
Resonance osciiiations of neutrinos in matter
S. P. Mikheev and A. Yu. Smirnov

Institute of Nuclear Research, Academy of Sciences of the USSR
Usp. Fiz. Nauk 153,3-58 (September 1987)

If the neutrino has mass and exhibits mixing, this must necessarily result in oscillations, i.e.,
periodic transformation of one type of neutrino into another and vice versa. In general, these
oscillations depend on the properties of the medium in which the neutrinos propagate. The
propagation of a neutrino through a medium of varying density is, in general, accompanied by a
number of new oscillation phenomena that are resonant in character. These phenomena have
analogs in different branches of physics, including mechanics, because the neutrino oscillations
constitute an oscillatory process that is unrelated to the quantum nature of particles. This review
discusses practically all the possible aspects of the effect of a medium on neutrino oscillations. The
Introduction presents general ideas on neutrino oscillations and on the mechanism responsible
for the effect of the medium on the oscillations. It also discusses the equations describing the
evolution of neutrinos in matter. This is followed by an account of the theory of neutrino
oscillations in media with different density distributions. Particular attention is devoted to the
most interesting case of a slow variation in density (the adiabatic case). This theory is a direct
generalization of the theory of vacuum oscillations, originally developed by B. M. Pontecorvo.
The separation of wave packets and the absorption of neutrinos in the medium are taken into
account in the next Section. The oscillations of three types of neutrino in the most general case of
mass hierarchy are also discussed. The last Section examines possible manifestations of resonant
oscillations during the passage of neutrinos through the Sun and the Earth.
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1. INTRODUCTION

If neutrinos are massive, it is quite likely that they mix.
The mixing of quarks is an established fact and, because of
quark-lepton symmetry or the correspondence between
quarks and leptons, it is natural to assume that leptons ex-
hibit mixing as well. An additional argument, in this sense, is
provided by grand unification models, in which quarks and
leptons are described in a unified manner. Another argu-
ment relies on the idea that only local symmetry can remain
unbroken. The absence of mixing in the case of massive neu-
trinos would signify the existence of global symmetry, ex-
pressing the conservation of lepton numbers. Mixing means
that ve,vM,vr," i.e., the states created in weak interactions,
are different from the states v,,v2,v, that have definite
masses. The neutrinos vc,vff,vT are orthogonal combina-
tions of v|(v2,..., with different admixtures v, and different
phases between them.

Mixing has as its consequence neutrino oscillations,'
i.e., the process of periodic (complete or partial) transfor-
mation of neutrinos of one type into another, for example,
ve -»vs ->ve ->.... This process was introduced in 1957 by B.
M. Pontecorvo by analogy with K-meson oscillations. The
components v, of a mixed neutrino have different masses
and, hence, different phase velocities. It follows that the
phase differences between the v, vary monotonically during
the propagation process. This phase change leads to a
change in the interactions of the mixed neutrino and mani-
fests itself as neutrino oscillations.

The search for these oscillations has become a sensitive
method of measuring neutrino masses and mixing. The fact
that so far this has not produced a positive result has set an
upper limit on Am2 = m\ — m\, i.e., on the difference
between the squares of the masses of v, and v2, and on the
mixing angle 9 (see Ref. 2). Oscillations can produce a sig-
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nificant change in the properties of natural neutrino fluxes,
e.g., fluxes of solar neutrinos, neutrinos originating in gravi-
tational collapse, atmospheric neutrinos, and so on. In par-
ticular, Pontecorvo and Gribov3 were the first to note that v-
oscillations could provide a solution to the problem of solar
neutrinos, i.e., they could be the reason for the discrepancy
between the Cl-Ar experiment of Davis and the predictions
of the standard solar model.

Neutrino oscillations essentially constitute an oscilla-
tory process that is unrelated to the quantum nature of parti-
cles. They have many analogs in different branches of phys-
ics, especially in mechanics. Mixed neutrinos (to be specific,
ve and Vp ) constitute a system of two weakly coupled oscil-
lators. The oscillations of one of them correspond to the
propagation of vc and those of the other to the propagation
of VM . The creation of the ve is equivalent to the excitation of
the ve oscillator, and so on. Coupling between these oscilla-
tors produces a periodic transfer of oscillations from one of
them to the other. The periodic transfer process constitutes
the oscillations. When the natural frequencies of the oscilla-
tors are equal, the transfer of oscillations is complete, and
this corresponds to oscillations of maximum depth. When
the frequencies are different, the oscillations are only par-
tially transferred. "Normal" oscillations are the propaga-
tion of v-states with particular energies (masses in vacuum).
The analogy can be continued to the case of neutrino oscilla-
tions in matter. It will be clear later that a system of coupled
oscillators reproduces practically all the features of the oscil-
lations when interactions are taken into account.

Because of interactions between neutrinos and the me-
dium, the latter modifies the picture of the oscillations. This
effect was examined in 1977 by Wolfenstein4 by analogy with
the physics of neutral K-mesons. As in the case of coherent
regenration of the Ks, the effect of the medium is due to the
difference between the elastic forward-scattering amplitudes
of the mixed neutrinos, for example, ve and VM . It reduces to
the appearance of waves with different refractive indices.
When combined with vacuum mixing, this ensures that the
vim have energies and phase and group velocities in the medi-
um that are different from those of the v,. Consequently, this
alters mixing in the medium, and the ve and v^ "oscillate"
relative to the new states v,m. Moreover, a medium will also
modify the length (period) of the oscillations. It can either
suppress the oscillations or amplify their depth right up to
the maximum value.4'5

The effect of the medium can also be described in terms
of the potentials in which the neutrinos ve and VM propagate.
The interaction leads to a change in mixing and to the ap-
pearance of effective masses that are different from m, and
m-,. 12.13

In the mechanical analog, the effect of the medium is
equivalent to a change in the natural frequencies of the oscil-
lators, and this difference is different for the "ve" and "v^ ".
The depth and period of the oscillations and the character of
the normal oscillations become different as a result of this
(as compared with the "vacuum" quantities).

