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This paper celebrates a double anniversary. In 1987, P. A. M. Dirac (1902-1984) would have
been 85 years old and in addition it was 60 years ago that Dirac’s paper on ““The quantum theory
of emission and absorption of radiation” appeared. That paper laid the foundation for modern
quantum field theory. The appearance and evolution of the basic concepts and representations of
quantum field theory are presented here more from a logical than a historical aspect. Special note
is taken of the important role played by Dirac in this process.
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1. INTRODUCTION

It has now been 60 years since the appearance of P. A.
M. Dirac’s paper on “The theory of emission and absorption
of radiation” ' (1927b),” which laid the foundation for the
modern theory of the interactions of microparticles. The au-
thor of this paper, one of the greatest contemporary theoreti-
cians, whose highly unconventional approach to physical
problems basically created the language which we use in any
field of quantum theory, would have been 85 years old this
year. The basic motivation which guided all of Dirac’s work
in physics seems to have been a deep-seated conviction that
nature can be described in a simple and unified way. On the
last page of the third edition of his great book Principles of
Quantum Mechanics (1947) he wrote that a satisfactory the-
ory should allow a simple solution for any simple physical
problem. However, the simplicity for which he unflaggingly
strived by no means appeared to him to be elementary. In a
lengthy introduction to the article “Quantized Singularities
in the Electromagnetic Field” (1931) Dirac wrote: “The
steady progress of physics requires for its theoretical formu-
lation a mathematics that gets continually more advanced.
This is only natural and to be expected. What, however, was
not expected by the scientific workers of the last century was
the particular form that the line of advancement of the math-
ematics would take, namely, it was expected that the math-
ematics would get more and more complicated but would
rest on a permanent basis of axioms and definitions, while
actually the modern physical developments have required a
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mathematics that continually shifts its foundations and gets
more abstract. Non-euclidean geometry and non-commuta-
tive algebra, which were at one time considered to be purely
fictions of the mind and pastimes for logical thinkers, have
now been found to be very necessary for the description of
general facts of the physical world. It seems likely that this
process of increasing abstraction will continue in the future
and that advance in physics is to be associated with a contin-
ual modification and generalisation of the axioms at the base
of the mathematics rather than with a logical development of
any one mathematical scheme on a fixed foundation. There
are at present fundamental problems in theoretical physics
awaiting solution . . . which will presumably require more
drastic revision of our fundamental concepts than any that
have gone before. Quite likely these changes will be so great
that it will be beyond the power of human intelligence to get
the necessary new ideas by direct attempts to formulate the
experimental data in mathematical terms. The theoretical
worker in the future will therefore have to proceed in a more
indirect way. The most powerful method of advance. . . is to
employ all the resources of pure mathematics in attempts to
perfect and generalise the mathematical formalism that
forms the existing basis of theoretical physics, and after each
success in this direction, to try to interpret the new math-
ematical features in terms of physical entities.”

The reader will have to forgive us for this long quota-
tion, but it would be difficult to devise a better formulation of
a basic feature of actions of the type which are being taken
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today in fundamental theoretical physics.

Over the six decades of its existence, quantum field the-
ory has changed in appearance several times. This process of
evolution has touched not only the details but also, in a
sense, the basic concepts. The process breaks up quite neatly
into several successive stages.

In the first, which lasted about two decades, the basic
problem was to extend the methods of quantum mechanics
to relativistic systems with an infinitely large number of de-
grees of freedom. This was by no means the simple and near-
ly self-evident problem which it appears to be from the mod-
ern standpoint; it required the invention of many technical
facilities which did not yet exist. It would be difficult to over-
estimate the role which Dirac played here. As R. Jost (1972)
wrote: “Almost all important discoveries were made or inde-
pendently also made by him.” We might cite such elements
of the ““alphabet” of the modern theory as the §-function
(1927a), the general theory for transforming from one rep-
resentation to another (1927a), Fermi-Dirac quantization
(1926), second quantization (1927b), the relativistic wave
equation for one particle in an external field (1928a, b),
spinors (1928a), antiparticles (1930a, 1931), the multitime
formalism, and the relativistically invariant form of writing
the equations for a system of electrons interacting with an
electromagnetic field (1932b).

However, the main obstacle along the path to transfer-
ring the methods of quantum mechanics to field systems was
apparently not a matter of technical difficulties but the need
to overcome the psychological barrier of the contrast
between two forms of matter—particles and field—which
are regarded as absolutely different entities from the classi-
cal standpoint. Extremely indicative in this sense is the fol-
lowing circumstance: While the idea of the fundamental
concept of an operator-valued field came to Dirac as early as
1926, when he wrote: ‘It would appear to be possible to build
up an electromagnetic theory in which the potentials of the
field at a specific point x,, y,, z,, ¢, in space-time are repre-
sented by matrices of constant elements that are functions of
Xos Vor Zow £ (1926)~—and in 1927 Dirac subjected the vari-
ables describing a field to second quantization (1927b)—six
years later he raised a decisive objection that Heisenberg and
Pauli “‘regard the field itself as a dynamical system amenable
to Hamiltonian treatment. . . . . so that the usual methods of
Hamiltonian quantum mechanics may be applied. There are
serious objections to these views . . . . We cannot. . . suppose
the field to be a dynamical system on the same footing as the
particles ... The field should appear in the theory as some-
thing more elementary and fundamental” (1932a).

These 15~20 years were actually a time of an agonizing
development of a fundamental new paradigm (and of be-
coming accustomed to it) in which classical particles and
fields come to have completely equal rights as two different
manifestations of a single unitary object: a quantized field.
The new understanding of a basic organizational mechanism
of nature was developed by various people in small pieces,
which only gradually combined to form a unified picture.
The method of second quantization of the amplitudes of an
expansion in a Fourier integral which was developed by
Dirac (1927b) in application to the electromagnetic field
and by Jordan (1927) and Jordan and Klein (1927) in appli-
cation to the field of electrons developed into a common
theory of an arbitrary free quantum field. From this stand-
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point, Heisenberg and Pauli (1929, 1930) constructed a gen-
eral scheme for the quantization of a field with an arbitrary
Lagrangian (a canonical formalism) which is not explicitly
relativisticaly covariant. For the interaction of electrons
with an electromagnetic field, this deficiency was made up in
the multitime formalism of Dirac, Fock, and Podolsky
(1932b). At the same time, unitary views acquired some
independent support from the physics of elementary parti-
cles. Fermi (1934) discussed the B-decay process as the pro-
duction of an electron and a new particle: a neutrino.
Yukawa (1935), using Tamm’s (1934) and Iwanenko’s
(1934) idea regarding the exchange nature of nuclear forces
proposed, in order to explain the forces of attraction between
nucleons, to introduce new particles—mesons (which, as it
was thought at the time, were soon discovered in cosmic
rays). In this manner the number and variety of entities
which came to be included in the concept of a quantized field
increased rapidly.

Nevertheless, a systematic and final formulation of this
new paradigm was in no hurry to appear. When we look at
the reviews published at the end of this first stage of the
evolution we see that Pauli (1941) was basically setting
forth the theory of free quantized fields (in essentially its
modern form). He limited himself to a brief mention of the
results of some calculations on interaction processes, with-
out even attempting to give a complete formulation of the
problem. In Wentzel’s book (1943) the problem of the inter-
action of electrons with an electromagnetic field was still
being treated by a multitime formalism; only in one of the
last sections did a second-quantized electron-positron field
participate.

Practical calculations on real effects were carried out
primarily by means of the perturbation theory developed by
Dirac (1926, 1927b) for time-dependent perturbations.
That theory corresponds to the method of the variation of
constants in the theory of linear differential equations. After
the appearance of the relativistic Dirac equation (1928a, b),
calculations were carried out on several effects of electro-
magnetic interactions of electrons: the scattering of light by
an electron (Klein and Nishina, 1929; Tamm, 1930) and the
annihilation of an electron~positron pair [Dirac (1930b),
Tamm (1930), and Oppenheimer (1930); the authors
thought that they were carrying out calculations on the anni-
hilation of electrons and protons]. Bethe and Heitler (1934)
carried out calculations on the bremsstrahlung of electrons
in the field of a nucleus and on the production of y-ray pairs
in the field of a nucleus. Calculations on the latter effects
were also carried out by Racah (1934, 1936) and Nishina,
Tomonaga, and Sacata (1934). The scattering of electrons
by electrons was studied by Mgller (1932).

In all these cases, the results found in lowest-order per-
turbation theory turned out to agree well with experimental
data, thereby confirming that this new theory was sound.
However, attempts to refine the predictions through calcula-
tions of higher-order approximations led to integrals which
diverge at large momenta: ultraviolet divergences.

Pauli (1933) tells us that Ehrenfest noted, immediately
after the appearance of a paper by Dirac (1927b), that it
contained the concept of a point electron and would there-
fore lead to an infinite self-energy for the electron. The same
point was emphasized by Dirac (1932a), who noted that in
the classical problem of the interaction of an electron with a
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radiation field the equations “that determine the field pro-
duced by the electron . . . . are quite definite and unambigu-
ous, but. . . (theequations) that determine the motion of the
electron . ... express the acceleration of the electron in
terms of field quantities at the point where the electron is
situated and these field quantities in the complete classical
picture are infinite and undefined.” In a sense, these pessi-
mistic predictions were justified. It is true that Weisskopf
(1934) managed to show that when a Dirac vacuum is taken
into account the self-energy of an electron diverges only lo-
garithmically, so that even with a cutoff at the Schwarzs-
child radius its increment in the “‘mechanical” mass remains
small. However, any cutoff would have to violate the relativ-
istic invariance of the theory.

In his Solvay report in 1933, Dirac (1934b) stated that
external charges should polarize the vacuum in his theory,
with the result that the electric charges which are normally
observable for the electron, the proton, and other electrified
particles are not the charges which are actually carried by
these particles and which figure in the fundamental equa-
tions; they are instead smaller. A calculation which he car-
ried out on this new physical effect again reduced to a logar-
ithmically divergent integral, whose cutoff at momenta of
the order of 100 mc (corresponding to the classical radius of
an electron) yields a “radiation correction” to the charge of
an electron, which reduced it by a fraction of about 1/137.
Calculations on the *“field” self-energy of a photon also led to
an infinite result and again violated gauge invariance.

As early as the mid-1930s, there were suggestions
(Weisskopf, 1936; Euler, 1936) that the infinities in higher
orders for the observable effects were traces of these funda-
mental ultraviolet divergences and that they could be elimin-
ated by subtracting from the infinite quantity for a bound
electron the corresponding infinite quantity for a free elec-
tron (Kramers, 1938; Stiickelberg, 1935, 1938). This was
the basic idea of the renormalization method. However, the
subtraction of certain infinities from others is such a delicate
and at the same time not totally natural operation that its
widespread acceptance had to await clear successes in ex-
plaining observable effects. A definite step in this direction
was taken by the famous study by Bethe (1947), who calcu-
lated the so-called fine shift of the S level in hydrogenlike
atoms, and also the study by Schwinger (1948 ), which con-
tains several other results, including the radiation correction
to the magnetic moment of the electron. Each of these effects
had been reliably established experimentally not long befor-
ehand through the use of microwave techniques in problems
of atomic spectroscopy. An important role was played in the
formation of the renormalization method by the appearance
of a new and explicitly covariant form of the basic equations
of quantum electrodynamics, which appeared at approxi-
mately the same time thanks to studies by Tomonaga
(1946), Schwinger (1948, 1949), Feynman (1948a, b;
19492, b), and Dyson (19492, b), which marked the begin-
ning of a new stage in the development of quantum field
theory. Over the following decade, this theory evolved essen-
tially completely into its modern form.

2. QUANTIZED FIELDS

A quantum (or quantized) field is a sort of synthesis of
the concepts of a classical field of the electromagnetic type

793 Sov. Phys. Usp. 30 (9), September 1987

and of a probability field of quantum mechanics. According
to the present understanding, it is the most fundamental and
universal form of matter, underlying all specific manifesta-
tions of matter.

The concept of a classical field arose at the heart of the
Faraday-Maxwell theory of electromagnetism, in the course
of the rejection of an ether as a material carrier of electro-
magnetic processes. This rejection was forced by the nega-
tive results of Michelson’s experiment and the derivation of
the special theory of relativity. A fundamentally new point
was that the field had to be regarded not as a form of motion
of some medium but as a special form of matter with ex-
tremely unusual properties: In contrast with particles, a
classical field is produced and annihilated without hin-
drance (it is emitted and absorbed by charges), has an infi-
nite number of degrees of freedom, and is not localized at
certain points but can instead propagate through space,
transmitting the interaction (signal) from one particle to
another at a finite velocity (which does not exceed the veloc-
ity of light, ¢).

From the logic standpoint, the unavoidability of the
field concept follows directly from the impossibility of trans-
mitting signals at a velocity greater than the velocity of light,
which follows from the special theory of relativity. If we
discard the Newtonian actio in distans, i.e., if we discard the
idea of an instantaneous action of particles on each other at a
distance, we find that we are forced to fill the space between
the interacting particles with some agent which transmits
this interaction from point to point: a relativistic field. For a
mathematical description of a relativistic field we need to
choose some representation of a Lorentz group whose “‘vec-
tors” depend continuously on the spatial point and the in-
stant of time.

The advent of quantum ideas led to a reexamination of
the classical electromagnetic concepts regarding the mecha-
nism for the emission and absorption of light, and it also led
to the conclusion that these processes occur not continuous-
ly but through the emission and absorption of discrete por-
tions of an electromagnetic field: photons. The contradic-
tory picture which developed, according to which particles
(photons) had to be associated with the electromagnetic
field, while certain effects could be interpreted only in terms
of electromagnetic waves, and others only in terms of parti-
cles, was called the “corpuscle-wave dualism.” A resolution
of this contradiction had to be sought in the direction of a
systematic application of the rules of quantum mechanics to
the electromagnetic field: the replacement of the dynamic
variables of the electromagnetic field—the potentials A and
@ and the fields E and H—by quantum-mechanical opera-
tors obeying corresponding commutation relations
(1926).” This is what was done in Dirac’s paper on “The
quantum theory of the emission and absorption of radi-
ation” (1927b), where a new method was developed for gen-
erating a quantum-mechanical description of an ensemble of
identical systems. The essence of this “method of second
quantization” was that the role of the dynamic coordinates
would be played not by the coordinates of an individual sys-
tem but by the numbers (the quantity) of systems in definite
states, i.e., “occupation numbers.” The application of this
method to an expansion in oscillators of an electromagnetic
field interacting with sources made it possible for the first
time to calculate Einstein’s 4 and B coefficients in a system-
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atic way, not based on the correspondence principle, and to
establish that “the Hamiltonian which describes the interac-
tion of the atom and the electromagnetic waves can be made
identical with the Hamiltonian for the problem of the inter-
action of the atom with an assembly of particles moving with
the velocity of light and satisfying the Bose-Einstein statis-
tics.” The result was to resolve the problem of the corpuscle-
wave dualism. The major reason for the importance of that
study, however, is that a completely new physical entity
emerged from it: a quantized field, This field satisfies the
equations of classical electrodynamics but has its own values
of the quantum-mechanical operators, which operate on a
Schrodinger function, which in this case is frequently called
a “state amplitude.” It is for this reason that we regard the
appearance of that paper as the birth of quantum field theo-
ry.

A second source of the general concept of a quantized
field was the quantum-mechanical wave function of a non-
relativistic particle, which satisfies the famous equation pro-
posed by Schrédinger. We recall that this is not an indepen-
dent physical quantity but the state amplitude of a particle;
probabilities for any physical quantities pertaining to the
particle are written in terms of bilinear expressions in this
amplitude. In quantum mechanics, a new wave field turned
out to be associated with each material particle, although
now, it is true, the field was a field of probability amplitudes.

The extension of the methods of quantum mechanics to
problems containing not one particle but ¥ particles made it
necessary to examine the propagation of a field of probability
amplitudes not in ordinary three-dimensional space but in a
configuration space of 3 dimensions (or, correspondingly,
4N dimensions, in the relativistic case). The use of a descrip-
tion method of this sort leads to some rather cumbersome
mathematical constructions which are not distinguished by
their transparency. Again in this case, the use of the second
quantization method proposed by Dirac (1927b), which
had been extended by Wigner and Jordan (1928) to an en-
semble of fermions, makes it possible to replace the field of
amplitudes in a 3V-dimensional space (if the N particles un-
der consideration satisfy the indistinguishability principle)
by a new field in ordinary 3-space which is an operator in the
quantum-mechanical sense. In other words, even nonrela-
tivistic quantum theory leads us in a natural way in multi-
particle problems to the same concept of an operator-valued
quantized field, although this field is nonrelativistic and con-
serves the number of particles.

