
Entropy, disorder, melting
S. M. Stishov

A. V. Shubnikov Institute of Crystallography, Academy of Sciences of the USSR, Moscow
Usp. Fiz. Nauk 154,93-122 (January 1988)

The connection of geometric or spatial disorder and entropy is examined. The formulation of the
problem of the entropy of a geometrically disordered system is asserted to make no sense if one
does not stipulate the method of "preparing" it. The nonergodicity of geometrically disordered
systems and the conditionality of their thermodynamic analysis are stressed. The relative
constancy of the entropy of melting of simple classical substances is explained by the weak
dependence of the entropy of a simple liquid on the number of particles involved in collective
motion and collectively utilizing the accessible space. Certain features of quantum and low-
dimensional systems are discussed.
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INTRODUCTION

The concept of "entropy" is associated in our minds
with disorder. However, we rarely consider the content of
the concept of "disorder" itself, and in hard cases we intu-
itively resort to images of spatial or geometric disorder. Yet
in fact, entropy, which by definition is the mean logarithm of
the statistical distribution function, can serve only as a mea-
sure of the uncertainty of our knowledge of the microscopic
state of a system of many particles. The term "disorder",
often associated with the concept of entropy, should be un-
derstood only in the sense that the microscopic state of a
system of many particles is fixed by a set of random quanti-
ties that can be calculated on the basis of probability laws.
The total entropy of a system, while characterizing the sta-
tistical "disorder", is not always directly connected with
spatial or any other order of the material. For this reason an
overall thermodynamic analysis cannot replace the analyti-
cal methods based, e.g., on the concept of the order param-
eter. However, owing to the fundamental nature of entropy
and the possibility of studying it experimentally, the study of
the problem of the connection of entropy with concrete dis-
ordering phenomena seems very important. Here the prob-
lem of spatial or geometric disorder merits special attention
in connection with the vigorous development of studies in
the field of amorphous and vitreous materials, liquid crys-
tals, and materials of low dimensionality.

A convenient starting point for discussing the problem
as a whole is the problem of the entropy of melting, to which
this article is mainly devoted. At the same time we shall take
up other questions that bear upon the problem being treated.

We should add that several monographs1"5 at different
levels have appeared in recent years that discuss to some
degree problems close to the theme of this article. The inter-
ested reader will find much supplementary information
there.

1. ENTROPY OF MELTING OF SIMPLE SYSTEMS

As is known, the entropy of melting of simple sub-
stances (i.e., substances consisting of particles having a
spherically symmetric interaction) undergoes relatively
small variations, and has a value of the order of the gas con-
stant R, or 1.95 cal/mole (Richard's law).67 An attempt to
explain this law was undertaken by Hirschfelder, Stevenson,
and Eyring in 1937 within the framework of concepts of
"collective" entropy8 (see Sec. 3), but it was criticized in a
study by Rice9 (see also Ref. 48). Rice's main argument
involved the results of early thermodynamic studies of the
melting of simple substances at high pressures, which ap-
peared to indicate that the entropy of melting varies substan-
tially upon compression.

Interest in the problem of melting arose again in the 60s
in connection with the technique of "numerical" experi-
ments based on fast computers and new experimental studies
at high pressures.10'" The real and the "numerical" experi-
ments confirmed the remarkable constancy of the entropy of
melting of simple systems.1 U 2

In 1973 a group of authors from the Institute of Crystal-
lography of the Academy of Sciences of the USSR13 studied
the interrelation of the entropy of melting AS and the rela-
tive volume discontinuity A V/ Vs for argon and sodium, and
established that: 1) the A5( A F / F S ) relationship is univer-
sal in form; and 2) the limiting value of the entropy of melt-
ingasAF/F s -0equa l s s0 .7 i ?o r~ i? In2 (Fig. 1). Subse-
quently this observation has been confirmed for other
examples and has been discussed in Refs. 14—24. An attempt
was undertaken16-2124 to extend the "In 2 law" to the melting
of alkali-halide crystals and the melting of the halide sublat-
tice in superionic phase transitions in the halides of the alka-
line-earth metals.

A very interesting situation was found in studying the
melting of the hydrogen (deuterium) sublattice in the hy-
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FIG. I. Interrelation of the relative volume jump A V / Vs and the entropy
of melting AS /R for Ar and Na." •'3 The solid dots denote the results of
"numerical" experiments in systems with an interaction of the form

l2

drides (deuterides) of the transition metals. In the systems
V-D and Ta-D as the metal-deuterium ratio approaches
unity, the entropy of disordering (melting) approaches a
value of the order of 0.7 /?.2 5 2 6 Curiously, the entropy of
"melting" of the electronic subsystem in magnetite Fe3O4

also proves to be very close to 0.7 R or R In 2 (0.65 .R 2 7 ) . ' >
The presented examples indicate that apparently the

problem of the entropy of melting is not local, but is closely
connected with a multitude of other phenomena ofconfigu-
rational disorder.

Thus the fifty years of development that have elapsed
from the time of the hypothesis of Hirschfelder et a/.8 have
led only to replacing the "In e" problem with the "In 2"
problem. Yet we must stress that the degree of closeness of
the experimentally determined asymptotic value of the en-
tropy of melting to the value In 2 remains unclear. In other
words, the approximate estimate ~0.7 R can imply with
equal success either In 2 = 0.69 or, e.g., 2/3^0.66 (on this
topic see Ref. 18). The fundamental importance of this prob-
lem is evident. Indeed, if we nevertheless are dealing with an
In 2 law, rather than simply with a number ;s0.7, then a
liquid is nothing other than a two-level system, and the solu-
tion of the In 2 problem reduces to seeking a satisfactory
picture of two different states of particles in a simple liquid.

2. LIQUID, GLASS, AND "RESIDUAL" ENTROPY

It is logical to seek clarification of whether the existence
of an excess entropy as compared with the crystal is a neces-
sary property of any spatially disordered state of matter.

One of the best known examples of disordered sub-
stances differing from a liquid is a glass. Formation of a vit-
reous phase occurs easily in a number of inorganic and or-
ganic compounds and metal alloys. Simple substances do not
form glasses under real conditions. However, in "numeri-
cal" experiments, where extremely large rates of supercool-
ing are attainable, glasses can be formed also in very simple
model systems.19'29"34

It is often stated that a glass possesses a quite finite so-
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FIG. 2. Heat capacity of ethanol in the region of melting and vitrifica-
tion.34

called "residual" entropy at a temperature of absolute zero.
What is this residual entropy? Let us study as an example the
behavior of the heat capacity of ethanol in the temperature
region of crystallization and vitrification34 (Fig. 2). Figure 3
shows also the corresponding data for a model system of
particles having an interaction of the form 4>(r) ~r~ '2 from
the data of "machine" experiments.32

As we see from Figs. 2 and 3, the heat capacity of the
liquid is always larger than that of the crystal in the super-
cooling region, while the difference in heat capacities rises
with decreasing temperature. As was first noted by Kauz-
man,35 this fact imposes a strong lower bound on the region
of existence of the liquid phase. Actually, the higher heat
capacity of the liquid implies a high rate of decline of the
entropy of the liquid upon cooling. Upon extrapolating the
heat capacity of the supercooled liquid into the low-tem-
perature region and calculating its entropy, we must con-
clude that a certain temperature Tc exists where the heat
capacity of the system must decline sharply. In the converse
case, unless something happens with the system on further
temperature decrease (crystallization or vitrification), the
entropy of the system at T = 0 will be less than that of the
crystal obtained by equilibrium crystallization (Kauzman's

Supercooled
Liquid

-2 inr*

FIG. 3. Heat capacity of a model system of soft spheres with ®r~r l2 in
the region of melting and vitrification.'2
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paradox). In fact the vitrification temperature is always
higher than Kauzman's temperature Tc (see Fig. 2). Conse-
quently the overall entropy change throughout the path of
cooling the liquid and glass from the melting point to T = 0
proves smaller than the entropy of the liquid at the melting
point. To maintain balance, we must consider that the en-
tropy of the glass at T = 0 has a nonzero value. This value
has been called the "residual" entropy. In order of magni-
tude the "residual" entropy of the glass amounts to an ap-
propriate fraction of the entropy of melting, but its concrete
value depends on the prehistory of the specimen (Table I).

