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A brief review is given of model theories of the displacive structural instability in ferroelectrics.
Particular attention is paid to the idea of compensation of the contributions of the short-range
forces and the long-range internal field dipole forces to the square of the frequency of critical
lattice vibrations. A vibronic theory of ferroelectricity is also discussed and its shortcomings are
identified. A detailed analysis is made of the modern microscopic theory of lattice dynamics and
exact expressions are derived for the force matrix governing the phonon spectrum of a crystal.
The theory is discussed in the specific case of polar nonmetallic crystals. The example of
semiconducting ferroelectrics from the group of IV-VI compounds is used to formulate
rigorously the microscopic problem of the causes of the structural instability of such compounds
on the basis of the exact expressions for the matrix of the force constants.
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1. INTRODUCTION

Ferroelectricity represents one of the most extensively
studied branches of solid-state physics. Many monographs
and reviews have been published on the properties of ferro-
electric crystals and on the theory of ferroelectricity.'” A
highly advanced phenomenological theory of ferroelectri-
city has been developed on the basis of the ideas of Landau
on second-ord=r phase transitions involving expansion of the
free energy in powers of the order parameter.

The first theory of a ferroelectric phase transition in
crystals was formulated by Ginzburg® and was subsequently
developed by many Soviet and other authors. A detailed ac-
count of the phenomenological theory of ferroelectricity can
be found in several monographs,'*7 so that in the present
review weshallignore completely the topics from this theory
as well as the range of phenomena which this theory de-
scribes, confining ourselves mainly to the problems of the
microscopic theory relating to the nature of ferroelectricity
itself and the reasons for its appearance in crystals.

Many investigations have been made of the problem of
the ferroeléctric instability in crystals. The first qualitative
ideas on the causes of the appearance of a spontaneously
polarized state in a certain range of temperatures were put
forward in the thirties by Kurchatov.'® Later the idea of a
“polarization catastrophe” as the cause of ferroelectricity of
crystals was developed by Skanavi, Slater, and several other
authors. However, recently theories of the structural insta-
bility in crystals have appeared and these are based on the
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ideas going back to the work of Frohlich on the lattice insta-
,bility in metals.'" The use of a different nomenclature and
the absence of any clear relationship between these two ap-
proaches suggests different physical mechanisms of the fer-
roelectric instability proposed by these theories. The prob-
lem of the nature of the ferroelectric instability in crystals is
complicated also by the absence of a rigorous microscopic
theory of ferroelectricity which would make it possible to go
beyond the model approach and also more generally provide
an opportunity for calculating the coefficients of the phe-
nomenological expansion of the free energy, particularly for
calculating the temperature of the phase transition and its
dependence on the crystal and electron structures, on the
nature of chemical binding, etc. The development of such a
theory is an urgent task which has not yet been carried out.
The purpose of the present review is to discuss models of the
ferroelectric instability and feasibility of rigorous formula-
tion of a microscopic theory of ferroelectricity on the basis of
a microscopic theory of the lattice dynamics of crystals.

The anomalous behavior of the low-frequency permit-
tivity £, without any anomaly of the high-frequency (elec-
tron) permittivity £ , (apart from a kink or a small discon-
tinuity) in the vicinity of a ferroelectric phase transition is a
direct indication of the important role played by the crystal
lattice in the establishment of ferroelectric properties. The
similarity of a phase transition in ferroelectrics to a second-
order phase transition means that the crystal structure of the
polarized phase can be derived by continuous distortion of
the lattice of the paraelectric phase in which the characteris-
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tic atomic displacements are small compared with the inter-
atomic distance a,. It is therefore natural to relate the lattice
distortions in the course of a ferroelectric transition to the
loss of stability by one of the normal lattice vibrations in the
paraelectric phase in the range of temperatures correspond-
ing to the polarized (ferroelectric) state. This point of view
makes it possible to discuss the structural instability using
the phonon language and postulating the existence of a nor-
mal vibration with an anomalous temperature dependence
of its frequency near the phase transition point.

Another possibility is related to the presence of ions
exhibiting a negative individual rigidity at the central (sym-
metric) position in the paraelectric phase.'? This means that
the potential in which such an ion moves when the otherions
in the lattice occupy fixed equilibrium positions has several
equivalent minima shifted from the symmetric position so
that the motion of this ion would be strongly anharmonic
and the phonon approach would be unsatisfactory.

The results of experimental investigations have demon-
strated that there are two very distinct groups of ferroelec-
trics, in one of which (order-disorder materials) the situa-
tion is of the quasi-Ising type,>*'* whereas in the other group
(displacive ferroelectrics ) the ferroelectric state appears be-
cause of the loss of stability by one of the dipole-active trans-
verse optical lattice vibrations of the paraelectric phase at
low temperatures >¢

The theoretical ideas used in microscopic descriptions
of the phase transition in these two groups of ferroelectrics
are very different.’ A detailed review of the current micro-
scopic theories of structural order-disorder phase transi-
tions can be found in Ref. 13. The present paper will deal
with the corresponding problems in the case of displacive
ferroelectrics.

The general ideas on the relationship between the mi-
croscopic theory of ferroelectric phase transitions in crystals
with lattice dynamics were formulated by Ginzburg,*'* An-
derson,'® and Cochran.'s"’

Ginzburg developed a phenomenological theory of fer-
roelectricity pointing out for the first time that the coeffi-
cient in front of the quadratic term in the expansion of the
free energy in powers of the order parameter, i.e., in powers
of the polarization, is related directly to the elastic constant
of a certain normal lattice vibration and vanishing of this
constant at the second-order phase transition point should
correspond to the existence in the system of a critical vibra-
tion of frequency which tends to zero when 7> T

The subsequent formulation of the microscopic theory
of the ferroelectric instability in the phonon approach and a
discussion of the role of the lattice anharmonicity in stabili-
zation of the critical vibrations at high temperatures was
provided by Anderson.'®

Cochran'®'” used the Lyddane-Sachs-Teller relation-
ship and its generalization to the case of polyatomic crystals,
given in Ref. 17, to show that one of the dipole-active trans-
verse optical (TO) lattice vibrations should be critical.

The ideas put forward in Refs. 8 and 14—17 have been
confirmed directly by experimental investigations of the
phonon spectra of various displacive ferroelectrics by the
methods of infrared spectroscopy, Raman scattering of
light, and inelastic scattering of thermal electrons. '™ which
have revealed “soft” TO vibrations of the lattice in these
crystals.
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Formulation of a microscopic theory of phase transi-
tions in weakly anharmonic displacive ferroelectrics in
terms of the lattice (phonon) Hamiltonian was completed
by Kwok and Miller'® and by Vaks>'® who obtained an ex-
plicit microscopic (in the sense defined above) expression
for the coefficients of a phenomenological Ginzburg-Lan-
dau expansion of the free energy in terms of the lattice Ham-
iltonian parameters.

However, in fact such a theory is also phenomenologi-
cal because it is based on the lattice Hamiltonian the param-
eters of which (phonon frequencies, polarization vectors in
the harmonic approximation, and tensors of the anharmonic
coefficients) cannot be determined within the framework of
the proposed scheme. Consequently, the most important
properties of the system responsible for the existence of a
ferroelectric phase transition in crystals, namely the insta-
bility of critical TO lattice vibrations at low temperatures
and the temperature dependence of wy, resulting in stabili-
zation of the TO vibrations at high temperatures, '’ are sim-
ply postulated in this theory.

This discussion of the causes of the instability of critical
TO vibrations below 7. and stabilization of these vibrations
above 7. belongs in fact to the microscopic theory of lattice
dynamics. This determines, on the one hand, the nature of
the difficulties encountered in this problem because the
study of the relative stability of these or other crystal struc-
tures requires the knowledge of the total energy of the
ground state (total free energy at temperatures 7>0K) of a
crystal considered as a function of the coordinates of nu-
clei.® On the other hand, this makes it possible to apply to
displacive ferroelectrics those powerful methods which have
been developed recently for lattice dynamics and which are
discussed in the following sections of the present review.

The review is organized as follows: the second section
deals with model theories of the structural instability in dis-
placive ferroelectrics, the third section provides a detailed
account of the modern microscopic theory of lattice dynam-
ics and derivations of the exact expressions for the force ma-
trix of a crystal governing its phonon spectrum. We shall
discuss the corresponding theory for polar nonmetallic crys-
tals. In the concluding section of the review we shall use the
example of ferroelectric semiconductors in the form of IV~
VI compounds to consider a rigorous microscopic formula-
tion of the problem of the causes of the structural instability
of these compounds on the basis of the exact microscopic
expressions obtained in Sec. 3.

2. MODEL THEORIES OF THE STRUCTURAL INSTABILITY IN
DISPLACIVE FERROELECTRICS

An important role in the development of a self-consis-
tent microscopic theory of the ferroelectric instability is
played by simple models, which—in contrast to formal gen-
eral expressions—carry information on the qualitative fea-
tures and differences between the crystal and electron struc-
tures and the nature of chemical binding of the investigated
compounds.

There are two fundamentally different approaches to
the problem of ferroelectric instability. The first is based on
the atomic theory of ionic insulators and the method of the
effective local field, utilizing the idea of compensation of the
contributions of the short-range forces and the long-range
internal field dipole forces to the square of the frequency of
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critical TO lattice vibrations. The second approach is devel-
oped within the framework of the band theory and is based
on the electron-phonon Frohlich Hamiltonian and on the
idea of a renormalization of the spectrum of bare phonons
resulting in an instability because of a strong interband elec-
tron-phonon interaction.

All known ferroelectrics are insulators or semiconduc-
tors with a higher or lower degree of ionicity, so that the
simplest model accounting for the important features of fer-
roelectricity is that postulating point (nonoverlapping) po-
larizable ions with charges Z {e and dipole electron polariza-
bilities of the ions &, (s is the sublattice index).

In this model the dielectric properties of cubic crystals
are described by the following system of equations®

) q q iy s 9
P - P P,ﬁiﬂﬁzs‘U,f Bl (2.1
i ~ 41 . <Pt >
EN B S Pl Y Pl — - D eiZinl, 22)

t, 3 tJ

where p* and E* are the long-wavelength (macroscopic)
components of the polarization and electric field intensity,
E2 is the lattice Fourier component of the local field EF
acting on anion (R, s) in a distorted lattice and described by

ET Mexp[—ig(R
R

--Ry)| EY, (2.3)
R is the lattice vector, R, is the fundamental vector of the
lattice structure, U} represents long-wavelength displace-
ments of nuclei from the equilibrium positions, f/is the ten-
sor of the internal field constants representing the difference
between the internal field factor and the Lorentzian factor
(equal to 477/3) in a specific crystal structure, and v, is the
volume of a unit cell.

In this model the influence of the crystal structure on
the dielectric properties of a given material is described by
the tensor ¥ and the influence of the electron structure is
described by the dipole polarizabilities of ions a as well as,
to some extent, by the magnitude of the ion charges if we
regard the latter as effective charges differing from the ideal
ion charges governed by the valence of the corresponding
atoms.

The phenomenological relationship®®??

PN 2 Ut s (2.4)

Uy

where ¢ is the high-frequency (electron) permittivity of a
crystal and Z(s) is the tensor of the macroscopic (trans-
verse) optical charge representing the contribution of the
long-wavelength optical displacements of ions to the macro-
scopic polarization of a polar crystal, allows us to derive
from Egs. (2.1) and (2.2) the following expressions for the
macroscopic parameters £ _ and Z:

b 1A p (1= p) (2.5)
Zis (1=5mB) B =g len-2) E09), (2.6)
£s) —IZ[(i~:—O&{’)"IT“'%(}—%c};)”“zﬁ. 2.7)
B6;; Zt[:(}—%;‘{?)”&l:y (&)E.QEGS,GijOLS; (2.8)
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here, i is a unit tensor. The relationship (2.5) is similar to the
familiar Lorenz-Lorentz formula for £_, but generally
speaking even in the case of cubic crystals the value of £ in
this formula is not equal to the sum of the polarizabilities of
ions in a unit cell. It should be noted that the condition of
electrical neutrality of a unit cell in a crystal £, Z! =0
yields automatically, when Egs. (2.6) and (2.7) are used,
the sum rule for Z(s):

D206 e

2.9)

The low-frequency dielectric properties of a crystal can
be described if we supplement Eqs. (2.1) and (2.2) with the
equation of motion for the ions (nuclei), which in the model
under discussion is?’

M 02U == t\: Ry 15 (q) Ul —ZieE% ;’: [Zie (yo)l§] B
v J »J

(2.10)

where R is the contribution of the short-range forces to the
force matrix, whereas the second and third terms on the left-
hand side of the above equation describe (in the dipole ap-
proximation) the long-range Coulomb forces acting on an
ion in a distorted lattice (in an approximation which is linear
inU%). The second term is determined by the force acting on
the ion charge and the third by the force acting on the in-
duced electron dipole moment of the ion.*

Solving the system of equations (2.1), (2.2), and
(2.10) and allowing for the relationships (2.4)-(2.8), we
readily obtain the following expressions for the dynamic
(dispersion) equation describing the spectrum and polariza-
tion vectors of long-wavelength optical phonons in the har-
monic approximation, for the force matrix (q— 0), and for
the low-frequency permittivity® £,

7 Dge
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The expressions (2.5)—(2.8) and (2.11)-(2.16) are
equivalent to the corresponding relationships of Born and
Huang (Chap. 5 in Ref. 20) and are given here in a form
convenient in subsequent discussions.

Because of the condition (2.9) the Coulomb contribu-
tion to the force matrix satisfies automatically the sum rule
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which is a consequence of the invariance of the total energy
of the system in the presence of an adiabatically slow dis-
placement of all the nuclei in a crystal as a whole?® and en-
sures the existence of acoustic vibrations of the lattice in
insulators.

We shall now discuss some features of the derived ex-
pressions. First of all, we note that the total Coulomb contri-
bution to the force matrix consists of two parts: aregular one
in the limit q—0 described by the matrix Cin Eq. (2.14)
and a part which is nonanalytic in the limit ¢—0 described
by the second term in Eq. (2.12). The nonanalytic part is
related to a macroscopic field which appears in the case of
longitudinal dipole-active optical vibrations of the lattice
and is responsible for the splitting between the LO and TO
frequencies in polar crystals. The frequencies of dipole-ac-
tive TO vibrations are governed by the regular part of the
force matrix of Eq. (2.12). It is usual® to assume that w3,
can be described by

ot == 05— whp,

(2.18)

where @] is the positive contribution of the short-range
forces (i.e., the contribution of R), whereas w3, is the nega-
tive contribution of the regular part of the dipole-dipole in-
ternal field interaction, i.e., the contribution of C. It should
be noted that if an allowance is made for the matrix f/, a
rigorous proof of the general conclusion about the signs of
these quantities cannot be provided, although in many situa-
tions Eq. (2.18) is satisfied and in the case of normal insula-
tors the value of w3 is several times higher than w? 5, which
ensures stability of the TO lattice vibrations in these crystals.
From the point of view of Eq. (2.18) the instability of one of
the TO lattice vibrations occurs when

(2.19)

0 << 0bp

and is possible either because of the anomalous reduction in
w} or because of an anomalous increase in w%. A clear
choice between these two alternatives is difficult for a num-
ber of reasons. The first reason is the limited validity of the
very mode] of polarizable point ions in the description of
crystals which have ferroelectric properties, because usually
such crystals have a lower ionicity than normal ionic crystals
and are more likely to be semiconductors than insulators.
For example, in the case of alkali halide crystals the band gap
is £, ~7-10eV, whereas in ferroelectrics with the perovskite
structure the band gap is £, ~ 1-4 eV and in ferroelectrics
which are IV-VI compounds and have the NaCl structure in
the paraelectric phase the corresponding value is £, ~0.2—-
0.3 eV.

The second reason is the considerable indeterminacy in
the choice of the parameters of the model such as the polari-
zabilities and charges of ions and of the parameters repre-
senting the short-range forces. Calculations carried out for
several compounds with the NaCl and CsCl structures, for
which the model parameters can be determined directly
from the experimental values of £, wr, and w, (Ref. 20),
demonstrate that the polarizabilities and charges of ions dif-
fer from the corresponding values for free ions. In the case of
alkali halide crystals these differences are small. For exam-
ple, if the valence is unity, the ion charge Z’ which occurs in
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Egs. (2.6), (2.7), and (2.12)—(2.16) is of the order of 0.8~
0.9 (Ref. 20). Hence, Tolpygo? could use the tight-binding
approximation to develop a microscopic theory of dipole
forces in alkali halide crystals with the NaCl-type crystal
structure selecting as the zeroth order approximation the
hypothesis of nonoverlapping ions and allowing for the dis-
tortion of the wave functions of the ions because of their
overlap on the basis of perturbation theory. However, such a
theory can hardly be applied to IV-VI compounds, in which
the effective ion charge Z'is almost four times less than the
valence of two. -

Leaving aside the problems of validity of the model of
polarizable ions in the description of lattice dynamics and
dielectric properties of displacive ferroelectrics (we shall re-
turn to this topic later), we shall discuss the qualitative con-
clusions which can be drawn from an analysis of the causes
of the instability of the TO lattice vibrations in cubic ionic
crystals on the basis of this model.