In 1977, Wolfenstein derived a set of differential equa-
tions for the motion of mixed neutrinos. The constant-den-
sity approximation was used to examine some of the conse-
quences of oscillations in the Earth,4'5'8 in the Sun,4'6 and in
collapsing stars.6'7 However, the physical content of this the-
ory, and also the most interesting and important effects from

the point of view of applications, were not established until
1984-85. The influence of the medium on neutrino oscilla-
tions is resonant in character.9'10 The dependence of the pa-
rameter sin2 26'm (Om is the mixing angle in the medium) on
the density p of the medium or the energy of the neutrinos
takes the form of a resonance peak, and maximum mixing
occurs for certain definite resonance densities pR and ener-
gies EX for which the oscillations occur with maximum
depth. At resonance, the vacuum oscillation length is equal
to the refraction length, and the effective masses of the ve

and VM become equal, i.e., the natural frequencies of the
weakly-coupled oscillators are equal. Qualitatively new ef-
fects arise9"1' in media in which the density is not constant.
The motion of the neutrinos is accompanied by a variation in
the depth of the oscillations and in their average. Practically
complete transformation of one type of neutrino into an-
other is possible in a wide range of energy and for small
mixing angles. In contrast to vacuum, in which complete
oscillations transformations are realized only for the maxi-
mum mixing angle 9 = 45°, in a medium this is possible even
for small angles 0. More than that, the degree of transforma-
tion increases with decreasing angle 6. We recall that mixing
is small in the case of quarks. Again, in contrast to vacuum,
and to a constant-density medium in which almost complete
vc -> v^ transformations are achieved at a given distance
only for definite discrete values of energy, strong transfor-
mations can occur in a variable-density medium in contin-
uous energy ranges. In the limiting case, in which the initial
density is much higher than the resonant value, a nonoscilla-
tory transformation is found to occur10 in which a neutrino
of one type transforms, as the density varies, into a neutrino
of another type with practically zero oscillation depth.

There are two conditions at the basis of strong oscilla-
tory transformations in matter, namely, (1) the resonance
condition9'10 and (2) the adiabatic or weakly nonadiabatic
condition.9""

These conditions essentially determine the oscillation
regime, and the magnitude and scale of the effects. The first
condition establishes the resonance density for a neutrino of
given energy, and strong transformations are realized
when the neutrinos cross a resonance layer with
P = (Pv. — &PR ) — (PR + &PR ) > where 2A/>R is the width
of the resonance. Most of the changes in the composition of
the neutrino beam occur precisely in the resonance layer.
Strong oscillatory transformations in the medium are there-
fore called resonance transformations (resonance oscilla-
tions). The second condition sets a limit on the rate of
change of density, dp/dr. Whenp varies sufficiently slowly,
the adiabatic regime is established, and the system (oscillat-
ing neutrinos) succeeds in following the changes inp(r). In
the mechanical example, propagation in a varying-density
medium corresponds to a change in the natural frequencies
of the oscillators (different for "ve" and "v^"). When these
frequencies are initially very different, and then their ratio
inverts sufficiently slowly (adiabatically), so that
co | >&)2^w, <&>2, the oscillations of an initially excited oscil-
lator are transferred (practically completely and irrevers-
ibly) to another oscillator that was initially at rest. This is
the analog of strong transformations of neutrinos in mat-
ter.21

The influence of the medium becomes appreciable only
when its thickness d is large, i.e., d £ d0 ~ mN /G F ~ 3.5 X 109
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g/cm2, where mN is the nucleon mass and GF the Fermi
constant. Consequently, these effects have applications in
neutrino geophysics, astrophysics, and cosmology. The con-
ditions for strong transformations are satisfied in wide
ranges of mixing angle, differences between squares of
masses, and neutrino energies in the Sun, the Earth, and
collapsing stars. The size of these intervals is determined by
the density difference across the medium and by the rate of
change of density, and can reach several orders of magni-
tude.

There is a range of values of Aw2 and sin2 20 in which
resonance oscillations of solar neutrinos give rise to a 2-4-
fold suppression of the rate of production of "Ar in the Cl-
Ar experiment. This can explain David's results in terms of
the standard solar model.9 It produces a definite distortion
of the shape of the neutrino energy spectrum, which also
modifies the predictions for other solar neutrino experi-
ments. The complete neutrino spectroscopy of the Sun for
which radiochemical experiments with different thresholds
and measurements of the shape of the spectrum by direct
methods are the prerequisites, offers the prospect of estab-
lishing whether resonance neutrino transformations do ac-
tually occur on the Sun. If they do occur, then we will be able
to determine Aw2 and sin2 29 as well. If they do not, a wide
interval of values of Am2 and sin2 29 will be excluded to the
neutrinos.9-10-12'13

If the results of the Davis experiments are explainable in
terms of resonance oscillations, then Am2 S 10~4 eV2 and, in
the case of a mass hierarchy, it follows that m(v e ) < 10~2

eV. This means that the mass of the electron neutrino lies
well outside the range of existing methods of measurement
(experiments with tritium and searches for neutrino-free
2/?-decays and neutrino oscillations). This, in turn, means
that the spectroscopy of solar neutrinos will be one of the
more important sources of experimental information not
only in astrophysics, but also in particle physics.

