucleus, given a
reasonable nucleus diameter d~ 100 A, the quantity Z may
reach several tens and even come to exceed the atomic
numbers of all known elements in the periodic table. The
minimal diameter of the nucleus required for a mesoscopic
description is ~ 30 A.

The first concrete computation of a superatom with an
AIQ 35 Gao 65 As nucleus and a GaAs matrix was carried out
in Ref. 14.

The superatom is described by the nonrelativistic
Schrodinger equation

(1)

where * is the radial part ofthe wavefunction, E is the ener-
gy of the system, / is the orbital quantum number, r is the
distance from the center of the nucleus, h is Planck's con-
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stant, and m is the mass of the particle. In the case of a
superatom the appropriate m is the effective electron mass,
which may be different in the nucleus and the matrix.

The effective potential V of the superatom in (1) is
spherically symmetric and consists of the following terms:14

V(r) = V0-d(r0-r)+ Vn(r)

+ VH^Ar) + Vxc(r); (2)
where r0 is the radius of the nucleus, Vo is the positive con-
duction band discontinuity between the nucleus and the ma-
trix,

B(x) = 0, x<0,

and Vn is the potential of the ionized donors. The Hartree
potential FHartrec (r) and the exchange correlation potential
Vxc (r) are calculated using the customary approximations
of the interacting electron gas theory. The main difference
between the resulting potential and the potential of a heavy
atom15 consists of the following: the diameter of the nucleus
is comparable to the entire extent of the superatom and
hence there is no singularity at the origin. Consequently en-
ergy levels with higher orbital numbers /, for which the
wavefunction peaks further away from the nucleus, are fa-
vored over the s-states.

In Ref. 14 the calculation was carried out with param-
eters r0 — 120 A and Z = 20 and resulted in the following
ordering of levels: Is, 2p, 3d . . . , as opposed to the usual
atomic ordering of Is, 2s, 2p, 3s, 3 p , . . . The potential V(r)
corresponding to these parameters is plotted in Fig. 1. Var-
ious level configurations can be obtained by varying the pa-
rameters r0 and Z. For example, r0 = 120 A corresponds to
the ground state of Is22p63d'°2s2 for Z = 20, whereas r0

= 170 A corresponds to the ground state of Is22p63dio2f2 at
that same Z. The superatomic radius, nominally established
by the peak of the radial wavefunction V2i (r) of the 2s state
(Z = 20, r0 = 120 A) is sr 355 A, about three times larger
than the radius of the nucleus. This sample calculation indi-
cates that the properties of the superatom can vary widely
depending on the potential V(r), so it is helpful to get a
picture of how the form of V(r) affects the state of the sys-
tem.

Here we direct the reader's attention to the fact that an
analogous quantum-mechanical problem was studied quite
extensively in high energy physics and the results obtained
there could prove helpful for our semiconductor physics
problem.

The problem of establishing general rules for the energy
ordering of quantum-mechanical levels in a spherically sym-
metric potential arose in the field of heavy quarkonium spec-
troscopy, quarkonium being a bound quark-antiquark state.
There maSs m in formula (1) is the reduced mass m = m,
m2/(ml + m2) of the quark and antiquark masses m, and
m2, and V is their binding potential. Naturally, the quark
masses are many orders of magnitude heavier than semicon-
ductor quasiparticle masses, the energy scales are corre-
spondingly different. For instance, the masses of c-quarks
that make up J/ty particles (bound states of an c-quark with
an c-antiquark) are about 1.8 GeV, the mass of b-quarks that
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FIG. 1. Superlattice potential given by formula (2).

enter into ^-family particles is ^ 5 GeV, and the mass of the
hypothetical sixth t-quark is predicted to fall in the m, > 45
GeV range. Accordingly the binding energies and character-
istic length scales that determine the properties of such sys-
tems are of the order of E~ma]~QA GeV, r~(m as)'

{

~0.1 fm at a =s0.2 and m;=50 GeV. But the qualitative re-
sults cited below do not depend on these values.

A number of quantum-mechanical theorems on the or-
dering of E(n, I) levels, where « is the principal quantum
number and / is the orbital angular momentum of the system,
have been proved in recent years.16 The main criterion that
determines the relative ordering of the levels is the curvature
of the potential as compared to the Coulomb potential
curvature

V l

'Coul •
(3)

The following theorems have been rigorously proven:
I. Depending on the sign o/Ar Vthe following conditions

are fulfilled:

E (re, l-i)>E(n, I),

if

and, conversely,

E (n, I — 1)

if

(4)

E (n, I), (5)

F 1 < 0 , V r > 0 .