We shall begin with the simplest case of diatomic cubic
crystals in which the internal field is Lorentzian,® i.e., it is
necessary to substitute ¥ =0 in Egs. (2.5)-(2.10) and
(2.14). We then obtain the following expressions for the fre-
quencies of the optical lattice vibrations*

0ho = o) — obp, (2.20)
o . 2% __ Ahme?
oio = ro + . Q, Q= Froul (2.21)
1 is the reduced mass of a unit cell, and
R Ziy2 N Ze o
Wpp = (8m+2) (?) Q2. m Q2 (222)

In Eq. (2.22) an allowance is made for the fact that the
scalar macroscopic charge Z is related to the effective ion
charge Z' by [Eqgs. (2.6)and (2.7)]

z;,;_;.(gm~2)zi. Zo\Zy|, Zhe|ZE]. o (2.23)

It follows from Egs. (2.20), (2.22), and (2.23) thatan
increase in the contribution of the dipole forces to w3, i.e.,
instability of TO lattice vibrations, is favored by an increase
in the electron permittivity £ _ ; at the same time there should
be an increase in the macroscopic charge Z. This is precisely
the tendency observed for compounds with the NaCl and
CsCl structures. This tendency is manifested most strongly
in the case of IV-VI compounds. The problem of the influ-
ence of dipole forces on the stability of TO lattice vibrations
in diatomic cubic crystals will be discussed in greater detail
in Sec. 4.

We shall now consider polyatomic cubic ferroelectrics
with the perovskite structure. Calculations of the internal
fields in crystals with this structure’*2® have shown that
such fields are not Lorentzian and that the individual struc-
ture constants of the internal field ¥} reach values of the
order of 30, i.e., they are almost an order of magnitude larger
than the Lorentzian factor 47/3. Bearing in mind that the
electron polarizability of these compounds is not very large
(e, ~5-7T—see Ref. 27), we can expect the presence of
anomalously large structure constants of the internal field to
play an important role in the ferroelectric instability of these
compounds, giving rise to an anomalously large contribu-
tion of the dipole forces to one of the frequencies of TO vibra-
tions of the lattice in the cubic phase. These ideas were first
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put forward by Skanavi**?® and Slater.?® They used the sin-
gle-ion model in the first approximate calculations relating
to barium titanate (BaTiO, ) which confirmed this hypothe-
sis. It was found that the difference between the internal and
the Lorentzian fields has little effect on the value of £ _ be-
cause of the approximate equality of the electron polarizabi-
lities of barium and oxygen, but has a strong influence on the
low-frequency permittivity £,. The calculation carried out
by Slater demonstrated that in the single-ion approximation
(assuming that the titanium ions are ferroelectrically ac-
tive) a simultaneous allowance for the electron polarizabili-
ties of barium and oxygen ions and for the difference
between the internal and Lorentzian fields increases the di-
pole contribution to the frequency of the critical TO vibra-
tion by a factor of about 16, whereas an allowance for the
difference between the internal and Lorentzian fields (ignor-
ing electron polarizabilities of the ions) increases this fre-
quency approximately by a factor of 6, compared with the
approximation in which the internal field is regarded as Lor-
entzian and the ions are regarded as hard.

However, calculations carried out by Skanavi and
Slater cannot be regarded as fully satisfactory because they
used the single-ion approximation and also because of inac-
curate calculations of the local effective (polarizing) field
[no allowance was made for the last term in Eq. (2.2) ] *and
ofthe Coulomb contribution to the forceactingonanionina
distorted lattice [the force acting on an induced electron
dipole moment of the ion, represented by the last term in Eq.
(2.10), was ignored]. A self-consistent calculation of the
frequencies of optical lattice vibrations of the cubic phase of
BaTiO, by means of Egs. (2.11)-(2.14) was made by
Dvofak and Janovec.*'*? A group-theoretic analysis of long-
wavelength lattice vibrations in the perovskite structure*
was made by these authors*'*? and they found the frequen-
cies of all four optical branches of the lattice vibration spec-
trum of barium titanate (without allowance for the splitting
caused by the macroscopic field). Three of these branches
were dipole-active. The frequency of one of the dipole-active
TO lattice vibrations was found to lie well below the remain-
ing three frequencies and was sensitive to the selection of the
parameters representing the Coulomb contribution to the
dynamic matrix. The calculations reported by Dvorak and
Janovec were carried out varying the electron polarizabili-
ties of the ion @, and the effective ion charges Z {. The mag-
nitude of ion charges was varied by altering the scaling factor
r, common to all the ions

Z.=rZ},

where Z | represents the ideal ion charges corresponding to
the ion valences (Z}, =2, Z%, =4, Z, = —2). It was
found that if @, was selected to be one of the values obtained
by Slater from the optical data, then one of the dipole-active
TO frequencies vanishes at 7 = 0.226, in good agreement
with the conclusion of Slater that the effective charge of ti-
tanium is more likely to be 1 than 4 (Ref. 29). On the other
hand, when the electron polarizabilities of the ions are ig-
nored completely, i.e. in the model of rigid ions, the instabil-
ity occurs only for ¥ = 1.7 (Ref. 32). The frequencies of the
remaining three optical branches are of the usual order of
magnitude and they vary slightly when the parameters of the
long-range interactions are altered. The treatment given in
Ref. 32 dealt also with the influence of changes in the lattice
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constant on the optical frequencies. It was found that a
change in the lattice constant has a strong influence on the
frequency of critical TO vibrations, but has little effect on
the remaining frequencies. Then, in the model of rigid ions
the critical frequency decreases on increase in the volume of
a crystal, in agreement with the experimental observation
that the compression of a crystal stabilizes the cubic phase
and lowers 7, (Ref. 5). However, in the model of polariz-
able ions the frequency of the critical vibrations increases on
increase in the volume.*? The discrepancy from the experi-
mental dependence may be due to neglect of the volume de-
pendence of the ion polarizabilities ;. In fact, it follows
from the Lorenz-Lorentz formula that the absence of the
volume dependence of ; always reduces £_ on increase in
the volume (because of an increase in v, ) and, consequently,
it reduces the dipole contribution to w3y, i.e., it increases
k.

Unfortunately, Dvofak and Janovec ignored the
case of the Lorentzian internal field when ¥ = 0. Therefore,
the influence of anomalously large structure constants of the
internal field in perovskites on the stability of critical TO
vibrations can be judged only on the basis of the approximate
calculations of Slater and Skanavi.

It follows that the results of an analysis of the diatomic
cubic crystals and compounds with the perovskite structure
demonstrate that the dipole-dipole interaction is a possible
cause of the ferroelectric instability in displacive materials.

An analysis of the dipole Coulomb forces as a possible
reason for the lattice instability in the displacive ferroelec-
trics is in our opinion a natural approach because all the
known ferroelectrics are ionic crystals and ferroelectric
properties are a consequence of instability of the dipole-di-
pole transverse optical lattice vibrations without any tenden-
cy for the dipole inactive optical frequencies to decrease in
perovskites which would be expected if the smallness of w},
i.e., the weakness of the short-range forces, had been signifi-
cant. Moreover, there is no significant difference between
the elastic constants of ferroelectrics and of normal (nonfer-
roelectric) insulators, which is to be expected if the domi-
nant role is played by the dipole forces, because inclusion of
the electron polarizabilities of ions has a significant influ-
ence on the values of w3, and w3, but does not affect their
elastic constants, at least in the case of centrosymmetric
crystals. Use of the model of point polarizable ions for the
description of the dipole forces also seems to be justified at
least qualitatively, because the model of such ions contains
only those parameters which have a direct physical meaning
and the smallest number of such parameters is used. More-
over, the model of point polarizable jons is the simplest non-
trivial exactly soluble model allowing for the direct Cou-
lomb interaction both of the electron-ion and of the
electron-electron type, which is important because (as
stressed in the Introduction) the lattice stability is governed
by the total energy of a crystal when the interaction is al-
lowed for. Finally, it is equally important that the model in
question yields correct order-of-magnitude estimates of a
number of quantities describing the phase transition in dis-
placive ferroelectrics. >3

On the other hand, in addition to arguments in support
of the model of polarizable point ions it is possible to provide
seemingly convincing arguments based on physical consid-
erations and demonstrating that this model cannot be used
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directly to describe the contribution of electrons to the di-
pole-dipole interaction in semiconductors, i.e., in com-
pounds with strongly delocalized. valence electrons.?"***
The situation in narrow-gap IV-VI semiconductor com-
pounds is particularly difficult because the model of polariz-
able point ions is known to be unsuitable for the description
of these materials. Attempts to refine the model allowing for
the characteristic features of IV-VI compounds?**** have
led to the conclusion that there is no relationship between
the large values of £, of IV-VI compounds and their ferro-
electric properties. The same conclusion, although based on
more formal considerations, was reached in Ref. 36.

It therefore follows that the problem of the role of di-
pole forces in the case of a phase transition in a displacive
ferroelectric must be solved going beyond the framework of
the model of the dipole-dipole interaction in nonmetallic
crystals.

We shall now consider the energy band approach to the
problem of the lattice instability of displacive ferroelectrics.
Different variants of the band approach®~° begin with the
concept of noninteracting bare critical TO phonons and va-
lence electrons. Such bare TO phonons describe stable lat-
tice vibrations. If we include the electron-phonon interac-
tion of the Frohlich type, i.e., if we go to the first order in
respect of the ion displacements, the frequencies of the criti-
cal TO vibrations become renormalized. In the harmonic
approximation, corresponding to the second order of pertur-
bation theory in respect of the electron-phonon interaction,
the contribution of the valence electrons to w% is automati-
cally negative because inclusion of any interaction in the sec-
ond order of perturbation theory always lowers the ground-
state energy.*' Consequently, the renormalized vibration
frequency becomes smaller than the bare frequency. If the
electron-phonon interaction is sufficiently strong, this cor-
rection may exceed the square of the bare frequency and an
instability appears. Since such reasoning applies completely
to the case of any other normal lattice vibrations and any
electron-phonon interaction of the Frohlich type, it follows
that even within this framework we face a number of ques-
tions such as: Why is it that the dipole-active TO vibrations
become unstable? Why do these vibrations remain stable in
normal (nonferroelectric) insulators and semiconductors?
What are bare phonons? There are also other questions.

We also face a series of problems relating to the validity
of the approach based on the Frohlich Hamiltonian in de-
scribing the lattice dynamics of nonmetallic crystals. It is
known that this approach is invalid in the case of metals. *>*}
The shortcomings of the approach in the description of lat-
tice dynamics remain in the case of nonmetallic crystals and
this applies in particular to the influence of the Coulomb
electron-electron interaction on the renormalization of the
phonon frequencies and the associated question of the
screening of the electron-phonon interaction. Moreover, in
discussing optical vibrations in nonmetallic crystals we have
to deal with the role of the non-Frohlich terms (i.e., of terms
of the second order in respect of the ion displacements) in
the electron-phonon interaction, which renormalize the
phonon frequencies in the first order of perturbation theory
and generally stabilize TO vibrations. However, we shall
postpone a discussion of these problems and return to them
after reviewing the current status of the microscopic theory
of lattice dynamics.
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3. MICROSCOPIC THEORY OF LATTICE DYNAMICS

3.1. Calculation of the electron contribution to the dynamic
matrix

The microscopic approach to the calculation of the
electron contribution to lattice dynamics is based on the very
old idea of Born and Oppenheimer** on the adiabatic separa-
tion of the slow motion of nuclei and the fast motion of elec-
trons when the energy of molecules is calculated. A similar
calculation was later generalized to crystals. The essence of
this approximation is as follows. If we allow for the consider-
able difference between the velocities of electrons and ions
related to (/M) '?, where m is the mass of an electron and
M is the mass of a nucleus, we obtain two uncoupled (apart
from small nonadiabatic corrections) systems of electrons
and nuclei. The former is described by the Schrédinger equa-
tion for electrons in a field with an arbitrary distribution of
nuclei

(Te + Vee + Vo), (r, R) = E,(r, B)y, (r, B), (3.1)

where T, is the kinetic energy of electrons, ¥, is the Cou-
lomb electron-electron interaction, and ¥V, is the nuclear-
electron interaction. The nuclear system is described by the
following equation:

where T, is the kinetic energy of the nuclei, ¥, is the Cou-
lomb interaction of the nuclei, and E, (R) is the energy of
electrons which is obtained from Eq. (3.1) and which occurs
in the equation for the nuclei as a potential energy additional
to V.

Because of lack of space we shall not deal in detail with
studies of the limits of validity of the adiabatic approxima-
tion: this subject is discussed in detail in, for example, the
reviews of Brovman and Kagan*? and Maksimov*® and in-
stead we shall give a brief summary of the current ideas.

a) In the calculation of the phonon spectra of crystals in
the harmonic approximation we can ignore the nonadiabatic
corrections for crystals of any type (insulators, semiconduc-
tors, and metals). In the case of nonmetallic crystals the
nonadiabatic corrections to the frequencies of the majority
of normal lattice vibrations are small in respect of the param-
eter w/E,,, where @ is the characteristic phonon frequency
and E,, is the average width of the band gap which is of the
order of several electron volts or more. In metals, there is no
gap in the spectrum of electron excitations, the smallness of
the nonadiabatic corrections to the phonon frequencies is
governed—as shown by Brovman and Kagan*® and Ches-
ter**—by the parameter w/£y, where £, is the Fermi energy
of electrons. This is due to the fact that the formation of the
phonon spectrum of metals is influenced by all the electrons
under the Fermi surface and the nonadiabaticity is impor-
tant only in the case of electrons in a thin layer of thickness @
near the Fermi surface.

This applies to the phonon spectrum of a crystal as a
whole. In the case of individual small groups of phonon fre-
quencies, we find that in semiconductors there may be situa-
tions in which the nonadiabaticity effects become important.
For example, in the case of pure zero-gap semiconductors
inclusion of the nonadiabaticity results in significant renor-
malization of the velocity of sound in the case of excitations
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with a sufficiently long wavelength.*’ A different case is en-
countered in polar semiconductors in the presence of free
carriers and it is related to the strong interaction of longitu-
dinal optical lattice vibrations with longitudinal excitations
of the carrier charge density (plasmons).*® However, it
should be pointed out that in these and in other possible
cases we are speaking of the influence of the nonadiabaticity
on the frequencies in the spectrum of lattice excitations de-
termined in the harmonic approximation from the dynamic
equation

0?%e; = Dy’ (q, ©) e, (3.3)
whereﬁ(q, o) isthe dynamic matrix and e, are the polariza-
tion vectors. The frequency dependence of the dynamic ma-
trix 1s governed by the frequency dependence of the electron
contribution, which can be expressed in terms of the total
longitudinal susceptiblity of the electron subsystem /i/(a))
(thisis discussed later) and is due to the delay of the electron
response to the change in the potential of the nuclei 6V,
caused by their displacements from equilibrium positions, in
other words, it is due to the nonadiabaticity of the electron
motion. Therefore, the adiabatic approximation corre-
sponds to the use of the static value of ¥ (@) in calculations of
the electron contribution to D. If we allow for the anhar-
monic effects, we find that the interaction-renormalized
phonon spectrum is described by an equation analogous to
Eq. (3.3), in which D is replaced with the quantity’

T@ o =D(@ o+ 2@ o), (3.4)

where E(q, @) is the self-energy part describing the effects of
the phonon-phonon interaction.

The following circumstance will be important in our
later discussions. The coefficients of the terms quadratic in
displacements of the nuclei, which occur in the expansion for
the free energy and which govern the stability of a crystal
against the displacements, can be expressed directly in terms
of the static values of I'(q, 0) (Ref. 5). Therefore, in the
harmonic approximation the problem of stability of the crys-
tal lattice can be reduced directly to calculation of the
phonon spectrum of a crystal in the adiabatic approximation
and the problem of the nonadiabatic corrections to the
phonon frequencies is important only when we discuss the
spectrum of excitations of a system ignoring the problem of
the lattice stability.