For simple model systems in numerical experiments the
following values of the residual entropy of a vitreous phase
were obtained: system ofhard spheres 0.5 R 33; R30; system of
Lennard-Jones particles at constant pressure ~0.7 R 31; the
same system under isochoric conditions ;sO19;2) system of
soft spheres (^>~r" l 2)~0.3 R.32

Thus, apart from the numerical experiment of Ref. 19,
the real and numerical experiments reveal that glasses pos-
sess an appreciable residual entropy. The impression arises
that actually a static (apart from zero-point vibrations) spa-
tially irregular system of particles possesses a nonzero en-
tropy.

Let us write the Boltzmann expression for the entropy

S = k In W, (1)

where W is the number of microstates corresponding to a
given macroscopic state of the system.

In our case we should take W to be the number of distin-
guishable configurations of the particles compatible with the
given energy. However, at T = 0 the particles constituting
the glass practically do not move, and their mutual arrange-
ment in the given concrete specimen is just as unique as the
distribution of particles in a crystal. The possibility in princi-
ple of realizing a multitude of other energetically equivalent
configurations plays no role here, owing to their unattainabi-
lity.

Thus it would seem that we have no other recourse than
to accept that for a glass W = 1 at T = 0, and hence, S = 0.
Apparently this contradicts the conclusion of nonzero en-
tropy of a disordered system of particles.

Let us try again to analyze this problem by rewriting the
expression for the entropy in another, yet equivalent form:

S = k In (2)

Here AT = Lp-Lq/{lTrfi)2 is the statistical weight, and
A/7* A# is the phase volume occupied by the system.

This expression offers us nothing new as compared with
Eq. (1) in observing the evolution of a vitreous phase in
time. If the chosen configuration of particles is separated
from the energetically equivalent configurations by impen-

100 200 JOO T,K

FIG. 4. Entropy difference of supercooled and crystalline glycerol."
Tm—melting temperature; Tg—vitrification temperature; 5(0)—"resid-
ual" entropy. Dotted line—behavior of the entropy difference under the
assumption that the entropy of supercooled glycerol decreases jumpwise
at the vitrification point.

etrable barriers, then the phase trajectory of the systems will
be enclosed in a phase volume practically equal to that of the
corresponding crystalline phase.

However, if one prepares an ensemble of corresponding
systems, i.e., in our case a sufficiently large number of ma-
croscopically equivalent specimens of glass, then their image
in phase space will be represented by a cloud of points filling
a substantially greater volume than the volume obtained
upon studying the time evolution of one specimen.

This seemingly paradoxical result involves a very sim-
ple fact. The point is that the liquid that is the starting mate-
rial for preparing the glass constitutes an essentially degen-
erate system. That is, a particular energy in the given case
corresponds to a multitude of different spatial configura-
tions. However, since we have no way each time to control
the concrete configuration in preparing the systems of the
ensemble, each frozen system (glass) inherits only the con-
figuration of particles, to a certain degree random, that cor-
responds to a certain instantaneous configuration of the
mother liquid.

Thus, in the given case averaging over time and averag-
ing over the ensemble lead to different results. This indicates
the nonergodicity, or if appropriate, the nonequilibrium of
the system. The difference between nonergodicity and non-
equilibrium is not essential in our discussion, since the relax-
ation time of the vitreous state is in any case very large on the
laboratory time scale.

The nonstandard situation that has arisen directly bears
on the problem of the residual entropy and generally re-
quires a nonstandard approach to the interpretation of the
thermodynamic experiment.

The usual way to analyze the experimental data (Fig.
4) reduces to a formal interpretation of the heat capacity of

TABLE I.3*

S (0)/ASm

5(0)—value of the "residual" entropy;

Silica

0,45

0,9

A5m —

Ethanol

1.3
n.3

entropy of melting.

Glycerol

2.3
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the metastable liquid and the glass within the range from the
melting point down to absolute zero, which yields a deficit of
entropy as compared with its overall change in heating and
melting of the crystalline phase.

Let us examine the situation that arises in vitrification
in greater detail.

Upon cooling the metastable or supercooled liquid, the
system proves to be trapped in a certain restricted volume of
configuration space that corresponds to practically a single,
randomly chosen configuration of particles. In general, one
might close the discussion with this, assuming that the sys-
tem has become nonergodic, and it makes no sense to formu-
late the problem of the entropy of the ensemble from its sin-
gle realization. However, one can treat a restricted ensemble
that includes only the configuration of the particles fixed in
the sense of the mean value of the coordinates.

In this case we must assume that the "configurational"
entropy of the system declines to zero at the point (region)
of vitrification. This view involves purely psychological dif-
ficulties, since we always expect the decline in entropy to be
accompanied by the release of the corresponding amount of
heat. In the given case this does not happen, since the system,
while lying in a configurational "trap", cannot relax to a
configuration of lesser energy, at least within the time of a
standard thermodynamic experiment. The only observable
result of the described process must be a rather sharp decline
in the heat capacity owing to "freezing out" of the configura-
tional degrees of freedom. Following this logical schema, the
break in entropy that arises upon integrating the experimen-
tal heat capacity must be referred to the vitrification tem-
perature (see Fig. 4), which frees us from the need to at-
tribute a finite value to the entropy of a spatially disordered
system at T = 0.

Consequently we must conclude that the "numerical"
values of the "residual" entropy are not a characteristic of
statistical disorder, but can serve as a measure of the number
of configurations in the mother liquid at the instant preced-
ing vitrification (see also the discussion in Refs. 36 and 38).

Thus the entropy of the liquid, which is large in com-
parison with the crystal, is not at all caused by the lack in it of
translational symmetry, but arises from the concrete phys-
ical situation, which enables realizing a large number of mi-
crostates.31 We shall see below that situations can occur in
which the liquid has an entropy lower than that of a crystal
existing at the same temperature and density.

Above we have assumed implicitly that the atomic con-
figuration in the glass is stationary and does not vary in time.
In this case the only type of motions accessible to the parti-
cles of the glass amounts to small vibrations with respect to
the equilibrium positions. Naturally, here the low-tempera-
ture heat capacity of the glass must be described by the
Debye law C~T3. However, as it has turned out, to describe
the experimental data has required introducing an addi-
tional term linear in the temperature.39 The theory of the
low-temperature heat capacity of a glass constructed in Refs.
40 and 41 based on a model of tunneling states indicates that
a fraction of the barriers separating the energetically close
configurations is penetrable.