The significant point is that the Am2 resonance region
on the Sun overlaps the probable region of the predicted
seesaw mechanism that is capable of explaining the low val-
ue of the neutrino mass as compared with the masses of
charged leptons in the corresponding generations.73 The
scale of lepton number conservation breaking (the scale of
the Majorana masses of right-handed neutrino components)
is then found to be at the level of the grand unification scales
or supersymmetry breaking, or the scale of the invisible ax-
ion74 (see also Refs. 75,76).

The conditions for strong transformations in the cores
and shells of collapsing stars are satisfied in much wider in-
tervals of Aw2 and sin2 29 than for the Sun. Resonance oscil-
lations can lead to a significant change in the properties of
neutrino fluxes from gravitational collapses, and this must
be borne in mind in the interpretation of experimental
data." Measurements of the v-signal can be used to set strict
limits on the neutrino parameters and, if the oscillation ef-
fect becomes established, they should yield important infor-
mation on stellar structure and the dynamics of collapse.

Strong resonance transformations can also occur in the
Earth as it is crossed by neutrinos at relatively small zenith
angles. This has led to discussions of effects in neutrino
beams from accelerators as they cross the Earth,20 the distor-
tion of the flux of atmospheric neutrinos arriving from the
lower hemisphere of the Earth,lft-7*'79 the modulation of the

solar neutrino flux,16-47"49 and the variation in the v-signal
from gravitational collapses.16

One further application of resonance oscillations is to
primordial neutrinos in the early Universe.16-17

This review is devoted to a systematic presentation of
the theory of neutrino oscillations in matter and its applica-
tions, principally to solar neutrinos. In the case of the mixing
of the two types of neutrino, a detailed discussion is given of
the evolution equation (Sec. 2) and of the properties of oscil-
lations under different conditions (Sec. 3). This is followed
by a generalization of the theory to the case of three types of
neutrino and by a discussion of the separation of wave pack-
ets and of neutrino-absorption effects (Sec. 4). Section 5
describes resonance oscillations in the Sun and the Earth,
and summarizes the principal results of collapsing stars.

2. EVOLUTION EQUATIONS FOR NEUTRINOS IN MATTER

2.1. Wolfenstein equations4

2.1.1. Deviation.Consider a system of two mixed
neutrinos with given flavors,31 for example, vc and
v^:vf = (ve ,v^) . An arbitrary neutrino state v ( t ) can be
written as

| v (t)) = l|)e (t) \ Ve) + lj)ji (t) | Vj,), (2.1 )

where ^e and ̂  and the ve and VM wave functions. The
evolution equations for </v = (t^e, ^) in matter have the
following form in the ultrarelativistic limit:

yv ^
where A; is the neutrino momentum, / the unit matrix, M - the
square of the neutrino mass matrix in vacuum, and W the
matrix that represents the interaction of the neutrino with
the medium and constitutes the potential energy due to this
interaction. It is clear that (2.2) is a generalized Schrodinger
equation for a single particle of mass m:

4 = (E + W) ip + m.*(2k)-1 + W] i|),

where ve and vft are the weak-interaction eigenstates,41 so
that WK diagonal: W= diag( W^W^ ). The mixing in (2.2)
is due to the fact that M 2 is not diagonal. When the neutrino
energies are not too high, so that s< G p ' and the size of the
layer of matter is less than the absorption length, the neu-
trino interactions reduce to elastic forward scattering at zero
angle. The expressions for We and W^ can then be readily
obtained by considering the change in the wave function in a
time dt. This change is due to the appearance of an additional
wave that is the result of the addition of waves scattered by
particles in a layer dx~dt:

(a = e, ,1);
(2.3)

where/"(0) is the amplitude for the scattering of va by the
/th component of the medium (/ = e, p, n) and N,- is the
concentration of this component. It is well-known that the
elastic-scattering effect reduces to the appearance of a re-
fractive index where, in accordance with (2.3),4-2s

Another derivation is based on the fact that Wa is an
addition to the neutrino energy due to the interaction.l4-12 In
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other words, Wa = (<&\Hmt |<I>), where Hint is the interac-
tion Hamiltonian and 4> is a state that includes one neutrino
with momentum k and resting particles of the medium with
concentrations Nf. Very simple manipulation then again
leads to (2.3).

We note that physical consequences are unaffected by
the addition of an arbitrary matrix proportional to the unit
matrix, say g(t)I, to the evolution matrix on the right-hand
side of (2.2). (This is equivalent to the appearance of the
phase factor

in all wave functions; we emphasize that the phase difference
is significant for oscillations.) This property can be used to
obtain a more convenient form of the evolution equations.
(Henceforth, we shall therefore omit the first term in (2.2),
which contains the neutrino momentum.) This means that
physical consequences are determined by the^difference
between the diagonal elements of the matrices M2 and W,
and, in particular, by the difference

where A/(0) =/7(0) -ft(0). If the interactions with ve

and VM were the same, the medium would have no effect on
the oscillations. The medium must be asymmetric with re-
spect to the oscillating components.

For ve — VM and ve — vr oscillations, W is due to the
scattering of ve by electrons, as a consequence of charged
currents.4 Neither v^ nor VT have such interactions:

A/ (0) = Y2GF k,

and

(2.6)

where Yc is the number of electrons per nucleon. The asym-
metry of an ordinary medium with respect to ve and v^ is due
to the fact that it contains electrons but not muons.

The other condition for the influence of the medium is
its charge asymmetry. The amplitudes for scattering by par-
ticles and antiparticles have opposite signs, i.e.,
/ve (0) = —/« (0), so that, if the number of particles and
antiparticles is the same (Ne = N^), the resultant effect in
(2.5) is zero.