Therefore, the term ‘“‘vibronic theory of ferroelectri-
city” used by several authors (see, for example, Ref. 40 and
the literature cited there) stressing the important role of the
vibronic effects, i.e., of the effects associated with the non-
adiabaticity of the electron subsystem, is a totally unjustified
attempt to apply to the theory of crystals the terminology
taken from the theory of molecules. Moreover, in all the
investigations where this terminology is employed every cal-
culation is carried out in fact in the adiabatic approximation
in the sense defined above in connection with the dynamic
equation (3.3).

b) In the case of the electron subsystem the effects asso-
ciated with nonadiabaticity are often a decisive influence.
This applies to transport phenomena in metals and semicon-
ductors, to the polaron effect in insulators, to the tempera-
ture dependence of the band gap of narrow-gap semiconduc-
tors, etc.
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It is clear from the above discussion that the first stage
of any microscopic calculation of lattice dynamics involves
evaluation of the energy of the ground state of the electron
subsystem as a function of the coordinates of the nuclei,
which are the sources of the external field acting on elec-
trons. The problem is solved most readily in the case of nor-
mal metals, when it is possible to carry out self-consistently
the procedure of expansion (as a perturbation series) in
terms of a weak electron-ion pseudopotential (for a review
see Ref. 42). The situation is much more complex in the case
of transition metals and also in the case of semiconductors
and insulators. However, considerable progress has been
made in solving this problem. The framework of a self-con-
sistent standard many-body theory has been used to derive
formally the exact expression for the total electron contribu-
tion of the harmonic and anharmonic force constants of the
lattice in terms of the corresponding linear and nonlinear
susceptibilities of the electron subsystem (see Refs. 43 and
49-54). We shall return to this approach later, but at present
we want to consider the existing methods for calculating the
total energy of a crystal.

In the case of crystals consisting of saturated ““elemen-
tary” units (ions, atoms, or molecules with filled electron
shells) the cohesive energy can be calculated also by pertur-
bation theory methods. After separation of the Coulomb
(Madelung) cohesive energy of ionic compounds, the re-
mainder is due to short-range forces and is related mainly to
overlap of neighboring ions. In the first approximation, the
energy is equal to the average value of the Hamiltonian cal-
culated using unperturbed wave functions of the free ions.
The distortion of these wave functions leads to corrections of
higher order in perturbation theory. The first calculations of
this type were made by Landshoff** and Léwdin®® for alkali
halide crystals. However, in some cases the distortion of the
wave functions must be taken into account right from the
beginning. This is true also of crystals with the van der Waals
interaction, which appears in the second order of perturba-
tion theory when dealing with the optical vibrations of the
lattice, etc.

The most general and rigorous method for the calcula-
tion of the ground-state energy of a system of interacting
electrons in an external static local potential is at present the
density functional method proposed by Kohn, Hohenberg,
and Sham®”*® (see also the reviews in Refs. 59 and 60 and the
collective monograph of Ref. 61), which we shall now brief-
ly describe.

The method is based on the following theorem proved
by Hohenberg and Kohn:

1) The energy of the ground state of a system of identi-
cal zero-spin fermions with an arbitrary interaction, which
experience a scalar local static potential, is a single-valued
functional of the particle number density

E=E{n(@} (3.5)
2) For a fixed number of particles, i.e., if
(dr n@) =N,

this functional reaches its minimum value in relation to vari-

ation of the density #(r) when the density is equal to the
exact value for the ground state of the system, i.e., when
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8E {n}
on

) (3.6)
Subsequently the Kohn-Hohenberg theorem has been gener-
alized to the case of particles with spin, to the relativistic
situation, to finite temperatures, etc.** The energy func-
tional E{n} can be written in the form®

E{n)=T{(n}+ { dn (1) Veur (v

2 ’ ~
+%5drdr'"T‘r”__"rfrl_)+Exc{n;. (3.7)
Here, T{n} is the kinetic energy functional and the second
term is the energy of the interaction with an external field
which in the case of crystals can be written in the form

Vmu):}; Ve (r—R),

where V¥, is the nuclear-electron potential and R represents
equilibrium coordinates of the nuclei. The third term in Eq.
(3.7) is the contribution of the direct Coulomb electron-
electron interaction (Hartree energy), whereas the last
(fourth) term represents an exchange-correlation func-
tional describing the contribution of the exchange-correla-
tion electron-electron interaction to the potential energy of
the system.

Unfortunately, more or less exact expressions for the
functionals of the kinetic and exchange-correlation energies,
needed for specific calculations, are available only for a ho-
mogeneous electron gas. In the case of a noninteracting elec-
tron gas the kinetic energy functional is of the form

T {n} = C, S drn® (r). (3.8)
The functional of the exchange-correlation energy consid-
ered in the homogeneous case can be written in the form

Ey. {n}'__ ‘ dre_\c(n(r)), (3.9)
where ¢,. (n) is the function of the density known from
Monte Carlo calculations for a wide range of densities.®> In
the simplest case when only the exchange effects are taken
into account, we have

Exe (n) = C,ntl%

(3.10)

here, C, and C, are constants independent of the density.
The use of Egs. (3.8)—(3.10) leads directly to a functional in
the Thomas-Fermi-Dirac theory known already in the thir-
ties:

Eryp {n} = Co | drn¥3 () + [ den (1) Ve (1)

+ —‘; g dr dr’ _ﬁl(r"_l"_rﬁ'_l’l +C, \. drn#/3 (). (3.11)

We shall not describe this theory and its applications
(thereader is referred to Refs. 60, 61, and 64 for details), but
discuss briefly only some calculations of the ground-state
energy and of some other static properties carried out by this
method in the case of several ionic and molecular crystals.
The main idea of these calculations is, as in the Lowdin
method,’ that in the first approximation these crystals can
be regarded as consisting of elementary units (ions, atoms,
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and molecules) with closed electron shells. This makes it
possible to carry out accurate calculations of the electron
density of a crystal using the wave functions of free ions,
atoms, or molecules found—for example—by the Hartree-
Fock method and considering the total electron density as a
superposition of the densities of the individual elementary
units. Substituting the density n(r) found in this way into
the functional of Eq. (3.11), we can determine the ground-
state energy of the investigated system and by minimizing it
with respect to the lattice parameters, we can deduce the
equilibrium values of these parameters. In this approxima-
tion the cohesive energy is given by the expression

AE (R)=E (X n) =2 E{n}, (3.12)
where the summation is carried out for all the ions, atoms, or
molecules. The sum of the internuclear Coulomb interaction
together with the electron-ion and Hartree electron-electron
interactions in the case of neutral atoms is assumed to be
zero and in the case of ions it is replaced by the Madelung
energy of the ion-ion interaction. If we consider the cohesive
energy as a function of the lattice parameters and approxi-
mate the resultant curve by simple phenomenological ex-
pressions for the pair interionic or interatomic interactions,
we can find the parameters of this interaction from ‘‘first
principles.”

The first calculations of this type were made back in the
thirties by Jensen, Lenz, and Gombas$ (for a review of their
work see Ref. 20). Some of the calculations made by this
method in the case of crystals were reported also in the fifties
and sixties (citations of the relevant work can be found in
Ref. 65). The current round of such calculations began in
1970 with the work of Gaydaenko and Nikulin®® who calcu-
lated interatomic interactions within the framework of the
functional of Eq. (3.11). This method was developed further
in later work*¢™-7! in which the exchange-correlation con-
tribution to the energy was allowed for more accurately than
in the exchange approximation and this was done using the
interpolation formula for £, (n) derived by Kim and Gor-
don® or in the local density approximation. Calculations
were made of the cohesive energy, equilibrium interatomic
distances, pressure at polymorphic transitions, elastic con-
stants, etc. for a large number of ionic and molecular crys-
tals, and the results were in good agreement with the avail-
able experimental data. The phonon spectra were not
calculated. This was done in Refs. 72-75 in connection with
the discussion of various types of lattice instability in ionic
crystals: melting, transition to a superionic state, and struc-
tural instability.

This method suffers from a number of shortcomings:
for example, the use of Eq. (3.10) for the kinetic energy,
which is a very rough approximation,* and inconsistency of
calculations of the electron density in the sense of the condi-
tion (3.6). More rigorous and consistent approaches have
recently been developed for a calculation of the properties of
the ground state of crystals and phonon spectra, which avoid
these and some other shortcomings. We shall now consider
such approaches.

We shall begin with a brief description of a more consis-
tent approach to the density functional method put forward
by Kohn and Sham.*® The difficulties associated with the
fact that the exact form of the kinetic energy functional is not
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known were avoided by these authors by adding and sub-
tracting from the functional of Eq. (3.7) the kinetic energy
of noninteracting electrons with the same density 7o{n}

E{n}=Ty{n}+ S drn (r) Vg (;)

+—8215drdr"i'<-:)_—"r<,r—l)+Exc{n}. (3.13)

Here E,_ is the total exchange-correlation energy of the sys-
tem

Eqo{ny=Exc{n)+T {n} = To(n).
Next, representation of the electron density in the form

,,(,):; ni | @i (1) 1% (3.14)

where n; are the occupancy numbers of single-particle states,
equal to zero or unity, and minimization in accordance with

Eq. (3.6) yields the following equations for the wave func-
tions @;:

(~ v+ Ve + | ar T2 V0 ) e ()
= Eqi (r); (3.15)
here, V,. (r) is the exchange-correlation potential
Ve {n () =5 Exe{n}. (3.16)
We shall now rewrite Eq. (3.15) in the form
(= oo V2 4-Uert (1) @1 () = Eipi (1); (3.17)

this yields the usual single-particle Schrédinger equation
with the effective potential

Vel’f (l‘) = Vext (l‘) + VH (l‘) + ch (l‘) (3]8)

The total energy of the system of interacting electrons
can be described as follows in terms of solutions of Eq.
(3.17):

_ e? , r{t)n(r)
E{’?}‘ Z n,»E,-—T 5 drdr T—ET,I

1

+ Ege{n)— S drn () Ve (r). (3.19)
The second and fourth terms appear in the above equation
because, as usual, it is necessary to subtract the single-parti-
cle energies of the direct Coulomb and exchange-correlation
interactions taken into account twice in the summation pro-
cess. We shall not discuss in greater detail the Kohn-Sham
method or the problem of construction of the exchange-cor-
relation potential ¥V, {n} central to this method: readers in-
terested in these topics can turn to Refs. 58 and 76-78, as
well as to a book®' and reviews.**%7°

The Kiohn-Sham method together with the energy rela-
tionships (3.13) and (3.19) and a suitable selection of the
expression for the exchange-correlation functional E,_ [it is
usual to employ the approximation of the local density and
the results of calculations of €, (n) for a homogeneous elec-
tron gas] makes it possible to carry out, in principle, a self-
consistent ab initio calculation of the properties of the
ground state of a crystal, including the energy and electron
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density. Such a self-consistent calculation procedure is de-
scribed in a review in Ref. 80.

We shall now consider in greater detail the problem of
calculation of the phonon spectra of nonmetallic crystals
from first principles. Two calculation methods are available
at present: a direct method of “frozen-in” phonons****and a
dielectric method based on exact microscopic expressions
for the force matrix.’'™>* Both approaches use the density
functional to calculate the energy of the ground state for a
given configuration of nuclei in the first case and the static
electron susceptibility in the second case.

The method of frozen-in phonons involves direct con-
struction (calculation) of the adiabatic potential in which
nuclei are moving. This is done by finding the total energy of
the ground state of the system when the lattice is undistorted
and also in the presence of a distortion representing one of
the normal lattice vibrations; the difference between them is
then found as a function of the distortion parameters. This
yields not only the frequencies of normal vibrations in the
harmonic approximation, but also the parameters represent-
ing the anharmonicity of the lattice vibrations.*>* In recent
years this method has been used on several occasions to cal-
culate the phonon spectra of several semiconductors and
metallic crystals.®>®® It is particularly interesting to consid-
er calculations carried out from first principles, without any
fitting parameters and specifying only the charges and
masses of the nuclei and the type of the crystal structure
(interatomic distances for an equilibrium configuration of
nuclei are also determined in the process of calcula-
tion).*>*?** The precision of such calculations is unexpect-
edly high® in spite of the number of approximations made:
the calculated values of the cohesive energy, lattice con-
stants, elastic constants, and phonon frequencies differ from
the experimental values by about 1% or less. By way of ex-
ample, we shall give the results of a calculation carried out in

“the case of silicon and germanium.® It is clear from Eq.

(3.13) describing the energy functional that the quantity o’
(q), where q is the wave vector, can be represented as a sum
of the following contributions:

0 (Q) =k — ot 0p=0kint 0o+ ok 40k, (3.20)

where o} is the contribution of the interionic interactions
(core-core interactions); w? is the total contribution of the
valence electrons which consists of wi,, representing the ki-'v,
netic energy of electrons and w? which is due to the interac-
tion of electrons with the ion cores, and w}, and w2, repre-
senting the Hartree and exchange-correlation contributions
to the Coulomb interaction between the valence electrons.
Table I gives the values of the moduli® corresponding to Eq.
(3.20):

2 9 AE(UD ‘
RIANL
where U%is the normal coordinate, for the optical vibrations
of the lattice at the point I' and for the transverse acoustic
vibrations at the boundary of the zone at the point X in the
case of germanium and silicon. It is clear from this table that
many of the partial contributions to the phonon frequencies
are large in the absolute sense and generally speaking are of
the order of the phonon frequency itself or even greater than
this frequency. This shows that the problem of “soft” lattice
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TABLE I. Contributions to force constants of phonons at points I' and X and values of 2a(c,,
— ¢y, ) obtained for silicon and germanium.® (All results are in units of ¢V/A *—se¢ also explana-

tions in text).

Si Ge
LTO (1) ( TA(X) 2a (11 ~ ¢12) LTO (T) TA (X) 2a (cyy - c12)
kxin 30,88 —17,49 —8,58 16,40 —10,76 —6,43
ky —72,28 58,06 57,99 —38,27 45,72 49,86
ky 26,98 —19,39 —19,25 3,11 —15,64 —18.,10
kge —17,30 6,19 5.25 —0,40 4,67 4,81
ke —21,82 27,38 35,40 —19,15 23,99 3,13
k; 48,26 —25.11 —28,14 42,70 —22,22 —24,90
ktot 26,44 2,27 7,26 23,55 1,77 5,23
k‘ééé‘ 27,75 2,32 6,96 24,73 1,71 5,79

vibration modes in crystals is very far from simple, because
the formation of a phonon spectrum results in a fairly accu-
rate compensation of the various contributions. Moreover,
we can see from calculations of the transverse acoustic mode
at the zone edge [TA (X)] that the electron contribution to
this mode becomes stabilizing (»? > 0), in contrast to the
simplest models in which the electron contribution is always
regarded as destabilizing.

The above method of frozen-in phonons is in principle
valid only when we are dealing with normal modes charac-
terized by a wave vector q comparable with any reciprocal
lattice vector, because only then does the distorted structure
remain periodic and two single-particle equations (3.15)
and (3.16) can be solved. A new cell of the distorted struc-
ture should not be too large (it should not contain too many
atoms).?! Some difficulties are encountered also in calcula-
tions of phonon spectra of polar crystals made by this meth-
od and this is due to a macroscopic field which appears in the
case of longitudinal optical vibrations.®® However, we shall
not discuss these topics and confine ourselves to a reference
to a book®® and a review®?; we shall instead describe the most
universal method for the calculation of phonon spectra in
crystals based on the results of Refs. 50-53, in which these
difficulties are not encountered.

The essence of the method is direct calculation of the
change in the energy of the electron system  E by a standard
many-body theory of perturbations from the change in the

4huclear-electron interaction §¥, (r) associated with the dis-
placements of nuclei from the equilibrium positions. It is
shown in Refs. 50-53 that the change in the electron energy
could be expressed, in the second order in respect of the
displacements U ¥, using the longitudinal microscopic sus-
ceptibility of electrons y(r, r') which describes the linear
response of the electron density to a change in the external
potential
8pe () =70Verr = | dr(r, 1) Vet (¢). (3.21)
Including in the electron Hamiltonian the terms of the first
and second order in respect of the displacements, we can
describe the change in the potential by

OVy=0Vy--6Vh. (3.22)

Then, the change in the energy, accurate to the second order
with respect to U %, can be written in the form*®-?
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SE2=1 5 drdr'dVA (r) % (r, ') 8VA (') +- 82,  (3.23)
where the term 8E? appears because of inclusion of the term
S5V in the first order of perturbation theory. It can also be
expressed in terms of the susceptibility y (r, r') but we shall
not do this for lack of space. It is important to note that this
term guarantees the translational invariance of the quantity
SE?, because in the case of displacements of nuclei as a whole
(UR = const) the change in the energy vanishes.