Dirac’s discovery (1928a, b) of a relativistic wave equa-
tion for the electron was an entire chapter in the new history
of physics, whose description requires a separate paper. Here
we will simply touch on those aspects of this discovery which
pertain directly to field theory. As Dirac himself stated on
more than one occasion, this was one of those cases—not all
that rare in the history of science—in which an equation
turned out to be far “smarter”’ than its inventor, and the true
worth of its content went far beyond its original purposes.
The problem which Dirac took up in formulating his equa-
tion was the fairly modest one of writing an equation which
would correctly describe the behavior of a single relativistic
electron in external force fields and which would yield a nat-
ural explanation for the spin of the electron. This problem
was indeed solved, and exhaustively. In the process, how-
ever, three monumental discoveries were made; the impor-
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tance of two of them would not be realized for some time.

First, irreducible representations of the Lorentz group
of a new class—spinors—were rediscovered (not only for
physicists but also for mathematicians interested in phys-
ics).* The second discovery, whose worth was immediately
recognized, was the discovery that spin is—somewhat freely
expressed—a “kinematic inevitability” for particles which
are describable by a spinor representation. The third discov-
ery was that the equation had, in addition to the “respect-
able” eigenstates with a positive energy, an identical spec-
trum but with energies <-mc?. This discovery was originally
perceived as a grave flaw in the theory; only after some false
starts (1930a, b) was this discovery finally interpreted cor-
rectly, thanks primarily to the efforts of Dirac (1931,
1934b). In the first place, it is, strictly speaking, quite wrong
to pose the problem of a single body in a relativistic theory.
Particles—this may be the most characteristic distinction
between relativistic quantum theory and the nonrelativistic
theory—can be created and annihilated, just as photons of
the electromagnetic field can be. Second, it turned out that
for any relativistic charged particle there is necessarily a
twin particle—an antiparticle—so that a pair can appear
(and annihilate).

The last and most profound consequences of the Dirac
equation becomes obvious when we apply the method of sec-
ond quantization to it. Since electrons obey the Pauli princi-
ple and are described by Fermi statistics, we should use the
method of Wigner and Jordan (1928). A corresponding
study was carried out by Dirac (1934b) and Heisenberg
(1934). As a result, the four-component operator-valued
spinor field became part of the arsenal of the theory. This
field now described electrons and positrons in a completely
symmetric way.

Looking back, it is now easy to see that it would have
been sufficient to recognize that an operator field which im-
plements some local representation or other of the Lorentz
group and which has a quantum-mechanical operator mean-
ing would have to be associated with each species of relativis-
tic particle. Such an operator field would be completely anal-
ogous to a quantized electromagnetic field, differing from it
only, generally speaking, in the behavior under Lorentz
transformations, possibly in quantization method, and in the
values of the constants in the equations of motion. Like an
electromagnetic field, it would be called upon to describe an
entire set of indistinguishable particles (and indistinguish-
able antiparticles) of the given species.

In reality, however, as was mentioned in the Introduc-
tion, this new paradigm won general recognition only after a
great deal of labor, and it took its final form perhaps only in
the first series of studies by Schwinger (1948, 1949a, b). It
was only then—and to a large extent due to the clarity of
Feynman diagrams—that a picture of a common universal
structure of all matter penetrated into the consciousness of
physicists. Common physical entities—quantized fields in
ordinary space-time—take the place of both the fields and
the particles of classical physics; there is a single quantized
field for each species of particle or field. With regard to inter-
actions, we note that the elementary event is always an inter-
action of several fields of one or different species at a com-
mon  space-time point or—in corpuscular terms—an
instantaneous and local conversion of certain particles into
others. On the other hand, the familiar interaction in the
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form of forces exerted by one particle on another is a second-
ary effect (Dirac, 1932a) which arises because two particles
are exchanged as a result of sequential events of emission and
absorption by third particles, generally of different species.

3. WAVE FIELDS AND CANONICAL QUANTIZATION

In accordance with the dual nature of quantized fields,
a systematic exposition can be based on either corpuscular or
field initial representations.

In the field approach it is first necessary to derive a theo-
ry for the corresponding classical field and then subject it to
a canonical quantization in the procedure of Heisenberg and
Pauli (1929, 1930). The final step is to develop a corpuscular
interpretation for the resulting quantized field.

The primary initial concept here is the field »° (x),
which is defined at each 4-point x = (x° = ¢t, x) and which
implements some fairly simple tensor or spinor representa-
tion of the Lorentz group (scalar, vector, bispinor, etc.).
The index a specifies both the components of this representa-
tion and possible internal degrees of freedom. A correspond-
ing covariant theory is constructed (whether this is done in
the classical case or in the quantum case, through the use of
the Heisenberg picture, is irrelevant) essentially automati-
cally by means of a four-dimensional Lagrangian formalism
in which the time and the spatial coordinates are treated in
an absolutely symmetric way as independent variables (a
mechanics with a finite number of degrees of freedom on a
“four-dimensional time’’). One chooses a local Lagrangian
L(x) = L(u"(x), u, (x)), [“local” here means that it de-
pends on only the field components 4“ (x) and their first
derivatives, du® (x)/dx* = d,u’(x) = u, (x), all taken at
the same point x] and requires that it be invariant under the
Poincaré group and the transformation group of the internal
symmetries (if such exist). An integration over the 4-vol-
ume yields the action:

S::SL(z)d“:c_ (N
R
One requires an extremum of this action, 65 = 0, with re-
spect to arbitrary variations du° (x) which vanish at the
boundaries of integration region R. As a result one finds the
explicitly covariant equations of motion
aL d oL
@ G @ (2)

The next step is to appeal to the Nother theorem
(1918), according to which it follows from the invariance of
action (1) for an arbitrary integration region R under a &-
parameter continuous group of transformations of functions
of the field u° (x) and independent variables x* that there
exist & Nother currents J#(i =1, ..., k) with a vanishing
divergence which are explicitly specified by the theorem.
The future-oriented flux of each Nother current across any
spacelike hypersurface which goes off along spatial direc-
tions to infinity forms an integral quantity—the Nother
charge—which characterizes the field and which does not
depend on the choice of hypersurface. It follows that: 1)
Nother charges are integrals of motion and 2 ) their behavior
under transformations of the group is contravariant with
respect to the transformation parameters.

In relativistic field theory, the action is always required
to be invariant under the ten-parameter Poincaré group, so
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that ten NGther charges are necessarily conserved. Dirac
called them fundamental dynamic quantities: It follows
from invariance under four displacements that four compo-
nents of the energy-momentum vector P, are conserved. It
follows from invariance under six rotations that six compo-
nents of the four-dimensional angular momentum are con-
served [three components of the three-dimensional angular
momentum M’ = £% M, /2 and three Lorentz angular mo-
menta (“boosts”) N, =M, /c].

The theory becomes richer in content if the action is
also invariant when other continuous transformations
(which are not part of the Poincaré group)—transforma-
tions of internal symmetries—are performed on the field un-
der consideration. It then follows from the N6ther theorem
that new conserved charges exist. It is frequently assumed,
for example, that the field functions are complex: the La-
grangian is required to be Hermitian; and the action is re-
quired to be invariant under a gauge transformation of the
first kind (a phase transformation), u® — e, 1™ — u"% ~ ‘@,
where a is an x-independent phase. It then turns out that
charge is conserved as a consequence of the Nother theorem:

o=ifax3 (w L e 2L,

a ou®
6u’ 0 ,0

a

The complex functions #° (x) can therefore be used to de-
scribe charged fields. The same purpose can of course be
served by expanding the region of values taken on by the
superscript a in such a way that it also specifies the direction
in isotopic space and by requiring that the action be invar-
iant under rotations in it. Everything which has been said up
to this point applies equally well to a classical field and a
quantized field treated in the Heisenberg picture.

The canonical quantization, according to an interpreta-
tion of quantum mechanics developed by Dirac in his very
first quantum-mechanical paper (1925), consists of the fol-
lowing for any classical dynamic system: All its dynamic
variables, the observables A, B, . . ., begin to be regarded not
as ordinary c-numbers but as entities of a new algebra, ¢-
numbers, which do not commute with each other. In order to
retain the dynamic apparatus of Hamiltonian mechanics, in
particular, all the properties of Poisson brackets, it is neces-
sary that the quantum Poisson brackets of any pair of ¢-
numbers be proportional to their commutator. In other
words, it is necessary to make the substitution

A, Be, .5 {4, B, ..o Agy By, .. {Ag By}
=5 (AgBq—BgAg) =+-14q, By, - ..

The quantum Poisson brackets for canonically conjugate co-

ordinates and momenta retain their classical values:

{Pas PrYg=1"" [pay Pul-=0,
{qa, Qb}q: it (g4, qu)-=0,
{Pav qb}q=ih_i [Pes Qb]-zaab'

For a Hamiltonian treatment of a field system it is no
longer possible to treat the time and the spatial coordinates
in variational principle (1) as independent variables of equal
status; i.e., it is necessary to violate the four-dimensional
symmetry, retaining the time alone, while the spatial coordi-
nates are adopted as continuous indices which number the
degrees of freedom® (a mechanics with a continuous num-
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ber of degrees of freedom on a one-dimensional time) and
accordingly to write

S:S AL Wo (x, 1), u%(x, 1); ue(x, 1),

where the Lagrange function (more precisely, the Lagrange
functional) is

£ (e (x, 1), u%(x, £); u°(x, 1)

= %L (u® (x, £); 1, (x, 1)) = S dxL (x, ¢).

t=const

The generalized coordinates are now an infinite set of values
of all of the field components &', . . ., #* at all spatial points x
at a certain time #; their canonically conjugate momenta are
(functional) derivatives of the Lagrange function with re-
spect to the generalized velocities,

bz  _ OL(x, B
dub (x, t) oub (x, 8 '

w, (x, )=

(3)
and the Hamilton’s function (Hamiltonian) is

sty u)= [ @ D, (x, DUt (x, )~ g

= S d3x (E .T[al.ta—L) .
It is understood here that all the generalized velocities
1 (x,t) are expressed by means of (3) in terms of the gener-
alized coordinates u® (x,¢) and momenta m, (x,t).

We can now apply the general method of canonical
quantization to the field system, replacing the classical gen-
eralized coordinates and momenta by g-numbers which sat-
isfy commutation relations (Heisenberg and Pauli, 1929,
1930).

W (x, 1) (¥, ) F 7 (v, Dut(x, ) =1H8 (x—y) 8. (4)

The choice of sign, — or +, corresponds to Bose-Einstein
quantization or Fermi-Dirac quantization (more on this be-
low).

It was assumed above that Egs. (3) can be solved for all
the generalized velocities. Ifit is not possible to determine all
the velocities from these equations, the remaining relations
are equations imposed on the generalized momentum and
coordinates: constraints. A case of this sort had already been
encountered in the quantization of the electromagnetic field,
and it required no little inventiveness (Heisenberg and
Pauli, 1929, 1920; Fermi, 1929, 1930) in order to avoid its
contrived constructions. A regular method for constructing
a Hamiltonian formalism and for carrying out quantization
for systems with constraints was developed by Dirac begin-
ning in 1950 (1950, 1951a, 1958, 1964). In later years, this
method proved to be of decisive importance for constructing
a theory of gauge fields (more on this below).

The Hamiltonian form of the theory, in which canoni-
cal commutation relations (4) are formulated, violates the
explicit relativistic symmetry (as we have already stressed)
because of the special role played by the time and by the
appeal to a specific frame of reference. A special proof'is thus
required in order to retain relativistic invariance.® Further-
more, relations (4) tell us nothing about the commutation
properties of the fields at 4-points separated by timelike in-
tervals: The values of the fields at such points are related by
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causal dependences, and their commutation relations can be
found only by solving the equations of motion jointly with
(4).

4. FREE FIELDS

For free fields, for which the Lagrangian is quadratic in
the field functions, and equations of motion (2) are linear, a
problem of this sort can be solved in its general form. It
becomes possible to establish—in a relativistically symmet-
ric form—the commutation relations for fields at two arbi-
trary 4-points x and y:

w (@) u () F b () (@)= —iP® (L) A @ —p).  (5)

Here A,, (x) is the invariant commutation function of Jor-
dan and Pauli (1928) (explicit expressions for it were stud-
ied by Dirac in 1934b), which satisfies the Klein-Gordon
equation (O —m?) A,, =0, and P* is a polynomial—
there is a specific one for each field—which makes the right
side of commutation relations (5) satisfy equations of mo-
tion (2) in x and y.

In the corpuscular approach to a relativistic quantum
description of free particles, the states of the particle must
form an irreducible representation of the Poincaré group.
An irreducible representation of the group is characterized
by specifying the values of the Casimir operators (operators
which commute with all ten generators of the group: P#,
M, N7)y: for the Poincaré group, there are two such opera-
tors: the square of the mass, m* = P* P, , and the square of
the ordinary 3-spin (for a zero mass, the helicity operator
plays the role of the second “casimir’’). By specifying their
values, we fix the representation, i.e., the “species” of the
particle. The spectrum of the first of them is continuous: The
square of the mass can take on any nonnegative values
m?>0. The spectrum of the spin is discrete; it can take on
only the integer or half-integer values 0, 1/2, 1, . ... Fur-
thermore, it is necessary to specify the behavior of an odd
number of coordinate axes under reflection. If no other char-
acteristics have to be specified, one says that the particle has
no internal degrees of freedom, and it is “truly neutral.”
Otherwise, the particle has charges of some type or other.

In order to fix the state of a particle within a representa-
tion, it is necessary in quantum mechanics to specify the
values of a complete set of commuting operators. For a free
particle, it is convenient to choose the three components of
the momentum p and the projection s of the spin /, onto some
direction. The state of a single free truly neutral particle is
thus characterized completely by specifying the six numbers
m, [, p.. D, P, 5. The first two of these numbers character-
ize the representation, while the last four characterize the
state in it. For charged particles, one adds some other quan-
tum numbers, which we denote by the single letter ¢.

A straightforward extension of these arguments to a
system of n particles would result in the use of # sextets, one
for each particle. In 1927 Dirac suggested that the state of an
ensemble of n identical particles be characterized not by the
state of each particle but by the number of particles,” n, ,,—
occupation numbers—in each of the one-particle states
(1927b). The “interpretation” of a wave function which de-
pends on such variables gives us not simply the expected
numbers of particles in each state but the probability for any
given distribution of particles among different states. This

B. V. Medvedev and D. V. Shirkov 796



probability is actually the square of the modulus of the nor-
malized solution of the wave equation. It is in the probabili-
ties of such distributions that Bose-Einstein [or Fermi-
Dirac (1926)] quantum statistics deviates from classical
statistics. This procedure is called second quantization, ap-
parently because Dirac (1926, 1927b) carried out this pro-
cedure as a transition to a quantum-mechanical description
of an electromagnetic field in the problem—already quan-
tum-mechanical—of the interaction of electrons with this
field.

In the occupation-number representation, a state
) is written as the result

L

17p, s, 1) = (np, 5, )™V% [a* (B, 5, £)]™ %7 |0) (6)

of an action on a vacuum state (i.e., a state in which there are
no particles at all) of the creation operarors a™ (p,s,t). The
creation operators a* and their Hermitian-conjugate anni-
hilation operators a—, were introduced by Dirac in the same
paper (1927b), which we mark as the beginning of the age of
quantum field theory.” They satisfy the commutation rela-
tions

[a’ (P, S, t)r a* (P', S,v t')]:F:ﬁss'ﬁtt'6 (p'_p’)7 (7)

where the minus sign corresponds to Bose-Einstein quanti-
zation (Dirac, 1927b), and the plus sign to Fermi-Dirac
quantization (Jordan, 1927; Wigner and Jordan, 1928). The
occupation numbers themselves are the eigenvalues of the
particle-number operators 7, =a* (p,s,t) a~ (p,s,¢). The
state amplitude of a system containing precisely one particle
with each set of quantum numbers p,, S, £; P2, S2» L35 - - -, IS
then written

[Py S0 845+ o5 Pry Suy Ty o)

=a" (P S ty) ... @ (Pry Sny ) ... |O).

The creation and annihilation operators a* describe
particles with definite momentum and spin values. To take
the local properties into account, we need to put the ¢ * in
the coordinate representation. As transformation functions
it is convenient to use the classical solutions of the equations
of motion (2) of a suitable free field with tensor (or spinor)
indices @ and internal indices 7. The creation and annihila-
tion operators are then written in coordinate space as

ut™UH) (g) = (2m)73/2 S d3peipxu'§ff (p) a$P; (p);

u) (2) = 2y V2 | dOpe U (p) o) (0); (8)
pO: +(p2+ m2)1/2.