The case F, = 0 corresponds to the Coulomb potential
in which the energy levels are accidentally degenerate: E(n,
I — 1) = E(n,l). Examples of potentials that correspond to
conditions (4) and (5) are illustrated in Fig. 2.

II.

E (n, l)> E (n + 1, 1 + 2) (6)

V r > 0 '
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FIG. 2. Comparison of Coulomb potential (1), potential corresponding
to condition (4) (2), and potential corresponding to the opposite condi-
tion (3)

if

Y2 < 0, Vr > 0.

The case Y2 = 0 corresponds to the harmonic oscilla-
tor potential Fosc ~ r2, in which case E(n, I) = E{n + 1,
1+2).

In the perturbation theory approximation a number of
other relations between neighboring levels havrteen estab-
lished; in particular

III.

2E (n, I + 1) Sg E (n — 1, I) + E (n, I), (8)

depending on the sign of

Y2 ^ 0, Vr > 0.

IV.

E (re + 1, I) — E (n, I = 0)

^ E (n, I = 0) — E (n — 1, I = 0 )

depending on the sign of

(9)

dr

Vr > 0 and u = 0.

There are grounds for believing theorem III to be valid
without perturbation theory approximations. Theorem IV,
on the other hand, loses its validity if the perturbations that
disturb the monotonic character of potential Fare large.

The above results apply only to potentials that have de-
rivatives Y, of definite sign. Potential (2) that is drawn in
Fig. 1 exhibits a particular behavior which we describe by a
^-function or, simply, step function. In this case the quanti-
ties Yj defined above change sign at the point r = r0.

But the ^-functional potential was precisely the one
proposed in the calculation of spectroscopic characteristics
of heavy quarkonium with the aim of treating phase transi-
tions that take into account the dynamical nature of quark
mass.17 The effect of the step function parameters on the
energy levels and wavefunctions of the system can be evalu-
ated either numerically or by perturbation theory methods.

The author of Ref. 18 used perturbation theory to calcu-
late the effects of a model potential

Vl(r) * - 4 ~ (10)

The potential F, is plotted in Fig. 3. It should be noted that
the step in F, is opposite in sign from the step in the potential
(2), but in the perturbation theory approximation all level
shifts are proportional to Fo, which determines their sign.
The opposite cases of (2) and (10) correspond to a potential
"core" or "well" at the origin respectively.

The shift in the energy difference between 2s and Is
levels in the field of potential (10) is expressed by the for-
mula

A (E2S- Eis) = -§-

( ID

in Coulomb units with r0 measured in units of Bohr radii
aBohr = tf/mB- The shift (11) is always positive and peaks
in the neighborhood of r0 ~ 2. Consequently, in the field of
potential (10) the ^-function always increases the energy
difference between 2s and Is levels, whereas in the superato-
mic potential (2) the energy difference is diminished.

The splitting of the 2s and 2p levels in potential (10) is
more complicated and relevant to our problem:

12
» — Z)fi-ro. (12)

At r0 = 2 the Coulomb degeneracy E2s = E2p persists. If
r0 < 2 the 2s level lies below the 2p level. But in the superato-
mic case Fo is negative and at sufficiently small rQ the 2p
level lies lower.

At this point the reader might reasonably ask whether
this derivation contradicts the results of Ref. 14 (discussed
earlier in this review), wherein the f-states come to be fa-
vored over the s-states as the dimensions of the superaiom
increase. It so happens that the above analytic results apply
to p-states, while the case of the f-states requires additional
analysis. Furthermore, calculations taking Fo as a perturba-
tion parameter lose their validity in the case off-states, when
Fo becomes comparable in magnitude to the total potential

In the field of a more complicated trial potential

(13)

7. GeV

FIG. 3. Plots of potential K, (10), potential V (13), and potential Vu

used in calculating the properties of heavy quarkonium.
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the energy splitting of the 2s and 2p levels is described by the
expression1

En ABim-
6/H ^2 \_'o v o <^

-f
imA
3/i2

8mA

34_ 4

3 o > 3 _ j o , _ p ,

(14)

where C is Euler's constant, E^x) is the exponential inte-
gral.

The second term of the potential (13) represents a re-
pulsive core at the origin. It introduces into the splitting
(14) a constant positive term AB2m2/6fi4, as well as shifting
the zero of (14) towards higher values of r0 > 2. Expression
(14) is qualitatively similar to (12) and reduces to the latter
expression if A = 0. Consequently, in the case of the poten-
tial (13), a repulsive core also makes the 2p level relatively
more favorable.