In vacuum, W = 0. The evolution matrix is proportion-
al to the square of the mass matrix, and its eigenstates are
identical with states of definite mass, v = (v,, v2).

The condition for the diagonalization of M 2 yields

(2.7)

where

and

cos9

cosO/

(2.8)

in which m, and m2 are the masses of v, and v2. The angle 6
in (2.7) relates states of specific flavor with states of specific
mass, and is called the vacuum mixing angle.

The equations for the v, (i = 1,2) in vacuum are found

to separate, nj) = (M2diag/2fc)t(>, and their solution is
jfr, = jfii(0)exp( — /£>,•), where the phases are ?>,(/)
= (m]/2k)t. Because of the mass difference, the v, have

different phase velocities. The distance \lv\ for which the
phase difference between the v, [A<p = (hm2/2k)t ] reaches
2vr is called the vacuum oscillation length:

lv = — 4jtft(Am!!)-1. (2.9)

The square of the mass matrix can be expressed in terms
of A/n2 and 9:

]\{2— Am2 cos 26 —sin 26
~~ 2 —sin 26 —cos 26 '

and the evolution equations (2.2) can be written in the form

(2.10)

where

1 r

1 .

(2.5)
and

#= -Am2(2/c)-'sin2e,

H = He - HV. = Am2 (2/b)-1 cos 29 + S A/. (2.11)

In a variable-density medium TV,. = TV, ( x ) , so that (2.10) is a
set of differential equations with variable coefficients (t~x/
c~x,c = 1).

We note that the neutrino and antineutrino scattering
amplitudes have different signs,/v(0) = — /v(0), so that
the term in H that describes the influence of the medium
changes sign when v is replaced with v. The evolution equa-
tions for v and v in matter are different, and the oscillation
picture is also different.

2.7.2. Refraction length.4 The natural length in matter
/0 is defined by

The additional phase difference A<p = 2ir between the vc and
v^ is acquired as a result of scattering within the path length
/0. This means that /„ defines the scale over which the influ-
ence of the medium becomes significant. Since A/(0) ~k, /„
is determined by the density of the medium and type of oscil-
lation, but is independent of the neutrino energy. In this
sense, /0 is a parameter of the medium. For the ve -> VM oscil-
lations, (2.6) shows that

Z0 = 2nmN (/2 GFpre)~' = ( 3'107 m(p(g/cm3)-2ye r'.
(2.13)

Hence, it follows that the thickness within which the effect of
the medium becomes appreciable is

d0 = p/0 ~ 2jtmN (Y2GF)~i (2.14)

and is essentially determined by the Fermi constant alone.
The elements of the evolution matrix (2.11) can now be

expressed in terms of /0:

A large thickness is not sufficient for a strong change in the
oscillation picture. According to (2.15), the size of the effect
depends on the ratio of /„ to /v. When /v < /0, there is little
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change in the properties of the oscillations. The medium has
a large effect when lv Z /„.

2.2. General properties of the evolution equations and their
solutions

2.2.7. Amplitudes and probabilities of oscillatory trans-
formations. For given initial conditions v(0)} = va (a = e,
fi), the wave functions ̂ e (t) and ^M (t ) determine the prob-
ability amplitudes for oscillatory transformations va -> ve ,
va -» VM in time f . Let us denote them by ̂ a) . Using the most
symmetric form of the evolution equations (2. 10) , for which
/7e = — 7/M = H/2, we can readily establish the following
relationship between the amplitudes:

Moreover, i/>(
e
a} must satisfy the normalization conditions

,!.«*> I2 =l (o = e, (2.17)

It then follows from (2.16) and (2.17) that the transforma-
tion probabilities satisfy the conditions
Pe^e = TVn- P^v. = -Pn-e, Pe~e + /Vn = 1,

(2.18)
where

The significance of (2.18) is that, as they cross a given layer
of the medium, the initial ve are transformed into VM to the
extent to which initial VM are transformed into ve. If the
oscillating neutrino fluxes in the generation region are equal,
they remain equal after they leave the medium. Under these
conditions, there is no observable effect.

2.2.2. Equations for the transformation probabilities. "•'"
In addition to P=\i/>e \

2, we now introduce 7? = Re(^*^e)
and 7 = ImCiA*^). The equations for P, R, and 7 then fol-
low9 directly from (2.10)5':

P= -HI,

7=-77fl + 77(p—1) , (2.19)

R = 777.

When electron neutrinos are created, the initial conditions,
are

P (0) =7 , R (0) = 7 (0) = 0. (2.20)

In general, |v(0)) = a\ve) + b v^ )and

P (0) = | a |2, 7? (0) = Re b*a, I (0) = Im b*a.

The functions P, R, and 7 satisfy the relation

p'i _j_ ffi _}_ J2 _ p^

which follows from their definition and the normalization
condition (2.17).

We can write (2.19) in the more compact form

dt
where

= 7?, 7, P -4-}, H = {-/7, 0, -77}.

(2.21)

(2.22)

Eliminating R and 7 from (2.19), we obtain the following
equation'' for P:

0. (2.23)

with initial conditions P(Q) = 1, 7J(0)=0, and
P(0) = — (\/2)H2 when ve is created. Formulations in
terms of the probabilities, given by (2.19), (2.21), and
(2.23), are convenient for specific numerical calculations
and for the analysis of the general properties of systems of
mixed neutrinos.