These operators, however, are still not what we need to
construct a local field theory: Their commutator or anticom-
mutator does not vanish for spacelike x, y point pairs.” Ac-
cordingly, the values of (8) at different spatial points at the
same time cannot be selected as Hamiltonian variables. The
formal reason for this is that the §-function can be construct-
ed only from a complete set of solutions of Eq. (2), and such
a set would contain, as can be seen in the example of the
Dirac equation, both positive and negative frequencies,
while each of the operators in (8) contains frequencies of
only one sign. For the formation of a local field, it is thus
absolutely necessary to construct a superposition of creation
and annihilation operators (8).
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For truly neutral particles this can be done directly, by
defining a local Lorentz-covariant field which corresponds
to such particles in the following way:

u® (z) = u®® (2) +u* (2). (9

For charged particles, however, this approach cannot be tak-
en: One of the operators a*, @~ in (8) will increase the
charge, while the other will reduce it, and their linear combi-
nation will not have definite properties in this sense. In order
to form a corresponding local field it is thus necessary to pair
the creation operators a,* with the annihilation operators
a,” not of the same particles but of some new particles
(which we indicate with a superior bar), which realize the
same representation of the Poincaré group, i.e., which have
precisely the same mass and spin but which differ from the
original particles only in the sign of the charge (of all
charges). We write

POT = yav(+) - yat(-), ;ﬂ:ﬁar(-!—)_’_uar(—), (10)

Simple calculations now show that for integer-spin
fields whose field functions implement a single-valued repre-
sentation of the Lorentz group, in the case of Bose-Einstein
quantization, i.e., when we use the upper sign in commuta-
tion relations (7), the commutators [u(x), u(y)] or [v(x),
v*(y)] are proportional to the function A,, and vanish off
the light cone. The same result is achieved for half-integer-
spin fields which implement two-valued representations for
the anticommutators [u(x), u(p)], {or [v(x), v*(M) ], },
if we use a Fermi-Dirac quantization in (7) with a lower +
sign.

In contrast, an attempt to quantize an integer-spin field
by the Fermi-Dirac approach leads to a situation in which it
is impossible to determine the local Hamiltonian variables.
An attempt to quantize a half-interger-spin field by means of
Bose-Einstein statistics leads to a situation in which it is im-
possible to construct a positive definite expression for the
energy. These assertions are the content of the Pauli theorem
(1940) regarding the relationship between spin and statis-
tics.

Equations (8)—(10) express the relationship between
the operators a* , which create and annihilate free particles
in stationary quantum-mechanical states, and the Lorentz-
covariant field functions #(x) or v(x), v*(x), which satisfy
linear wave equations (2). This relationship is an exact
mathematical description of the corpuscle-wave dualism.

‘The new particles created by the operators a;* —with-
out which it would be impossible to construct local fields
(10), are called antiparticles"” with reference to the original
particles. The unavoidability of the existence of an antiparti-
cle for each particle is one of the principal results of the
relativistic quantum theory of free fields.

Equations (9) and (10) lead to yet another very impor-
tant conclusion. They show that in terms of local field func-
tions the creation and annihilation operators are necessarily
mixed. The same mixing accordingly occurs in the Lagran-
gian or Hamiltonian in which the local fields enter as a
whole. As a result, in both places terms arise which contain
unequal numbers of creation and annihilation operators for
particles of a certain species.'" Such terms will have nonzero
matrix elements between states containing different
numbers of particles. In relativistic quantum theory, parti-
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cles can be created and annihilated—in precisely the same
way as a classical field is produced and absorbed by charges.
The charged particles are created and absorbed necessarily
with conservation of total charge.

5. INTERACTION OF FIELDS

Solutions (8)—(10) of the free-field equations are pro-
portional to the creation and annihilation operators of sta-
tionary states of particles; i.e., they can describe only those
situations in which nothing happens to particles. In order to
incorporate cases in which certain particles affect the motion
of others or convert into others, we need to make the equa-
tions of motion nonlinear. In other words, we need to intro-
duce in the Lagrangian terms L, of higher powers in addi-
tion to the quadratic terms.

From the standpoint of the theory which we have seen
so far, such interaction Lagrangians L,,, might be any func-
tions of the fields and their first derivatives, provided only
that they satisfy some simple conditions:

1) Locality of the interaction. This requirement means
that L, (x) depends on the various fields ¥” (x) and their
first derivatives only at a single space-time point x = (X, £).

2) Relativistic invariance. To satisfy this requirement,
L,,, must be a scalar under Lorentz transformations.

3) Invariance under transformations from the group of
internal symmetries, if such are present in the model under
consideration. Included here, in particular, for theories with
complex fields, is the requirement that the Lagrangian be
Hermitian and invariant under gauge transformations of the
first kind which are permitted in such a theory (i.e., global
phase transformations).

In addition, one could require that the theory be invar-
iant under certain discrete transformations, e.g., spatial re-
flection P, time reversal T, and charge conjugation C, which
replaces particles by antiparticles. G. Liiders (1954) and W.
Pauli (1955) proved the CPT theorem, according to which
any interaction of fields which have been quantized in accor-
dance with the Pauli theorem which satisfies conditions 1)—
3) must necessarily also be invariant under a simultaneous
imposition of these three discrete transformations.

The interaction Lagrangians which satisfy conditions
1)-3) are just as diverse as, for example, the Lagrangians
which are allowed in classical mechanics. In the early 1950s
it appeared that they were all of equal status and that the
theory would give no hint about which of them would occur
in nature or why. Consequently, immediately after the bril-
liant implementation in quantum electrodynamics of a pro-
gram of renormalizations of divergences on the basis of a
covariant perturbation theory, many attempts were underta-
ken to transfer this new method to other interactions. The
results were rather discouraging: The renormalization pro-
cedure did not work in most other cases. In a report in 1950
(Pauli, 1953), Pauli constructed an entire table to show in
which versions of the meson theory, in the calculation of
which effects, and in which order of perturbation theory,
renormalization ceased to be of assistance. The natural re-
sult was to fortify the skeptical opinions, according to which
the renormalization procedure would do no more than
“sweep the difficulties under a rug,” while a real cure of the
illness of divergences would be possible only through a radi-
cal modification of the theory on the basis of a ““radical new
idea.”
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With the passage of time, however, the views which pre-
vailed were those of the investigators who—consciously or
unconsciously—decided to turn the disadvantage of the
method into an advantage. If, as it turned out, renormaliza-
tions did not work for many theoretical models, then we
would not blame the renormalizations and would instead
take the result as an indication that such—unrenormaliza-
ble—theories could not occur in nature. Arguments of this
sort led to a condition of

4) Renormalizability. This condition turned out to be
extremely restrictive, and tacking it on to 1)-3) left as the
only possibilities interaction Lagrangians L, in the form of
polynomials of low degree in the fields under consideration.
Fields of any even moderately high spins were ruled out en-
tirely. Consequently, an interaction in a renormalizable
quantum field theory does not allow—in striking distinction
from the classical theory or from quantum mechanics—any
arbitrary functions. Once a specific set of fields and their
transformation properties have been chosen, the only lati-
tude left in L, is in a fixed number of coupling constants.

After choosing a specific set of fields and an expression
for L,,, which satisfies conditions (1)-(4), we fix the specif-
ic model of interacting fields. In the Heisenberg picture the
complete system of equations for this model consists of equa-
tions of motion (2) which follow from the complete La-
grangian—a coupled system of partial differential equations
with nonlinear interaction and self-effect terms—and ca-
nonical commutation relations (4). An exact solution for a
problem of this sort can be found only in an extremely few
cases, with little physical content (e.g., for certain models in
a two-dimensional space-time). For this reason, the practi-
cal value of a direct quantization in the form in (4) is not
great.

On the other hand, one can, as in ordinary quantum
mechanics, transform by means of a unitary transformation
Y(¢) = ¥ '® from the Heisenberg representation with con-
stant state amplitudes to the Schrodinger representation, in
which the state amplitude evolves in time in accordance with
a Schrédinger equation, '

i 20— v, (11)

and the field operators are constant.

In quantum field theory, a third representation proved
to be most convenient. This was a representation which was
introduced by Dirac as early as 1926; it was put in a relativis-
tically invariant form by Tomonaga (1946) and Schwinger
(1948). This representation is usually called the interaction
representation (or, less frequently, the Dirac representation.
In order to switch to that representation, one separates the
complete Lagrangian of the system, L, into a free Lagran-
gian L, which is quadratic in the fields and their derivatives,
and an interaction Lagrangian L, ,. Accordingly, the com-
plete Hamiltonian 5 converts into the sum of a free-motion
Hamiltonian &, and an interaction Hamiltonian #°,. Now
substituting a solution in the form

W (1) = e D (1) (12)

into (11), we find a Schrédinger equation for ®(¢), which is
a state vector in the Dirac representation:
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20— gyoe,

(13)

where

H (1) = ¢ ' 7 70! (14)
is the Schrodinger Hamiltonian of the interaction represen-
tation. As can be seen from ( 14), it depends on the time. If
we express it in terms of fields in the interaction representa-

tion,

u®(x, t):eiﬁotu“ (x) e 1t (15)
we see that it depends on them in precisely the same way that
#; depends on the Schrédinger fields #* (x).

The evolution of the fields «? (x, t), on the other hand,
is described by Heisenberg equations of motion for the free
field,

, oJu(x, 1)

3t :{u(x’ t)v HO]-1

since

Hozeisze“t@%oe_ijg"t:%ov (16)
which are the same as the linear, explicitly relativistically
covariant equations of the Lagrangian description, (2).
Consequently—and this is a very important advantage of the
interaction representation-—no difficulties arise in imposing
a quantization of a covariant type. All the quantities in the
theory are expressed in terms of free fields (15), whose com-
mutation relations are written in the explicitly covariant
form in (5).

The general solution of (13) can be written in the form
O (1) =51, 1,)P(t,), where the evolution operator S(z, ¢,)
satisfies the same equation [Eq. (13)] in terms of 7 and can
be written as a chronological exponential function:

t
S (¢, to):T{exp(—iS Hyar')}.
1o

For a comparison with experiment, the most interesting
problem is that of scattering, for which we need an evolution
operator over an infinite time interval, which transforms a
stationary state ® _ _ , in which the system is before the scat-
tering, at - — oo, into a stationary state ®, _, which the
system reaches after the scattering, at 1 — + oo:

Diw = SV_oo.

(17)

(18)

S is the scattering matrix (Heisenberg, 1943). Probabilities
for transitions from a given initial state ® _ _ to some final
state Py, i.e., the effective cross sections for scattering or for
other processes, are expressed in terms of the squares of its
matrix elements:

My = (DS, . (19)

Taking the limit 1~ + w0, #,— — o in (17), and expressing
the Hamiltonian H(¢) in terms of a spatial integral of the
interaction Lagrangian'®

H ()= — | dxL(2)%)
1
(here and below, we omit the subscript “int”’); where it is to
be understood that the interaction Lagrangian is written not
in terms of Heisenberg fields but in the form of the same
function of the fields (15) in the Dirac representation, we
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find a compact expression for the scattering matrix:

S=T{exp (——i 30 dtH(t)}::T {exp (i S d%L(z))} .
h ) (20)

This expression is explicitly relativistically invariant.

The scattering matrix can be used to find probabilities
for physical processes without plunging into the details of
the time evolution, described by the amplitude ®(t). We
found it by integrating Eq. (13) (Tomonaga, 1946;
Schwinger, 1948, 1949a, b), but this is not the only possible
approach. Feynman (1949a, b) found expressions for the
successive terms in a series expansion of the exponential
functions in (20) by working in the framework of a Lagran-
gian form of quantum mechanics which he had developed
(Feynman, 1948) in elaborating the ideas which Dirac had
formulated back in 1933. A third method was pointed out by
Stiickelberg (Stiickelberg and Rivier, 1949; Stiickelberg and
Green, 1951), who suggested constructing a scattering ma-
trix without resorting to equations of motion but instead by
using explicitly formulated physical requirements. Bogolyu-
bov’s causality condition (1955) played a decisive role in
this program of research. That condition made it possible to
develop (Bogolyubov and Shirkov, 1955a, b, 1957) a sys-
tematic scattering-matrix theory which includes Eq. (20).
This direction laid the foundation for an axiomatic field the-
ory.

We need to stress, however, that expression (20), de-
spite its elegant form (or because of it), is not a ready-made
solution for further use; it would be described more accu-
rately as only a compact symbolic equation. This can be seen
if only from the circumstance that a straightforward and
automatic calculation of matrix elements (19) requires writ-
ing the scattering matrix in the form of a normal, rather than
a chronological, product. The problem of transforming one
product into another is the actual difficulty. So far, it has
been solved only by approximate methods.

6. PERTURBATION THEORY

It is accordingly necessary to resort to the assumption
that the interaction is weak and to assume that the interac-
tion Lagrangian L, is proportional to a small interaction
constant g. It then becomes possible to expand the chronolo-
gical exponential function (20) in a power-law perturba-
tion-theory series:

S=1 + E g”Sn'
nz=1

The matrix elements in (19) for each order of the perturba-
tion theory are expressed in terms of the matrix elements of
chronological products of the corresponding number of in-
teraction Lagrangians:

{ (DIT{L(2) L (25) ... Lz} Dpda, ... dao,;
i.e., it is necessary to transform to normal form not an expo-
nential function but simple polynomials of a specific type.

The basis for this transformation is the formula

T {u (@) u (x2)} = tu (1) w (za): + u(x)u (x5), (21)

which expresses the T-product of two field operators in
terms of their normal product: ...: and a chronological
convolution or the Stiickelberg-Feynman propagator
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u(x,)u(x,) = — iA°(x, — x,). The generalization of (21)
to the T-product of an arbitrary number of operators (Wick,
1950) amounts simply to writing and adding on the right-
hand side normal products with all possible numbers and
arrangements of convolutions.

A practical calculation of matrix elements and of inte-
grals over x,, . . ., x, of these elements is carried out by a
technique proposed by R. Feynman in 1949. This technique
includes the famous Feynman diagrams and correspondence
rules. Each quantized field u, (x) is characterized by a cor-
responding propagator AS, (x — y), which is expressible in
terms of Feynman diagrams by a (internal) line which con-
nects vertices with which the fields involved in the convolu-
tion are associated. Each interaction, represented on the dia-
gram by a vertex, is characterized by a coupling constant and
by a matrix factor from the corresponding L(x). A sum over
all combinations of convolutions corresponds now to a sum
over all possible diagrams.

Feynman’s rules won popularity because of their clarity
as well as their simplicity of use. The diagrams make it possi-
ble in a sense to see with one’s own eyes the propagation
process (the lines) and the mutual conversions (vertices) of
particles—real ones, in the initial and final states represent-
ed by external lines, and virtua] ones, in those represented by
internal lines. We have touched upon the widely used con-
cept of a virtual particle. In ordinary quantum-mechanical
perturbation theory, ‘‘virtual” is a label put on intermediate
states in the course of a transition to which the energy is not
necessarily conserved, because of the quantum-mechanics
energy-time uncertainty relation and the brief time spent in
these states. In the invariant perturbation theory which is
used in field theory, this uncertainty is transferred from the
energy to the mass for the conservation of relativistic sym-
metry. The Stiickelberg-Feynman propagator is the Green’s
function of the equation L, #® (x) = 0, which is satisfied by
the field u° (x); i.e., it is determined by the equation

Loy Ay (2) = (O — m2) A® (z) = — 6 (). (22)

Its Fourier transform thus contains a pole (kZ—m?®
+ ie) ', not a (k% — m?)-function; i.e., it is nonzero even
in the case k2 m?. With this stipulation, Feynman dia-
grams may indeed by regarded as perhaps the best possible
method for describing quantum-field processes in classical
language.

Particularly simple expressions are found for the matrix
elements of any process in the first nonvanishing order of
perturbation theory, which correspond to so-called tree dia-
grams, which have no closed loops: There are no integrations
over the momenta at all in them. For the basic processes of
quantum electrodynamics, matrix elements of this sort were
constructed back in the early 1930s (as we have already
mentioned), and they turned out to agree reasonably well
with experiment (the discrepancy was at the level of 1072~
1073 ~a).