The standard two-level variant of the model of tunnel-
ing states is apparently not exhaustive. Yet, in general it cor-
rectly predicts a number of observable effects, including the
approximate logarithmic dependence of the heat capacity on

the time of observation.42 The observed low-temperature
phenomena are common to a broad class of the so-called
"nonergodic" systems, including dielectric and metallic
glasses,42'43 "frozen" orientationally disordered systems,42

spin glasses,44 etc.
We should assume that also superbarrier transitions

can occur at high temperatures that couple different con-
figurational states in disordered systems. The early measure-
ments of the heat capacity of vitreous glycerol at tempera-
tures several degrees below the vitrification point showed
that, if the time of measurement is as much as tens of hours,
then the heat capacity acquires values corresponding to ex-
tension of the liquid curve.45 However, on further lowering
of the temperature, the relaxation times become so great that
such experiments become practically impossible.

Evidently, by measuring time in historical segments,
e.g., millennia, we might extend the region of stability of the
liquid state to lower temperatures. The result of further ex-
pansion of the time scale substantially depends on the char-
acter of the energy barriers that separate the different con-
figurational states. If at least some of these barriers are
infinite, then the corresponding relaxation times are infinite,
which leads to a nonergodicity in principle of the system as a
whole.

In the case of "configuration" glasses and "configura-
tionally" amorphous systems, we must also introduce the
time of relaxation to the crystalline state, which apparently
is finite. Therefore, if we measured the time on geological
scales, then the problem of certain amorphous and vitreous
substances simply would not exist. Instead the problem
would arise of short-lived nonequilibrium states—precur-
sors of metastable crystallization. In this sense a completely
different situation exists in the case of systems where the
ordered state cannot be realized in principle; they include,
e.g., spin glasses. Naturally, such a system will be "amor-
phous" at any scales of the time of observation.

3. "COLLECTIVE" ENTROPY AND ENTROPY OF MELTING

"Collective" entropy is defined as the difference in en-
tropy of two systems, in one of which the motion of the N
particles in the volume Vis in no -vay restricted, whereas in
the other each particle is enclosed in a cell with impenetrable
walls of volume F/7V.46

Although the concept of "collective" entropy is some-
what artificial, nevertheless it can be usefully employed in
the context of this article. Actually, as is implied by the de-
finition, collective entropy is directly associated with large-
scale density fluctuations, which actually determine the geo-
metric disorder in a liquid. In the case of a system of
noninteracting particles the "collective" entropy can be cal-
culated directly.

Actually the partition function of a classical system of
noninteracting particles in a volume V has the form

j 3.V,,-.V

Z^---J^-, (3)
v/hereA=h/(2TrmkT)"2.

Correspondingly we have the following expressions for
the entropy:

3 r, i mkTe

TR In -j^-
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where R = kN is the gas constant.
The partition function of a system of noninteracting

particles whose motion is restricted to cells of volume K/Wis
written in the form

AS//t

Z2 = X- (6)

Hence, upon taking account of (4), we obtain the following
expression for the entropy:

Equations (5) and (7) imply that the difference in entropy
of the two systems is

AS = S1 - S2 = R. (8)

The quantity R in (8) amounts to the collective entropy of
the system of noninteracting particles.

As we see from Eqs. (3) and (6), the appearance of this
quantity formally arises from the difference of the values of
In N! and N In N. In this connection the impression can arise
that the appearance of the collective entropy R in the system
of noninteracting particles substantially involves the non-
zero probability of very large density fluctuations restricted
only by the total number TV of particles in the system. We can
easily convince ourselves that this is not true. Let us use
Poisson's formula, which describes the fluctuation of the
number of particles in a given volume of an ideal gas.47 We
shall calculate the probabilities of the corresponding fluctu-
ations for the volume V/N. In this case Poisson's formula
acquires the form Wn — (eN)~l. Table II gives the probabi-
lities of fluctuations in the number of particles in a volume
V/N and their corresponding contribution to the entropy,
which is calculated as Sn/R= - Wn In Wn.

As we see from the table, the probability of finding even
three noninteracting particles in a single small volume of
space is rather small. Therefore, as we shall see below, a
"collective" entropy in practically the complete volume
arises in systems divided into cells containing a large, albeit
microscopic number of particles.

Let us write the partition function of a system of nonin-
teracting particles divided into clusters of volume n V/N,
each of which contains n particles:

log/7

FIG. 5. Dependence of the "collective" entropy on the number n of parti-
cles per cluster.

(nV/N)n

(9)

The change in entropy in going from the cellular system de-
scribed by the partition function in the form (6) to the clus-
ter system will be

In Fig. 5 ASn is shown as a function of the number of
particles in the cluster.

We see that, even at n = 100, the collective entropy of
the cluster system is very close to R.

Let us call attention to the fact that the "collective"
entropy R of an ideal gas differs numerically from the en-
tropy that we have obtained on the basis of the Poisson for-
mula (see Table II). This involves the fact that not nearly all
the density fluctuations contribute to the collective entropy,
but only a fraction of them (see Fig. 6).

The closeness of the collective entropy of a system of
noninteracting particles and the entropy of melting of simple
substances was used at one time as evidence of the identity of
these two quantities.8 However, owing to the remarks of
Rice8 and the study of Hoover and Ree,48 this idea has been
discredited to a considerable degree. Hoover and Ree48 cal-
culated the collective entropy for systems of hard particles
and showed that the collective entropy in systems close to
real ones is a function of the density and attains its maximum

TABLE II. Fluctuations of the
numbers of particles in the vol-
ume V/N of an ideal gas ( V—
total volume of the system; N— •
total number of particles).

Wo = 0,367879
W, =",367879
» ' . = 0,1839397
W\ = 0,0613132
W\ =(1,0153283
W- = 0.003 '657

" n'n l n ""n

0.367879
0,367879
0,311437
0,1711717
0,0640425
0,00177427

n
«1,2
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FIG. 6. Illustration of the physical concept of "collective" entropy A and
B are equivalent configurations. The B configurations do not contribute to
the "collective" entropy.
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value R only in the ideal-gas limit (Fig. 7). According to
Hoover and Ree the contribution of the collective entropy to
the entropy of melting of hard spheres amounts to less than
30% (ASm = 1.16,12 while the jump in Scol =0.3 (see Fig.
7)). However, we note that the collective entropy of systems
having interaction is ambiguously denned. In the calcula-
tions of Hoover and Ree,48 in calculating the entropy of the
cellular system, the impenetrable walls limited only the mo-
tion of the center of gravity of the particles, so that the parti-
cles could penetrate into adjacent cells.

Under high-density conditions this suffices for realiza-
tion of a considerable fraction of the configuration inherent
in unbounded systems in general. However, one can easily
show that the result will differ if one excludes even an insig-
nificant penetration of the particles into adjacent cells.

Actually, let us study a one-dimensional system of hard
particles. The partition function of this system can be calcu-
lated exactly and has the form49

, - (11)

Here L is the length of the system, and l0 is the length of a
particle. In contrast to the corresponding expression (3) for
an ideal gas, the partition function in (11) contains the re-
normalized or "free" volume (length) of the system. We can
conveniently rewrite Eq. (11) in the form

ZJD = K-N (Z — Z0)
w e*. (12)

Here / - l0 = (L - Nlo)/Nis the single-particle "free" vol-
ume (here we use the approximation N\zzNNe~N).

The form of Eq. (12) implies that the collective entropy
of the one-dimensional system of hard particles in the given
case is kN= R at any density (it is interesting to compare
this with the result of Hoover and Ree48; see Fig. 7).

Thus the calculations of Hoover and Ree48 apparently
do no exhaust the entire problem of the collective entropy.
Moreover, if we return to the original definition of the collec-
tive entropy as the entropy that arises from the communal
sharing of the volume,8 then we should suppose that the col-
lective entropy of a gas-liquid system of realistic particles is
rather close to R at any density (see also Fig. 5).