In addition, we have carried out numerical calculations
for the Vn potential, which is sketched in Fig. 3. This poten-
tial is much more realistic in the quarkonium problem than
the model potentials Vx and V that could be handled by
perturbation theory. This potential is characterized by the
following behavior: Vn{r) ~r~^\n{Ar) as r — 0 and Vu

{r)~ar as r^ oo, where A = 0.1 GeV and a~Q.2 GeV2 are
dimensional parameters. At the matching point rQ of the two
asymptotic expressions there is a ^-function singularity
which corresponds to a transition from a phase with chiral
symmetry to a phase without such symmetry.

The 2s-Is level splitting in this potential is determined
mainly by the location and height of the step (the system is

"confined" to a narrow and deep potential well. The
ns — (n— l)s level splitting is determined by the well
width, whereas the depth fixes the number of approximately
equidistant levels in the well). The 2s-Is level splitting ex-
hibits the following asymptotic behavior. As r0 — 0, regard-
less of the step height Vo, the splitting tends towards typical
values for a smooth quarkonium potential: E2s — Els

x700:800 MeV at mq ^45 GeV.20 At higher r0 the rate at
which the r0 -> oo asymptotic behavior is approached de-
pends strongly on the step height. At Vo = 0 the part of the
potential that determines the property of low-lying bound
states is dominated by the "soft" term (proportional to r ~'
ln( Ar)) in the interactional potential—therefore E2s — EH

tends towards values appropriate for this term, E2s — Els ~
550 MeV. At Vo — 600 MeV this asymptotic behavior is
reached much later, because the 2s-state, which has a mean-
square radius <r1>2s

U2 zz 0.17 fm at mq = 45 GeV, is
"squeezed out" towards higher E2s values by the step.

The 2s-2p level splitting is more complicated in the Vu

potential, just as in the 2s-Is case, the energy level splitting
decreases with step height Vo. The dependence of the split-
ting on the ^-function character of the potential is no longer
monotonic, however. In the r0 -» 0 limit (smooth potential)
we obtain splittings similar to those produced in spectrosco-
py by standard quarkonium potentials: A(£'2s — E2p)
= 800 MeV at mq = 45 GeV. (This limit is not yet reached

by thecurves plotted in Fig. 4.) As for the r0 -> oo limit, the
2s-2p level splitting, like the 2s-Is splitting, tends towards
values characteristic of the F-~r~1ln(Ar) potential, E2s

— E2p ~ 130 MeV—in this limit the mean-square radii of
bound states are <r2> 1/2 < r0 and the "soft" potential
asymptotic behavior dominates. For the same reasons as in
the 2s-Is case, the rate at which asymptotic values of E2s

— E2p are approached depends strongly on the height Vo of
the ^-function term: the asymptotic behavior is approached
markedly slower at Vo = 600 MeV than at Vo = 0. The
values of A(E2s — E2p) at intermediate r0 have a sign-
changing functional dependence, which is plotted in Fig. 4.

"'CO -

. MeV

zoo

zoo

'00

£zs~ ?ZP. MeV

y

v0

/
/

= 600 MeV

300

n

0. OS 0.10 rg.\m

-O.IVn-

0.05
F I G . 4. Energy level splittings E^ — E l s (a) and E2s

- E2p (b) in potential r , , , and E2, - E2 p (c) in potential
(10) .

o: Coul. units

71 Sov. Phys. Usp. 31 (1), January 1988 E. A. Andryushin and A. A. Bykov 71



Clearly the quantitative disagreement between the results
plotted in these figures is due to the analytic model potentials
and perturbation theory techniques—invalid in many re-
gions—used in their derivation.

The behavior of the system wavefunction at the origin is
also of interest. From the virial theorem of quantum me-
chanics, which states that the mean value of the kinetic ener-
gy depends on the potential gradient in the following man-
ner:

(15)

we obtain

Consequently, the ^-function singularity in the potential in-
creases | * (0 ) | 2by

A|*(0)|2 = m |¥ (ro)|2r;Fo. (17)

The presence of the ^-functional singularity can markedly
alter (from the case of a smooth potential) the relation

especially at small « and large quark masses. This happens,
obviously enough, because at small n a fraction of the levels
lies inside the step (mean-square radius of these states is
smaller than r0), while other levels lie outside (their mean-
square radius is larger than r0). Calculations show that, giv-
en wqss45 GeV, |¥ (0) | \J | * (0 ) | 2

ls ;=: 0.5-0.6—twice
the "standard" ratio | * (0 ) | 2

2s/ | ¥ (0 ) | 2
ls s 0.25-0.3 ob-

tained from smooth potentials.
The numerically calculated results of | * (0) | 2 behavior

in the field of potential Vn as a function of position r0 and
magnitude Vo of the ^-singularity are plotted in Fig. 5,
whence it follows that the dependence of |*(0) |2 on param-
eters r0 and VQ is practically monotonic.