However, attempts to calculate radiation corrections to
these expressions, e.g., to the Klein-Nishima-Tamm formula
for Compton scattering, ran into some extremely specific
difficulties. Corrections of this sort correspond in the lan-
guage which we would use today to diagrams with closed
loops containing integrals over momenta of virtual particles.
In most cases, these integrals diverge in the ultraviolet re-
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FIG. 1. Single-loop Feynman diagram with two scalar lines. a—In the
momentum representation; b—in the coordinate representation.

gion. Consequently, not only are the corrections themselves
formally not small—they are in fact infinite.
For example, the Feynman integral

i d4k
I(p)= o ,“ (M2 — K —te) [m?— (p— k)2 — ]’ (23)

which corresponds to an extremely simple single-loop dia-
gram with two scalar lines (Fig. 1a), is divergent. We see
that in this case the divergence is logarithmic, so that if we
introduce a cutoff at the upper limit of the integration,
lk |- o, we can write

_ di
IA (p  n2 !h"LA {mz_kz_ie) [mz—(p—k)z—ie] T—;:: ln AZ
+ I (D) (24)

where I, is a finite expression.
To determine the nature of the divergence which arises
we note that the integral (23) is proportional to the Fourier
transform of a diagram written in the coordinate representa-
tion, which is equal (according to Fig. 1b) to the square of
the propagator of a scalar field, A° (x-y). Near the light
cone, this propagator has a singularity:
1

A (a—y) ~ g 8 ()= 1

4ne A A:(z_.y)z_ (25)

We see that it is a generalized function. The operation of
multiplication is not defined for such objects, as can be seen
from the divergence of the integral I(p). According to the
complementarity relation of the Fourier transformation,
large values of the momentum variable k& correspond to
small values of the 4-interval 1. The physical sources of the
ultraviolet divergences of quantum field theory thus lie in
the concept that the interaction is of a local nature. We
might say that such divergences are quantum-field analogs
of the infinite self-energy of the electromagnetic field of a
point electron in classical electrodynamics.

7. DIVERGENCES AND RENORMALIZATIONS

As we mentioned in the Introduction, the problem of
ultraviolet divergences arose at the very birth of quantum
electrodynamics and was solved—at least from the stand-
point of deriving unambiguous final expressions for most
physical quantities of interest—in the late 1940s on the basis
of the renormalization idea.

The essence of the renormalization method used to
eliminate the ultraviolet divergences is that the infinite ef-
fects of quantum fluctuations which correspond to integra-
tions over closed loops of diagrams can be separated out into
additive structures [like the first term in (24)] which, as
was shown, reduce to corrections to the original values of the
electron mass 72, and charge ¢,. In other words, the mass m
and the coupling constant @ = e? change because of the in-
teraction with quantum vacuum fluctuations; i.e., they are,
as we say, renormalized:
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My >m=m;+Am=m,Z,,,

Gy = a=a,-+Aa=ay,Z,.

(26)
27

Because of the divergences, both the radiation corrections
Am and Aa and the multiplicative renormalization factors
Z,, and Z, are singular.

Most constructive implementations of the renormaliza-
tion program take the approach of introducing an auxiliary
regularization, similar to the momentum cutoff used above.
The use of a regularization makes it possible to avoid dealing
with meaningless expressions such as (23) and to carry out
intermediate calculations on the basis of finite ‘“‘regularized”
approximations analogous to (24). After the calculations
are completed, the regularization is removed in order to re-
turn to the real case (e.g., the momentum cutoff A is allowed
to go to infinity).

In addition to cutoffs, quantum field theory uses other
forms of regularization, e.g., the Pauli-Willars regulariza-
tion (1949), an analytic regularization, and a dimensional
regularization. The latter consists of replacing an integra-
tion over a 4-momentum manifold by some symbolic oper-
ation which corresponds at a formal level to an integration in
amomentum space with a noninteger number of dimensions,
D =4 — 2¢ (less than four). The infinitely small parameter
of this regularization, ¢, is allowed to go to zero at the end of
the calculations. In recent years the dimensional regulariza-
tion introduced by ’t Hooft and Veltman (1972) has been
adopted widely in calculations in quantum-field models with
gauge symmetry. The point is that in general the introduc-
tion of a regularization disrupts the symmetry properties of
the original theory; e.g., the introduction of a momentum
cutoff disrupts relativistic invariance. From the technical
standpoint it is convenient to work with a regularization
which causes a “minimal’ disruption of the various invar-
iance properties, among which gauge invariance is of impor-
tance these days.

After the introduction of a regularization, expressions
of the type Am, Ag, and Z, turn out to depend explicitly on
the regularization parameter, and they become singular only
in the limit in which the regularization is removed. In practi-
cal calculations, the divergences are usually removed by tak-
ing the approach of introducing some additional terms—
“counterterms” in the original Lagrangian. For this purpose
one expresses the seed masses m, and coupling constants g,
in terms of the physical properties m and g by means of for-
mal relations which are the inverses of (26) and (27). Ex-
panding them in series in the physical interaction parameter,

my=m -+ gM, + gM, + . . .,
go =g + &6, + g6, + . .,

one chooses coefficients M, and G, (which are singular in
the limit in which the regularization is removed) in a way
designed to cancel the divergences in the succeeding terms of
the expansion of the scattering matrix.

That class of models of quantum field theory for which
a program of this sort can be carried out systematically in all
orders of perturbation theory, and in which all the ultravio-
let divergences, without exception, can be put aside into
counterterms (i.e., ultimately into renormalization factors
for the masses and coupling constants), is called the “class of
renormalizable theories.” In such theories, all the matrix
elements and Green’s functions are expressed, after the com-

(28)
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pletion of the renormalization, in a nonsingular way in terms
of the physical values of the masses and coupling constants
and also of kinematic or space-time arguments.

In renormalizable models (among which quantum elec-
trodynamics is one of the theories of physical interest, along
with the pseudoscalar model of the pion-nucleon interaction
of the Yukawa type—now sanctified by tradition), it thus

~turned out to be possible in this manner to abstract com-

pletely away from the “seed” parameters of the original La-
grangian and also from the ultraviolet divergences, consid-
ered separately, and to characterize the results of the
calculations completely through the specification of a finite
number of physical values of the masses of the particles and
of the coupling constants.

The case for this point of view appeared as a result of a
careful analysis of the mathematical nature of the quantum-
field infinities on the basis of the theory of generalized Sobo-
lev-Schwartz functions. From this standpoint, ultraviolet di-
vergences are a reflection of the indefiniteness in the
products of propagators (which are generalized functions)
when the values of their space-time arguments coincide. On
this basis, Bogolyubov and his students (Bogolyubov and
Parasyuk, 1955; Bogolyubov and Shirkov, 1955b; Parasyuk,
1956; Stepanov, 1965) developed a technique for redefining
the products of causal propagators in such a way that the
scattering matrix turns out to be finite in arbitrary orders of
perturbation theory. The concluding assertion is the content
of the Bogolyubov-Parasyuk theorem (1955, 1957) regard-
ing renormalizations. The ‘“formula” part of this assertion—
the so-called R-operation—is the practical basis for finding
finite and unambiguous results without resorting to counter-
terms.

The renormalizable models, which are usually based on
Lagrangians with dimensionless coupling constants, are
characterized by the logarithmic nature of the divergent
contributions to the renormalization of the coupling con-
stants and masses of the fermions and by quadratically diver-
gent radiation corrections to the masses of scalar (or pseu-
doscalar) particles.

On the other hand, in the unrenormalizable models, as
examples of which we might cite Fermi’s formulation
(1934) of a weak interaction on the basis of a four-fermion
Lagrangian—a formulation which has by now faded away
into the past—and the quantum theory of gravitation, it is
not possible to collect all the divergences into groups which
renormalize a small or at least a finite number of constants.
In other words, in the language of the R-operation it is not
possible to express all the matrix elements in terms of corre-
sponding physical values of the masses and charges. A renor-
malization is of no assistance to unrenormalizable theories.

8. ULTRAVIOLET ASYMPTOTIC BEHAVIOR AND THE
RENORMALIZATION GROUP

The ultraviolet divergences in quantum field theory are
closely related to the high-energy asymptotic forms of the
renormalized expressions. For example, corresponding to
the logarithmic divergence In A? of the regularized Feyn-
man integral (24) is the logarithmic asymptotic expression

In (u?p72)+const+0 (m2p?) at p2>> m? (29)

of its finite part I ;, (p) and thus of the corresponding renor-
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malized expression. The numerical coefficient of the ultra-
violet momentum logarithm in the asymptotic expression

(29) is precisely equal to the coefficient in front of the diver-
gent logarithm in the regularized integral (24).

" Since the divergences are generally logarithmic in re-
normalizable models with dimensionless coupling con-
stants, the ultraviolet asymptotic expressions of the more-
complex Feynman integrals have here the typical structure
of polynomials in powers of ultraviolet logarithms,
! = In(p*/u?), where pis alarge 4-momentum, and y is some
parameter with the dimensionality of mass, which arises in a
natural way in the course of the subtraction of infinities. As

“an example we consider the integral

()" ] T

which corresponds to the two-loop diagram in Fig. 2.

It is not difficult to see that the “internal” integral over
the 4-momentum / is the same as the single-loop integral in
(23), which we discussed above. If we first carry out its regu-
larization and subtraction, we find for (30)

_t dg I ()
n2 m2—q3 mz—(p+q)z.

3‘ dl
(p+9? J(m—1)[m—(¢+ 1%’
(30)

Since I, (g) has the logarithmic asymptotic expression
(29) at large values of ¢, we see that this two-loop integral
I?(p) as a whole diverges as the square of a logarithm, In? A.
Accordingly, after the subtraction, its finite part will have an
ultraviolet asymptotic expression of the /? type. In the gen-
eral case, a v-loop Feynman diagram can be represented by a
polynomial of degree v after a renormalization of the diver-
gences in the ultraviolet region:

IY(p) a4+ 0,00 4. +z+0( )

We now consider a set of diagrams with a “‘given kine-
matics,” i.e., with a fixed number of external lines and corre-
sponding 4-momentum arguments (e.g., of the type shown
in Fig. 3). Such a set forms a strongly coupled or one-parti-
cle-irreducible vertex function, in terms of which we can
express the matrix element of a suitable physical process.

The ultraviolet asymptotic expression G(p) is deter-
mined by the following sum over v:

G (p; q)=g§ a, (gl)"+g2§ by (8D (31)

The first term on the right-hand side is the sum of the “lead-
ing” logarithms; the second term is the sum of the “‘next-to-
leading” logarithms; and so forth. For sufficiently large val-
ues of p? it is clear that the growth of logarithm /
compensates for the small value of the perturbation-theory
parameter g. As a result, to determine the asymptotic form

e

—
7,7

FIG. 2. Two-loop diagram in the @* scalar model, considered in the
asymptotic case |p,| ~|p,| =p>m, p;~m.
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FIG. 3. Schematic representation of ultraviolet asymptotic contributions
to a 4-tail vertex function.

of G we need to be able to determine sufficiently high terms
in the sums which arise and to carry out an infinite summa-
tion. A summation of leading logarithms in quantum elec-
trodynamics was first carried out by Landau, Abrikosov,
and Khalatnikov (1954) through the solution of a system of
approximate integral equations for the propagators and a
vertex function. The renormalization group provides a gen-
eral method for determining the leading and next-to-leading
logarithmic contributions.

This method is based on the property of the invariance
of the renormalized matrix elements and of the complete
Green’s functions (“‘complete” here meaning that radiation
corrections are incorporated), including vertex Green’s
functions, under the so-called “‘renormalization” transfor-
mations. The renormalization group was discovered by
Stiickelberg and Petermann (1953). It is formed by contin-
uous single-parameter transformations of a coupling con-
stant (or constants) and the accompanying transformations
of propagators and vertex functions.

The mathematical apparatus of the renormalization
group can be formulated either with the help of some func-
tional equations which were first written for quantum elec-
trodynamics by Gell-Mann and Low (1954) and which ex-
press a group composition law, or in terms of corresponding
differential equations introduced by Bogolyubov and Shir-
kov (1955¢, d). A central role is played in this formalism by
a special function: the “effective” or “invariant” coupling
constant g(k ?). This function is the quantum-mechanical
analog of the numerical constant g which appears in the
original Lagrangian. We can explain the essence of the situa-
tion by looking at the example of quantum electrodynamics.
In this case vacuum fluctuations give rise to a spatial screen-
ing of the electric charge of an electron, e, which is similar to
the screening of an external charge which is introduced into
a polarizable medium in electrostatics. To measure the
charge of an electron, one should place it in an electromag-
netic field and “feel” it by means of the quanta of this field. It
turns out that the quanta or *‘feelers” may, on their way to
the electron, undergo a virtual dissociation into an electron-
positron pair. This pair forms an effective dipole of the quan-
tum-field vacuum, which generates the screening effect,
which is a function of the distance from the electron. Be-
cause of vacuum fluctuations, a numerical parameter—the
electron charge e—is thereby converted into an effective-
charge function é(r). It is customary to use the square of the
Fourier transform of this function, @(k %), which is an in-
creasing function of its argument, in qualitative agreement
with the picture of classical screening.

A comparison with experiment now makes it possible to
determine the value of the function a for any fixed value of
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its argument, k > = u?, so that we have@(u*) = a,,. The pa-
rameter u, with the dimensionality of mass, characterizes
the 4-momentum of a photon (or the frequency of the elec-
tromagnetic field) which is used to measure the charge of the
electron. The method customarily used in classical electro-
dynamics to determine a charge is to choose & = 0, so that
we would have @(0) = 1/137. This “Millikan”’ value is also
ordinarily used for the parametrization of physical results in
quantum electrodynamics. In general, however, this para-
metrization could be carried out with the help of any pair of
values # and a,, physically equivalent to the Millikan value
[i.e., the values must lie on the same curve@(k %) inthe k %, &
plane which is fixed by the conditiona(0) = 1/137]. Differ-
ent parametrizations are of completely equal validity and the
physical quantities which are measured experimentally (the
probabilities for processes) do not depend on the particular
choice of one or another of these parametrizations. This lat-
titude in choosing a parametrization corresponds to renor-
malization invariance. The renormalization-group transfor-
mation corresponds to a transformation from one of the
parametrizations, [u,, @(ui) =a,], to some other para-
metrization, [u,, @(u3) =a,].

The renormalization-group method makes it possible to
combine effectively information from perturbation theory
with the properties of renormalization-invariance. Techni-
cally, this is done on the basis of differential group equations.
One ultimately finds expressions which, on the one hand,
have the appropriate group property, and, on the other, cor-
respond to the particular perturbation-theory terms which
are used.

In quantum electrodynamics, for example, the effective
charge @ is given in lowest-order perturbation theory by the
expression

a(z, @) =a+a2(3n)Ilnz, z=—pp2>1. (32)

The single-loop
based on it,

renormalization-group approximation

o

o, (z, a):ml—/m’ (33)

takes the form of a geometric progression, which is the result
of a calculation of the sum of the first term on the right-hand
side of (31).

Expression (33), which was originally derived in the
mid-1950s (Landau et al., 1954 ), before the development of
the renormalization-group method, acquired widespread
fame since it was regarded by certain authors (e.g., Landau
and Pomeranchuk, 1955, and Landau, 1955) as evidence of
an internal difficulty in local quantum electrodynamics. It
can be seen that this expression has a “ghost” pole at
p* = — u?exp(3m/a), whose position and the sign of whose
residue contradict several general properties of a local quan-
tum field theory. Closely related to the possible existence of a
pole of this sort is the so-called zero-charge problem, i.e., the
vanishing of the renormalized charge for any fixed value of
the seed charge in the original Lagrangian. The ghost-pole
difficulty was interpreted in the mid-1950s as proof of an
internal contradiction of quantum electrodynamics, and the
generalization of this result to renormalizable traditional
pion-nucleon models of strong interactions was interpreted
as an indication of the contradictory nature of the overall
local quantum field theory.
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However, radical conclusions of this sort, based solely
on the equations of the leading-logarithm approximation,
turned out to be a bit hasty. If we work from the two-loop
approximation,

_— 2
a(z, a):a—{—g—nlﬁ—gi;—lzﬁ-i—g;z—l, Il=1nz, (34)

i.e., if we consider the next-to-leading logarithmic contribu-
tions, we find that the renormalization-group method leads
to the expression

o

% (T %)= T T A= (35

which is the sum of the first two infinite sums from the right-
hand side of (8.3). We see that as the product a/ increases
the two-loop correction in the denominator in (8.7) be-
comes important, and it shifts the position of the ghost pole.
As can be shown in the renormalization-group method, the
range of applicability of expressions (33) and (35) is limited
by the condition @< 1. Consequently, the paradox of the
ghostly-pole phenomenon or the vanishing of the charge
turns out to be illusory: The only way in which we could
decide whether this difficulty actually appears in the theory
would be to have obtained some unambiguous results in the
strong-coupling region, & 2 1. So far, we have only the con-
clusion that in application to spinor electrodynamics pertur-
bation theory is not a logically closed theory, despite the fact
that the expansion parameter « is unquestionably small.