2.2.3. Analogies, (a) The analogy between mixed neu-
trinos and a system of weakly-coupled oscillators was de-
scribed in the Introduction and follows from (2.10). The
wave function if>e (t) corresponds to a combination of kinetic
energy (Ekin) and potential energy (Epot) of the oscillator
("ve"): & (t) ̂ ElQ + iE™ (and similarly for ̂  ). The
elements of the matrices Hf /2 and H^ /2 in the absence of
mixing are identical with the eigenfrequencies of the oscilla-
tors. The off-diagonal elements determine the coupling
between the oscillators.

The other analogy with a mechanical system of oscilla-
tors can be obtained by eliminating, say, ifi^ from (2.10).20

(b) The vector equation (2.21) is a compact version of
the equations for the probabilities, given by (2.29), and is
identical with the equation for a spin in a magnetic field. 18l2°
The components of £ are the average components of the spin
along the coordinate axes, and H is the magnetic field nor-
malized so that the magnetic moment of the particle is
H = 1/2. It is well-known that the solutions of (2.21) de-
scribe the precession of the spin (magnetic moment) about
the direction of the field, with angular velocity H. A change
in the density of the medium is equivalent to a change in the
component of the field H. It is thus clear that the evolution of
a system of mixed neutrinos in a medium with variable p is
equivalent to the precession of a spin in a varying magnetic
field. The probability of detecting a neutrino of the original
type is determined by the mean projection of the spin along
thez-axis: P = fz + (1/2) [see (2.22)].

(c) The direct analog is the set of neutral K-mesons in a
medium (with allowance for regeneration). (Of course, in
contrast to the neutrinos, absorption is significant in the case
of the K-mesons.) A set of K-mesons realizes a special case,
i.e., maximum mixing in vacuum. By virtue of the CPT-
theorem, B = 45°, and the oscillating components are the
particle and the antiparticle. In the case of the neutrino,
there is no such limitation, and mixing may turn out to be
arbitrarily small. As will be shown later, it is precisely for
small vacuum mixing that the most interesting effects are
found to arise.

( d ) The physical conditions incorporated in (2.10) can
be reproduced for polarized light propagating in optically
active media. The analogs of ve and VM are then the two
differ :nt polarizations of the wave.

Transitions between the eigenstates of the neutrino
H? 'iltonian in a medium are analogous to transitions
b>. ^en atomic levels under the influence of external pertur-
bation (for example, the scattering of charged particles by
atoms).24

We note that the effects described by the evolution
equations (2.10) essentially constitute the physics of oscilla-
tions that is unrelated to the quantum nature of the neutrino.
The common elements of all the analogies rLxribed so far
are: (1) two or possibly more degrees of f-°euum, (2) cou-
pling between them (mixing), and (3) a idative Ci inge in
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their energies (eigenfrequencies). The only quantum-me-
chanical effect that influences the oscillations is due to the
finite size of the neutrino wave packets and the separation of
these packets due to the difference between the group veloc-
ities of v, and v2 (their analogs in the medium). Of course,
there are no analogs of such processes in mechanical sys-
tems.

The above analogies are used in the interpretation of the
oscillation effects.

2.2.4. Flavor and mass oscillations. The equations for
the wave functions of neutrinos with pure flavors are given
by (2.10). They therefore determine flavor oscillations in a
neutrino beam. If we use (2.7), we can deduce from (2.10)
the equations for states with fixed v, and v-, masses

'17-
_
2k 0 2 (sin 29 -cos29

According to (30), v, and v2 will mix in a medium. Neutrino
scattering leads to v,«->v2 transitions. In addition to the fla-
vor oscillations, there are also mass oscillations. This does
not, of course, violate the law of conservation of energy: v,
and v2 in the medium are not the eigenstates of the Hamilto-
nian, and do not, therefore, have sharp energies.

Equations (2.20) and (2.24) have a similar structure.
The corresponding evolution matrices can be written in the
form

where

' cos 29 — sin 29 \
,—3^29 —cos 29 ) '

B = -£%- forveandv

and, conversely,

A __ A/re8

~4F» J

4*

We
2

9 for v, and v,.

When we pass from flavor oscillations to "mass oscilla-
tions," the medium and vacuum interchange their roles:
&m2/4k*-+We/2. In the former case, the medium is "diag-
onal" and mixing is due to the vacuum. The reverse situation
occurs in the second case: the vacuum is diagonal and mixing
is due to the medium.29

We note in this connection that vacuum (vacuum con-
tribution to the evolution matrix) and matter can be regard-
ed on an equal basis.29 Vacuum can be imagined as a second
medium with constant density p~knr/2k. This is com-
pletely consistent with the Higgs mechanism for mass gener-
ation. The evolution of mixed neutrinos in a medium is then
described as the propagation of ve and VM in two media in-
serted into one another, and is asymmetric with respect to ve

and v^. In principle, the vacuum contribution can be re-
placed by the contribution of a real medium, assuming the
neutrinos to be massless. However, this requires the intro-
duction of nondiagonal neutral currents, which is unnatural
from the point of view of gauge theories. Experimental limits
on such currents are discussed in Ref. 32.

2.2.5. Limits of validity. The derivation of the evolution
equations (2.10) was actually based on the following as-
sumptions:

1 I ) inelastic-scattering and absorption effects are negli-
gible

(2) the particles of the medium are at rest
(3) the scattering of neutrinos by the individual parti-

cles of the medium occurs independently, which corre-
sponds to the limit of geometric optics.