The change in the energy §E? written in the form of Eq.
(3.23) has a simple physical meaning and represents just the
energy of the Coulomb interaction of the excess electron
charge 8p. which appears under the influence of a change in
the potential V.. In the case of polar crystals the change
SE? contains parts which diverge for U ® = const. Similar
diverging terms occur also in the contribution of the internu-
clear interaction. Singular contributions should be separated
and analyzed individually®"* bearing in mind that the sum
of these contributions again obeys the condition of transla-
tional invariance. We shall discuss this problem in greater
detail later.

The phonon spectrum of a crystal could be determined
in the harmonic approximation if we know the dynamic ma-
trix

(,i-)at (9)

Do (@) = 3379772 (3.24)

where  (q) is the force matrix representing the lattice Four-
ier transform of the matrix of the second derivatives with
respect to the total energy of the system along the coordi-
nates of the nuclei & (R-R’) and

D, (@) = 3 exp |iq (R—R’ +-R, — R))] D,y (R—R). (3.25)
The electron contribution to the force matrix can be written

as follows**%:

@O s R—R) =X,y (R—R)

—8rr0t 2 X i (R—RM, (3.26)
R, U
where
Xsi, 15 (R—R)
1 a ’
= Z}Z}e? S dedr Zar Ve r—R—R,) % (r, 1)
X 52-ve (' — R’ — Ry). (3.27)
7
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The contributions of 5%;’ and 5?’,‘,? to the force matrix are
not independent and, moreover, we can see from Eq. (3.26)
that they can be expressed in terms of the same quantity y ; ;
(R—-R").

Equations (3.24)-(3.27) demonstrate that in order to
calculate the electron contribution to the force matrix in the
adiabatic approximation, we have to know the static elec-
tron susceptibility® y(r, r'; @ = 0). Going over to the mo-
mentum representation, we find that after allowance for the
periodicity of a crystal the susceptibility y is transformed
into a matrix in terms of the reciprocal lattice vectors K and
K’, which is diagonal in respect of the reduced wave vector q,
that vary within the first Brillouin zone

1, )= ) S (—;%exp E@+Krx(q+K, q+K)
K, K’

Xexp[—i{g+-K)r]. (3.28)

In principle, the matrix y(q + K, q + K') can be calculated
either using the conventional many-body theory or employ-
ing the density functional method (we recall that we are
talking of the static permittivity). With this in mind, specify-
ing a small change in the external potential ¥, in the
Schrédinger equation (3.17), using the Kohn-Sham meth-
od, and applying Eq. (3.14), we can use conventional per-
turbation theory to find the corresponding change in the
electron charge density and thus deduce the electron suscep-
tibility.

We have employed so far the harmonic approximation
in the description of lattice dynamics and this is usually suf-
ficient for discussing the lattice stability at 7= 0 K. How-
ever, many properties, such as stabilization of the critical TO
vibrations above T and the structure of the low-tempera-
ture phase, are governed entirely by the anharmonicity of
lattice vibrations.® The usual description of the anharmonic
effects in crystals is based on the following phenomenologi-
cal lattice Hamiltonian®

Hop= HQ 4 Vi V== VeV, (3.29)
where, for example,
V= - DU, U400, (3.30)

a=(R,R,,) and ﬁ:T is the operator representing displace-
ments of the nuclei (R, R, ). The tensors of the anharmonic
coefficients ™ are derivatives of the adiabatic potential
Ve = Vou + Eo{R]} of the mth order in respect of the dis-
placements of nuclei. The electron contribution to ® " can
be found in the same way as the contribution to the force
matrix ® =®?, using exact microscopic expressions for the
change in E, in the mth order with respect to U%.

_An analysis™ shows that, in contrast to the force matrix
& the microscopic expressions for the electron contribu-
tion to ®® and ™ contain nonlinear susceptibilities
which occur in the expressions for 8p” and 8p{* (Ref. 54).
The microscopic expressions for ®* and ®* have not been
investigated as thoroughly as the expression for ®»’ studied
in Refs. 43 and 49-53. Some of the results were gbtained by
Meissner™ for the effective dynamic matrix T' [see Eq.
(3.4)] within the framework of a self-consistent procedure
allowing for the anharmonicity. In particular, it was shown
in Ref. 54 that the corresponding effective force matrix has a
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structure similar to Eq. (3.26), which guarantees that the
acoustic sum rule of Eq. (2.17) is obeyed.

These relationships are general and they apply to a sys-
tem composed of stripped nuclei and all the electrons in a
crystal. In specific calculations it is usual to consider a sys-
tem of iron cores and all the valerice electrons and to apply
the method of a pseudopotential which is found either em-
pirically or from first-principle calculations. Consequently,
in Egs. (3.23) and (3.27) instead of the potential of the nu-
clei, we have a pseudopotential for this type of atom, and
instead of the total electron susceptibility, we have the sus-
ceptibility of valence electrons, which is naturally itself an
approximation. However, it is assumed that the main diffi-
culties are not due to this approximation but due to the prob-
lem of calculation of the electron susceptibility. In fact, with
the exception of simple metals for which the off-diagonal
elements of the polarization operator 7(q + K, q + K’') (see
below) with KK’ are small and can be included within the
framework of perturbations involving a weak pseudopoten-
tial, whereas in other cases (particularly in the case of semi-
conductors and insulators) there is a greater number of
Bloch bands and the dimensions of the matrices of the reci-
procal lattice vectors are larger. For example, in the case of
semiconductors with s and p electrons, in which case we can
again introduce a pseudopotential description of the energy
band structure, it is necessary to allow for 2040 Bloch
bands and up to 300 reciprocal lattice vectors. In spite of its
complexity, the problem is not hopeless and progress has
been made toward its solution (see Ref. 83), both in calcu-
lating the dispersion law of phonon frequencies in a wide
range of wave vectors®’ and in calculation of the frequencies
of optical lattice vibrations in the @ = 0 case.®®

The most important advantage of the “dielectric” ap-
proach described above is that it can yield a series of exact
and rigorous relationships for the dielectric response func-
tions and for the force matrix of crystals of all types (metals,
insulators, and semiconductors). All the specific features of
the electron structure of a crystal are then contained in the
electron susceptibility matrix y. I~ accordance with the pur-
pose of the present review we shall therefore consider in
greater detail this approach and narticularly the structure of
the matrix ,{/ and the force matri.. in the case of nonmetallic
crystals. We shall be interested particularly in polar crystals,
i.e., those in which dipole-active optical lattice vibrations are
possible.

3.2. Lattice dynamics and dielectric properties of polar
insulators and semiconductors

Polar crystals are those which are characterized by a
finite macroscopic (transverse optical) charge tensor Z(s)
see Eq. (2.4)]. In other words, in polar crystals among the
long-wavelength optical lattice vibrations there are also di-
pole-active vibrations which are accompanied by the appear-
ance of a long-wavelength (macroscopic) polarization p*
and a macroscopic field E® resulting in the splitting of the
LO and TO lattice vibrations. Polar crystals are above all
ionic crystals, but there are also polar crystals with zero ioni-
city and familiar examples of these are graphite® and group
VI elements (Se, Te).*°

In developing a theory of lattice dynamics of polar insu-
lators and semiconductors, we encountered difficulties asso-
ciated with separation of the contribution of the macroscop-
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ic field E%. In the model of point ions these difficulties are
manifested by the formal divergence of some of the partition
functions for a dipole lattice, resulting in nonanalytic behav-
jor of the force matrix ®'(q) in the limit q—0 (Ref. 20).
Separation of the regular part of the force matrix in the limit
q— 0 can be made in this case by the Ewald method and the
result is of the form?°

(Dﬂ 15 (q) = e? [ si.!j(q)_és! E Csi,u.r'(o)]

47te2 QﬂJ
Vo

ZsZ,exp [iq(R;—R))], (3.31)

where
Csiit; @) = Qui,1s (@) Z,Z, exp lig (R, — R))),

where Z;e are the ion charges, and a(q) is regular in the
limit q—0 (the expression for Q is given in Ref. 20). Equa-
tion (3.31) describes also the contribution of stripped nuclei
to the force matrix if we replace the charges of ions with the
charges of the nuclei Z e.

The procedure of separation of the contribution of the
macroscopic field to the electron part of the force matrix was
first carried out in Refs. 51 and 52. In view of the importance
of the results, we shall give the conclusion reached following
mainly Ref. 51. We shall do this using the exact microscopic
expressions (3.25)—(3.27) obtained earlier for the electron
contribution to the force matrix. Adopting expansion in
terms of the reciprocal lattice vectors [see Eq. (3.28)], we
find that

@F, 4 (q):xsivtj(q)—éstgxsi,uj (0), (3.32)

where
Xgi 15 (@) =2ZZ7e2exp [ig (R, — Ry)]
X 2 exp(KR,)(q+K);ve(@+K)

X% (q+K, g+ K') v (q+K') (g--K'); exp (—iK'R)),
(3.33)

4n

v @K R

We shall now consider in greater detail the properties of the
matrix y(q + K, q + K’). The electron susceptibility opera-
tor y describes the linear response of the charge density of
electrons in the system to a change in the external field:

800 (1) = 48V ey = | dr'y (r, 1) 8V (¥). (3.34)

We shall also introduce a polarization operator 7 describing
the linear reaction of the density of the electron charge to a
change in the total acting field § ¥}, and we shall also use an
operator describing the longitudinal microscopic electron
permittivity &:

8ot (r) = nGth = S dr's(r. v') 8Vih (v'), (3.35)

Ot (1) = 10T ey = | APt (1 ) Ve (), (3.36)

where £~ !(r, ') is the kernel of the operator which is the
inverse of &. Bearing in mind that

8V itk (1) = 8V ext -+ DepE) == 8Vegi + | dr've (r—1) 808" (1),
(3.37)
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we obtain relationships between ¥, £, and #, which in the K
representation are of the form

x(@+K,q+K')=n(q+K, q+K’)
+KE aq+K, q+K) v (q+K")y(q+K", g+K),

e (q+ K, q+K’)=6K.!K"_vc (q+K)n(q+K, g+K),
(3.38)

q+K, g+ K')=06k k- +v.(q+K) % (q+K, g+ K).

We can see from the first relationship in the system (3.38)
that the expression for y includes contributions of long-
wavelength Fourier components of the interaction v_(q),
which are singular at q— 0 and contribute to the macroscop-
ic field. Exclusion of these contributions from y gives a
quantity y satisfying the equation
1@+K, q+K)—a(q+K, q+K)
+ 2 A@+K g+ K)o @+K) L @+K, a+K).
(3.39)
Solving simultaneously Egs. (3.38) and (3.39), we can ex-
press the Fourier component of the matrix y and terms of §
and separate the term with a nonanalytic contribution of the
long-range macroscopic field*'
x(q+K, ¢+K)

+K, q) :,ﬁfq) % (g, g+ K),

(3.40)

—Y@+K, q+K)+%(q

where £7(q) is known as the macroscopic permittivity given
by the relationship

(e (q)t=2"1(q, q)=1+V. (g % (g, 9)- (3.41)

Using Eq. (3.57), we can write down £7(q) in the following
form:

e (q) =1 — Ve @ % (g 9)-

Separating from Eq. (3.33) the terms with K and K’
when they vanish and substituting Eq. (3.40) in (3.33), we
find that simple transformations yield the following expres-
sion for the total force matrix:

(3.42)

(Dst ti (‘I)~ 1 i](q)+q)" v( )- (3.43)
or
Dy, 15=Dys, 15 (@) — 8t ) Dii, uj (0)
U
+eexp [iq (R,—Ry)]
X [(Z3q:+ 41 (5, ) o (Zhay+ Ay (1, 0) |, (3.44)
where
A (s @) =28 2 et (q+K), Ve (q+K)x (@, 9--K)
(3.45)

and 5,,,4 (q) describes the contribution to the force matrix
which is analytic in the limit ¢— 0. The electron component
of this contribution is given by Eq. (3.33) when the matrix y
and replaced with y’ and summation is carried out only over
values of K and K’ which are not equal to zero.

The expressions (3.44)—(3.45) are general and valid

O. E. Kvyatkovskil and E. G. Maksimov 12




both for insulators and metals.®' The differences appear only
when we go over to the long-wavelength limit and are asso-
ciated with the fact that the quantities ¥(q, q), y(q9 + K, q),
v(q, q + K), and £™(q) behave differently in the limit ¢—0
for metals and insulators.

Itis shownin Refs. 51 and 52 that the following equality
applies in the case of insulators:

023+ A; (s, 9) = ;25 (), (3.46)
where 2 (s) is the macroscopic (transverse acoustic) charge
tensor for the system, defined above [see Eq. (2.4)}. Using
Egs. (3.44) and (3.45), we obtain the following expression
for the total force matrix in the range of low values of q
(Refs. 51 and 52):

~

D, (g - 0) =

L (0)—38,, Z D, (0)+2* (5) 2 pri (1),

(3.47)

L]

Lo 99
Pl =i
where ¢, =1lim, , €"(q,) and the exact microscopic
expression for Z(s) is

Zij(8)=2Z78;;--Z¢ )
K=z<0

e MRk V (k) %50, K).  (3.48)

The second term in Eq. (3.48) can be written down using the
asymptotic behavior of the matrix y(q + 0, ¢ 4+ k) at low
values of q:

X(@+0, q+k) ~ g1t (a+0, a+k).

Moreover, it is shown in Refs. 51 and 52 that the charge 25
governed by Eq. (3.48) satisfies the condition

(3.49)

D Ziy(s)==0 (3.50)
and thus demonstrates that the acoustic sum rule is satisfied
by the complete force matrix of Eq. (2.17).

Applying the phenomenological relationships of Eq.
(2.4) and the expression (3.44) for ®( g) at low values of ¢,

we obtain the following general expression for the low-fre-
quency permittivity tensor of a crystal (see Footnote 3):

et S (Z(s) (DO Z (1}, (3.51)
s, t

ey (0 — 0) =

We shall discuss the results gbtained in the case of di-
atomic cubic crystals. The tensor Z, is then proportional to a
unit tensor and we can introduce a scalar macroscopic
charge (Born charge)

Zij(5) =28, NZ,=0,Z=|2,] (s=1,2). (3.52)

The frequencies of optical lattice vibrations are described by

mio=03'2ro+'ez—292» Q2 — 4:;2 , (3.53)
00 0

. 1 4ne?  n n__

0ho= = (e 717} Siz) » (3.54)

where u and v, are the reduced mass and the unit-cell vol-
ume, and we have

Sp=-4-2:28 3
K, K’'%0
X (KK') v, (K) 1 (K, K') v (K'),

exp [i (KR;—KRj)]

(3.55)

whereas in the case of the low-frequency permittivity £, we
find that
wio
o= et 2 g = e

(3.56)

The last equation (representing the Lyddane-Sachs-Teller
relationship) is obtained using Eq. (3.53) for w?,.

The relationships obtained apply to a system composed
of stripped nuclei and all the electrons in a crystal. When the
relationships are applied to a system composed of stripped
ion cores and valence electrons, which are usually employed
4n specific calculations, the potential of the nuclei must then
be replaced with the potentials of the corresponding ion
cores and the total electron susceptibility y should be re-
placed with the susceptibility of the valence electrons.

TABLE I1. Resulits of calculations of frequencies of TO(I") phonons, total electron contribution
2, frequencies of TO vibrations found allowing only for the diagonal terms of the polarization
operator (@%0 )4, contributions of off-diagonal components of the polarization operator &2, de-

noted by (&?),.4, and of relative error in the calculation of &

! denoted by Sw? (Refs. 36 and 88).

Explanations in text. All quantities are given in units of Q% = 47rez/v0. In the case of SnTe and GeTe

the calculations were made for the cubic phase at 7= 0 K. For GeTe in the column (&35)

the

exp

values in parentheses are calculated from the relative error w? and the values of wi, and w?

computed in Ref. 36.