On the basis of the conclusions presented above, we can
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FIG. 7. The "collective" entropy in the systems of hard particles.48
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write the following for the entropy of melting of a simple
substance:

A£ = ftlnl——j e". (a)

Here v'{ and if{ are respectively the one-particle "free" vol-
umes of the liquid and the crystal (see Refs. 46 and 50 for the
"free" volume in systems of interacting particles).

Unfortunately the calculation of the free volume v{ for
two-and three-dimensional systems cannot be performed so
simply as in the one-dimensional case. However, we can as-
sume that the ratio v'f/tff < 1 in the limit as A V/Vs —0. This
conclusion is based on elementary geometric considerations
and consists in the idea that the irregular structure of a liquid
defines just as irregular a system, generally nonisometric, of
internal cavities, which are not always accessible to the par-
ticles constituting the liquid.

In connection with the statement that we have made,
the behavior of the entropy of a system of hard spheres in the
melting-crystallization region is of interest (Fig. 8),51 and
besides, refutes the naive view of the connection of entropy
with geometric disorder. As is implied by the form of the free
energy of a system of hard spheres F = (3/2) NkT — TS, the
phase transition in this system is controlled exclusively by
the entropy component of the free energy. We see from Fig. 8
that the entropy of an even slightly supercooled liquid of
hard spheres is always smaller than the entropy existing with
the same volume and temperature. Apparently the intersec-
tion of the two branches of the free energy in this case sup-
presses large-scale density fluctuations in the liquid phase,
and hence, causes the disappearance of the term eN in the
partition function. In this case the entropy difference of the
supercooled liquid and the crystal is determined by the dif-
ference between the logarithms of the single-particle "free"
volumes.

The calculations performed in Ref. 52 actually show
that the "free" volume in the liquid phase of a system of hard
spheres at a density close to crystallization proves to be
smaller than that in the crystalline phase at the same den-
sity.41

Thus the asymptotic result for the entropy of melting of
a simple substance (the "In 2" rule) (see Fig. 1) can be
interpreted as

AS « k In (0.74)* eN « R In 2, (14)

Sexz/R

Liquid

\ V Crystal

0,5 t,0 p*

FIG. 8. Behavior of the excess entropy 5MC, i.e., the entropy minus the
ideal-gas component, in the crystallization of a system of hard spheres.51
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where 0 . 7 4 - ^ / ^ .
Curiously, one can obtain this result from the extremely

simplified model studied in Ref. 11.
We shall assume that the partition function of the crys-

tal can be represented by an expression of the form of (6)
describing a system of N particles, each of which is enclosed
in a cell of volume V/N, where

Kis the total volume of the system:
I - 3 i V

—
NWithin the framework of the present analysis it is im-

material whether we consider the particles to be point parti-
cles or attribute any dimension to them. In the latter case we
must replace the volume of the cell V/N by the free volume
vf, which does not alter our conclusions.

Further, we must write and calculate the partition func-
tion of a system of particles whose motion is not restricted by
artificial cells. Evidently this problem cannot be solved ex-
actly for a system of interacting particles. Instead we shall
propose the following trick. While keeping the division of
space into cells of volume V/N, we shall let the particles
migrate from cell to cell. In this case we must take account of
the probability of multiple occupancy of cells. However,
since we are treating a state of limiting compression, we shall
take account of the probability of only double occupancy.

Upon allowing for the smallness of the fluctuations in
general, we can suppose that a cellular system with the possi-
bility of double occupancy of cells can describe the over-
whelming fraction of the configurations of particles inherent
in a continuous system. Evidently a cell will be considered
doubly occupied when the centers of gravity of two particles
fall inside it (Fig. 9). Consequently we must count the num-
ber of ways of distributing M single particles and {N - M)
pairs of particles over Appositions as M varies from zero to N
and allow for the motion of single particles and pairs of parti-
cles within the bounds of a single cell. If we assume that the
"free" volume of a particle lying in a doubly occupied cell is
smaller by a factor of/ than the "free" volume of a single
particle and we assume the probability of all distributions to
be the same, we obtain the following expression for the parti-
tion function of the disordered system:

' 2 ;
M=0

N\
N fN

iV-M

The change in entropy in going from a system of single occu-
pancy of cells to a system with the possibility of double occu-
pancy, with account taken of (6) and (15), will be

N\

M = 0

(16)

Figure 10 demonstrates the dependence of the transi-
tion entropy on the parameter/ Whe n / = 2 the maximum
term of the summation in (16) corresponds to the condition
M = N/2. The latter implies that half of the particles exist in
the "pair" state. Hence the mean single-particle "free" vol-
ume in the disordered phase amounts to a value of the order
of 15% of the "free" volume of a particle in the "crystal". A
concrete calculation f o r / = 2 yields

AS = k In (2 = A; In 2,

or

AS ss fcln (0.707)^-2.82^.

(17)

(18)

(15)

We can easily see that the corresponding numbers in (14)
and (18) are rather close.

Thus it seems that the specifics of the melting of a real
substance arise to a considerable extent from the character of
the high-frequency motions of the particles, which are ulti-
mately determined by the single-particle "free" volume of
the system. In turn the "high-frequency" behavior of a real
system is directly associated with the interparticle interac-
tion potential.

On the basis of the data presented in Fig. 11, and simply
from physical considerations, we should expect that the en-
tropy of melting of a simple system can increase upon weak-
ening of the interparticle repulsive forces. It is difficult to
establish this effect from real experimental data (in this re-
gard we should call attention to the entropy of melting of
cesium at high pressures; see below). Moreover, even in the
case of "numerical" experiments, such an effect is masked by
the increase in volume on melting. However, as is implied by
Fig. 9, this effect apparently begins to be manifested some-
where in the region «>6, where n is the exponent in the law
$(r) ~r ~ " describing the interparticle repulsion.

Thus it is not ruled out that the estimate AS /R — 0.7
generally does not correspond even to the hypothetical situa-
tion, while the minimum value of the entropy of melting of a
simple substance is close to the value =;0.8 R.

Uy?

FIG. 9. Illustration of the cellular model with the possibility of double
occupancy of cells.

FIG. 10. Dependence of the entropy of "melting" of the cellular model on
the parameter/ that takes account of the change in the single-particle free
volume in double occupancy of a cell.
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FIG. 11. Dependence of the entropy of melting and the relative volume
jump in the melting of model systems on the exponent n 12

4. MELTING OF HELIUM

As is known, helium (more exactly, its isotopes 3He and
4He) does not crystallize at atmospheric pressure down to
absolute zero. The crystalline phases of 3He and 4He can be
obtained only at elevated pressures (4He~25 kg/cm2;
3He~34 kg/cm2 as T^>054). This behavior of helium is ex-
plained by the instability of crystalline helium at low pres-
sures owing to the large amplitude of the zero-point vibra-
tions of the atoms. Apparently it is more correct to speak of
the stabilization of the liquid phase of helium at low pres-
sures owing to its lower kinetic (zero-point) energy as com-
pared with the crystalline phase. However, in this section we
shall not be interested in the details of quantum melting (on
this topic, see, e.g., Refs. 55 and 56). We are interested in the
evolution of the entropy of melting of the isotopes of helium
with varying temperature. Figure 12 shows experimental
data57 characterizing the behavior of the entropy of melting
of 3He and 4He down to temperatures ~ 30 K. For compari-
son this same diagram shows the corresponding results for
argon.'' We see from Fig. 12 that, as we should have expect-

ASjfi

1,5'T

1,0 r

0,5-

ed, the entropies of melting of helium and argon apparently
have a common "classical" high-temperature limit. Let us
call attention to the fact that the quantum effects in the melt-
ing of helium are still important even at temperatures ~ 30
K (compare the curves for 3He and 4He in Fig. 12).