For quantum electrodynamics, incidentally, this prob-
lem might be regarded as purely academic (Landau, 1955)
since according to (33) even at the huge energies ~ 10"~
10'® GeV which are being considered in current attempts to
unify the interactions the condition @ € 1 is not violated. The
situation in quantum mesodynamics appears far more seri-
ous: This is the theory of the interaction of pseudoscalar
meson fields with fermion nucleon fields, which appeared at
the beginning of the 1960s to be the only candidate for the
role of a renormalizable model of strong interactions. In it,
the effective coupling constant was large at ordinary ener-
gies, and a clearly incorrect analysis by perturbation theory
led to the same zero-charge difficulties.

Asaresult of all these studies, the outlook for the future
prospects of renormalizable quantum field theories seemed a
bit gloomy. It seemed that the qualitative diversity of renor-
malizable quantum field theories was negligible: For any
renormalizable model, the only possible effects of interac-
tions—for small coupling constants and moderate ener-
gies—were unobservable changes in the constants of free
particles and the occurrence of quantum transitions between
states with such particles. The lower-approximation proba-
bilities for these transitions could now be supplemented with
calculations of the (small) corrections of higher-order ap-
proximations. The existing theory—again, regardless of the
specific model—was inapplicable to such large coupling
constants or asymptotically high energies. Quantum electro-
dynamics remained the only (although brilliant) applica-
tion to the real world which met these requirements. All
hopes for new results were perhaps pinned on the develop-
ment of non-Hamiltonian (e.g., axiomatic) methods or
methods which did not use an expansion in a coupling con-
stant. Much hope was placed on dispersion relations and a
study of the analytic properties of the S-matrix. Many physi-
cists began to look for a way out of the difficulties along
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noncanonical paths: nonlinear, nonlocal, indefinite, and so
forth. .

The source of the new views of the situation in quantum
field theory was the discovery of new theoretical facts asso-
ciated with non-Abelian gauge fields.

9. GAUGE FIELDS1¥

Non-Abelian gauge fields were introduced by C. N.
Yang and R. L. Mills in 1954 on the basis of an analogy with
the electromagnetic field. Their arguments went roughly as
follows.

If a theory is invariant under some group of global
gauge transformations of the fields #® (x) which figure in it
(e.g., if it is invariant under rotations in isotropic space, un-
der Lorentz rotations of the coordinate system, etc.), then
this global invariance can always be converted into a local
invariance; i.e., we can allow our own rotations at each 4-
point x if we everywhere replace the ordinary derivatives by
“elongated” derivatives,

0,u® (z) > (Dyu)® = d,u° — igBou’, (36)

adding a “purely gradient” compensating field to the set of
fields of the system,

B, (x) =1 (A1 (2))% 9,A%® (). (37)

For the elogated (covariant) derivatives, the same transfor-
mation law as for the fields themselves, 4 (x), thus holds if
the field B, transforms in accordance with

B (2) = (8% B (2) 8% 41 (57 9,8, (38)

which generalizes the gauge transformation of the electro-
magnetic potential. Such a procedure can always be carried
out, and it has no physical consequences of any sort.

A new effect arises if we expand the concept of a gauge
field, switching from a “purely gradient” field B, to some
field B which depends in an arbitrary way on the coordi-
nates:

By, () = B, (2)-

This field is not necessarily representable in form (37), but it
has the same quantum numbers and the same transforma-
tion law (38). That this expansion is not a trivial one is seen
in the circumstance that the covariant derivatives in (36)
cease to be commuting, and their commutator forms a
gauge-covariant entity which transforms under an associat-
ed representation of the group G—the stress tensor of the
gauge field:

Foo=—iD, D, —D,D,)

= 0,B, — 0,B, + ig (B,B, — B,B,) (39)

[it is easy to see that it is zero for the “purely gradient” field
in (37)]. This expansion alters the theoretical scheme and
can be justified (or refuted) only by its agreement or dis-
agreement with experiment, which offers us examples of
both cases.!”

The dynamics of the interaction of material fields
u? (x) with a gauge field is characterized completely by the
circumstance that ordinary derivatives are replaced in their
Lagrangian by elongated derivatives D,,, and an invariant
Lagrangian of a free gauge field is added:
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L(B)= — - Tr(F,,F*Y). (40)

A potential BZ” (x) cannot be inserted in the Lagrangian,
since it would violate gauge invariance. Consequently, the
quanta of the Yang-Mills field, like those of the electromag-
netic field, are massless.

In contrast with the Abelian electromagnetic case, the
Yang-Mills field is not diagonal in the group index, and the
emission (or absorption) of a Yang-Mills quantum is ac-
companied by a change in the “charge” state of the emitting
particle. The primary distinction, however, is that the tensor
of the non-Abelian field F Z’L is expressed in a nonlinear way
in terms of the potential BZ", so that already the equations of
motion of the “free” field turn out to be nonlinear in the
absence of matter: The quanta of a Yang-Mills field are
themselves charged. Consequently, they have no solutions of
the customary plane-wave type which describe free parti-
cles, which are the customary starting points in a quantiza-
tion.

On the other hand, the well-known difficulty regarding
the singularity of the Lagrangian in the case of an electro-
magnetic field goes over entirely into the Yang-Mills theory.
It can be seen from (39) and (40) that the generalized mo-
menta 7§°(x), which are the canonical conjugates of the
component B 2°(x), of the potential, vanish identically. Con-
sequently, a theory which includes gauge fields is a system
with constraints and thus cannot be quantized by the stan-
dard methods.'® This circumstance, like the apparent ab-
sence from nature of massless vector particles—aside from
photons—limited the interest in non-Abelian fields; for
more than a decade they were regarded basically as elegant
trinkets which were irrelevant to the real world.

The situation changed in the second half of the 1960s,
when it became possible to quantize a Yang-Mills field by the
path-integration method in a generalized Hamiltonian dy-
namics which had been developed by Dirac (1950, 1951a,
1958, 1964, 1966). Here we learned the procedure required
for going over to a quantum description for systems with
constraints. This progress became possible after it was
learned that both a pure massless Yang-Mills field and such
a field which interacts with fermions are renormalizable.

The path integral for the formulation of quantum dy-
namics was introduced by Feynman (1948a), who worked
from an idea which Dirac had expressed back in 1933: That
the time evolution of a quantum system over a finite time
interval could be represented as a composition of a large
number of evolutions over small time intervals. A finite-
transformation function in this case appears in the form of a
multiple integral of the product of a large number of “‘ele-
mentary” transformation functions over the possible values
of the dynamic variables at intermediate time intervals. By
shrinking the small time intervals and by letting the number
of intermediate integrations increase without bound, we ar-
rive at a new representation of quantum amplitudes in terms
of integrals of infinite multiplicity. In the quantum mechan-
ics of systems with few degrees of freedom, these integrals
are known as path integrals, and in quantum field theory
they are known as functional integrals. In quantum field the-
ory, a path integral is a functional integral since the integra-
tion is carried out over all possible values of the field func-
tions over the entire space-time. It turned out that the new
entity had many properties of an ordinary integral; for exam-
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ple, it could be integrated by parts, and the integration vari-
ables could be changed. Because of specifically these circum-
stances, the path-integral formalism proved convenient for
studying effects of the transformation of field functions. This
convenience explains the role which it plays in the quantiza-
tion of gauge fields.

Immediately after the pure Yang-Mills was quantized
(Popov and Faddeev, 1967, and also De Witt, 1967) it be-
came possible to solve the problem of the “soft” introduction
of a mass to the quanta of a gauge field without violating
gauge symmetry. This approach uses the idea of a “*sponta-
neous symmetry breaking” which Bogolyubov (1961) de-
veloped for problems in quantum statistics. In this ap-
proach, asymmetric solutions of problems having a definite
symmetry can be realized under certain conditions. For a
quantum-field implementation of the mechanism of sponta-
neous symmetry breaking it turned out to be necessary to
resort to the use of an additional scalar field which disrupted
the stability of the symmetric lower state of the system of
fields. This field is called a “Higgs field,” and the approach
which furnishes a mass to the quanta of gauge fields is the
“Higgs mechanism” (1964).

By the late 1960s or the early 1970s, it was also estab-
lished (’t Hooft, 1971, and Slavnov, 1972) that the Higgs
mechanism does not violate the properties of renormalizabi-
lity of gauge quantum interactions. As a result, it was possi-
ble as early as the late 1960s to construct a unified renormali-
zable theory of weak and electrointeractions: the
“Salam-Weinberg-Glashow model.” '”

The symmetry group of this model is the direct product
of U(1) and SU(2), so it contains two coupling constants, '¥
g, and g,. The mediators of the weak interaction in this mod-
el are heavy vector bosons: the quanta of a non-Abelian
gauge field of the SU(2) group. For a decade and a half, this
model was well supported by experiment. The moment of
triumph was the experimental discovery of the intermediate
vector W= and Z° particles, with masses ~ 80-90 GeV,
which had been predicted by the theory. A question which
remains unresolved at this point is the observation of the
quanta of a Higgs field: the so-called Higgs scalar mesons.

Immediately after the derivation of a unified
SU(2) XU (1) theory in the early 1970s, it was discovered
that non-Abelian quantum fields have a remarkable proper-
ty: asymptotic freedom. If we treat the nonlinear self-effect
terms of a Yang-Mills field as a small perturbation in the
“linear” plane-wave approximation, on the basis of which a
quantization is carried out, then we find that the radiation
corrections which arise when this self-effect is taken into
account have some unusual properties. The signs of the lead-
ing-logarithm contributions from these corrections are op-
posite to the sign of the corresponding corrections in quan-
tum electrodynamics (and in other known renormalizable
models). In the gauge theory of the SU(3) group, for exam-
ple, with n types of fermion fields of matter, the single-loop
approximation of perturbation theory for the effective cou-
pling constant is

33—2n

o, (K2, as):a_azfi(n)]nﬁ—z, B(ny= 127

Corresponding to this case we have the renormalization
group formula

o (12Y od
% (F) = T o e

(42)
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We see that for sufficiently small values of » the numerical
constant S(n) is positive, and we can go to the ultraviolet
limit without the difficulty of a ghost pole. In the limit
k2> o, the effective @, vanishes.

This phenomenon of the self-switching-off of the strong
quark-gluon interaction at short range, which was discov-
ered by Gross and Wilcheck and also by Politzer in 1973,
and which became known as ‘“‘asymptotic freedom,” fur-
nished an explanation for the parton structure of hadrons
which had been established in the late 1960s in experiments
on deep inelastic lepton-hadron scattering. As a result, it
became one of the cornerstones in the erection of the modern
theory of strong interactions on a chromodynamics founda-
tion.

The symmetry foundation of quantum chromodyna-
mics (QCD) is the SU(3) transformation group in the space
of internal (“‘color’”) variables. The hypothesis of a new
quantum number was introduced (Bogolyubov, Stru-
minskii, and Tavkhelidze, 1965; Han and Nambu, 1965) in
order to solve the problem of the correspondence between
the composite quark model of hadrons and the Pauli exclu-
sion principle. According to this hypothesis, each quark
must exist in three modifications; the ‘“‘combining rules” for
the new degree of freedom are reminiscent of the rules for
combining colors in a spectrum, as was later noticed. In
terms of this analogy, three basic colors are associated with
quarks, and the observable hadrons, all of which are singlets
of the color group, are colorless or white. Color is thus not
directly observable.

The hypothesis of a gauge mechanism of quark interac-
tions leads to a new gauge vector field whose quanta—
gluons—mediate the interaction. Gluons are like quarks in
that they carry a color charge, but they come in eight varie-
ties. The new gauge mechanism displaced the Yukawa
mechanism as the basis of strong interactions.

A more detailed comparison with experiment at mo-
mentum-transfer values ¢ 22 100 GeV? showed that in this
region we have o, = 1/5. The coupling is thus weak enough
that we can use a renormalized perturbation theory. In place
of (42) here it is customary to write

a“(02)=m' A2=p.2exp<——2—). (43)
The so-called scale parameter of QCD, which characterizes
the region in which strong coupling arises, turns out to be
about A =~ 200-100 GeV. We leave the weak-coupling region
as Q 2 decreases to about ~ 10 GeV?; this figure corresponds
to distances ~ 10~ ' cm. Here we enter the region of tradi-
tional hadron concepts, where quark-gluon degrees of free-
dom are not manifested, as we know quite well.

The new theory, which has already given us a quantita-
tive description of strong interactions in the region of large
momentum transfer, is thus faced with the problem of ex-
plaining the basic properties of hadron physics and also the
phenomenon of the unobservability of quarks and gluons:
confinement. So far, we have no reliable information about
what QCD will give us in the region of small momentum
transfers and large distances. Here we are forced to appeal to
the hypothesis that the nonlinear effects of gluodynamics
lead to such an increase in the attractive forces between co-
lored entities with increasing distance that quarks and
gluons cannot move apart to a distance greater than 10~ '
cm.
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The urgency of the strong-coupling problems resulted
in the development of methods for studying gauge fields
which do not make use of the concept that the interaction is
weak and of perturation theory. Such a nonperturbative ap-
proach to QCD was constructed on the basis of the path-
integral concept.

Important results were obtained by means of a proce-
dure which had been developed a bit earlier for quantum-
statistics problems for evaluating a path integral by the
method of functional steepest descent, analogous to the
method of steepest descent in the theory of functions of a
complex variable. It was shown by this method for several
rather simple models that quantum-field quantities, regard-
ed as functions of the coupling constant g, have a singularity
of characteristic form e ~ /% near the point g = 0 and that,
completely consistently, the coefficients f,, in the power-law
expansions 3, f, g" of perturbation theory increase factorily
at large values of n: f,, ~n!. In this way, the hypothesis of the
nonanalyticity of the theory in terms of charge, which had
been expressed back in the early 1950s, was effectively con-
firmed.

Analytic solutions of nonlinear classical equations of
motion for field functions which are of a localized nature
(solitons and—in the Euclidean version—instantons) play
an important role in calculations of this sort. These solu-
tions, which provide the action functional with a minimum,
are analogs of stationary points in the ordinary steepest-des-
cent method. In expanding the field variables of integration
near these ‘‘steepest-descent” solutions one reduces the
problem to linearized field equations whose solutions are
required for an approximate evaluation of a path integral
along the “line of steepest descent” in function space.

In quantum-mechanical terms, we are dealing with the
structure of the vacuum state of a gauge system of nonlinear
fields—states which correspond to nonvanishing vacuum
expectation values of products of field operators (see, for
example, the reviews by Vainshtein et al., 1977, 1982).
These condensate expectation values are nonperturbative ef-
fects, which depend in a nonanalytic way on the coupling
constant.

Indirect information about effects of this sort comes
from the sum rules and also in the representation of a func-
tional integral by means of the special methods of so-called
contour dynamics, in which the vector field functions
B, (x), which depend on the point x in the 4-dimensional
space-time, are replaced by new dynamic variables {(a Wil-
son loop), which depend functionally on the values of B, on
some closed contour I which lies in a space-time manifold.
This approach makes it possible to reduce by one the dimen-
sionality of the set of independent variables, and in a number
of cases it becomes possible to simplify significantly the for-
mulation of a quantum-mechanical problem.

A number of successful studies has recently been car-
ried out through a numerical evaluation of path integrals,
represented approximately as repeated integrals of high
multiplicity. For this representation, one introduces a dis-
crete lattice in the original space of (configuration) vari-
ables. Lattice calculations of this sort, as they are called,
require the use of particularly powerful computers for realis-
tic models, so it is only very recently that they have begun to
be accessible. In particular, the Monte Carlo method has
yielded some encouraging calculations of the masses and
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anomalous magnetic moments of hadrons on the basis of
QCD concepts.

A study of the field model proposed by Yang and Mills
thus revealed that models satisfying the requirement of re-
normalizability might have a totally unexpected richness of
content. In particular, there was a shattering of the naive
faith that the spectrum of an interacting system would be
qualitatively similar to that of a free system, differing from it
only in a shift of levels and perhaps the appearance of a smalil
number of bound states. It turned out that the spectrum of a
system with an interaction (hadrons) may have nothing in
common with the spectrum of the free particles (quarks and
gluons) and might therefore give us not even a hint about
which types of fields would have to be included in the ele-
mentary microscopic Lagrangian.