.2 o
?;;izi = 83 < “0’)3 experi- (géo)d (?f)z)nd Gmg
theory ment

Si 88 5,3 —1,523 3,81 3,09 3,994 —0,18 0447
Ge 88 5,3 —2,88 2,46 3,12 3,17 —0,71 0,23
GaAg 88 5 —2,9% 2,08 2,40 3,22 —1,16 0,12
ZnSe 88 4 —3,15 0,85 1,36 3,21 —2,35 0,16
GaP 36 5 —2,54 2,48 2,37 2,97 —0,51 0,04
PbS 3¢ 8 —10, 92 —2,92 0,14 1,46 —4,38 0 28
PbSe 2¢ 8 —11,24 —3,24 0,10 0,93 —4,17 0,3”
PbTe 3¢ 8 —10,89 —2,68 0,04 1,42 —4,10 0,25
SnTe 3¢ 8 —11,34 —3,34 | —0,08 1,62 —4,98 0,24
GeTe 8¢ 8 —11.76 —3,76 |(—0,23) 1,12 —4,88 0,30
(—0,82) 0,25

(—1,41) 0.20
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Microscopic calculations of the frequencies of optical
lattice vibrations and of the macroscopic charge in cubic
diatomic semiconductors were made in Refs. 36 and 88 using
Eqgs. (3.53)~(3.55). The results of the calculations of %,
are presented in Table I1. All the quantities are given in units
of 02 = 47e*/uv,. The theoretical value of w3, is a sum of
the contribution of ion cores w? and of the contributions of
the valence electrons w?. In the case of crystals with the
diamond and zinc-blende structures the agreement with the
experimental values of w?% is satisfactory. This is not true of
IV-VIcompounds ( with the NaCl-type structure). Calcula-
tions® greatly overestimate the contribution of electrons to
w%o, predicting a strong instability of TO vibrations in the
NacClstructure of all five compounds. It was assumed in Ref.
36 that the calculations of @? were inaccurate because of the
neglect of the spin-orbit interaction and nonlocality of the
pseudopotential. Another source of inaccuracy of the calcu-
lations of @ is the use of the Hartree (random' phase) ap-
proximation to describe the electron response in Refs. 88 and
36, i.e., the neglect of the exchange-correlation contribution
to ¥. It is clear from Table II that the relative error in the
calculations

2 —
60): aad I(wTO )theor - (a)?l‘o )exp |0)e1

is of the same order of magnitude ( ~20-30%) in almost all
the calculations, but in the case of IV-VI compounds this
error is too large because ? is high.

A detailed analysis of the influence of various elements
of the matrix 7(K, K’) on the value of w2, is made in Ref. 88
for Si, Ge, GaAs, and ZnSe. It was found that when the
matrix ¥ (K, K') was of sufficiently large dimensions, the
inclusion of the off-diagonal components of # with K+#K" in
Eq. (2.70) lowered the frequency of TO vibrations. In the
case of nonpolar Si and Ge crystals inclusion of such off-
diagonal components of # had no significant influence on the
value of w%,, whereas in the case of the polar compound
ZnSe exhibiting strong ionicity the inclusion of off-diagonal
components of # reduced considerably the frequency of the
TO vibrations. These conclusions are supported by the re-
sults of Ref. 36 obtained for strongly polar IV-VI com-
pounds for which the contribution of the off-diagonal com-
ponents of # represents about 40% of the total electron
contribution w?. These calculations demonstrate also that
the off-diagonal contribution to w3, is governed not by the
ionicity but by the polarity of the compounds, since IV-VI
compounds have an anomalously large macroscopic charge
Z and a low ionicity. The relationship between the polarity
and ionicity of diatomic cubic crystals is discussed in detail
in the next section of the present review. The results of calcu-
lations of w3 carried out ignoring the off-diagonal compo-
nents of 7 and also the contribution of the off-diagonal com-
ponents of # and w? are given in Table 11 [they are denoted
by (w25 ), and (@2),4, respectively].

3.3 Analysis of microscopic theories of ferroelectric
instability in crystals

The exact microscopic expressions for the force matrix
&, for the macroscopic charge sensor Z (s) andfore_ found
above allow us to go beyond the traditional model analysns of
the lattice dynamics and the problem of structural instability
of crystals. We shall now consider systematically the exist-
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ing approaches to the problem of the ferroelectric instability
treated from the point of view of the microscopic theory of
lattice dynamics.

We shall begin with the classical theory of ferroelectri-
city which relates the lattice instability to dipole forces that
appear as a result of long-wavelength optical displacements
of nuclei from equilibrium positions in the paraelectric
phase. In the simple ion picture the electron contribution to
the induced dipole moment consists of the displacement of
anion as a whole (contribution of the ion charge) and of the
displacements of electrons relative to the ion cores (contri-
bution of the ion polarizabilities ). This implies inclusion of
only internal ion excitations in the description of the elec-
tron contribution toe _ and to lattice dynamics of ionic crys-
tals, whereas the contribution of ion-ion excitations is ig-
nored. In reality, both internal ion and ion-ion excitations
are important in ionic crystals. In the case of insulators such
as alkali halide crystals, the contributions of the two types of
excitation to, for example, £ _ are comparable.’? On the oth-
er hand, in polar semiconductors the ion-ion excitations
typically predominate and these correspond to characteris-
tic interband transitions dominating ¢ . For example, ac-
cording to Ref. 93, the main contribution to £, of IV-VI
compounds is made by transitions between P states of A and
B atoms and the contribution of internal atomic excitations
is small. The transfer of charge between ions associated with
ion-ion excitations®? results in a deviation from the simple
ion picture of the polarized state of a crystal. This deviation
increases on reduction in the average band gap and on in-
crease in £_ , and is manifested by a large (compared with
the ion charge) magnitude of the macroscopic Born charge
Z of polar semiconductors.** Similar ideas were put forward
earlier by Lucovsky, Martin and Burstein,**** who demon-
strated that in the case of polar semiconductors a consider-
able contribution to the induced dipole moment comes from
excitation of the charge density of the valence electrons lo-
calized in a region of size r, exceeding the interatomic dis-
tance a,, i.e., excitations which can be regarded as of the
internal ion type. It also means that the actual parameter of
the multipole expansion for polar semiconductors is ~7,
fag R 1.

Bearing these points in mind, we can separate the exci-
tations of the charge density of the valence electrons into
localized (identifying them with internal electron transi-
tions within ions) and delocalized corresponding to ion-ion
transitions. We can describe localized excitations using a
model of polarizable ions and the dipole approximation.
Then, their contribution to £ _ (which we shall denote by
£°°) is described by the Lorenz-Lorentz formula and the
contribution to Z and wd, is described by Eqs. (2.20)-
(2.23), where ¢ is replaced with £'°°. On the other hand,
the model of polarizable ions and the dipole approximation
are completely unsuitable for the description of delocalized
states which, according to Refs. 21, 34, 35, 92, and 93, domi-
nate the contributions to ¢ . and Z.

It is however possible to consider the influence of the
dipole-dipole interaction on dielectric properties and lattice
dynamics of nonmetallic crystals without considering the

concept of ions at all. %% The above exact microscopic expres-
sions for Cb(q) Z (s), and €_ and the method of multipole
expansion for crystals®® can be used to show that separation
of the contribution of the dipole-dipole interaction gives re-
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lationships similar to Egs. (2.5) and (2.20)-(2.23), and we
can obtain exact microscopic expressions for the parameters
representing the dipole-dipole interaction in crystals. De-
tails of this procedure are described earlier by one of the
present authors.*® The idea behind this derivation is as fol-
lows. The above microscopic expressmns for 4>(q), Z (s)
and € contain a polarization operator #, which carries all
the quantum-mechanical information on the linear electron
response of the system and on the direct Coulomb electron-
nuclear and electron-electron interactions. Separation of
specific components v, (q) in the limit ¢—0 for the direct
Coulomb interaction, which contribute to the macroscopic
field, is equivalent to separation of the nonanalytic part of
the dipole-dipole interaction in the same limit g—0 (Ref.
94). In the case of the direct electron-electron Coulomb in-
teraction this procedure corresponds to a change from y to ¥
[see Egs. (3.39) and (3.40)]. The reguiar part of the dipole-
dipole interaction (internal field) remains unseparated from
the direct Coulomb interaction and, in particular, it is not
separated from the external Coulomb forces contributing to
¥ and is contained in the short-wavelength Fourier compo-
nents v, (q + K) with K#0. Using the method of multipole
expansion for crystals,’® we can separate explicitly the con-
tribution of the regular part of the dipole-dipole interaction
toe,, Z(s),and ®(q) (Ref. 94). In the case of € of arbi-
trary cubic crystals and for the macroscopic charge Z and
the dipole contribution w3, to thesquare of the frequency of
TO lattice vibrations in diatomic cubic crystals the separa-
tion of the distribution of the internal field gives rise to a pole
structure of the expressions for these quantities, exactly as in
the model of polarizable ions

(4n/vg) a®

€0 = 1 + —_——'—_— ’
12,; (47t/3v) € (3.57)
Z= 1= (4nj3vg) @€
. (Ziy o _ 4met
D=y 5 0 =

where a® is the effective electron polarizability and Z'is the
effective ion charge (exact analog of the Szigeti charge®®).
The exact microscopic expressions for these quantities are
also obtained in Ref. 94. It should be pointed out that if we
ignore the renormalization of a® because of the multipole
contributions of higher orders, the microscopic expression
obtained in Ref. 94 for a° in the tight-binding approximation
reduces to the corresponding expression obtained by Maksi-
mov and Mazin,”” whereas in the random phase approxima-
tion it reduces the expression for a® obtained by Adler.**

Eliminating a® from the expressions for Z and w35, we
obtain

7 - Eoo;‘2 Zi,
(3.58)

obp = (ew+ 2 (Z-)" 02,

Finally, excluding Z' from the expression for w2, we find
that

2

Q. (3.59)

2
Wpp =
£, +2

Therefore, the contribution of the dipole-dipole interaction
wbp to the square of the frequency of TO lattice vibrations in
diatomic cubic crystals can be expressed in terms of the mac-

15 Sov. Phys. Usp. 31 (1), January 1988

roscopic parameters £, and Z, like the splitting between the
LO and TO frequencies [see Eq. (3.55)].

The following expressions are obtained for the frequen-
cies of LO and TO lattice vibrations®*:

szO = (1):— (I)T;D.

Z? " 1
(Dio=w?ro+'e—m-92=w6+( -

) 29

= @3+ - obp; (3.60)
here, w? is the contribution of the short-range part of the
direct Coulomb interaction representing the intracell inter-
action (overlap forces) and higher orders of the multipole
expansion of the electron-nuclear and electron-electron in-
teractions. The exact microscopic expression is obtained in
Ref. 94 for w3. Equations (3.57)~(3.60) establish the rela-
tionship between the contribution of the dipole-dipole inter-
action to @%, and w?, with the macroscopic (transverse
optical) Born charge Z or with the effective ion charge Z°
and with the electron permittivity € _. There are exact ana-
logs of the corresponding expressions obtained in the model
of polarizable ions (see Sec. 2), but in contrast to the latter
they do not contain £, but the total electron permittivity
. and, moreover, in accordance with the microscopic deri-
vation they are valid for compounds with an arbitrarily weak
but finite ionicity. In the process of derivation the internal
structure of the polarization operator # is ignored and,
therefore, no approximations are made about the exchange-
correlation interaction, whereas in the case of the electron
spectrum it is simply assumed that there is a finite though
arbitrarily small insulator gap.** It should also be mentioned
that inclusion of higher terms of the multipole expansion
and of the intracell interaction, i.e., of the difference between
the actual microscopic field and the internal field, simply
renormalizes the parameters of the dipole-dipole interaction
without affecting the pole structure of the expressions in the
system (3.57) associated with inclusion of the internal field.
The effective ion charge Z' appears in the theory precisely
because of such renormalizations as a result of screening of
the bare charge (nuclear charge) by the short-range part of
the direct Coulomb interaction,®® whereas in the model of
polarizable ions the ion charge is a model parameter.

Lucovsky, Martin, and Burstein proposed earlier
(see also Ref. 21) to introduce into the theory not only the
macroscopic Born charge Z, but also the localized effective
charge Z'*° governing the contribution of the dipole forces
(internal field) to @},. An analysis of the meaning of the
charge Z'* made in Ref. 34 suggests that it is associated with
localized excitation and that delocalized excitations of the
charge density of the valence electrons make no contribution
to wh g, S0 that the relationship between the dipole contribu-
tion to w}, and the macroscopic parameters £ and Z is
lost. In fact, the contribution of the dipole forces to w2, i.e.,
wbp, is determined by the same macroscopic Born charge Z
as the splitting between the LO and TO frequencies. This is a
new and quite important feature of the description of lattice
dynamics of polar crystals represented by Eq. (3.60).

It is clear from Eq. (3.60) for w3, that softening of the
frequency of TO vibrations or their instability may in gen-
eral be due to a fairly large value of w}y, or the smallness of
@} (compared with normal crystals). It is naturally not pos-
sible to make any @ priori conclusions on the nature of the

34,35
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ferroelectric instability simply on the basis of Eq. (3.60). It
is necessary to consider this problem either on the basis of
microscopic calculations of the quantities w3 and w%, or on
the basis of an analysis of the experimental data for € _, @,
and @, ,, and subsequent comparison of w%,, @3y, and @2 in
a series of isoelectronic compounds or for a group of com-
pounds with a similar crystal structure. This will be done in
the next section using compounds with NaCl and CsCl
structures as an example.

We shall now consider in greater detail the band ap-
proach to the theory of ferroelectricity. It is in fact based on
consideration of the band energy of the valence electrons

= ;Zk NErg, (3.61)

where n;, and E,, are the occupation numbers and energies
of single-particle Bloch states |4 k) . The usual reasoning is
as follows.*® A distortion of the lattice may increase (or give
rise to) the insulator gap in the electron spectrum and can
therefore reduce the band energy of the valence electrons. If
the band energy reduction is greater than the increase in the
elastic energy of the lattice, then in this approximation the
initial structure is unstable and the lattice becomes modified.
Essentially, in this approach the problem of the lattice stabil-
ity is considered in the one-electron approximation. We shall
show later that only a part of the change in the band energy
capable of becoming unstable is considered.

The change in the band energy of Eq. (3.61) due to
distortion of the lattice can be calculated using the Kohn-
Sham equations [Eq. (3.19)]. With this in mind we shall
represent ¥, in the form of an expansion in powers of dis-

ext

placements of the nuclei from equilibrium positions

Vexe (r) + 8Vext (r) +-8Vex (r) +

Vext (l‘) =

We can similarly describe the effective potential Vg (r)
and the electron charge density p, (r) = en(r). Next, solv-
ing Eq. (19) on the basis of perturbation theory, we can
readily deduce a correction of the first order in respect of
SV:y, which should be applied to the wave function 8"
and of the second order in V3’ intended for the single-
electron energy 8E¢¥. Consequently, the change in the band
energy in the second order in 5V is

~y g 2 . ni—n
8EY = 2 ndER = 5 3 118V 0 P g=
i i, J

=% S dr dr’ 8V (r) @ (r, £) SV (1), (3.62)

and the change in the charge density of the valence electrons
considered in the first order with respect to 5V ¢ (r) is

8ol (1) = n® SV = S dr 710 (r, ¢) SV (F),  (3.63)
where
a@(r, ¥) ——ezz @;(r) o} (r) cpJ (r') @; (") (3.64)

i,

is the polarization operator of noninteracting Bloch elec-

trons. Using (3.18) for V4, and also Eq. (3.63) wecan read-

ily show that
SV(“ = 8_’61 élx)h

(3.65)
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where the generalized permittivity matrix £ is governed by
the following relationship™:

~
~ A

e=f— (ve+ 5= L w2 ) o, (3.66)

Equation (3.62) readily yields the corresponding con-
tribution to the force matrix and to the phonon spectrum of a
crystal. It should be noted that the same result for the change
in the phonon frequencies is obtained using the Frohlich
Hamiltonian

Ii:H‘ph+I}e+‘}s}1,tv
‘ [ (3.67)
He= D Enaictin,
Ak
Hon= 53 (@e@vat 03 (@) 0340sa),

yMoq

Vi — g dr ¥+ (r) (— 8V (1)) ¥ (r)

Z g‘x")k+q, ak (V) 0\'q ai'k+q apk s
AAYL D
k, q

where

gl, k+q M( = ]\r Z ‘es (v”;l) Ys }" A” k q) 1 (3.68)

Ys (A., A 1 kv q)
=e S dr @}k q (F) Qak ()

x| dr e v) V' R V0 —R—R,)explig R +R,)),
R

(3.69)

a;* and @, are the electron creation and annihilation opera-
tors; Q.. €, (v, @), and w, (q) are, respectively, the normal
coordinates, polarization vectors, and bare phonon frequen-
cies; V, is the potential of the ion core of the sth sublattice.
Renormalization of the phonon spectrum, i.e., the contribu-
tion of the valence electrons to the phonon spectrum in the
model under consideration, is described by the familiar
expression

Ao (q) = o (q)— 0% (q)

Z | 8%1q, 1€ (V) |2

A A’

akka M
Eyvirq— Ernx

(3.70)

In many investigations of the “band” theory of ferroe-
lectricity Eq. (3.70) is the starting point in dealing with the
influence of the valence electrons on the stability of normal
lattice vibrations at T =0 K. Bearing in mind that since
(n, —n;)(E; — E;) ~' <0 and, consequently, Aw’ (q) <0,
the instability of the lattice follows from Eq. (3.70) if the
electron-phonon interaction is sufficiently strong. It should
be stressed that the contribution to the phonon spectrum of
the type described by Eq. (3.70), usually attributed to the
renormalization of the phonon frequencies because of the
electron-phonon interaction and partly to the effects asso-
ciated with the nonadiabaticity of the electron subsystem,
does in fact appear also in the adiabatic approximation if we
use Eq. (3.61) for the electron contribution to the total ener-
gy of the ground state [ compare Eq. {3.70) with the expres-
sion (3.62) for 8E{*.] All the quantitites occurring in Eq.
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(3.70) have exact microscopic meanings. The use of Eq.
(3.70) and, consequently, of the Frohlich Hamiltonian of
Eq. (3.66) for the description of the contribution of the va-
lence electrons to the phonon spectrum of a crystal and for
the influence of these electrons on the stability of normal
lattice vibrations must be qualified as follows. Firstly, Eq.
(3.70) is far from the only contribution of the valence elec-
trons to the phonon spectrum of a crystal and not even the
only contribution when we consider simply the band energy
of Eq. (3.61). Secondly (and this is more important), in
many cases it is found, as shown later, that this contribution
is not dominant at all in the appearance of the lattice instabi-
lities.