Actually, we can easily convince ourselves by using the
data of Refs. 57 and 58 that the ratio of the thermal de Brog-
lie wavelength to the mean interatomic distance AT/d for
helium along the melting curve is a quantity of the order of
1.3 at 30 K and 0.85 at 97 K (AT = (2irfi2/mkT)in;
d= (V/N)Ui).

Evidently at low temperatures the role of quantum ef-
fects in melting must increase in accord with the increase in
the thermal wavelength A T , which ultimately determines the
features of behavior of the entropy of melting.

We should assume that an increase in the thermal wave-
length A T diminishes the number of different configurations,
and hence diminishes the number of states in general. Natu-
rally, this effect ultimately determines the decrease in the
entropy jump upon melting of helium down to the tempera-
tures of quantum degeneracy." One can say that, as the tem-
perature decreases, the entropy becomes an ever less sensi-
tive characteristic of the state of aggregation of the material.

Figure 13, which demonstrates the dependence of the
entropy of melting of 3He and 4He on the ratio d /AT calcu-
lated along the melting curve, can illustrate what we have
said. As we see from Fig. 13, the use of the ratio d /Ar as a
coordinate makes the difference between the behaviors of
the entropy of melting of 3He and 4He vanish throughout the
temperature range down to the temperature of the/l-transi-
tion in 4He (cf. Figs. 12 and 13).

Curiously, as is implied by Fig. 13, if we ignore the k-
transition in 4He, we still obtain a zero value of the entropy
of melting of helium at T = 0, which indicates the lack of a
causal connection between the phenomena of quantum de-
generacy and the Nernst heat theorem.

3 T/e

FIG. 12. Entropy of melting of Ar and He as a function of the reduced
temperature. ""fAr = 119.3 K, eHc = 10.22K.

FIG. 13. Entropy of melting of 3He and 4He as a function of the ratio d /
A T . rf-mean interparticle distance; A = h / (Itrmk T)' "-thermal de Broglie
wavelength. Calculated from the data of Ref. 57.
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Turning again to Fig. 12, we note that, at temperatures
somewhat exceeding the temperature of the A-transition in
4He, the difference between the entropy of melting of argon
and helium amounts to a value of the order of the gas con-
stant R. In all likelihood this is not fortuitous, but is due to
the disappearance of the "collective" entropy in the limiting
quantum case. Moreover, this is not amazing, since the con-
cept of "collective" entropy is in spirit purely classical.

Thus the increase in entropy of melting of helium with
increasing temperature can be interpreted as the result of a
gradual rise in the "collective" entropy from zero to the
limiting value.

5. MELTING OF TWO-DIMENSIONAL AND QUASI-TWO-
DIMENSIONAL SYSTEMS

As is known, the positional order in a crystal is de-
scribed by a two-component order parameter. In this case,
with a spatial dimensionality D = 2, such strong fluctu-
ations in the order parameter arise that its mean value is zero
at any temperatures above absolute zero. In the given case
the spatial dimensionality D = 2 is the lower critical dimen-
sionality. As it has turned out, many two-dimensional sys-
tems undergo a specific phase transition accompanied by
establishment of topological long-range order.60

In this sense two-dimensional crystallization or melting
constitutes a characteristic example and can arise via a phase
transition of continuous type61 (more exactly, two phase
transitions62). In the absence of long-range positional order,
the well-known arguments of Landau on the impossibility of
crystallization-melting via a continuous phase transition
lose force.63

It has been known since the time of the studies of R.
Peierls64 and L. D. Landau63 that the r.m.s. deviations of the
atoms from the equilibrium positions in a two-dimensional
crystal increase without bound (logarithmically) with in-
creasing dimension of the system (the logarithmic increase
in the r.m.s. displacements of the atoms is actually very
weak. To observe displacements of the order of the interato-
mic distance requires a crystal of astronomic dimensions65).
This implies that long-range positional order is absent in a
two-dimensional crystal, and hence, a two-dimensional
crystal in the strict sense of this word does not exist. How-
ever, as Mermin first showed, a two-dimensional crystal pos-
sesses long-range topologic or orientational order66 (orien-
tational order is defined as order in the system of bonds
linking adjacent particles with one another). It was found

subsequently that this property ensures a finite shear modu-
lus in a two-dimensional crystal, which distinguishes it from
a two-dimensional liquid. The existence of a phase transition
in a two-dimensional system of interacting particles has been
proved in an number of studies (for a review of the corre-
sponding results, see Refs. 60, 67). A general mechanism of
phase transitions involving topological defects has been pro-
posed by Kosterlitz and Thouless.61 Nelson and Halperin62

used the ideas of Kosterlitz and Thouless to detail the pat-
tern of melting of a two-dimensional substance. According
to Nelson and Halperin two-dimensional melting occurs in
two stages. First the two-dimensional crystal possessing
orientational long-range order transforms to a so-called hex-
atic phase having algebraic decay of orientational order, and
then to a true liquid phase where positional and orientational
order decay exponentially.

Naturally the two-stage continuous transition amounts
to a possibility in principle of how the events develop. It does
not rule out an alternative course, i.e., a first-order transi-
tion. Unfortunately, true two-dimensional objects are unat-
tainable to experimental study. Electrons on the surface of
liquid helium, adsorbed monomolecular layers, and mono-
molecular films of liquid crystals are still two-dimensional
objects in the three-dimensional world. Numerical experi-
ments seem ideally suited for solving "two-dimensional"
problems. However, the restricted number of particles and
too short times of "experiment" do not allow one to draw
categorical conclusions.

The results of the numerical experiments performed up
to now lead to the conclusion that two-dimensional melting
is a first-order phase transition (see Refs. 68-73 and Table
HI). However, indications exist that, with increasing dimen-
sion of the system and decreasing hardness of the interaction
potential, the "first-order" character of the phase transition
somewhat declines.74"76

The studies of the phase transitions in monomolecular
films of smectic liquid crystals also as yet indicate a jump-
wise character of melting in these systems.77

Cogent proofs exist of the continuity of melting in in-
commensurable monolayers of Xe on a graphite substrate,
although the problem of the influence of the substrate on the
properties of the phase transition is not absolutely clear.78

The question of the thermodynamic nature of two-di-
mensional melting is unquestionably highly interesting, but
it is not important in principle for the presentation below.
Rather, from considerations of convenience we shall assume

TABLE III. Change in the volume (area) and entropy in melting of simple systems from the data of
numerical experiments.69

Model

Hard spheres (disks)
Soft spheres (disks)
Lennard-Jones(7**)
= 0.8
One-component plasma

Parameter*

oo

12
12—6

1

10,3
3,8

13,1

0,05

•Parameter n—exponent in the interaction law "Hr) -

~ (2 D), %

4,0
2,1
4,76

0,5?

1,16
0,89
1,75

0,82

0,41
0,25
0,49

0,2?

~r~ ". The two exponents characterizing
repulsion and attraction are given for the Lennard-Jones system.
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that two-dimensional melting is a first-order phase transi-
tion.

Thus, we are interested in the relation between the di-
mensionality of the space and the entropy of melting. The
"experiments" favor the existence of such a relationship.
The data of Table III show that the entropy of melting of
two-dimensional systems is always less than that of the cor-
responding three-dimensional analogs. Figure 14 also merits
attention, where the heat capacity of 3-D and 2-D systems
having an interaction of the form <!>(/•) ~r~12 in the melting
region is shown.69 As we see from Fig. 14, both CP(T)
curves behave similarly, and they can be superposed on one
another with good accuracy by a scale transformation with
the coefficient 3/2, which corresponds to the ratio of
numbers of degrees of freedom of 3-D and 2-D systems.
However, it is not clear whether a direct relation exists
between the entropy of melting and the number of degrees of
freedom.