Inelastic interactions and motion of the target particles,
which are significant in the cores of collapsing stars and in
the early Universe, will be examined in Section 4. Here, we
confine our attention to assumption (3). For most particu-
lar applications, the condition for the validity of the geomet-
ric optics approximation, i.e., X ̂ r, is satisfied ( X is the neu-
trino wavelength and r the separation between the scattering
centers). The only exception may be the central regions of
collapsing stars, where the density reaches nuclear values
and X is of the order of r. However, even here, the corrections
turn out to be small because the refractive index approaches
unity. When X ^> r, the collective effect reduces to the polar-
izability of the medium, and the refractive index is given by
the Clausius-Mossotti formula n — 1 = («0 — 1)[1 + (2/
3) («,, — 1) ], where «„ is the refractive index without taking
polarizability into account. According to (2.4) and (2.3),
BO — \~2v2irGfp/kmN = XV//0, where /<> is the refraction
length (2.12), (2.14). For example, when Ev = 1 MeV and
p = 1012 g/cm3, we have «„ - 1 = 10~9.

3. THEORY OF NEUTRINO OSCILLATIONS IN MATTER

In this Section, we present the formalism of neutrino
oscillations in a medium in a form that is a generalization of
the theory of oscillations in vacuum, and is best suited to the
physics of the situation, since it enables us to describe the
effects of wave packet separation and allows a generalization
to an arbitrary number of neutrinos.

3.1. Mixing of neutrinos in matter

3.1.1. Eigenstates of neutrinos and the mixing angle. In
vacuum, the mixing vf = (ve, v^ } is determined relative to
states of fixed mass, v = (v, ,v2) , i.e., relative to the eigen-
states of the Hamiltonian or, in other words, states that dia-
gonalize the evolution matrix in vacuum. Similarly, in a me-
dium, the mixing of ve and VM is determined relative to
vm = (v l m , v2m), i.e., the eigenstates of the Hamiltonian in
the medium. The v(m diagonalize the evolution matrix H
with allowance for the interactions (2.10). If we define
S(8m) so that

COS 6m E r). (3.Dym'

we can write the diagonalization condition in the form

(0m) HSm (0m) = H*** = cliag (H\, (3.2)

The angle 6m establishes, according to (3.1), the connection
between eigenstates of the medium and states with particular
flavors. It is called the mixing angle in matter (Fig. 1). The.
elements //d of// dlag are the eigenvalues of the Hamiltonian,
i.e., energy levels of the neutrino system. It follows from
(3.2) and (2.10) that

sin2em = 7/(#2 + //r2)-1/2, ( 3 3 )in \ ' / y *j. -j /

H\ 2 = 4- I#e + #(l±(#2 + #2)i/2l• <3'4)

The energies fff enable us to introduce the effective masses
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FIG. 1. Graphical representation of mixing in vacuum and in matter.

of the v,m: M2 = IkH'f. The quantities vim, Om, and M} are
the analogs of v,, 9, and M ] in the medium. The evolution
matrix in matter is different from that in vacuum, so that
v,.m / v,., dm =£6, and A/jVm2. When interactions are taken
into account, mixing is found to change (Fig. 1). H and,
hence, v,m, 9m, and M ], depend on the density of the medi-
um and the neutrino energy. The transformations
v/m — v, ,9m—9, and M 2 — m2 occur as the density of the me-
dium tends to zero.

The most important properties of the system of mixed
neutrinos are: resonance, absence of level crossing, and the
change in the flavors of eigenstates with varying density.

3.1.2. Resonance.1*-1" The dependence of mixing param-
eters sin22#m on neutrino energy or the density of the medi-
um is found to exhibit a resonance. From (3.3) and the ex-
pressions for H and H, given by (2.15), it follows that

where

R = [(cos 2fl

W, 9),

sin2 2G]-

(3.5)

(3.6)

will be referred to as the resonance factor (Fig. 2). We recall
that /,.//„-/?£. When

lvlu> = cos 26 (3.7)

R reaches a maximum: /?,, = sin 2 26 and sin3 20m = 1.
Condition (3.7), for which mixing in the medium reaches its
maximum (9 = 45°), is called the resonance condition. The
half-width at half-height of the resonance is determined by
the vacuum mixing angle

A(W)==(W)R tan 29 = sin 20. (3.8)

The resonance peak becomes narrower as vacuum mixing is
reduced. As /,,//„ -»0, which corresponds, for example, to

0.5

FIG. 2. Resonance factor as a function of the density of matter for differ-
ent mixing angles in vacuum.

/o^O, we find that sin2 20m tends to the vacuum value
sin2 20(/Z-» 1). When |/v//0| -» oo, the factor R is strongly
suppressed: R ~ (lv //„) ~2 < 1, and the mixing parameter in
the medium is much smaller than the vacuum value:
sin226>m = sin226>(/0//v)2.

The density of the medium that satisfies the resonance
condition is called the resonance density. According to
(3.7), (2.9), and (2.14),

pR = _ mNAm2 • COSJ26 (2 )/ 2 GPE) ~ (3.9)

where/5R =peflr =pFe. We emphasize thatpR is inversely
proportional to the neutrino energy and is a slowly-varying
function of 9 when there is little vacuum mixing. The reso-
nance energy is defined similarly. In terms of /?R, the reso-
nance dependence (3.5), (3.6) assumes the form

sin2 26m = tan- 26- [ (1 - ppR ' )2 + tan2 20]' (3.10)

Along the/o scale, the half-width of the resonance is

ApR = pR tan 26. (3.11)

When a neutrino transforms into an antineutrino,
A/(0) and, hence, /,,//,, change sign. Consequently, in a giv-
en medium, the resonance occurs either for the neutrino or
the antineutrino, depending on the relative signs of cos 29,
Aw2, and A/(0). We shall consider that ve consists preferen-
tially of v,, i.e., i9<45°andcos 26>>0, so that the resonance
condition is satisfied for — Am2/A/(0) > 0. For the ve -> v^
and v^-.Ve oscillations, A/(0) = v 2 G F & > 0 (the correct
sign of A/was established by Langacker14), so that reso-
nance in the ve-channels occurs for m\ — m\ > 0, where ve

consists mainly of the lighter neutrino. This result is impor-
tant for the interpretation of solar neutrino experiments.