First of all, an additional electron contribution asso-
ciated with the band energy of Eq. (3.61) appears if we allow
for 8V (¥, which occurs even in the first order of the usual
perturbation theory:

BER = —e D) m; (i | OV iy = S dr ol (1) 8V (r). (3.71)

The total electron contribution to lattice dynamics fol-
lows from variation of Eq. (3.19) for the total electron con-
tribution to the ground-state energy in which the first term
represents the band energy. Variation of the second, third,
and fourth terms in Eq. (3.19) gives, with the aid of Egs.
(3.62) and (3.71), the following expression for the change
in the total electron energy

SEY =1 [ drar 6V (r) a0 (r, r) VIR ()

__% g drdr’ 8p® (r) v, (r—1') 8p¢" (r')
8Vyc ()

Ope (r')

-1 g dr dr’ 8pg" (r)

7 | 6pi'" ()

+ § dr o (r) 8V (1). (3.72)
Therefore, in general the frequency of any normal vi-
bration can be represented in the form

o? (g) = @} — 0} — @} L+ v - w?, (3.73)

where w? is the contribution of the interaction between bare
ion cores, — w3, — w3, and w?} are the contributions of the
first, second, and fourth terms in Eq. (3.72), and o, is the
exchange-correlation contribution corresponding to the
third term in Eq. (3.72).

We shall now consider briefly the various contributions
to Eq. (3.73). We note first of all that normal vibrations,
unstable in a lattice composed of bare ion cores, are possible
inacrystal, i.e., these vibrations are characterized by w2 <0.
The existence of such an instability for an arbitrary lattice is
a trivial consequence of the Earnshaw theorem on the insta-
bility of classical systems held by the Coulomb forces; in
crystals their stability is ensured by the electron contribution
to the foree matrix. The lattice-stabilizing contribution is
w3, which is the last term in Eq. (3.72), contained also in Eq.
(3.71). An example of normal vibrations unstable in a lattice
of bare ion cores is given in Table 1 for the diamond-type
structure. In principle, such a situation is possible in the case
of normal vibrations corresponding to soft modes in ferro-
electrics and antiferroelectrics. In this case the instability
results from the smallness of the destabilizing electron con-

17 Sov. Phys. Usp. 31 (1), January 1988

b

tribution to the force matrix, i.e., it is due to the weakness of
the electron-phonon interaction. We shall limit ourselves to
the case of normal vibrations which are stable in a lattice of
bare ion cores (w2 > 0). Such a situation occurs, for exam-
ple, in the case of long-wavelength TO lattice vibrations in
cubic diatomic crystals [see Eq. (3.53)].

We shall be interested primarily in the quantity w3,
which is the contribution of the first term to Eq. (3.71),
frequently identified with the total contribution of the band
energy, and assume this quantity to be responsible for the
lattice instability in ferroelectrics.’” The explicit expres-
sion for w? is given by Egs. (3.68)—(3.70). In the case under
discussion (w? > 0) the conclusion about the dominant role
of w? could not have raised any objections (and would have
been trivial) if the remaining part of the electron contribu-
tion to w?( q) had been positive or known to be smaller than
o} in the absolute sense. In reality, neither is true. Among
the other three terms only the contribution from the fourth
term in Eq. (3.72) is known to be positive, whereas the sign
and value of w?, are difficult to determine without specific
and detailed calculations and the contribution of the second
term in Eq. (3.72) is negative, i.e., it can result in an instabil-
ity when o3 is sufficiently large. This contribution describes
the interaction of fluctuations of the charge density of the
valence electrons and it should play an important role in
those cases when the lattice distortion is accompanied by a
modification of the charge density wave of the valence elec-
trons, as is true, for example, in the case of a Peierls transi-
tion.

In view of the absence of sufficiently detailed calcula-
tions of w3 and w?_, we shall assume for the time being that
they do not affect significantly the value of 7, and we shall
consider the more specific question of the relative values of
w} and o3, i.e., we shall discuss whether the “band” contri-
‘bution can of itself result in the lattice instability. One of the
possible ways of estimating w? is to calculate it using some
model of the energy band structure. The fullest calculations
of this kind have been made in connection with the stability
of lattice vibrations in cubic diatomic crystals. The Penn
model'® of the band structure of semiconductors is used in
Ref. 99 to find the following expressions for the macroscopic
charge Z and for the “band” contribution to w3

fw=1420 7=t (Z,—2)+82,
muy£2. 2
¥y 5] 3V, 152 (.78
= v o= 2 Ny 130%
0Z,= ey el T Shp

here, Er and kg are the Fermi energy and momentum of the
valence electrons in the Penn model (k% = 37?N, /v,); N, is
the number of valence electrons per unit cell; E, is the insu-
lator gap on the Fermi surface (average band gap)'®; Z is
the deformation potential averaged over the Fermi surface;
Z.e and Z e are the charges of ion cores of the cation and
anion, respectively. If we express Z and E,, in terms of 62,
and £, we find that®

4ot 2% Za—2
"’?:T;,an—i? 0Z,=727 +~22, (3.75)
and hence, using Eq. (3.70), we obtain
5 : ¥4
Wl — ol :—g%f:— (ZCZH — sm—e1} ) (3.76)
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Equations (3.75) and (3.76) contain only the experimental
values and the charges of stripped ion cores, so that we can
estimate w? and compare it with w2. The experimental data
for Zand ¢ of some diatomic cubic crystals will be given in
the next section. In the case of IV-VI compounds close to the
unstable state the second term inside the parentheses of Eq.
(3.76) does not exceed 2, whereas Z_Z, = 24. Therefore, it
follows from the above estimates that the “band” contribu-
tion to w3, described by Eqs. (3.62) or (3.70) is in the case
of diatomic cubic semiconductors at least an order of magni-
tude less than the contribution of bare ion cores w2 and can-
not be responsible for the instability of TO lattice vibrations
in the cubic phase of IV-VI compounds.

However, as stressed in Ref. 101, in the case of IV-VI
compounds in the cubic phase the band gap on the surface of
a Jones zone, which is the Fermi surface in the extended k
space, is strongly anisotropic and the Penn model is a poor
approximation for the description of the energy band struc-
ture of these compounds. An analytic model of this band
structure, which describes the features of the origin of the
electron spectrum of IV-VI compounds, was developed on
the basis of the LCAO method ' in Refs. 103 and 104. With-
in the framework of this model using the nearest-neighbor
approximation, i.e., in fact for a linear diatomic chain of
atoms A and B, expressions have been found for ¢ , (Ref.
93), for the macroscopic charge Z (Ref. 105), for the
“band” contribution to w3, i.€., for @? (Refs. 103 and 105):

Sm—1+3 -;o— Aﬂion N Z=6Ze'——'1,
3.77)
0 2 0
T R
€ Ao’ o pg, Aton '

where I is the deformation potential; 24, is the gap in the
electron spectrum obtained on allowance for the density of
states in IV-VI compounds; &, is the width of the valence
band. The logarithmic dependence of w3 on 4,,, is a conse-
quence of the quasi-onedimensional nature of the model. Us-
ing an estimate A, /&, ~0.3 obtained for PbTe in Ref. 105,
we find that the logarithmic factor can be omitted. Conse-
quently, expressing [ and A, , in terms of £ and Z,, we find
again—as in the Penn model—Eq. (3.75) for @, . Therefore,
in two limiting cases—the isotropic approximation of al-
most-free electrons of Eq. (3.74) and the strongly anisotrop-
ic tight-binding approximation of Eq. (3.77)—we obtain the
same expression (3.75) for w? in terms of the macroscopic
parameters £ , and Z, which justifies the use of this expres-
sion for the above estimate of w? obtained for IV-VI com-
pounds.

The expression (3.75) for w3, like the expressions
(3.74) and (3.77) for e, and Z represent—bearing in mind
their derivation—the interband contribution to these quan-
tities made by regions with a high density of states.’®'* In
the case of narrow-gap semiconductors, which include I'V-
VI compounds, a considerable contribution can be made
generally by regions with a low density of states near the
band edges (in the vicinity of the points L of the Brillouin
zone in the cubic phase of IV-VI compounds).*** How-
ever, estimates obtained for w? in Ref. 106 demonstrate that
the contribution of the points L to w? is within the range
100-5500 cm ~ %, i.e., it is small compared with the contribu-
tion of stripped ion cores w} ~ 10° cm 2, so that the former
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cannot have a significant influence on the stability of TO
lattice vibrations in the cubic phase of IV-VI compounds.

We have ignored so far the stabilizing electron contri-
bution to w}, i.€., the contribution of the fourth term in Eq.
(3.72). As shown above, this contribution gives rise to a
characteristic structure of the electron contribution to the
force matrix [see Egs. (3.23), (3.26), and (3.32)] guaran-
teeing the translational invariance of the total energy of the
system and the existence of acoustic vibrations. This means,
in particular, that if in any approximation we find the contri-
bution of 57, to the force matrix [we shall denoteitbyc,,
(q) 1, then the contribution of 5V, i.e., of the fourth term
in Eq. (3.72), contains in the same approximation the con-
tribution to the force matrix of the type

— 8 2 Cat, 11 0)

and the contribution to the phonon spectrum then becomes

Aw? (q) = _esi (v, Q) Csi. (9) et (v, q)
v 2 L i M1

sy 1

e (v, Qe (v, q)
-2 T, Cii,15(0).
S, t

In the “band” approximation [see Egs. (3.68)-(3.70)] the

total contribution of the band energy to w3, in the case of

diatomic cubic crystals is described by [e,(TO) = (— 1)
(u/M)e, ]

~ 1 ! ’ ”
0fo = ('in—w D1 L (b A5 k) e )* (v (A, 175 K)ey)
i A

(25 R €)* (s 35 K €))

Noting that

—(yee)* (v2.) + (v€1)* (v,e.)]
=2 [(rer) 12— | X (vees) I

we find that inclusion of the non-Frohlich terms of the sec-
ond order in displacements of nuclei when considering the
electron-phonon interaction generally results in the loss of
the variable-sign band contribution to w3,.

One should make further comment at this point on the
role of the various terms in Eq. (3.73) in the case of the
Peierls instability of a crystal, which occurs in quasi-one-
dimensional metals or metals and semimetals with nesting
parts of the Fermi surface.®® It is the Peierls instability in a
cubic metallic precursor phase which is assumed to be re-
sponsible for the observed crystal and electron structure of
group V elements (belonging to the bismuth group).'®” In
the Peierls situation the polarization operator is known to
diverge at a wave vector Q joining the nesting parts of the
Fermi surface: 7% (q— Q) — . Consequently, the electron
permittivity £ (q—Q) diverges. Using Egs. (3.65) and
(3.67)—-(3.70), we can see that the “band” contribution due
to the screening by the electron potential generally vanishes
in the Peierls case making no contribution to the frequency
of the corresponding normal mode. In this case the presence
or absence of a real instability of a crystal is governed entire-
ly by the relationship between the ion-ion contribution 3
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and the contribution of the direct Coulomb interaction of
fluctuations of the charge density of the valence electrons
( — ?), and also by the quantity w?2,. A more detailed dis-
cussion of this problem can be found in a paper by one of the
present authors.*

4. FERROELECTRIC PROPERTIES OF iV-VI COMPOUNDS

In diatomic compounds with the NaCl or CsCl struc-
ture the transition from wide-gap insulators with a low elec-
tron polarizability to semiconductors reveals a tendency for
the manifestation of the properties typical of virtual displa-
cive ferroelectrics: the frequencies of long-wavelength TO
lattice vibrations wy, become softer, the low-frequency per-
mittivity £, rises at low temperatures, and the sign of the
temperature coefficients of wy, and g, is reversed (Table
III). Such ferroelectric properties are manifested most
clearly by five IV-VI compounds with anomalously high
values of £, in the cubic phase'®® (Table III). This tendency
is exhibited among IV-VI compounds themselves; as we go
from PbS to GeTe crystals the increase in ¢ is accompa-
nied by a reduction in the stability of the cubic phase at low
temperatures. In the case of lead chalcogenides the cubic
phase is stable right up to 7= 0 K (Ref. 112), but there is a
considerable softening of w1, and €, has anomalously large
values, SnTe is a virtual or low-temperature ferroelectric
with T, 150 K (Refs. 113-115), whereas GeTe is a high-
temperature ferroelectric with 7, = 630-700 K (Refs. 112
and 116). The temperature of the phase transition T in
these compounds is a function of the concentration of non-
stoichiometric defects (tin or germanium vacancies) and it
decreases on increase in the vacancy concentration.®’ More
detailed reviews of the experimental results obtained for [IV—-
VI compounds can be found in Refs. 112, 119, and 120.

In the classical microscopic theory the ferroelectric
properties can be explained by the dipole instability of TO
lattice vibrations. In the case of polyatomic ferroelectrics,
such as those with the perovskite structure, the dipole con-
tribution is large because of the anomalously large internal
field constants. In the case of diatomic crystals the internal
field is Lorentzian and the dominant role is played by char-
acteristics of the electron structure, when the classical theo-
ry of ionic crystals cannot be used in the case of IV-VI com-

pounds. In the preceding sections we derived general
expressions for the contribution of the dipole forces in di-
atomic cubic crystals which make it possible to account for
the role of these forces in the establishment of ferroelectric
properties of IV-VI compounds and to relate these proper-
ties to the characteristics of the electron structure. ! It fol-
lows from Eq. (3.58)-(3.60) that when the dipole contribu-
tion is sufficiently large, it may result in instability of TO
vibrations. We can also see that this is favored by high values
ofe_ . On the other hand, as pointed out already, instabilities
are also favored by low values of w]. Therefore, although e
of IV-VI compounds is anomalously large, because of the
low ionicity of these compounds the effective ion charge Z'
should be small and it is not a priori clear that this will result
in an instability.

The possibility of the nondipole mechanism of the lat-
tice instability in IV-VI compounds is suggested by some
characteristics of the electron structure and chemical bind-
ing of these compounds. The ionicity of IV-VI compounds is
low so that their electron properties are closer to those of
nonpolar group V semimetals with metallic cubic phases
than to ionic insulators. Therefore, the problem of stability
of the cubic phase of IV-VI compounds was discussed in
Refs. 103, 122, and 123 by analogy with group V semimetals
which have crystal structures than can be derived by a slight
distortion of the simple cubic lattice, the distortion being a
shift of the sublattices along a threefold axis and a rhombo-
hedral deformation of the kind encountered in the ferroelec-
tric phases of SnTe and GeTe. It was shown there that the
ionicity”’ stabilizes only the cubic phase of IV-VI com-
pounds which at first sight seems to be in direct conflict with
the idea of the dipole mechanism of the ferroelectric instabil-
ity of these compounds, because optical lattice vibrations in
diatomic crystals become dipole-active only if the com-
pounds are ionic.