Let us try to analyze this problem within the framework
of the concept of "collective entropy".

We convinced ourselves above that the collective en-
tropy of a system of noninteracting particles is close to the
entropy of melting of simple substances, and hence we can
hope that an analysis within the framework of this very sim-
ple model can yield useful results.

Apparently there is no need to write again the partition
function of a system of noninteracting particles (see (3)).
Instead we shall write directly the expressions for the en-
tropy of the 3-D and 2-D systems:

C-3D p . V R . 3 n l mkTe M o \

(20)

Here A is the area occupied by the two-dimensional system;
R = kN is the gas constant.

Comparison of Eqs. (19) and (20) shows that the di-
mensionality of the space explicitly determines the value of
the numerical coefficient in the temperature component of
the entropy that arises from integration of the momentum of
the partition function. However, the configurational compo-
nent of the entropy in (19) and (20) cannot be compared
directly. Let us transform the coordinate component of the
partition function for a two-dimensional ideal gas Zc = A N /
N! to a form that allows direct comparison with the expres-

"2,0 -10 \nT*

FIG. 14. Heat capacity of 2-D and 3-D systems of soft spheres
(<£ (r) ~ r~ '2) in the melting region.69

sion (3) for the three-dimensional case. Let us define the
area A in such a way that the mean distance between the N
particles would be equal to (F/7V)"3. In other words, we
shall require the linear density of particles in the 2-D and 3-
D systems to be the same. In this case we have

(21)

where l=V"3. Then we have61

72D6 (22)

(23)

Comparison of (19) and (23) shows that the coefficient of
the configuration term of the entropy is also determined by
the dimensionality of the space, but the value of the "collec-
tive" entropy, in this case R, remains invariant! (see
Sec. 3).7)

Since we insist that the entropy of melting is a quantity
of the same order of magnitude as the collective entropy, this
result contradicts the data of Table III.

We can imagine a number of reasons why the entropy of
melting of a two-dimensional system can have a lower value
than for its three-dimensional analog. We recall that in Sec. 3
we concluded that one can write the entropy of melting of a
simple substance as (13):

Here v'f and us
f are the single-particle "free" volume of the

liquid and the crystal, respectively; eN is the fluctuation
term that determines the "collective" entropy of the liquid.

We stress that Eq. (13) envisages that the "collective"
entropy of the crystal is identically equal to zero. In taking
account of Eq. (13), we should study the following causes
that give rise to the "anomalously" low entropy of melting of
two-dimensional systems:

a) the ratio v'f /v\ has a smaller value for two-dimension-
al than for three-dimensional systems;

b) the "collective" entropy of a two-dimensional liquid
is smaller than k In eN or R, in line with the geometric restric-
tions on the scale of the density fluctuations;

c) the "collective entropy of a two-dimensional crystal-
line phase has a nonzero value owing to its "pathological"
properties.

Below, in analyzing the melting of quasi-two-dimen-
sional systems, we shall see that the possibility exists of a
definite choice between the stated variants.

In treating the melting of quasi-two-dimensional sys-
tems, we shall restrict the topic to a single, yet quite instruc-
tive example of a phase transition: crystalline smectic crystal
B to smectic crystal A. The class of smectic liquid crystals
can be defined as a system consisting of parallel layers peri-
odically distributed in space consisting of elongated, rigid
molecules that generally lie at a large angle to the plane of
the layer (Fig. 15). The simplest of the smectic liquid crys-
tals (smectic A) is an example of a one-dimensionally or-
dered substance and can be described as a system of two-
dimensional liquid layers regularly arranged in space.79 8) A
smectic B amounts to a more ordered type of liquid crystals
and is known in two forms. One of them possesses crystalline
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FIG. 15. Schemtic diagram of liquid-crystalline phases.

packing of the molecules in the layers and an appreciable
interlayer correlation. The interlayer shear modulus in a
crystalline smectic B has a finite value, although extremely
small.81'82 In essence a crystalline smectic B amounts to a
true three-dimensional crystal. The other form of smectic
has only topological long-range order and amounts to a
three-dimensional analog of the hexatic phase of Nelson and
Halperin.83

We shall be most interested in the crystalline smectic B
to smectic A phase transition, which is actually an example
of two-dimensional melting in a three-dimensional system.

Figure 16 shows part of the phase diagram of a sub-
stance with the abstruse name of A^^-n-butyloxybenzyli-
dene)-(4-«-octylaniline) or BBOA for short, which under-
goes a cr. SB — S A phase transition according to the data of
Ref. 84 (here 5 is the generally accepted notation for smectic
phases, while cr. SB denotes a crystalline smectic B).

The phase transition cr. SB — S A that we are interested
in is a clearly marked first-order phase transition, whereas
the SA-N transition amounts to a continuous-type transi-
tion. Along the SB -SA equilibrium line the amplitude of the
one-dimensional density wave continuously declines with
increasing pressure and vanishes at the final critical point
(FCP), above which the SB melts directly to the nematic
phase.

The distinguishing feature of the thermodynamics of
the S B — S A phase transition in the given case is the increase
in the entropy of transition with increasing pressure (Fig.
17).

We shall show that this behavior of the entropy of melt-
ing can be explained with elementary calculations in the
noninteracting-particle approximation. We shall write again
the coordinate component of the partition function of N
ideal particles in the volume V, with Zc = VN/N\. Let us
order our system in such a way that it has the form of a stack
of sheets. We shall assume that the area of each sheet is
A = I2 = V2'3 and it contains N2/3 particles. Evidently the
number of such sheets must be N'/3 (Fig. 18).

The coordinate component of the partition function of
such a system has the form

P, kbar

FIG. 16. Phase diagram of BBOA.8

•V*

(24)

Correspondingly we have the following expression for the
configurational component of the entropy

= ^.R In X _ (25)

As we see from (23) and (25), we have obtained a result
fully analogous to the two-dimensional case. However we
must remember that the temperature component of the en-
tropy will be three-dimensional in this case, owing to the
possibility of bending vibrations.

Thus, upon taking acount of (19) and (25), we have the
following expression for the difference in entropies of the
normal and the one-dimensionally ordered systems:

AS

2,o\

1,5

1,0

Av/y, %

— ^ ^ " - 1,5

* P.kbar "

FIG. 17. Change in volume and entropy upon melting of the crystalline
smectic B in BBOA."4
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FIG. 18. Illustration of the calculation of the entropy of a layered system
of noninteracting particles.

r.2(3D) R , V (26)

Further, let us write the coordinate component of the parti-
tion function for the quasi-two-dimensional crystal in the
form

r / V2/S \N ' -i N '
z« = [ ( w ) ] • <27>

(28)

Then we obtain for its configurational entropy

Equations (26)-(28) imply that the entropy of transition of
a quasi-two-dimensional crystal to a quasi-two-dimensional
liquid is ^R, whereas the entropy of melting of a quasi-two-
dimensional crystal to a three-dimensional liquid is xR
+ (l/3)Rln(V/N).

Thus we have obtained a result qualitatively agreeing
with the behavior of the entropy jump upon melting of
BBOA (see Fig. 17).

Further we shall try to use the results of our analysis
and the experimental data on the melting of BBOA to eluci-
date the nature of the "low" values of the entropy of melting
of two-dimensional systems.