One final remark on the absolute values of the level en-
ergies in a step-containing potential as a function of particle
mass. According to Feynman's theorem the following rela-
tion is valid

dm dr

The presence of a ^-singularity in the interaction potential
increases the dependence of the energy of the system on par-
ticle mass (see potentials F,, V,, of Fig. 3). In the case of
superatomic potential (2) with a step of the opposite sign the
energy becomes less dependent on mass. We expect quar-
konium spectroscopy will succeed in measuring the relations

(dE/dm)2B • (r dV/dr),,
(dE/dm)ls ~ (rdK/dr),g

for the first two levels in the charmonium, bottomonium,
and toponium families; like the ratio of |*(0) | 22s/ |*(0) | 2

ls, these results will shed light on the position and magnitude
of the ^-singularity in the potential.

Planned experiments on SLC and LEP e + e " accelera-
tors, which will come on line between 1987 and 1990 prob-
ably will make possible a detailed investigation of the spec-
troscopic properties of toponium family particles. These
data will clarify the behavior of the quark-antiquark interac-
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FIG. 5. Dependence of |¥(0) | 2U on the position of the ^-function singu-
larity in potential Vn.

tion potential at distances < 0.1 fm and yield information on
the dynamic behavior of quark mass. Measurement of 2s-ls
and 2s-2p splittings with ~ 100 MeV accuracy (bottomon-
ium levels can be determined with accuracy of ~ 0.5 MeV),
together with measurement of the |¥ (0) | 2

2s/ | * (0 ) | 2
ls

ratio with ~0.10-0.15 accuracy (in bottomonium this ratio
can currently be measured to 0.08 accuracy) will be suffi-
cient for this task.

The reason we have discussed the general theorems and
their application to the quarkonium system in such detail is
that they can prove quite helpful in understanding the prop-
erties of superatoms as well, once the appropriate scale
changes are implemented.

Let us now return to the prospects of modelling systems
with spherically symmetric potentials in solid state physics.
Interestingly, the problem (1) has recently found yet an-
other application. The authors of Ref. 21 experimentally
measured the mass distribution of Na atom clusters. Among
clusters of 4 to 100 Na atoms the main distribution maxima
occured at N = 2,20,40,58, and 92. This led to the observa-
tion that a cluster resembles a giant atom and the indicated
numbers correspond to completely filled shells. This idea
was confirmed by computation in Ref. 22, where equation
(1) was solved using an average potential that takes into
account electron screening of the cluster charge and elec-
tron-electron interaction. Generally speaking such clusters
only nominally resemble atoms, since ions in a cluster are
much less mobile than nucleons in a nucleus. Besides, the
dimensions of a cluster with respect to the entire system are
much larger. Still, in the case of alkali metals the ionic field is
effectively screened by the valence electrons; after averaging
the potential can be taken as spherically symmetric and the
geometric structure of the cluster can be treated as a pertur-
bation.22

The resulting potential differs from expression (2) by
the absence of the first term—the discontinuous step—but
the derivatives Y, also change sign, and the calculated level
ordering ls, 2s, 3d, 2s matches the superatom. Modern tech-
nological capabilities will likely permit the production of
metallic clusters with yet more complicated types of poten-
tial F(r).23

In all, if the superatom concept is actually realized it
will become possible to construct systems with potentials
that are quite varied and distinctive in their properties. Elec-
trons in a superatom are bound to well-defined atomic orbi-
tals and localized in the vicinity of the artificially construct-
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ed nucleus. The superatomic ionization energy is ~ 1 MeV,
so the states can be perturbed by relatively small fields. The
creation of supermolecules, superatomic clusters and even
supercrystals will probably become possible. Furthermore,
the "supercrystalline lattice" can be created by design,
choosing its period and symmetry. This opens up the possi-
bility of studying the instability of the electronic subsystem
when lattice recrystallization is impossible. This could make
it possible to model and study physical effects that are diffi-
cult to realize in naturally occuring solids, for example the
Wigner crystallization of a low density electron gas.

Properties of superatoms can be as varied as those of
semiconducting materials.

The step height Vo and quasiparticle mass can be varied
over a wide range. It may also be possible to produce super-
antiatoms,13 in which the nucleus is doped with acceptors
and has a negative charge, with holes playing the role of
bound quasiparticles. Interesting applications have been
proposed for superatoms with all shells unfilled save the first
and with the maximum orbital angular momentum. A single
electron counter based on an ionized superatom has been
proposed.24 The possibility of constructing memory cells us-
ing superatomic structures was discussed in Ref. 13.

We hope that this article will draw further attention to
the described physical phenomena.
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