We should stress here that both the establishment of
these extremely important qualitative features and the car-
rying out of the vast majority of quantitative calculations in
QCD are based on a combination of perturbation-theory cal-
culations with the requirements of renormalization-group
invariance. In other words, the renormalization-group
method has occupied a place along with renormalized per-
turbation theory as one of the basic calculation facilities in
modern quantum field theory.

10. CONCLUSION

Looking back, we might say that a stage of progressive
development for quantum field theory which lasted some 30
years was followed in the mid-1950s by a ‘“time of confu-
sion.” At this time, various semiphenomenological and even
mutually exclusive approaches became rather widespread,
and the terms “‘elementary particle theory” and ‘“‘quantum
field theory” had different meanings for most physicists.
During this period, however, some profound changes were
occurring at the core of the theory, unseen by a superficial
observer. Since these profound changes were detached from
the urgent physical problems of the day, they acquired the
official status of a “theoretical theory” at the time. Ultimate-
ly, these changes led to some fundamental advances, asso-
ciated primarily with the creation of a quantum theory of
gauge fields, with the result that the situation started to
change in the opposite direction in approximately the late
1960s. Quantum field theory, supplemented with the princi-
ple of gauge symmetry and based on a new (quark) founda-
tion, quickly returned to the forefront, having seized some
strong positions not only in electrodynamics but also in the
theory of weak and strong nuclear interactions. Thereby the
spiral of the development of particles and their interactions
in a sense reversed, rising to a new qualitative level.

From the conceptual standpoint, the primary result re-
duces to the discovery of a simple and universal mechanism
for constructing a dynamics of relativistic quantum fields,
based on gauge symmetry: “the symmetry underlies the dy-
namics.” The realization of this thesis substantially simpli-
fied the logical basis of the theory for the interaction of
fields, giving it features of universality. However, this prog-
ress, arose on a rather complicated foundation.

An explicit formulation of gauge dynamics, which is
organically related to the group nature of symmetry trans-
formations, draws heavily from the language of the theory of
continuous groups. In addition, the development of a for-
malism for the quantization of gauge fields led to a more
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widespread use of the representation of a functional integral.
Consequently, the mathematical apparatus of the theory of
Lie groups and also the methods of functional analysis have
evolved into an every day working tool in the field of particle
theory.

At the same time, the simplicity of the gauge mecha-
nism is based on the some rather complicated physical con-
cepts. We have in mind two completely different factors.
One stems from the general thrust of local gauge transforma-
tions, which appeals to the unobservability of the phase of a
complex field. The second is associated with the impossibi-
lity of directly observing the color degree of freedom, which
underlies the gauge symmetry which leads to QCD and thus
to the fact that quarks and gluons are observable only indir-
ectly: through an interpretation of what is happening inside
hadrons.

We can thus discern two tendencies. One of them, in
this context the governing one, is the progressive simplifica-
tion of the logic of particle theory, with decreasing numbers
of independent basic physical assumptions and parameters.
This simplification is occurring against the background of a
torrential growth of observational facts and laws (including
the number of particles, quantum numbers, and approxi-
mate symmetries). The second, and accompanying, tenden-
cy is a significant hindrance to the dissemination of new
ideas and their perception by wide circles of physicists: the
increasing complexity of the mathematics and the increasing
degree of physical abstraction. Quantum field theory is be-
coming progessively more mediated. Adding to the inade-
quacy of the concept of the trajectory of an electron is the
impossibility (noted above) of an asymptotic—in the free
state—observation of the quanta of the fields of strong inter-
actions and the *“‘color” quantum number. The idea of a
vacuum as a composite state having little in common with a
physical void is becoming progressively stronger. It might be
said that in the modern theory of the microworld we are
dealing with a level of abstraction of the fundamental phys-
ical concepts which is higher than in quantum mechanics.
This continually changing picture is remarkably similar to
Dirac’s foresights which we recalled at the beginning of this
paper.

There is yet another important aspect of the situation
which should be brought up here. A systematic increase in
the level of mathematization has been a characteristic fea-
ture of theoretical physics throughout its history. The lead-
ing branches of physical theory have always drawn upon
new mathematical methods and in some cases have stimulat-
ed their development deep in the realm of mathematics itself.
In the recent past this role has been played by the theories of
electromagnetism, the kinetic theory of matter, the theory of
relativity, and quantum mechanics. Since grabbing the ba-
ton for its leg of this relay race, quantum field theory has
made extensive use of generalized functions, the theory of
continuous groups, and the functional integral. It should be
noted that quantum field theory is not only “assimilating”
new branches of mathematics at a rapid pace but is also
promptly “transmitting” newly developed theoretical meth-
ods to other branches of physical theory.

A well-known example is the technique of Feynman
diagrams. Another is the associated concept of the func-
tional integral. Both were used in quantum statistics back in
the 1950s. They were subsequently used in some other fields
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of theoretical physics which dealt with systems with a large
number of degrees of freedom.

The method of the renormalization group is very illus-
trative. Three decades after its discovery in quantum field
theory, it was converted into a useful method for research in
the theory of critical phenomena, in turbulence theory, in
noncoherent transport theory, in percolation theory, and in
other fields of theoretical physics, quite remote from each
other in terms of the physics involved.

Yet another example might be the practice of using
modern high-speed computers to carry out algebraic trans-
formations and analytic and symbolic calculations. This
field of application of computers, which dates back to about
the middle of the century, was used successfully in the 1970s
in the problem of analytic calculations of Feynman diagrams
in higher-order perturbation theory. Special software sys-
tems were developed for this purpose. Later, thanks to a
large extent to the efforts of field theoreticians, software sys-
tems for analytic calculations of a more general nature ap-
peared. These general-purpose systems have found a variety
of applications in various fields of theoretical physics, me-
chanics, and mathematics.

It is thus fair to say that quantum field theory is playing
a pioneering role as the founder and disseminator of the
newest “mathematical technology” in the exact sciences. To
a significant extent, it is determining the mathematical level
of natural science today.

At the same time, as we have already mentioned, the
modern theory of particles and their interactions is playing
the role of a generator of progressively more complex phys-
ical concepts and models, which are finding progressively
greater use in related fields, e.g., astrophysics and nuclear
physics. They are coming to the attention of physicists in
other specialities and then of an even wider audience.

Returning to the heart of the present state of quantum
field theory, we note that despite some extremely impressive
progress there are still serious problems to be resolved.

In the standard theory of electroweak interactions, the
problem of the Higgs boson, which is still eluding experi-
mental observation, is looming progressively more discon-
certing. In this connection we should state that the Higgs
mechanism itself, which imparts a mass to W and Z bosons
through a “soft” breaking of gauge symmetry, violates the
general thesis that the dynamics is determined by the sym-
metry, despite the elegance of this mechanism. On the
whole, it appears as a rather contrived approach.

Inthe theory of strong interactions it has not been possi-
ble to find a convincing explanation for the fundamental
property of the confinement of quarks and gluons by work-
ing from the basic equations of quantum chromodynamics.
Only very recently have qualitative indications appeared
that it may be possible to find the confinement effect on the
basis of QCD calculations carried out by the Monte Carlo
method on a lattice. In general, the problem of reaching an
understanding of the structure of the vacuum state of non-
Abelian gauge fields is still far from resolution.

We need to stress that the substantial progress which
has been achieved over basically the last 15 years has dealt
almost exclusively with the mechanism for the interaction of
fields and particles. With regard to a quantitative descrip-
tion of the properties of the particles (e.g., the values of the
masses) on the basis of first principles, on the other hand, the
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progress has so far been more modest.

Progress in the observation of the properties of particles
and resonance states has given the theoreticians copious ma-
terial, which has in turn led to the observation of new quan-
tum numbers (isotopic spin, strangeness, charm, and so
forth). It has also resulted in the construction of correspond-
ing so-called broken symmetries and corresponding system-
atics. These developments have in turn motivated searches
for a substructure of numerous hadrons and resonance
states. As a result, such “1950s elementary particles” as nu-
cleons and 7 mesons have ceased to be elementary, but we
have yet to see a really convincing quantitative explanation
of their characteristics. The first attempts to calculate the
masses and magnetic moments of hadrons on the basis of
QCD lattice calculations, which we mentioned above, will, if
they are ultimately successful, make it possible to express
these parameters theoretically in terms of the masses of
quarks and the value of the quark-gluon interaction con-
stant.

A good illustration of the situation is the extent of the
breaking of isotopic spin, which is manifested in the differ-
ence AM between charged and neutral mesons and baryons
(e.g., p and n, K* and K°). The initial understanding
(which looks somewhat naive today)—that this difference
was of an electromagnetic origin (because of the numerical
relation AM /M ~a)—has given way to the conviction that
the difference stems from a difference Am between the
masses of ¥ and d quarks. Even if a quantitative implementa-
tion of this idea does prove to be successful, we see that the
problem will not be completely solved: It will only be pushed
down from the hadron level to the quark level. The formula-
tion of the old puzzle of the muon is evolving in a similar
way: Why do we need a 4 meson, and why should it, so
similar to the electron, be 200 times heavier? Moved to the
quark-lepton level, this question has become quite general,
now referring not to a pair of particles but to three “genera-
tions” of particles, without undergoing any essential change.

What are the immediate prospects for the development
of quantum field theory? What are the most urgent problems
facing this theory?

Two directions, associated with a “‘grand unification of
interactions” and with supersymmetry, arose in the 1970s
and have been developed significantly.

The first is based on the idea of unifying the strong in-
teraction of quantum chromodynamics with the unified
electroweak interaction at energies |Q | ~Mx ~10'° GeV
and above. The starting point here was ‘the circumstance
that, according to the renormalization-group equations [see
(42) above], the effective coupling parameter of QCD,
@, (Q?), like the second effective charge @,(Q?) of the uni-
fied theory of electroweak interactions, decreases with in-
creasing @2, while @&, increases [this quantity corresponds
approximately to @gep at sufficiently low energies; see
(41)]. The increase is of such a nature that if we extrapolate
the quantitative behavior available to ultrahigh energies we
find that these functions @; (i = 1,2,3), which diverge by an
order of magnitude at the energies of today’s experiments,
become comparable to each other at energies of the order of
M. The corresponding values turn out to be
@, (M%) ~1/40. Comparison of this fact with the circum-
stance that all the known broken symmetries become pro-
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gressively more accurate as the energy is increased suggests
that this equality of effective constants is not simply a fortui-
tous matter and that instead there is some higher symmetry
at energies above M . This symmetry would be described by
a group G which would split up into the symmetries which
are observable today, SU(2) X U(1) and SU_ (3), by virtue
of mass terms. The masses which break the symmetry would
be equal to M « in order of magnitude.

Other considerations in favor of the existence of a uni-
fied symmetry group are related to the values of the electric
charges of the elementary particles or, as one might prefer to
say, to the question of why nature has a minimal electric
charge of such a nature that we have @gep (@2 =0) = 1/
137. The advent of quantum mechanics raised the hope that
a systematic quantum-mechanical theory of the electromag-
netic field would provide some answer to this question. For
example, we recall that specifically this hope inspired Dir-
ac’s paper (1931) in which he introduced a monopole. The
result, however, was the establishment of not the magnitude
of the electric charge but only of the relation between the
magnitudes of the electric and magnetic charges. Such at-
tempts were also undertaken subsequently, e.g., by Heisen-
berg (1953-1959) in his well-known series of studies on the
derivation of a nonlinear theory.

The entire situation changed substantially, however,
when quarks unambiguously took the place of protons and
neutrons in our understanding of the basic structural ele-
ments of matter. It turned out that the charge of an electron
is not a minimal “‘elementary charge” and that instead other
elementary particles could have other (and smaller)
charges. Consequently, any hope for finding the value of the
elementary charge from the internal logic of a “future elec-
trodynamics’ had to be acknowledged as futile: Electrody-
namics allows the existence of different charges for different
elementary particles. This is an experimental fact. The ques-
tion itself did not disappear, however; it simply moved to a
different plane: If electrodynamics is compatible with differ-
ent charges of elementary particles, then why do the charges
of leptons and quarks form simple rational ratios? We find it
difficult to believe that there could be any explanation other
than the explanation that leptons and quarks must be related
by some symmetry transformations (which become explicit
only at sufficiently high energies), so the ratios of electric
charges are the “Clebsch-Gordan coefficients” of the corre-
sponding group.'® Such considerations of course tell us
nothing about the energies at which the symmetry is re-
stored.

In certain versions of grand unification, e.g., that with
G = SU(5), there is the possibility of transitions between
quarks and leptons. As a result, there is a nonconservation of
baryon charge; in particular, the proton is unstable. How-
ever, an intense search has uncovered no indications of any
sort for the existence of such an effect.

The second direction is based on the symmetry under
transformations which entangle boson fields of integer spin
with fermion fields of half-integer spin. This symmetry is
called “supersymmetry.” Such transformations form a
group which is a nontrivial expansion of the Poincaré group.
The corresponding algebra of generators, which contains
spinor generators and also their anticommutators along with
the ordinary (vector and tensor) generators of the Poincaré
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group, was discovered by Gol'fand and Likhtman (1971).
The first supersymmetric quantum-field models were con-
structed in the early 1970s.

The field representations of the supersymmetry
group—the so-called superfields ®—are specified on mani-
folds which include, in addition to the four ordinary coordi-
nates x,,, an even number of special algebraic entities: The
generators of a nilpotent Grassmann algebra with an involu-
tion 6,, 9j of elements which anticommute exactly with each
other and which are two-component spinors (Weyl spinors)
under transformations of the Poincaré group. The super-
fields <D(x,0,5) can always be represented as polynomials in
6, 6 which contain a small number of terms, by virtue of the
nilpotency. The coefficients @(x), ¥(x), ..., of these ex-
pansions, which are fields in the usual sense, are called the
“constitutent fields.” From the standpoint of the Poincaré
group, a single superfield P is equivalent to a certain set of a
finite number of Bose and Fermi fields. The superfield model
with an interaction (or self-effect) is equivalent to a series of
interactions of the constituent fields: interactions whose
constants are related to each other in a fixed way.

Some particularly interesting models contain non-Abe-
lian gauge fields as constitutents. These models, which have
both gauge symmetry and supersymmetry, are called “su-
pergauge models.” In supergauge models one observes the
remarkable fact that ultraviolet divergences cancel out.
Models have been seen in which the interaction Lagrangian,
expressed in terms of the constituent fields, is a sum of ex-
pressions each of which is separately renormalizable and
which generates a perturbation theory with logarithmic di-
vergences. However, the divergences corresponding to a
sum of Feynman diagrams with contributions from different
terms of a virtual superfield cancel each other out. This
property of a complete cancellation of divergences might be
considered in connection with the known fact that the degree
of an ultraviolet divergence of the self-mass of an electron in
QED decreases when we switch from the original noncovar-
iant calculations of the late 1920s to an actually covariant
perturbation theory which incorporates positrons in inter-
mediate states. The analogy is strengthened by the possibil-
ity of using supersymmetric Feynman rules, in which case
the canceling divergences do not appear at all.

The fact that ultraviolet divergences cancel out com-
pletely in arbitrary orders of perturbation theory—a fact
which has been established for several supergauge models—
has raised the hope of a possible theoretical superunification
of the elementary interactions. In other words, this unifica-
tion, incorporating supersymmetry and unifying all four in-
teractions, including the gravitational interaction, would be
of such a nature that not only do the unrenormalizable ef-
fects of “‘ordinary” quantum gravitation disappear but also
the completely unified interaction turns out to be free of
ultraviolet divergences. The physical arena of superunifica-
tions would be at length scales of the order of the Planck
length (@~ 10'° GeV, Rp ~107* cm).

For an implementation of this idea, studies are being
made of supergauge models based on superfields construct-
ed in such a way that the maximum spin of the constituent
ordinary fields is two. The corresponding constituent field is
identified with the gravitational field. Models of this sort are
called “supergravity models.”

Although we do not have space here to attempt any-
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thing in the way of a detailed discussion of the work in this
rapidly developing and extremely young field,”® we would
like to point out that attempts presently being made to con-
struct finite supergravities make use of concepts of Minkow-
ski spaces with more than four dimensions and also concepts
of strings and superstrings. In other words, the local quan-
tum field theory which is “familiar to us” converts at dis-
tances below the Planck length into a quantum theory of
one-dimensional extended entities embedded in a space with
a higher number of dimensions.