The resonance is due to the fact that mixed neutrinos
constitute a system of weakly-coupled oscillators. The oscil-
lator eigenfrequencies are equal at resonance: H = 0 or
Hs = H f l . For a homogeneous medium (p — const),
sin2 20m determines the oscillation depth (Sec. 3). At reso-
nance, sin2 26>m = 1, and the depth is a maximum. This cor-
responds to the fact that, when the eigenfrequencies are
equal, the oscillations of one of the oscillators are completely
transferred to another. There is also a different interpreta-
tion. When there is little mixing (and resonance occurs), the
resonance condition has the form /,, = /(), i.e., the eigenfre-
quency of the system, I//,., is equal to the frequency charac-
terizing the ambient medium, !//„ (Refs. 9 and 10).

Specific manifestations of resonance depend on the den-
sity distribution in the medium, the initial conditions, and so
on.

3.1.3. Level crossing. In the absence of mixing, the diag-
onal elements of the evolution matrix //c and H^ are the
energy levels of vc and v f t . In a medium, He and H^ are
linear functions of p. They cross at the point
p^pv. (#e —H,i), i.e., at the resonance density12'" (Fig. 3).
This picture is radically altered when mixing is introduced.
The states vl m and v2m, which are different from ve and v^,
have sharp energies Hd

{ and H\. The trajectories //?(/0)
and H\(p) do not cross (Fig. 3): mixing removes level
crossing. The energy difference is then
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fl
FIG. 3. Energy levels of two neutrinos plotted against density in the ab-
sence of mixing (broken lines) and with mixing taken into account (solid
lines).

resonance. We note that, as the density increases, HA
t(p)

transfers from the He trajectory to the#M trajectory, where-
as //j shows the reverse behavior, and the transition occurs
mostly in the resonance region.

3.1.4. Variation in the flavors of neutrino eigenstates in a
medium.9'*0 Equation (3.1) can be "inverted":

vm = 5i(6m)vf. (3.12)

This means that the mixing angle f?m in a medium deter-
mines the flavor, i.e., vc, v^ constitute the composition of the
eigenstates v,m. The angle 9m depends on the density, so that
the flavor of the vim varies with p. According to (3.3),
tan 28m = tan 20[ 1 - (p/pR) ] ~ ' . When p<pR, we have
9m = 0\ 9m increases monotonically with increasing density,
passing the value 9m = 45° at p = pR. When p^-pR, the an-
gle em approaches v/2: [(v/2) - 0m]^tan20(pR/2p).
Thus, as the density varies fTomp-^pR top^>pR, the mixing
angle in matter varies from 6 to ir/2 (Ref. 16) (Fig. 4). For
small 9, this means that the flavor of the eigenstates v,m
changes almost completely as p varies from 0 to p^>pR.
When a state vim has mostly the e-flavor for p ~ 0, it will be
dominated by the muon flavor for p^>pR (vim ~v^ ). The
variation in the flavor of the v/m can also be followed by
considering the dependence of energy levels on p (see
Fig. 3).

The above properties of mixing are consequences of the
density dependence of the Hamiltonian, and canjbe de-
scribed19 directly in terms of changes in the matrix H(p).

3.2. General properties of neutrino oscillations in matter

3.2.7. Definitions. Mixing angle.21-29 An arbitrary neu-
trino state \ v ( t ) ) can be expanded in terms of the neutrino
eigenfunctions in matter as follows:

|v(t)>=cos9a |vlm) + sin9ne-«<i' |v2m>; (3.13)

where 0a (t) is the angle defining the fraction of eigenstates
vim in a given state v(t), andtp = f>2 — gpt is the phase differ-

Sm 6 iv

FIG. 4. Flavor of the eigenstate v2m as a function of density.
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ence between the components vlm and v2m. The common
factor exp( — i<pt), which has no effect on physical conse-
quences, is omitted from (3.13). The coefficients in front of

m >, i.e.,

1>zm = sin 9ae-««> (3.14)

are the wave functions of v,m, normalized so that

As in vacuum, the monotonic increase in the phase dif-
ference cp with t leads to oscillations in the flavor of v).
Actually, in view of (3.12), the probability amplitude that
ve will be found in | v ( f ) ) is

<ve = cos 6a-cos 9m + sin 9a -sin

Hence, the probability of finding ve is

(3.15)

(3.16)

where the average (over the period) probability is

P (t) = cos2 6a-cos2 6m -f sin2 0,-sin2 9m, (3.17)

the oscillation depth is

A? = sin26a-sin29m (3.18)

and the quasiperiod is

rm = Zm = 2nq)-'. (3.19)

Vacuum oscillations are a special case of (3.15)-
(3.19), in which: (1) the impurity angle does not depend on
time and is equal to the mixing angle in vacuum 0a = 9, and
(2) the flavors of the eigenstates vim = v, do not depend on
time and are also determined by the angle 9. We note that
#a = 0 is a consequence of the fact that states with pure fla-
vors, ve or v^, are created in weak interactions.

The general case realized in a medium with variable p
corresponds to the fact that the admixture of eigenstates
(0a) in v(?) and the flavors of the eigenstates themselves are
also functions of time. This means that both the mean prob-
ability and the oscillation depth will vary in the medium.