A detailed analysis of the influence of the dipole forces
on the stability of TO vibrations in the cubic phase of [IV-VI
compounds was made in Ref. 121. We can see from Eqs.
(3.59) and (3.60) that the dipole contribution to @3, can be
expressed in terms of the same macroscopic parameters €
and Z as the splitting between the LO and TO frequencies.
This makes it possible to find the values of w} and w3, using
the experimental data on €_, w;o, and wq, 1.e., without

TABLE III. Experimental values of the difference between the ionization potentials Iy — I, of B
and A atoms in a compound AB, of the electron permittivity £ _, and of the frequencies of TO and
LO lattice vibrations. The citations of the papers from which the results were taken can be found in
Ref. 121. The values of the parameter ¥ were obtained using the Lyddane-Sachs-Teller relationship
[see Eq. (3.56)]. The frequency 2 is defined by Eq. (3.53). The data for SnTe correspond to the
composition Sn o, Te with the hole density p = 5x10°cm = [ py, (77 K) = 8x10°°cm ~*]. In the

case of GeTe the difference between the ionization was /g — I, = .13 eV.

€0
Type of\‘ In- Laairn ex erpor em”™2 | ¢y cm ™!
Compound |lattice, ' —fa. 2 om ™!
eV % 4R '3m) K| 4K ‘3”!)1{‘ 4K ! SHOK | 4K | 300 K
j | i ‘:
1. NaCl NaCl | 7,87 | 2,3| 2.5 2,35 233178 165 | 272 201 | 281
2. CsCl CsCl i 9,12 2.5 2,6 | 2,67 2,63|106 100 168 | 162 139
3. TICl do. 6,90 8,4 7.81 5.0 4,76, 60,5 62.0| 175 | 173 i
4. TlBre do. 5,73 6,8 6.1 5.64) 5,34| 45,0| 47,0} 117! 116 17
5. IbS do 2,94 — 10 17 17 — 1 07 212 | 212 184
6. PhSe d : 2,34 1 13,6 { 13,6 |24 22 39 39 144 | 144 122
7. 0hTe 0- 1,60 | 40 12.6 {36 32 18 32 114 114 95
8. SuTe go. 1,67 | 90 10 {402]37x£2] 15 44,5| 140 | 140 | 113
0. !
19 Sov. Phys. Usp. 31 (1), January 1988 O. E. Kvyatkovskil and E. G. Maksimov 19



NT2 34 5 6 78 |Wn
PEIRIER I TS
i ot
a- S
- o
L o= ° o 10,4
[~ [s]
ey 750_
N i x ©
- -
3 M On
- - x
o~ (o]
3 e x
XX-U,Z
0,5F
g
i O A= [
L s
- A—b
a-10-20-Ix-4
0 L 1 il —
2 [ [
n=el?

FIG. 1. Values of &%, @5, @5p, and Z' (Ref. 121). See Eq. (4.1) and the
explanations in text. The vertical arrows identify the number of a com-
pound in Table I11. Meaning of symbols: 1) &%4;2) 84;3) &pp; Z'

recourse to any model calculations. If we allow for Eq.
(3.59), this applies also to the parameter Z'. Since diatomic
cubic crystals have been investigated thoroughly in the ex-
perimental sense, we can use Eqs. (3.58)-(3.60) to analyze
the influence of the dipole forces on the stability of TO lattice
vibrations in IV-VI and other diatomic cubic crystals. A
measure of proximity of a cubic phase to an unstable state
can be provided by the values of w3, measured in units of Q2
[see Eq. (3.71)1, i.e., by the dimensionless force constant

~, mz
2 2 2 2 0
WTO0 = Wy —WpDy, W= 55 »

(L) et

e B
DD= t2

“4.1)
which makes it possible to compare these quantities for dif-
ferent compounds. Figure 1 shows the values of &%, @2,
&5p, and Z' for two groups of ionic crystals with the NaCl
and CsCl structures and for lead chalcogenides and also for
SnTe (specifically for the composition which is a virtual fer-
roelectric with T, <0), found from the low-temperature
data for £, o, and w1q. It is clear from Fig. 1 that the
reduction in w3, i.e., the reduction in the stability of TO
lattice vibrations, is accompanied by an increase in @2 and
@%p on transition from one group of compounds to the oth-
er, as well as within the series of IV-VI compounds them-
selves. Therefore, the reduction in w3, is entirely due to an
increase of the contribution of the dipole forces to w2, since
the contribution of all other interactions included in w?
tends to stabilize TO vibrations as demonstrated by the di-
pole mechanism of the instability of the cubic phase of IV-
VI compounds.

The reduction in the stability of TO vibrations is accom-
panied by a reduction of the effective ion charge Z°, in agree-
ment with the observed reduction in the ionicity in the inves-
tigated series of compounds. Therefore, as can be seen from
Eq. (3.58), the increase in @3, and the reduction in the
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stability of TO vibrations in diatomic cubic crystals with the
NaCl or CsCl structure is related mainly to the increase in
£, whereas in IV-VI compounds it is entirely due to the
increase in £_ . We can see from Fig. 1 and Table III that
the extrapolation of the dependence &%, on £_ predicts a
change in the sign of w3, i.e., it predicts an instability of TO
vibrations in the range £, % 45, which is in good agreement
with the observed dependences of £ (Ref. 110) and T,
(Ref. 114) on the composition of Sn, _, Te.

The results obtained allow us to draw the conclusion
that the stability of TO lattice vibrations at low temperatures
in the cubic phase of SnTe and GeTe and the proximity to the
unstable state of lead chalcogenides are all consequences of
anomalous dielectric properties of the electron subsystem of
IV-VI compounds. This result allows us to link the dipole
mechanism of the ferroelectric instability of IV-VI com-
pounds with the origin of the electron spectrum of the cubic
phase of these compounds'®*!'**1°"12* and with the approach
to the problem of the structural instability of the cubic phase
of IV-VI compounds based on the proximity of electron
properties of these compounds to those of nonpolar bismuth-
group semimetals.

The electron structure of the cubic phases of IV-VI
compounds is discussed using the LCAO method in Refs.
103 and 104 and the pseudopotential method in Refs. 123
and 101, and its origin is attributed to the structure of a
metallic precursor phase, which is obtained if we ignore the
chemical inequivalence of atoms in the two sublattices A and
B and which is an analog of the cubic phase of bismuth. The
ionicity and the insulator gap in the electron spectrum of the
cubic phases of IV-VI compounds appear due to the poten-
tial ¥, of the valence electrons, which is antisymmetric rela-
tive to the operations causing transposition of sublattices in
the NaCl structure, provided an allowance is made for the
chemical inequivalence of the B and A atoms. It is important
to note that this not only produces the minimum gap £,
located in the case of IV-VI compounds in the vicinity of the
points L of the Brillouin zone, but also the average gap E,,
corresponding to the position of the principal maximum Im
£(w) and governing the value of € in the case of IV-VI
compounds.

The nature of the anomalous rise of £  in the IV-VI
series can be understood if we consider the metallic precur-
sor phase as a special case of the semiconductor phase in the
limit ¥, -0 bearing in mind that in the first approximation
the series of compounds PbS, PbSe, PbTe, SnTe, and GeTe
can be regarded as states of the semiconductor phase in the
decreasing order of ¥, (Refs. 103, 104, 122, and 123). Me-
tallization of the electron spectrum of the cubic phases of
IV-VI compounds on transition from PbS to GeTe is mani-
fested by a reduction in the average band gap E,, between
the filled and empty states'”* and is accompanied by an
anomalous increase in € , (Refs. 93 and 125).

We can therefore say that considerable softening of wq
exhibited by lead chalcogenides and the ferroelectric insta-
bility of SnTe and GeTe are all consequences of the proxim-
ity of the cubic phase of these compounds to the metallic
state associated with the smallness of ¥,: as V, is increased,
the permittivity £  rises and thisin turn increases the contri-
bution of the dipole forces to wxo, resulting in an instability
of TO lattice vibrations. If we bear in mind that the potential
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V, determines the degree of ionicity, this means that the
reduction in the ionicity along the IV-VI series favors an
increase in the contribution of the dipole forces to %o, i.€., it
reduces the stability of TO vibrations. It is clear from Eq.
(3.58) that this is associated with the structure of w3p: the
fall of the effective charge Z' due to the reduction in the
ionicity is compensated by a simultaneous rise of £, . Obvi-
ously, these results are in full agreement with the conclu-
sions reached in Refs. 103, 122, and 123 that an increase in
the ionicity stabilizes the cubic phases of IV-VI compounds.
It should also be noted that the term *‘effective ion charge”
for the parameter Z' is used by analogy with the model of
polarizable ions and that the relationship between Z'and the
ionicity is purely empirical (Fig. 1), but does not follow
directly from the microscopic expression for Z' obtained in
Ref. 94. We can reveal this relationship using the exact
expression (3.58) and theory of Refs. 93 and 105 relating ¢
and Z to the ionicity A, . The necessary expressions are
givenby Eq. (3.77). Using them and Eq. (3.72), we find that

3Z 9 Ia} Apn
B2 27 e &

A

(4.2)

It is clear from Eq. (4.2) that we have Z' - 0 in the limit
¥, -0and, consequently, Z* can be regarded as a measure of
the ionicity of IV-VI compounds. Using parameters typical
of IV-VIcompounds ({fa, ~10eV, £, ~3-5eV, A, ~0.5-1
eV),* we find from Eq. (4.2) that Z'~0.3-1, which is in
good agreement with the values of Z' reported for IV-VI
compounds.

In the above discussion we relied heavily on the fact that
the average band gap E,, governing the value of £ _ is purely
of ion origin in the cubic phases of IV-VI compounds.® In
fact, all this applies also to III-V and II-VI semiconductor
compounds with the sphalerite structure with one, but im-
portant, difference: the precursor phase for the latter com-
pounds has the diamond structure and the covalent binding.
The values of E,, for III-V and II-VI compounds include
not only an ionic contribution, but also a covalent contribu-
tion E>¥ (Refs. 126-128) and on reduction in the ionicity
(V, =0) we find that Z'~ 0, but £ tends to a finite value
governed by E%" so that @4, tends to zero when ¥V, -0.
Consequently, in spite of an increase in £_ the transition
from IV-VI to III-V compounds reduces the dipole contri-
bution made to @3¢ of III-V compounds compared with I1-
VI compounds (by a factor of 1.5-2) and by a much larger
factor (3-5) compared with IV-VI compounds. Clearly, the
covalence is also responsible for the anomalously large val-
ues of @3 reported for these compounds ( 1.5-2 times greater
than for IV-VI compounds). This is supported, in particu-
lar, by the rise of @} on transition from I1-VI compounds to
IV elements. Although metallization of the electron spec-
trum increases also @} (Fig. 1), if the dipole forces are al-
lowed for, the influence of metallization and covalence on
the stability of TO vibrations in diatomic cubic crystals is
very different. The covalence suppresses the dipole forces
and stabilizes only TO vibrations, whereas metallization of
the chemical binding increases @%, and tends to make TO
vibrations unstable. The consequence is the different influ-
ence of the ionicity on the stability of TO vibrations in crys-
tals with ionic-metallic and ionic-covalent types of chemical
binding: in the former the ionicity stabilizes TO vibrations,
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whereas in the latter the ionicity destabilizes these vibra-
tions.

We mentioned earlier an approach to the problem of
stability of the cubic phases of IV-VI compounds based on a
similarity of the electron properties of these compounds with
those of group V semimetals. '°>'*%!* This approach was de-
veloped most thoroughly by Volkovand Pankratov'® on the
basis of an analytic model of the band structure of IV-VI
compounds which they proposed and which we discussed
already. This approach is based on the following reasoning.
The p valence electrons form, if we ignore the weak hybridi-
zation effects and the spin-orbit interaction, systems of three
mutually perpendicular one-dimensional half-filled energy
bands in the precursor phase, so that this metallic phase ex-
hibits the Peierls instability as a result of a mutual shift of
two sublattices along the [ 111] axisin the NaCl structure, as
exhibited by Bi, Sb, and As. An additional allowance for the
ionicity and possibly for the spin-orbit interaction may stabi-
lize the cubic structure of IV-VI compounds, which ac-
counts for the stability of the NaCl structure in the case of
lead chalcogenides.

A different approach to the problem of stability of TO
lattice vibrations in diatomic cubic crystals and particularly
in IV=VI compounds was proposed by Porod and Vogl.**
Their “analytic model” is based*® on the diagonal approxi-
mation for the ¥ (K, K') matrix in Eq. (3.54), i.e., it is based
on an allowance for just the diagonal components of (K,
K') characterized by K’ = K in Eq. (3.51) for y. We shall
not repeat the demonstration given in Ref. 36 of the consid-
erable influence of the contribution of the diagonal compo-
nents of 77 to w? on the stability of TO vibrations in diatomic
cubic crystals: the treatment is sufficiently full in Ref. 36, but
it should be mentioned that the arguments given there are
not supported by numerical calculations of w%, or of contri-
butions of the off-diagonal components of 7 to w?, made in
Refs. 36 and 87 (see Table II). We can see from this table
that the “analytic model” gives rise to large values of w3, for
the cubic phases of IV-VI compounds and these values do
not agree even in respect of the order of magnitude with the
experimental data on w%, and, moreover, the model does
not reflect the tendency for the reduction in the stability of
TO vibrations along the PbS, ..., GeTe series. Moreover, we
have doubts about the conclusion®® that the off-diagonal
components of 7 (K, K') are small for IV-VI compounds
and about the consequent conclusion that the contribution
of these components to w3, is unimportant, because we can
see from Table II that the contribution is large and it results
in astrong instability of TO vibrations of IV-VI compounds.
It should also be noted that in order to calculate the off-
diagonal components of # we cannot use the jellium model of
Ref. 36 and we have to allow for the insulator gap on the
Fermi surface of the valence electrons (on the surface of the
Jones zone), i.e., we have to allow for E . Therefore, the
conclusion reached in Ref. 36 that there is no relationship
between £_ and the stability of TO lattice vibrations in IV-
VI compounds, which is based on an analysis of (K, K') in
the jellium model, is not convincing and moreover it is in
conflict with the experimental results.

We have discussed here only the problem of the stability
of TO lattice vibrations in the cubic phase at 7=0 K re-
stricting ourselves to the harmonic approximation in the de-
scription of lattice dynamics. When other topics are consid-
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ered, for example, the temperature dependences of €4, @1q,
and w,, in the cubic phases of IV-VI compounds and the
structure of the low-temperature phases of SnTe and GeTe,
we need to include the anharmonicity of lattice vibrations.
In particular the temperature dependence of w, for the cu-
bic phase is given by the expression®

010 (T) =010 (0)+ 210 (T), Z(T)=2Z(iey=0), (4.3)

where 2o (T) is the self-energy part allowing for the
phonon-phonon interaction associated with the lattice an-
harmonicity. In the case of weakly anharmonic crystals a
theory based on the lattice Hamiltonian of Eq. (3,38) pre-
dicts two contributions to 2: of the first order in ¥, and of
the second order in V; (Ref. 5):

z=r+z?- MQ,“ MRS el (4.4)

where the wavy line is the temperature (Matsubara) phonon
Green function. There is also a contribution of thermal de-
formation, but it is usually small. Since = > 0and =’ 5.0,
the sign of Z(T) depends on the relationship between these
two contributions. It is usually stressed that 2 ( T') for displa-
cive ferroelectrics is of the same order of magnitude as for
normal (nonferroelectric) insulators.>® However, it is im-
portant to stress that whereas in the case of normal insula-
tors we have 2(T) <0, i.e., the frequency of TO vibrations
becomes softer on increase in temperature (Table III), in the
case of real ferroelectrics with w3, (0) = — w? <0 we can
expect stabilization of TO vibrations above T, if 2.,
(T) > 0. The change in the behavior of 21, (7T) is smooth
(Table II1) as wi, (0) becomes softer. This matched behav-
ior of 21, (T) and of the harmonic approximation frequen-
cies is clearly not accidental, but it cannot be explained by
the phenomenological theory of the lattice anharmonicity. >

An “electron” mechanism of stabilization of TO vibra-
tions within the framework of the “band” approach was pro-
posed in Ref. 39: the authors used the Hamiltonian of Egs.
(3.82)-(3.84) to allow for contributions of the fourth order
in V,,, to Aw3g, giving rise to the following temperature
dependence of w3 :

Awfu = cw<:>-~c + c~v~®~v~c
+ ~v®'wc + UW®~M )
where the bare electron loop represents Eq. (3.65) and the
last three graphs describe the electron contribution to 2(T).
If TR 0y, then 2,(T) = AT, where A> 0. It is stressed in
Ref. 39 thatinclusion of 2, (T') makes it unnecessary to con-
sider the lattice anharmonicity. However, firstly, as is clear
from the discussion at the end of Sec. 2a, there is no “elec-
tron” anharmonicity apart from that which is obtained by
expanding the adiabatic potential and one can speak only of
a calculation of the electron contribution to the lattice an-
harmonicity. We can easily see that the last three graphs in
Eq. (4.5) describe the simplest electron contribution to 2 ‘¥
(T) of Eq. (4.4), which appears because of the next electron
contribution to the four-phonon interaction
[ 4

(4.5)

(4.6)
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Secondly, on the basis of the model described by Egs.
(3.68)—(3.70), if we add acoustic phonons, we can write
down directly the corresponding contribution to = ®’(T):

a a

a
® -
ZE(T)”%C’/&\: 1/\7

¢ c c
4.7)

where a and c are the acoustic and critical phonons, and the
designations 1 and 2 for the electron lines in Egs. (4.6) and
(4.7) correspond to different (valence or conduction)
bands. If TR 8y, then 2 = — BT, where B> 0. Conse-
quently, without any specific calculations of the constants 4
and B we cannot determine the sign of 2(T) even on the
basis of the “band” model.