We should add that the “‘superphysics” strategy
(supersymmetries, unifications and superunifications, and
superstrings) has so far been based exclusively on internal
and purely theoretical motivations. No experimental evi-
dence of any sort indicating a need for a superphysics has so
far been found. If such evidence is found, however, we will be
witnessing a triumph of a methodological construct of Dirac
(1939b) which he formulated most laconically at a 1956
meeting of the Department of Theoretical Physics at Mos-
cow State University: “Physical law should have mathemat-
ical beauty.”

"Weisskopf (1980) refers to the publication of that paper as the birth of
quantum electrodynamics. The eminent theoretician Jost (1972) wrote
that that paper by Dirac, dated 2 February 1927, contains the founda-
tions of quantum electrodynamics and the invention of second quantiza-
tion. It is the nucleus from which quantum field theory developed.

YA year given in parentheses after the author’s name is a reference to the
literature.

*In certain cases, we will use this convention to cite papers only by Dirac.

“ICuriously, Dirac apparently assigned so little value to it that in his first
paper (1928a) he did not even write out explicitly the transformation
law for his wave functions under a Lorentz transformation. In the best
mathematical style, he restricted his paper to the proof of a theorem of
the existence of a linear transformation of the components ¢ of such a
nature that the equation assumes its previous form in the new frame of
reference after the transformation. The word spinor itself was dreamed
up by Ehrenfest, who in perplexity addressed the following question to
B. Van der Waerden in the summer of 1929: Does a spinor analysis
equivalent to a tensor analysis exist in a form accessible to study? (Van
der Waerden, 1960). The answer took the form of Van der Waerden’s
paper “Spinor analysis” (1929). Just a few years later it was found that
corresponding quantities had been discovered 16 years earlier in pure
mathematics by E. Cartan (1913).

“In the special theory of relativity, the partitioning of the 4-world into
space and time is ambiguous: As the space at a given instant of time one
could adopt a spacelike hypersurface from any single-parameter family
of such a nature that a single surface passes through each point x. In
1949 and 1962, Dirac studied the possibilities which would arise if such
surfaces were chosen to be different from coordinate planes.

®Proof of the invariance of commutation relations (4) was offered by
Rosenfeld (1930). According to Wentzel (1960), Pauli used to say this
about the proof: “Ich warne Neugierige” (“I caution the curious”).

""We shall no longer write out the indices which characterize the repre-
sentation as a whole.

“'A historically curious point is that in this paper Dirac was constantly
attempting to go over from the variables @ and a*, which had already
arisen naturally in the classical stage of his work, to a canonical action-
angle pair, but in each case the attempt was awkward, and he was forced
to go back. It can now be seen that his work would only have benefited
from the removal of all these “Brownian motions” associated with the
canonical variables.

“It is proportional not to the Pauli-Jordan function A,, but to the func-
tions A *’ (x — p), which do not vanish off the light cone.

'“Conversely, the original particles ¢ are the antiparticles of the antiparti-
cles ¢ Particles and antiparticles enter the description on absolutely
equal footings (Dirac, 1934b; Heisenberg, 1934). In this ideology, truly
neutral particles are their own antiparticles.

'"Exceptional cases are quadratic Hamiltonians of the free field: With a
reasonable choice of variables marking the particles, terms in them
which do not conserve the number of particles cancel.

'?In his 1964 and also 1966 papers, Dirac emphasized that such a trans-
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formation is unfounded: In his lectures on quantum field theory (1966),
he wrote that the argument in favor of the equivalence of the Heisenberg
and Schrédinger pictures “is valid only if 2" exists and can be applied
to one state vector to give another, and for the Hamiltonians one meets
with in quantum field theory there is good reason to believe that this is
not so, because of convergence difficulties, and so the two pictures are
not equivalent.”

3n certain cases, such a transformation requires a refinement of the
meaning of a chronological product (Medvedev et al., 1972).

Questions regarding the early history of the appearance of the concept
of a gauge field in physics are covered in the review by Okun’ (1984).
We would especially like to mention the work by Fock (1926), to whom
the competing term *gradient transformation’” can be credited.

19Electrodynamics has long given us some positive experience. A negative
example might be, say, the conservation law of baryon charge, which
does not correspond to any massless gauge field, as far as we can see.

'9In the electromagnetic case, this difficulty is circumvented by an artifi-
cial approach which was first used by Fermi (1929, 1932). For a Yang-
Mills field this approach leads to a violation of unitarity (Feynman,
1963).

"Beginning at roughly this point we will cite the original papers only
sporatically. For a more comprehensive picture we direct the reader to
review publications listed at the end of our bibliography section.

"®The electromagnetic constant is expressed as a combination of these
constants:

e=g1gs (g1 + D12 (41)

""The opposite assertion—that the absence of simple rational ratios
between the charges of leptons and quarks would imply that all the
grand unification models being discussed in the literature are inade-
quate—was established by Okun’, Voloshin, and Zakharov (1983).

'Essentially an entire issue of {Uspekhi fizicheskikh nauk (Soviet Physics
Uspekhi) was devoted to supersymmetry precisely two years ago. The
December 1986 issue has some papers on superstrings.
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A second-quantization method, which is introduced, is used to con-
vert the theory for the interaction of a material system with a classical
transverse electromagnetic field into a theory for an interaction with a
new physical entity: a quantum field. The representation of a point inter-
action is carried over into the quantum field theory. An interaction pic-
ture is used. Time-dependent perturbation theory is developed further.

Multiplication by a finite phase space is introduced.

c) The quantum theory of dispersion, Proc. R. Soc. London 114, 710-728,

A Hamiltonian including a quantum field—a vector potential—is
written out explicitly for the first time. The scattering process is studied.
For this purpose, a perturbation theory of first order in the term A? in the
Hamiltonian and of second order for terms linear in A is taken into ac-
count. The first indications of divergences arise.

Jordan, P., Zur Quantenmechanik der Gasentartung, Z. Phys. 44, 473.

Two methods for second quantization. It is possible to construct a
quantum-mechanical theory of matter in which the electrons are repre-
sented by quantum waves in ordinary 3-space.

Jordan, P., and Klein, O., Z. Phys. 45, 751.
Quantization of an electron field; inclusion of the Coulomb interac-
tion.

1928
Dirac, P. A. M.:
a) The quantum theory of the electron, Proc. R. Soc. London, Ser. A 117,
610-624 [Russ. transl., Proc. Inst. Hist. Sci. Tech. Acad. Sci. USSR 22,
34-52, Izd. Akad. Nauk SSSR, M., 1959].

The Dirac equation. Linear Hamiltonian; matrices; proof of relativis-
tic invariance. Extraneous solutions. Spin. Motion in a central field (Post-
nonrelativistic approximation).

b) The quantum theory of the electron II, Proc. R. Soc. London Ser. A
118, 351-361 [Russ. transl., as in a) pp. 53-68, Izd. Akad. Nauk SSSR,
M., 1959].

Theorem of charge conservation; vanishing of the divergence of the
4-current. Selection rules. Applications to the Zeeman effect.

Jordan, P. and Pauli, W., Z. Phys. 47, 151 [Russ. transl., in Pauli W.
Papers on Quantum Theory, Nauka, M., 1977 (cited below as Pauli W.
[1928]1*)].

Quantum electrodynamics without charges. Permutation of the
fields E and H. Operator-valued functionals. Invariant A-function for
zero mass as a relativistic generalization of the Dirac §-function.

Wigner, E. and Jordan, P., Z. Phys. 47, 631.
Second quantization of fermions.

1929
Fermi, E., Sopra I'electrodinamica quantistica, Rend. Acad. Lincei 9, 881
{Russ. transl. in Fermi E. Scientific papers, V. |, p. 302, Nauka, M., 1971
(cited below as Fermi E. {1929])1.

Electromagnetic field potentials which satisfy a wave equation in the
Lorentz gauge are written as expansions in oscillators. A Hamiltonian and
equations of motion are written for a field interacting with nonrelativistic
charges in configuration space.

Heisenberg, W. and Pauli, W., Zur Quantendynamik der Wellenfelder, Z.
Phys. 56, 1 [Russ. transl.,, Pauli W. [1928], p. 89].

A general Lagrangian and Hamiltonian form of the c-field equations
and energy and momentum conservation are described. A canonical
quantization (either Bose or Fermi) is carried out. Quantum canonical
equations of motion are written. Energy and momentum conservation
laws are written. It is shown that the commutation relations are invariant
under an infinitesimal Lorentz transformation (see p. 6 of the text). A
complete system of equations of spinor electrodynamics is then written. A
small non-gauge-invariant increment £(3Q,, /dx, )% €—0, is added to
deal with the vanishing of p, at the origin. A method for calculating effects
by perturbation theory is developed (after the Dirac model).
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Van der Waerden, B. L., Spinoranalyse, Nachr. Ges. Wiss. Gott. Math.-
phys. KL p. 100.
Spinor calculus.

Klein, O. and Nishina, Y., Z. Phys. 52, 853.
Scattering of light by an electron: the Klein-Nishina formula.

1930
Dirac, P. A. M.:
a) A theory of electrons and protons, Proc. R. Soc. London, Ser. A 126,
360-365 [Russ. transl. Usp. Fiz. Nauk 10, 581-591 (1930)].
Interpretation of negative-energy states: All are occupied, but one
vacant state—a hole—behaves as a particle with a positive energy and a
positive charge. “We are therefore led to the assumption that the holes in
the distribution of negative-energy electrons are the protons.” The asym-
metry of the mass must be due to an interaction.

b) On the annihilation of electrons and protons, Proc. Cambridge Philos.
Soc. 26, 361-375.

The probability for the annihilation of an electron and a proton, un-
derstood as a hole, is calculated. The result (which agrees with the result
of current calculations on electron-positron annihilation) is absurdly
large. A hope: Will an accurate incorporation of the interaction help?

¢) Note on exchange phenomena in the Thomas atom, Proc. Cambridge
Philos. Soc. 26, 376-385.
Density matrix.

d) The Principles of Quantum Mechanics, Clarendon Press, Oxford,
1930, 1935, 1947, 1958 [Russ. transl.,, GTTI, M., L., 1932; ONTI, 1937;
Fizmatgiz, M., 1960; Nauka, 1974, 1979].

Fermi, E., Sopra I’electrodinamica quantistica, Rend. Acad. Lincei 12,
431 [Russ. transl., E. Fermi [1929], p. 359].

The method of the 1929 paper is generalized to charges described by
Dirac equations. An auxiliary condition is treated as acting on the wave
function. An effective Hamiltonian containing an interaction with only a
transverse field is derived [as in the paper Dirac (1927b)] and the Cou-
lomb interaction as a special term.

Heisenberg, W. and Pauli, W., Zur Quantentheorie der Wellenfelder. II,
Z. Phys. 59, 168 [Russ. transl., Pauli W. [1928], p. 89].

A “struggle” with the gauge arbitrariness of quantum electrodynam-
ics. A fixed gauge of the Coulomb type and a complicated proof that it is
possible to preserve Lorentz invariance if a Lorentz transformation is
accompanied by a suitable change of gauge.

Oppenheimer, J. R., Phys. Rev. 35, 939.
Annihilation of electrons and protons.

Tamm, 1., Z. Phys. 62, 545 [Russ. transl., Tamm, I. E., Collected scientif-
ic papers, Nauka, M., 1975, V. II, p. 24, cited below as Tamm, I. E.
[1930]].

The scattering of light by an electron (the Klein-Nishina formula)
with a detailed discussion of the role played by negative-energy intermedi-
ate states. Annihilation of electrons and protons.

Rosenfeld, L., Z. Phys. 63, 574.
Proof of the invariance of Heisenberg-Pauli quantization.

1931
Dirac, P. A. M., Quantized singularities in the electromagnetic field,
Proc. R. Soc. London, Ser. A 133, 60-72.

Introduction of the monopole. In the introduction, there is a new
interpretation of holes: They must be particles having the same mass as the
electron but a positive charge (**Anti-electrons”).

1932
a) Dirac, P. A. M., Relativistic quantum mechanics, Proc. R. Soc. Lon-
don 136, 453-464.

An attempt to construct a systematic quantum electrodynamics dif-
ferent from that proposed by Heisenberg and Pauli, which did not satisfy
Dirac, primarily because of the symmetric treatment of the field and the
particles. At the same time, Dirac hoped to resolve the difficulty of the
classical theory regarding the uncertainty in the field acting on a point
electron. It was later found that the model developed here is equivalent in
principle to the Heisenberg-Pauli theory.

b) Dirac, P. A. M., Fock, V. A_, and Podolsky, B., *‘On quantum electro-
dynamics,” Phys. Z. Sowjetunion 2, 468—479 [Russ. transl., Fock V. A,
Papers on quantum field theory, Izd. Leningr. Univ., L., 1957, pp. 70-82,
cited below as Fock V. A. [1932]].

The so-called “multitime formalism”: which remained the most po-
pular form of the description of a field with particles until the appearance
of Schwinger’s papers.

Fermi, E., Quantum theory of radiation, Rev. Mod. Phys. 4, 87-132
[Russ. transt., E. Fermi [1929], p. 375].

The first review of quantum electrodynamics, *“Biblia rosa” as it was
called by Fermi's students (Pontecorvo, 1971). The electrodynamic field
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is expanded in oscillators. The particles are in configuration space.

Fock, V., Konfigurationsraum und zweite Quantelung, Z. Phys. 75, 622
[Russ. transl., Fock V. A. [1932], p. 25].

The basic relations of the second-quantization method are construct-
ed. It is shown that in configuration space this method corresponds to the
method of Fock columns.

Mgller, C., Ann. Phys. (Leipzig) 14, 532.

Derivation of an expression for the scattering of electrons by elec-
trons.

1933
Dirac, P. A. M., “The Lagrangian in quantum mechanics,” Phys. Z. Sow-
jetunion 3, 64-72.

Quantum evolution in the form of a path integral. The method of
functional integration grew out of this study.

Heitler, W. and Sauter, F., Nature 132, 892.
Bremsstrahlung and pair production in the field of a nucleus.

Pauli, W. and Ehrenfest, P., Naturwissenschaften 211, 841 [ Russ. transl.,
Pauli, W., Physics essays, Nauka, M., 1975, p. 213].

Necrology.

1934
Dirac, P. A. M.
a) Théorie du positron, in: Septieme Conseil de Physique Solvay: Struc-
ture et propriétés des noyaux atomiques, 22-29 October 1933, Gauthier-
Villars, Paris, pp. 203-230.

Logarithmic momentum dependence of the effective charge of an
electron.

b) Discussion of the infinite distribution of electrons in the theory of the
positron, Proc. Cambridge Philos. Soc. 30, pp. 150-163.

The density matrix describing the distribution of electrons among
positive and negative levels is redefined in such a way that only the contri-
butions from filled positive and vacant negative levels are retained. In
other words, only the contributions from real electrons and positrons are
retained. Explicit expressions for, and singularities of, the functions A and
A, with a nonzero mass are analyzed in detail.

Bethe, H. and Heitler, W, Proc. R. Soc. London 146, 83,

Bremsstrahlung and pair production.

Fermi, E., Versuch einer Theorie der -Strahlen, Z. Phys. 88, 161-171
[Russ. transl., Fermi, E., 1929, p. 525].

Theory of B decay. It is suggested, for the first time, that material
particles, rather than fields—electrons (and neutrinos)—can be pro-
duced. (“There is no analogy with pair production: If a positron is as-
sumed to be a Dirac hole, then the latter process . . . must be understood
as simply a quantum transition of an electron from a negative-energy state
to a positive-energy state.”)

Fock, V., Zur Quantene Elektrodynamik, Phys. Z. Sowjetunion 6, 325
[Russ. transl., Fock, V. A., 1932, p. 88].

A method is developed for describing a system with an indeterminate
number of particles by means of a generating functional. This method is
now known as the method of Fock functionals. The first application (in
quantum electrodynamics) of the apparatus of variational differentiation.

Heisenberg, W, Z. Phys. 90, 209; 92, 692.
Symmetric interpretation of the electron and the positron. Second
quantization.

Nishina, Y., Tomonaga, S., and Sacata, S., Sci. Pap. Inst. Phys. Chem.
Res. Jpn. 24, 17.
Pair production in the field of a nucleus.

Racah, G., Nuovo Cimento 11, No. 7.
Pair production.

Weisskopf, V., Z. Phys. 89, 27; 90, 817.
The self-energy of an electron diverges logarithmically when a Dirac
vacuum is taken into account.

Tamm, I, Nature 133, 981 [Russ. transl., Tamm, I. E., 1930, V.1, p. 287].

Iwanenko, D., Nature 133, 981.

Two parallel publications expressing the idea of an exchange nature
of nuclear forces. It is shown that the exchange of ve pairs between an n
and a p leads to excessively weak effects, not suitable for describing nu-
clear interactions.