Let us examine the case of pure "quasi-two-dimension-
al" melting. While taking account of (13), (25), and (28),
we shall write the entropy of melting in a quasi-two-dimen-
sional system of interacting particles in the form

R\n-^-. (29)

two-dimensional crystal than happens in the three-dimen-
sional case. We can easily see that this conclusion fully
agrees with those first made by Peierls63 and Landau64 and it
favors the possibility of realizing two-dimensional melting
via a phase transition of continuous type.6162

6. "EXOTIC" MELTING CURVES

As has been established by the experimental studies, the
melting point of different substances at high pressures can
behave in an unusual manner (Fig. 19).7'11 Below we shall
concentrate on analyzing melting curves having tempera-
ture maxima as in the most general case. Since, as experi-
ment shows, the entropy of melting is always positive (there
are two exceptions to this rule involving the melting of 3He
and 4He at low temperatures), then, as is implied by thermo-
dynamics, the volume jump A V in melting is negative for a
curve with a negative slope dT/dP, and changes sign on a
melting curve having a maximum. At the maximum point,
naturally, we have AV= 0 (see Fig. 19).

We emphasize that melting curves of types (2) and (3)
cannot be obtained in the class of systems having an interac-
tion of the form <J>(r)~r~". Actually, as one can easily
show,'' the following relationships hold for the melting of
systems with a power-function interaction:

(30)

p
AV

-y—= const,
A5= const.

Here P and T are the coordinates of the melting curve, A V/
Vs is the relative volume jump in melting, and AS is the
entropy jump in melting.

When we include an attractive interaction the relation-
ships of (30) acquire the meaning of high-temperature
asymptotic relationships," which naturally rules out the
equations dT/dP = 0 and A F = 0 for any finite tempera-
tures and pressures.

Figure 11 showed the behavior of A V/Vs and AS in the
melting of systems having a repulsive power-function inter-
action as a function of the value of the exponent n. We note
that the volume jump in melting declines very rapidly with

Allowing for the fact that the change in volume in melting of
BBOA is small, we shall use the value ~0.75 for the ratio
v'f /vs

f as an approximation, which arises from analyzing the
real, and hence three-dimensional data (see (14)). Upon
substituting this value into (29), we obtain AS /R =; 0.81 for
the entropy of melting of the quasi-two-dimensional system.
Remarkably, this value coincides practically absolutely ex-
actly with the entropy of melting of BBOA at atmospheric
pressure (see Fig. 17).

The attained agreement is unquestionably too good for
fully trusting the obtained value. Nevertheless, the estimate
that we have made renders unlikely the variants a) and b)
proposed above for explaining the "low" entropy of melting
of two-dimensional systems. Thus we cannot but conclude
that a two-dimensional quasicrystal has a nonzero "collec-
tive" entropy. In other words, the large-scale fluctuations
make a more substantial contribution to the entropy of a
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decreasing n. We should call attention to the character of the
behavior of the entropy of melting at small n. The impression
is created that somewhere in the region of n = 5 the entropy
of melting begins to increase with decreasing n, although the
error of determination of AS in this region of n values is too
large for drawing categorical conclusions.

It would seem that melting curves of forms (2) and (3)
are generally impossible for any reasonable pair potential.
Actually, by introducing the effective index ncf[(r) =
— dln<t>(r)/dlnr, it appears as though we could describe

each region of the melting curve by a power-function poten-
tial, which rules out the appearance of melting curves 2 and 3
(see Fig. 19). In fact this conclusion can be valid only in case
of concave potentials, but does not hold if the potential is
convex.

Let us study Fig. 20, which shows the behavior of the
free energy and the pressure P in the region of a maximum on
the melting curve. Evidently the appearance of a maximum
requires a double crossing of the free-energy curves of the
liquid and the crystal. Consequently it turns out that the
pressure of the liquid in the region of the maximum unavoid-
ably must become less than the pressure of the crystal.

Let us write the expression for the pressure in a system
having the pair potential <!>(/•) as implied by the classical
virial theorem:

= 3L _ _L v2 f rd>' (r) g (r) dr. (31)

As we see from Eq. (31), the nonideal component of the pres-
sure is determined by the convolution of the derivative of the
potential 4>'(r) with the radial distribution functiong(r).

Figure 21 illustrates some situations that arise with dif-
fering behavior of the derivatives 4>' (r). We see that, if <£>' (r)
declines nonlinearly with decreasing distance r, the pressure
of the liquid is always greater than the pressure of the crys-
tal, and vice versa, the pressure of the liquid can be less than
the pressure of the crystal if the derivative 4>'(r) increases
nonlinearly.

Figure 22 shows several potential curves as compared
with the power-function potential <t>(r)~r~", which in
principle can give rise to the sought effect. "Numerical" ex-
periments in systems having a potential of the type depicted
in Fig. 22 actually show maxima on the melting curves.86"89

The behavior of the entropy of melting in the case being
discussed is nontrivial and is of great interest. Let us study

,F

s
-i

vs vL vL vs vs vL

\-<P'(r),g(r)

FIG. 21. Illustration of possible variants of the behavior of the derivative
* ' (r). g( r)— radial distribution function for the crystal (1) and the liquid

again Fig. 20, which shows the isotherms of the free energy
of the liquid and the crystal for a substance having a maxi-
mum on the melting curve. For the intersection points of the
free energy we can write

F, = F.,

U, — TSt = U,— T

or
At;
AS = T.

Here (7 is the internal energy of the phase. Since we are treat-
ing isothermal compression, the following equation holds:

<P(r)

FIG. 20. Schematic diagram of the behavior of the free energy (a) and the
pressure (b) in the region of a maximum on the melting curve. FIG. 22. Hypothetical interaction potentials.
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(32)

Here the subscripts Vx and V2 denote the coordinates of the
intersection points of the curves F, and Fs. We should re-
member that AC/and AS in this case amount to the differ-
ences of the internal energy and the entropy at constant vol-
ume, rather than constant pressure. However, this is not
essential to the current treatment.

As Eq. (32) implies, several ways to realize a tempera-
ture maximum on the melting curve are possible. However,
in analyzing any of them we must take into account the fact
that in the initial ("normal") region of the melting curve the
difference of internal energies AC/ increases with the pres-
sure, but the entropy of melting AS does not increase
(for the power-function potential AU~V~"n we have
AS = const).

One of the possible ways to obtain a maximum reduces
to an increase in the entropy of melting in a certain pressure
interval, or in general, a monotonic behavior of the differ-
ence in potential energies.

The thermodynamic data characterizing the melting of
cesium (Fig. 23) graphically illustrate this variant of behav-
ior, although we must remember that the possibility of de-
scribing cesium within the framework of a pair potential of
interaction is not evident.

The reason for the "anomalous" behavior of the en-
tropy of melting undoubtedly must be sought in a "soften-
ing" of the potential in some range of densities. In this case
the volume accessible for motion of particles in the liquid
phase can be substantially increased without an extreme in-
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FIG. 23. Entropy of melting and relative volume jump as functions of the
normalized volume jump in melting of the alkali metals.90

crease in the internal energy.
On the other hand, as is implied by the results of "nu-

merical" experiments in the specific system of "Gaussian"
particles,89 a situation can occur in which the difference of
internal energies At/and the entropy of melting AS decrease
upon compression. In this system the internal energy and the
entropy of each of the phases increases along the melting
curve. The causes of the decline in the magnitude of A U for a
Gaussian system upon compression are more or less clear.
The point is that the "softening" of the potential makes the
energy of the system less and less sensitive to the character of
the arrangement of the particles. It is far more difficult to
explain the decrease in entropy of melting AS" along the melt-
ing curve of a Gaussian system. As the data of Ref. 89 imply,
the decrease in'entropy of melting involves the faster in-
crease in entropy of the crystalline phase as compared with
the liquid. We should assume that the relative amplitudes of
vibration of the particles in a Gaussian crystal increase with
decreasing density. The existing data show that the relative
amplitude of the vibrations in a Gaussian crystal is actually
anomalously large.91 However, there is no information on
the dependence of the quantity in which we are interested on
the density.