The total electron contribution to 2, ( T') can be repre-
sented as a series in powers of terms in the expansion of the
electron-nuclear (¥, V2, V3 P9 etc.) or the electron-
ion interactions and if we include the electron-electron Cou-
lomb interaction, we find that the structure is very complex.
We can however show that if we consider uw3o as elastic
constants of the corresponding long-wavelength optical dis-
placements, then Egs. (3.58)—(3.60) for the contribution of
the dipole forces to w7, and wi, retain their form in all
orders of the anharmonicity and are valid at finite tempera-
tures if £, Z, Z', and w} are replaced with the correspond-
ing temperature-dependent quantities. This makes it possi-
ble to use Egs. (3.59)-(3.60) for the analysis of the
temperature dependences of €, w10, @, and g, for the
cubic phases of IV-VI compounds.'?' The analysis reported
in Ref. 121 shows that at high temperatures the stabilization
of TO lattice vibrations in the cubic phase of IV-VI com-
pounds is entirely due to a reduction in £_ on increase in
temperature. It is unusual to note that the stabilization be-
comes more effective the stronger the instability at 7= 0 K:
the rate of fallof £ _ in the cubic phases of [IV-VI compounds
on increase in temperature rises on increase in £ (7=0
K). This can be explained by the pole structure of the expres-
sionsin Eq. (3.57) for e and w}, associated with inclusion
of the internal field. On the other hand, the dipole contribu-
tion to w} in the case of IV-VI compounds depends weakly
on £_ and is small, which makes it possible to explain the
observed absence of the temperature dependence of w, , in
the cubic phases of IV-VI compounds. The nature of the
temperature dependences'® of the permittivity £ and of
w3 for the cubic phases of IV-VI compounds, due to the
pole structure of the contribution of the internal field to e
and w3, , is confirmed by the available experimental data for
these compounds (Fig. 2).'”

We can therefore say that the dipole forces in IV-VI
compounds are responsible both for the instability of TO
vibrations in the cubic phases at low temperatures if the val-
ues of £, (0 K) are sufficiently high and also for the stabili-
zation of TO vibrations at high temperatures due to the fact
that the increase in £ (0 K) is accompanied by an increase
(because of the dipole forces) of the rate of fall of £ with
increasing temperature.

We shall conclude by considering briefly the structure
of the low-temperature phases of SnTe and GeTe which
again have to be considered outside the harmonic approxi-
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FIG. 2. Temperature dependences of £, a) and @3¢ (b) obtained for lead
chalcogenides (Ref. 129 and Table IIT) and SnTe (Refs. 110 and 130). In

the case of SnTe the dependences € (T) are shown for three composi-

tions''® with the following hole densities p, = 8x10® cm 3 p,

= 1.25x10%, cm =3, and p, = 6x10" cm ~?, where p, = p{{ (77 K) (i =
1,2, 3).

mation framework. A comparison of the energies of the fer-
roelectric phases of IV-VI compounds with various types of
distortions (rhombohedral, triclinic, orthorhombic, and te-
tragonal) as a function of the degree of doping'?’ or the hole
density was made in Ref. 103 using the band approach. In
fact, calculations were made of the difference between the
band energies of the distorted structures and of the structure
of a simple cube as a function of the hole density and this was
done ignoring the ionicity, the electron-electron Coulomb
interaction, the contribution of higher terms of the expan-
sion of the electron-ion potential ¥ with m > 1, and the
exchange-correlation contribution. In the absence of doping
the rhombohedral phase observed experimentally for SnTe
and GeTe s favored by the energy considerations. However,
this solution (phase) becomes unstable as a result of doping
(no matter how light) and changes to the triclinic, although
the experimental results show that the rhombohedral phase
is observed for SnTe right up to densities of the order of
410 cm ~° (Ref. 114) and in GeTeright up to densities of
the order of 7 10%° cm ~® (Ref. 112). The disagreement
with the experimental results is explained in Ref. 103 by the
characteristics of the model and of the electron spectra of the
cubic phases of IV-VI compounds, mainly by the presence
of pockets at the points L, which become filled with holes up
to a certain density beginning from which the regions with a
higher density of states are filled and this is understood to
represent doping in the model proposed in Ref. 113. How-
ever, at hole densities higher than those given above it is
found that SnTe becomes a virtual ferroelectric (7, <0 K)
and in the case of GeTe slow cooling from temperatures
above T, ~630 K or prolonged annealing at temperatures
below T, produces a nonferroelectric (y) phase''” the struc-
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ture of which is close to that of a high-pressure phase ob-
served for lead chalcogenides, for SnTe (Ref. 112), and also
for GeTe itself,'*! but clearly distinct from the high-pressure
phase.'” The reason for the appearance of the ¥ phase in
GeTe s not quite clear, because this is observed only in the
case of a considerable deviation of the composition from
stoichiometry and it is accompanied by the presence of high
concentrations of lattice defects (vacancies in the germani-
um sublattice) and high densities of holes, and also by com-
pression of the samples.''? The latter may (like hydrostatic
pressures) be responsible for the instability of TA phonons
at the point X at the boundary of the Brillouin zone, which is
favored by the low values of the TA (X) phonon frequencies
in the cubic phases of IV-VI compounds,'” and the
observed difference between the structure of the ¥ phase of
GeTe and its high-pressure phase is due to a strong inhomo-
geneity of the samples. It should be mentioned that hydro-
static compression of the lattice in crystals with a phonon
instability at the boundary of the Brillouin zone increases T,
and in the case of crystals with a phonon instability at the
center of the Brillouin zone, it reduces 7. (Ref. 133).

Clearly, we note that in our opinion the difference
between the energies of possible low-temperature phases of
IV-VI compounds is largely determined by the Coulomb
electron-electron interaction and its inclusion is essential in
a systematic calculation of the phase diagrams and it is es-
sential also in accounting for the ferroelectric instability of
the cubic phases of these compounds.

5. CONCLUSIONS

We shall now summarize briefly this review. The exist-
ing microscopic theory of lattice dynamics allows us to un-
derstand qualitatively the nature of phonon instabilities in
crystals and to obtain necessary quantitative estimates, in-
cluding those based on calculations from first principles, i.e.,
without fitting parameters. The lattice stability is deter-
mined by adiabatic phonons, in contrast to the spectrum of
corresponding resonance excitations for which the nonadia-
baticity of the electron subsystem may be important. In cal-
culations of the electron contribution to the matrix of the
force constants this means that the lattice stability is gov-
erned by the static electron response to fields created as a
result of displacement of nuclei from their equilibrium posi-
tions. A full allowance for the valence electrons to the matrix
of the force constant must include lattice stabilizing and de-
stabilizing terms. In discussing the influence of the valence
electrons on the stability of some particular lattice vibration
we must distinguish two situations, depending on whether
this normal vibration is stable or unstable in a lattice of
stripped ion cores. In the former case a strong destabilizing
influence of electrons is responsible for the instability,
whereas in the latter it is the weak stabilizing electron influ-
ence which has the same effect. In general, in the case of
normal vibrations corresponding to “soft” modes of ferro-
electrics and antiferroelectrics we can expect either situa-
tion. In the case of vibrations which are stable in a lattice of
bare ion cores, for example, in the case of TO vibrations in
diatomic cubic crystals, the conclusion about the dominant
role of the electron contribution to the instability of these
vibrations is trivial and it does not justify separation of any
particular destabilizing electron contribution to account for
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the lattice instability. An analysis made in the present review
shows that separation of any particular electron contribu-
tion responsible for the lattice instability without specific
estimates of the contribution of stripped ion cores can give
incorrect results on the reasons for the lattice instability in
ferroelectrics. An analysis of microscopic theories of the fer-
roelectric instability of IV-VI compounds demonstrates in-
consistency of an analysis of the instability of TO(T") in the
cubic phases of these compounds on the basis of the band
energy approximation equivalent to the models utilizing the
Fréhlich Hamiltonian with the interband electron-phonon
interaction, and also obtained on the basis of an approxima-
tion utilizing the jellium model for calculation of the elec-
tron response. However, it should be pointed out that the
search for the part of the total electron contribution respon-
sible for the instability can be justified if the contribution of
bare ion cores and the total electron contribution to the
square of the frequency of TO vibrations is several times
higher (and in the case of IV-VI compounds two orders of
magnitude higher) than the observed values of this quantity
and one can assume that this is due to the fact that some part
of the electron contribution ‘‘destroys” almost completely
the contribution of stripped ion cores, so that the remainder
determines the observed frequency of TO vibrations. This
does not mean that any separation of the total electron con-
tribution into a sum of terms of different origin makes it
possible to identify reliably the main contribution or that the
physical nature of the main contribution will be the same for
different divisions of the total effect. This ambiguity seems at
first sight to hinder microscopic formulation of the criterion
of the ferroelectric instability. In fact, discrimination
between various representations of the electron contribution
depends both on the investigation method (numerical calcu-
lations or a qualitative analysis) and on those characteristics
of the electron structure and chemical binding or dielectric
properties of the electron subsystem whose influence on the
stability of TO vibrations is under discussion. For example,
when we are dealing with the ferroelectric properties of IV-
VI compounds it is useful to separate, using exact micro-
scopic expressions, the contribution of the dipole forces to
the frequency of TO vibrations. An analysis of the dipole
mechanism of the ferroelectric instability of IV-VI com-
pounds has made it possible to relate the ferroelectric prop-
erties of these compounds to the characteristics of dielectric
properties of the electron subsystem, to the origin of the elec-
tron spectrum, and to special features of the chemical bind-
ing of the cubic phases of these compounds.

It should be pointed out that some topics in the micro-
scopic theory of displacive ferroelectrics have been ignored
in the present review or have not been dealt with sufficiently
thoroughly. This applies particularly to the numerous shell
models for the calculation of the phonon spectra, which have
played an important role in the understanding of the micro-
scopic theory of the ferroelectric instability, '*'” and particu-
larly it applies to the interesting model proposed by Bilz
et al.">*'35 Moreover, we have ignored phase transitions in
ternary compounds originating from IV-VI compounds,
which exhibit a number of features that do not fit the concept
of the purely phonon nature of the ferroelectric instability.
In our opinion a more detailed analysis should be made of
the microscopic theory of anharmonic effects in displacive
ferroelectrics, but this would require a detailed account of
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the relevant part of the microscopic theory of lattice dynam-
ics in crystals, which is obviously outside the scope of the
present review.

The authors are deeply grateful to V. L. Ginzburg for
his constant interest and encouragement. We are also grate-
fulto B. A. Volkov, O. V. Dolgov, A. P. Levanyuk, and O. A.
Pankratov for numerous discussions of the problems consid-
ered above.

UThe transition from normal (nonferroelectric) insulators, such as alkali
halide crystals, to ferroelectric ones along the sequence normal insula-
tor — virtual ferroelectric (7, <0 K) —ferroelectric (7.>0 K) not
only results in softening of the frequency of critical TO vibrations at
T = 0K, but also in changes in the sign of the temperature coefficients
of wyo and &;, This matched behavior of the frequencies obtained in the
harmonic approximation and the temperature-dependent anharmonic
correction to wi, is clearly not accidental, but a theory based on a
phenomenological lattice Hamiltonian cannot account for it.

DWe shall consider only ferroelectrics which are cubic in the paraelectric
phase, but this covers the majority of known displacive ferroelectrics.
¥The long-wavelength limit ¢— 0 implies here and later the inequalities
qa, €1 and gL» 1, where L is the size of a crystal. In the case of crystals
with the piezoelectric effect in the paraelectric phase the low-frequency
range is assumed to be located above the range of piezoacoustic reson-

ances: @ > U, % U,.L~'=10°-10°s " (Ref. 5).

“1t can be shown*4%* that the exact expression for the force matrix
differs from that obtained above only in respect of the replacement of the
static susceptibility y(0) in the first term of Eq. (3.26), representing the
contribution of §¥},’, with (@) and in this case the second term in Eq.
(3.26) representing the contribution of 52’ is still expressed in terms
of the static susceptibility ¥(0).

9The theory of Ref. 93 predicts that among IV-VI compounds the high-
est value of £, at 7= 0 K in the cubic phase should be exhibited by
GeTe, although £_ for the low-temperature rhombohedral phase of
GeTe (Ref. 109) with the composition characterized by T, ~700 K is
e (77K) =34 and £_ (295 K) = 36, i.e,, it is less than for the cubic
phaseof SnTe (Ref. 110). Itis shown in Refs. 93 and 111 that this can be
explained by the different behavior of £ _ (T) above and below T, of IV-
V1 compounds.

%Tn the case of a strong deviation from stoichiometry in GeTe a ¥ phase is
observed at temperatures T< T, = 630 K (Refs. 117 and 118) and its
structure is similar to that of the high-pressure phase observed in lead
chalcogenides and in SnTe (Ref. 112).

The ionicity is defined as the quantity representing the chemical inequi-
valence of atoms in two sublattices (for details see below). A rough
measure of the ionicity is the difference between the ionization poten-
tials of B and A atoms'® (Table III).

8The purely ionic nature of E,, in compounds with the NaCl or CsCl
structure is discussed by Harrison (see Chap. 18 in Ref. 92). In the case
of IV-VI compounds this is a natural consequence of the origin of the
electron spectrum and of the ionic-metallic nature of the chemical bind-
ing of the cubic phases of these compounds.

91t should be noted that we are speaking here not of the temperature
dependences of the frequencies of the corresponding resonance excita-
tions of the system, which can be strongly damped near T, and are not
known accurately, but of the temperature dependence of the elastic con-
stant of the corresponding long-wavelength optical displacements [see
Eq. (3.6) and the discussion that follows it].

'OThe pole structure of the expression for £ _ cannot by itself account for
the observed sign of the temperature dependence de, /3T. An analysis
of the temperature dependence of ¢ of IV-VI compounds, needed to
find the sign of 3¢ /3T, was made in Ref. 111. However, the existence
of a pole structure has a considerable influence on the rate of change of
£_ with temperature, increasing this rate near a pole, i.e., it is important
at sufficiently high values of £, (7= 0 K) (Ref. 121).

'"The dependences £_ (T) shown in Fig. 2 for SnTe were taken from Ref.
110. As is now known, the values of £ (77 K) for compositions with
the Hall density of holes p,, (77 K) = 1.25x10% cm ~* and 6x 10"
c¢m~* correspond to the low-temperature phase of SnTe, since for these
compositions the values of T, are 100K and 145K (Refs. 114and 115).
At the transition point the permittivity £_ has a kink with a maximum
at T'= T, (Ref. 93), which is allowed for in Fig. 2.

'YMore exactly, we are speaking here of self-doping, because the high
densities of holes observed in SnTe and GeTe are due to the deviation of
composition of these compounds in the homogeneity region in the direc-
tion of excess tellurium, i.e., these high densities are due to the presence
of tin and germanium vacancies, respectively.''
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