1935
Stiickelberg, E. C. G., Ann. Phys. (Leipzig) 21, 367.

First ideas regarding renormalizations.

Yukawa, H., Proc. Phys. Math. Soc. Jpn. 17, 48.
Meson theory of nuclear forces.
1936

Dirac, P. A. M., Relativistic wave equations, Proc. R. Soc. London Ser. A
155, 447-459.
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Euler, E., Ann. Phys. (Leipzig) 25, 398.
The suggestion that the infinities in higher orders stem from a diver-
gence of the self-mass and the self-charge.

Heisenberg, W. and Euler, E., Z. Phys. 98, 714.
Logarithmic divergence of £, for the vacuum, i.e., logarithmic diver-
gence of the charge.

Weisskopf, V., K. Dan. Vidensk. Selsk., Mat.-Fys. Medd. 14, No. 6.
The same.

Racah, G., Nuovo Cimento 13, 69.

Pair production.

1937
Fock, V., “Die Eigenzeit in der klassischen und in der Quantenma-
chanik,” Phys. Z. Sowjetunion 12, 404 [Russ. transl., Fock, V. A., 1932,
p. 141].

A representation of the solution of the Dirac equation with an elec-
tromagnetic field in the form of an integral over the proper time is pro-
posed (the Fock proper-time method).

1938
Dirac, P. A. M., Classical theory of radiating electrons, Proc. R. Soc.
London Ser. A 167, pp. 148-169.

Relativistic theory of a classical point electron.

Kramers, H. A., Nuovo Cimento 15, 108.
Subtraction of infinities.

Stiickelberg, E. C. G., Helv. Phys. Acta. 9, 225.
Renormalization ideas.
1939
Dirac, P. A. M.:
a) La théorie de Velectron et du champ électromagnetique, Ann. Inst.
Henri Poincaré 9, p. 13—49.
The A-process.

b) The relation between mathematics and physics, Proc. R. Soc. Edin-
burgh 59, pp. 122-129.

Weisskopf, V., Phys. Rev. 56, 72.

Explanation of the details of the mechanism for the decrease in the
divergence of the self-mass of an electron to logarithmic.

1940
Pauli, W., The connection between spin and statistics, Phys. Rev. 58, 716
[Russ. transl., Pauli, W., 1928, p. 354].

Theorem regarding the relationship between spin and statistics.

1941
Pauli, W., Relativistic field theories of elementary particles, Rev. Mod.
Phys. 13, 203 [Russ. transl., Pauli, W., Relativistic theory of elementary
particles, IL, M., 1947 (The “thin, gray” Pauli); also Pauli, W., 1928, p.
3].

For many years this review was regarded as the standard exposition
of the theory of free fields: the Lagrangian formalism and conservation
laws in general form; quantization of Fourier expansions and through
invariant permutation functions for the spin-zero, 1, and 1/2 fields; the
incorporation of the interaction with an electromagnetic field.

1942
Dirac, P. A. M., The physical interpretation of quantum mechanics, Proc.
R. Soc. London, Ser. A 180, 1-40 (Bakerian lecture 1941).

Theory with an indefinite metric.

1943
Dirac, P. A. M., Quantum electrodynamics. Commun. Dublin Inst. Adv.
Stud. Ser. A, No. 1, 1-36.

Lectures presenting quantum electrodynamics through the use of the
A-process and an indefinite metric.

Heisenberg, W., Die ‘‘beobachtbaren Grossen” in der Theorie der Ele-
mentarteilchen, Z. Phys. 120, 513, 673.

Introduction of the concept of a scattering matrix and an attempt to
construct a theory which departs from a detailed description of the time
evolution.

Pauli, W., On Dirac’s new method of field quantization, Rev. Mod. Phys.
15, 175 [Russ. transl., Pauli, W., 1928, p. 498].

A detailed exposition of the method proposed by Dirac for construct-
ing a theory through the use of an indefinite metric.

Wentzel, G., Einfuhrung in die Quantentheorie der Wellenfelder, F. Deu-
ticke, Vienna [Russ. transl., Gostekhizdat, M., 1947].

The first monograph on quantum field theory.

1946
Tomonaga, S., Prog. Theor. Phys. 1, 27 [Russ. transl., Newest develop-
ment of quantum electrodynamics, IL, Moscow, 1954, p. 1 (cited below as
NDQE, 1946)].

Invariant perturbation theory.

Bethe, H., Phys. Rev. 72, 339 [Russ. transl., Shift of atomic electron levels
and additional electron magnetic moment according to the newest elec-
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trodynamics, collected articles, ed., D. D. Ivanenko, IL, Moscow, 1950, p.
82 (cited below as SAEL, 1947)].

First nonrelativistic calculation of the Lamb shift by means of a sub-
traction procedure.

1948
Dirac, P. A. M.:
a) Quantum theory of localizable dynamical systems, Phys. Rev. 73,
1092-1103.

A Hamiltonian formalism on curves of spacelike hypersurfaces for
systems whose Hamiltonian can be represented as an integral of the den-
sity which commutes at spacelike points.

b) The theory of magnetic poles, Phys. Rev. 74, 817--830.

A general theory is derived for charges and magnetic poles which are
interacting by means of an electromagnetic field. The poles are treated as
the ends of unobservable strings. Variables describing the string are intro-
duced.

Feynman, R. P.:
a) Space-time approach to quantum mechanics, Rev. Mod. Phys. 20, 367
[Russ. transl., Problems of causality in quantum mechanics, IL, Moscow,
1955, p. 167].

Formulation of a nonrelativistic quantum mechanics in terms of a
continual path integral.

b) Phys. Rev. 74, 1430 [Russ. transl., NDQE, 1946, p. 201].
A relativistically invariant regularization of the photon propagator is
introduced.

Schwinger, J., Phys. Rev. 74, 1439 [Russ. transl., NDQE, 1948, p. 12].

Covariant formulation of quantum electrodynamics in the interac-
tion picture.

1949 .

Dirac, P.A. M., Forms of relativistic dynamics, Rev. Mod. Phys. 21, 392—
399.

For quantization, the theory must be put in a Hamiltonian form. The
condition for relativistic invariance is then the realization of a Lie algebra
of a Poincaré group by the fundamental dynamic variable of the system. It
is convenient if some of the generators do not alter the hypersurface on
which the Hamiltonian mechanics is specified. This condition is met for
surfaces of three shapes: a spacelike hypersurface, a hyperboloid, and a
light front. Three corresponding forms of the dynamics are constructed.

Dyson, F., Phys. Rev. 75, a) 454; b) 1736 [Russ. transl., a) SAEL, 1947,
p. 94; b) NDQE, 1946, p. 205].

a) It is shown that the covariant theories of Tomonaga, Schwinger,
and Feynman are equivalent.
b) A general theory of the S matrix and renormalization.

Feynman, R. P., Phys. Rev. 76, a) 749, b) 769 [Russ. transl.,, NDQE,
1946, a) p. 138; b) p. 161].

a) A picture of positrons as electrons in a retrograde time motion is
developed.

b) Diagrams and correspondence rules in quantum electrodynamics.

French, J. B. and Weisskopf, V. F., Phys. Rev. 75, 1240 [Russ. transl.,
SAEL, 1947, p. 123].
A relativistically invariant calculation of the Lamb shift.

Kroll, N. and Lamb, W., Phys. Rev. 75, 388.
First relativistically invariant calculation of the splitting of the 2%S, ,,
and 2°P , levels.

Schwinger, J., Phys. Rev. a) 75, 651; b) 76, 790 [Russ. transl., NDQE,
1946, a) p. 40; b) p. 78].

a) The covariant formulation of quantum electrodynamics which
was developed in 1948 is applied to an analysis of vacuum polarization and
the self-energies of the electron and the photon.

b) Calculation of the anomalous magnetic moment of an electron in
the single-loop approximation.

Stiickelberg, E. C. G. and Rivier, D., Helv. Phys. Acta 22, 215.
The scattering matrix is introduced directly, without appealing to a
Hamiltonian formalism.

Pauli, W. and Willars, F., Rev. Mod. Phys. 21, 434 [Russ. transl., Pauli,
W., 1928, p. 578; also SAEL, 1947, p. 139].
The Pauli-Willars regularization.
1950
Dirac, P. A. M., Generalized Hamiltonian dynamics, Can. J. Math. 2,
129-148 [Russ. transl., VPM, 1918, pp. 705-722].
First version of the construction of a Hamiltonian theory for a system
with couplings.
Wick, G. C., Phys. Rev. 80, 268 [Russ. transl.,, NDQE, 1946, p. 245].
Wick’s theorems.
1951
Dirac, P. A. M.:
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a)The Hamiltonian form of field dynamics, Can. J. Math. 3, 1-23.

A Hamiltonian dynamics for a field theory on curves of spacelike
hypersurfaces is constructed on the basis of a general method for con-
structing a Hamiltonian mechanics with couplings.

b) A new classical theory of electrons. I, Proc. R. Soc. London, Ser. A 209,
291-296.

It is suggested that the gauge condition be regarded as a Hamilton-
Jacobi equation for electrons.

Stiickelberg, E. C. G. and Green, T., Helv. Phys. Acta 24, 153.

A continuation of Stiickelberg and Rivier’s 1949 work.

1953
Pauli, W., Etat actuel de la theorie quantique des champs: La renormal-
ization, Particules fondamentales et noyaus, Paris, 1950; Collog. Intern.
Centre. Rech. Sci. Paris, Vol. 38, p. 67 [Russ. transl., Pauli, W., 1928, p.
620].

An extremely skeptical point of view regarding the renormalization
method, which the author believes has been exhausted.

Stiickelberg, E. C. G. and Petermann, A., Helv. Phys. Acta 26, 499.

A finite “‘renormalization group” is discovered in quantum field the-
ory in association with the finite arbitrariness of the renormalization oper-
ation. A possibility of writing differential equations is pointed out.

1954
Gell-Mann, M. and Low, F., Phys. Rev. 93, 1300.

Functional equations of the renormalization group for the effective
charge in quantum electrodynamics. General solution of this equation
and qualitative analysis of possible ultraviolet asymptotic forms.

Liiders, G., K. Dan. Vidensk. Selsk., Mat.-Fys. Medd. 28, No. 5.

Yang, C. N. and Mills, R. L., Phys. Rev. 96, 191.
The Yang-Mills field.

Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M., Dokl. Akad.
Nauk SSSR 95, 773, 1177; 96, 261.

Cycle of studies in which the ultraviolet asymptotic forms of quan-
tum electrodynamics are derived in the “leading-logarithm’ approxima-
tion.

1955
Bogolyubov, N. N., Izv. Akad.Nauk SSSR. Ser. Fiz. 19, 237 [Bull. Acad.
Sci. USSR. Phys. Ser. 19, 215].

An explicit formulation of the microscopic causality condition is of-
fered for the scattering matrix expressed in terms of its variational deriva-
tives: Bogolyubov’s causality condition.

Bogolyubov, N. N. and Parasyuk, O. 8., Dokl. Akad. Nauk SSSR 100, 25,
429.

Lemmas and theorem regarding the R-operation.

Bogolyubov, N.N. and Shirkov, D. V.:
a) Usp. Fiz. Nauk 55, 149.

Axiomatic perturbation theory for the scattering matrix based on
Bogolyubov’s causality condition.

b) Usp. Fiz. Nauk 57, 2.

Use of the R-operation in low-order perturbation theories for quan-
tum electrodynamics.
¢) Dokl. Akad. Nauk SSSR 103, 203.

Functional renormalization-group equations of quantum electrody-
namics are derived for the general case. The relationship between the
work by Stiickelberg and Petermann (1953) and Gell-Mann and Low
(1954) is established. Differential group equations are constructed for the
first time, and a program for systematically improving the results of ordi-
nary perturbation theory is formulated.

d) Dokl. Akad. Nauk SSSR 103, 391.

The differential renormalization-group equations are used to derive a
single-loop sum and a previously unknown two-loop sum of ultraviolet
logarithms for the effective charge in quantum electrodynamics. In addi-
tion, a single-loop ultraviolet asymptotic behavior and an infrared asymp-
totic behavior are derived for the electron propagator in a transverse
gauge.

Landau, L. D, Quantum Field Theory [in Niels Bohr and the Develop-
ment of Physics (in Russian), IL, M., 1958, p. 75}.

A translation of a paper published in 1955 summarizing the results on
the analysis of ultraviolet divergences and asymptotic behavior in quan-
tum electrodynamics, which is regarded as a local limit of a finite theory
with a “blurred” interaction region. Expressions derived earlier which
contain the sums of leading logarithms are discussed. The relationship
between the seed and renormalized charges of an electron is discussed.
This relationship leads to a “‘zero-charge” difficulty.

Landau, L. D. and Pomeranchuk, I. Ya., Dokl. Akad. Nauk SSSR 102,
489.

The zero-charge problem in quantum electrodynamics is discussed.
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Pauli, W., in Niels Bohr and the Development of Physics, Pergamon
Press, London, p. 30 [Russ. transl., Pauli, W., 1928, p. 634; also IL, M.,
1958, p. 46].

The Liiders-Pauli theorem.

1956
Bogolyubov, N. N. and Parasyuk, O. S., Izv. Akad.Nauk SSSR. Ser. Mat.
20, 585.

Parasyuk, O. S., Izv. Akad. Nauk SSSR. Ser. Mat. 20, 843.
1957

Bogolubov, N. N. and Parasiuk, O. S., Acta Math. 97, 227.
Review of the R-operation.

Bogolubov, N. N. and Shirkov, D. V., Introduction to the Theory of
Quantized Fields (in Russian), Gostekhizdat, M. [ Engl. transl., Intersci-
ence, N Y., 1959].
First edition of the monograph on modern quantum field theory.
1958
Dirac, P. A. M., Generalized Hamilton dynamics, Proc. R. Soc. London,
Ser. A 246, 326-332.
Hamiltonian theory for a system with couplings.

Heisenberg, W., et al., A series of papers [ Russ. transl., collected in “Non-
linear quantum field theory,” IL, M., 1959].

A persistently pursued attempt by Heisenberg and his students to
derive a unified theory of interacting fields to describe the entire set of
elementary particles which exist in nature. The theory is based on an
equation for a fermion operator function with a four-fermion interaction.
In an analysis of it, the authors attempt, without resorting to perturbation
theory, to find all the other particles as various eigenstates of a single
system.

1960
Bogolubov, N. N., On some problems of the theory of superconductivity,
Physica 26, Suppl., p. S1 {Congress on Many Particle Problems, Utrecht,
The Netherlands).

A method of quasiaverages is formulated for a quantum-mechanical
description of spontaneous symmetry breaking (first publication).

Wentzel, G., in: Theoretical Physics in the Twentieth Century, Inter-
science, N. Y., p. 48 [Russ. transl, IL, M., 1962, p. 60].

Van der Waerden, B. L., in: Theoretical Physics in the Twentieth Century,
Interscience, N. Y., p. 199 [Russ. transl, IL, M., 1962, p. 231].

1961
Bogolyubov, N. N., Quasiaverages in problems of statistical physics, Pre-
print D-781 (in Russian), Joint Institute for Nuclear Research, Dubna;
also in Selected Works in Statistical Physics (in Russian), Izd. Mosk.
Univ., M., 1979, p. 193.

Method of quasiaverages and spontaneous symmetry breaking.

1963
Feynman, R. P., Acta Phys. Polon. 24, 697.

Violation of unitarity in Yang-Mills quantization by the Fermi meth-
od.

1964

Dirac, P. A. M., Lectures on Quantum Mechanics, Academic Press, N.Y.
[Russ. transl., Mir, M., 1968; also in Principles of Quantum Mechanics,
Nauka, M., 1979, pp. 408-475].

Systematic exposition of a generalized Hamiltonian dynamics.
Higgs, P. W., Phys. Rev. Lett. 12, 132.

The Higgs mechanism.

De Witt, B., Phys. Rev. Lett. 12, 742.

Reconstruction of a diagram with loops from tree diagrams.

1965
Bogolyubov, N. N., Struminskii, B. A., and Tavkhelidze, A. N., Question
of composite models in the theory of elementary particles, Preprint D-
1968, Joint Institute for Nuclear Research, Dubna (in Russian).

A new quantum number, which subsequently became known as “col-
or,” is proposed for solving the problem of spin and statistics for quarks.

Stepanov, B.M.,, Izv. Akad. Nauk SSSR. Ser. Mat,. 29, 1037.

The Han-Banach theorem regarding the expansion of a linear func-
tional is used to show that it is possible to construct converging expres-
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