Let us turn our attention to the fact that the entropy of
melting in a Gaussian system at a density p* = 1 is sO.64,89

which is already lower than the "limiting" value AS" = 0.7R
(see Sec. 1). This can mean that the "collective" entropy of a
compressed "Gaussian" crystal at high temperature is not
zero.

The problem of the evolution of the entropy of melting
of a Gaussian system upon further compression is extremely
interesting. If we allow for the fact that part of the "liquid"
configurations of particles can freeze out on lowering the
temperature (the possibility of glass formation in a Gaussian
system permits us to expect this effect), then it is not ruled
out that the entropy of melting in a Gaussian system can
become zero and even change sign (see Fig. 19).'"

We stress that the material presented in this section
does not contradict the general principles of Sec. 3, although
the discussed examples do not lead us to expect that the "0.7
rule" will be obeyed. Evidently the analysis given in Sec. 3 is
restricted to the case of systems with a rather "stiff' interac-
tion. However, the particles of natural systems always have a
"stiff' core. The sole exception here is hydrogen. Therefore
it is precisely in the case of metallic hydrogen that unusual
phase diagrams can arise (see Ref. 95).

In closing this section we note that the exotic potentials
shown in Fig. 18 apparently can arise only as a consequence
of multiparticle effects, the influence of electronic transi-
tions, etc. For this reason these potentials must be treated
only as an "effective" pairwise representation of complex
interactions.

With this we close our review, which is devoted to spa-
tial disorder and entropy. The author realizes that he has not
been able to solve the problems treated in the article com-
pletely, but then his claims did not extend so far. What has
been obtained is the view of an experimenter expressing his
viewpoint in graphic physical images or categories of the
measurable, since thus one creates the premises for formu-
lating new experiments. Nevertheless the author hopes that
the formulation of the problem as a whole and the discus-
sions that have been advanced can be of general interest. We
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can summarize the fundamental conclusions of the article as
follows.

Geometric disorders and entropy are interrelated non-
uniquely. It makes no sense to pose the problem of the en-
tropy of a geometrically or spatially disordered system with-
out stipulating the method of "preparing" it. As a rule,
geometrically disordered static systems are nonergodip and
their thermodynamic analysis is highly arbitrary, or at least,
requires a special approach. The "residual" entropy is not a
characteristic of the static disorder of a geometrically disor-
dered system, but can serve as a measure of the number of
states in the corresponding system at high temperatures.

The relative constancy of the entropy of melting of sim-
ple classical substances does not result from the existence of
a certain entropy of disorder in general, but is a consequence
of the small dependence of the entropy of a simple liquid on
the number of particles drawn into collective motion and
collectively utilizing the accessible space.

The concept of collective utilization of space or "collec-
tive" entropy loses meaning in analyzing the melting of
quantum systems, owing to the wave properties of the parti-
cles. The small value of the entropy of melting of quantum
systems at low temperatures corresponds to the overall re-
duction in the number of distinguishable states.

The specifics of the melting of two-dimensional systems
bears the imprint of the anomalous properties of the two-
dimensional "crystalline" phase. The relatively low entropy
of melting of two-dimensional systems is determined by the
"liquidlike" character of a two-dimensional quasicrystal.

The melting of "exotic" systems at high pressure gives
grounds for assuming that the entropy of melting substan-
tially depends on the character of the interparticle interac-
tion, and its behavior can serve as an indicator of the pecu-
liarities of the phase diagram of the substance.

In closing the author thanks A. F. Andreev and V. A.
Somenkov for discussions and valuable remarks, and L. A.
Fal'kovskii for reading the manuscript.

The author expresses especial indebtedness to D. A.
Kirzhnits for the patience with which he heard out the often
contradictory arguments of the author and for constructive
criticism.

V. A. Somenkov and A. Sh. Shil'shtein drew the auth-
or's attention to the hydrides of the transition metals as an
example bearing on the topic of this article.

Naturally, none of the cited persons bears responsibility
for the article as a whole.

"We emphasize that the usual treatment of the "electronic" transition in
magnetite28 assumes that the N electrons are statistically distributed
over the 2N lattice positions in the melting of the electronic subsystem.
We point out that in this case the entropy of the transition would be 2/J
In 2=1.4.

2>This result seems somewhat strange and obviously requires verification.
3'We can imagine a situation in which the choice of the same given geo-

metrically disordered configuration of particles would be assured, e.g.,
in the adsorption of gases on a special substrate at low temperatures or in
the trapping of electrons by a randomly distributed impurity in a crystal
matrix. In this case the corresponding system will be fully ergodic and
its heat capacity and entropy at low temperatures will not differ from the
corresponding properties of a system built of the same particles regular-
ly distributed in space.

""Interestingly, a phase transition of the melting-crystallization type in a
quantum system of hard spheres at 7* = 0 is exclusively determined by
the competition of the kinetic energies of the corresponding phases,
which in turn are closely associated with the localization of the particles.
As the very existence of crystallization implies, in such a system53 the

particles in the supercooled liquid phase of quantum hard spheres are
more localized than in a crystal of the same density.

"Evidently, with a small value of the entropy of melting, the appearance
in the liquid phase of even a small fraction of "condensate", i.e., parti-
cles with zero momentum, can cause sign inversion of the entropy of
melting. Apparently this occurs in 4He at a temperature of ~ 0.8 K.26 A
similar effect is observed in 3He at a temperature of ~ 0.4 K.26 However,
in this case the sign inversion of the entropy of melting results from the
ordering of the nuclear spins in liquid 3He (the Pomeranchuk effect").

6>Curiously, if we are not concerned with maintaining a linear density, but
define the area as A = V2li, then we have S2D = (2/3)/? In (V/

]
"One can obtain this result much more simply by substituting the area A

instead of the volume Finto the corresponding expressions of Sec. 3.
However, we lose information here on the variation of all the other
contributions to the entropy.

8lThe given definition of a smectic A is somewhat simplified. We should
note that the r.m.s. displacements of the particles in a direction perpen-
dicular to the surface of the layer diverge logarithmically with increas-
ing distance,47 while one should describe the layered structure in terms
of a practically sinusoidal density wave.80

9lThe value of the "collective" entropy in this case is again R, although
particle exchange between the sheets is forbidden. This is a direct conse-
quence of the low probability of large density fluctuations.

""Analogously we can write for a two-dimensionally ordered system of
non-interacting particles 5C = (1/3)/? ln( V/N) + R. This result is re-
lated to the problem of discotic liquid crystals.85

'"In this case the physics of melting of a classical system of Gaussian
particles will be highly reminiscent of what one expects for a quantum
system of "soft", e.g., Coulomb particles under conditions of strong
compression, when the contribution of the "zero-point" energy to the
overall energy of the system becomes appreciable.92"94 In quantum
melting the difference of internal energies A U of the two phases declines
along the melting curve because the zero-point energy in the liquid
phase is always less than in the solid. The relative amplitudes of the
vibrations in the crystal also increase upon compression.
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