The most complete description of oscillations is given in
terms of 9m,9!t, and <p. 6>a and cp relate a given state v to v,m;
0m, in turn, relates vim to ve and

In(3.15)-(3.19),0misa known function of density, so that
&a (/) and <p(t) must be determined before we can describe
the oscillations.

3.2.2. Graphical representation of v-oscilla-
tions.l6-2'.22'27-30 A graphical representation of the above re-
lationships provides not only an informative picture of v-
oscillations, but also enables us to reproduce the results of
the analytic solution.

With the eigenstates v,m we can associate an orthonor-
mal basis {vm} = {vlm, vfm,vl

2m} in which vfm and v^m

correspond to the real and imaginary parts of the wave func-
tion v2m. In this basis, the state |v ( f ) ) in (3 .13) i s described
by the unit vector v = {cos 9a, sin #a -cos <p, sin #a sin cp}. A
monotonic variation in cp is equivalent to the rotation of v
around vlm or, more precisely, to the motion of v over the
surface of a cone with axis along vlm and cone angle <9a (Fig.
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FIG. 5. Graphical representation of neutrino oscillations.

5). The quasiperiod of this rotation is /m = 2ir/<p. The states
ve and VM are associated with the flavor basis
{vf} = {vf,v*,vj,}, rotated relative to {vm} so that, in
{vm>, vf = {cos<9m, sin<9m,0}, v£ = {-sin0m,
cos dm, 0}, v^ = {0,0, / sin <9m }. The imaginary part of the
wave function of vm corresponds to the vector vj,
= {0,0, / cos &}. The component of v along a given axis vx

is equal to the probability amplitude of finding vx in v ( t ) . In
most cases, it is sufficient to consider the components of v
along the real plane.

In a varying-density medium, the evolution of a v-state
consists of two rotations, namely, rotation of v around vl m

(motion on a cone) with angular velocity ip, where the angle
of the cone may vary with time, and rotation of the cone itself
in the flavor basis. The position of the axis of the cone (v, m )
in {vf} is determined by the mixing angle 6m which, in turn,
depends on the density of the medium.

The graphical representation that we have described is
not unique. Another possibility is to use the analogy between
the oscillations and the motion of a spin in a magnetic
field I8-2(I (see Section 2.5). A neutrino state is described by
the vector £ that rotates around H on the surface of a cone or
angle 20a. The vector H is at an angle 2<9m to thez-axis. The
component fr determines directly the transition probability:
P = £t + (1/2).

3.2.3. Evolution of the neutrino eigenstates in mat-
ter_ 19,22,23 Tfe equations for 6a and cp. According to (3.1),
the wave functions of states with particular flavors, t/V, can
be expressed in terms of the wave functions of the eigenstates
as follows: i|if = Sm (e)i|)m,i|)m = (^,m,^2 i n) . Substituting
these in (2.10), and recalling (3.2), we obtain the evolution
equation for v,-m:

Vdiag AS
rr
"

(3.20)

The off-diagonal terms — idm are proportional to the rate of
change of density:

dp sin2 29
At ~~ 24pR

dp
~dT (3.21)

The transitions vlm <-»-v2m occur in an inhomogeneous medi-
um (dp/dt 7^0), 6>m 7^0, and the set of equations for the ei-
genstates does not separate.

Substituting the expressions for the wave functions
(3.14) in (3.20), we obtain the equation for the angle <9a and
the phase^ (Ref. 30):

(3.22)

where

(3.23)

(3.24)

The initial conditions for (3.22), (3.23) are determined by
the fact that the impurities vim at the time of neutrino gener-
ation are specified by the mixing angle 9m at that time. When
v (0 )=v e , we have v(0) = cos 6m ( 0 ) -v l m + sin Om (0)
• v2m. Comparing this expression with (3.13), we find that

= 0. (3.25)

Equations (3.22) and (3.23) have a simple geometric
interpretation, and can be deduced graphically. Infinitesi-
mal changes d#a occur only as a result of rotation of the cone
axis (v,m). Rotation of v over the surface of the cone does
not contribute to d#a. Both rotations participate in the phase
change: the first term on the right-hand side of (3.23) is the
contribution of the rotation of v over the cone, and the sec-
ond is the result of the rotation of the cone axis, i.e., vlm in
flavor space.

3.3. Neutrino oscillations under different conditions

The properties of oscillations are determined by the na-
ture of the density variation in the medium. A number of
situations can be distinguished, depending on the rate of
change of density with distance (dp/dt~dp/dx): (1) con-
stant density, (2) adiabatic regime (slow density variation),
(3) departure from adiabaticity in a resonance layer, and
(4) strong departure from adiabaticity and, as a limiting
case, a density discontinuity. In addition, we shall consider
oscillations for particular density distributions.

3.3. L Constant density. The mixing angle in matter is a
constant. Substituting Om = 0 in (3.22) and (3.23), we ob-
tain

, = 0 (3.26)

Hence, it follows that: (1) the impurities v,m in a given state
v ( t ) are determined at the initial time and remain constant
throughout subsequent evolution. In other words: for 6>m

= 0, the set of equations for vlm given by (3.20) separates,
v,m evolve independently, and there are no vlm«-»-v2m transi-
tions; (2) since dm = const, the flavors of the eigenstates do
not vary.

Conservation of the impurities v,m and of their flavors
means that the picture of the oscillations in the constant-
density medium is the same as in vacuum, and only the pa-
rameter values undergo a change. If the initial state v(0) is
the electron neutrino, then, according to (3.26) and (3.25),
0a = 61 = 6°m = 0m. Substituting this and <p from (3.26)
into the general relations given by (3.16)-(3.19), we find
the parameters of the v-oscillations:

= l--i-sin22em, Ap = sin2 26m = sin2 29-R,

(3.27)

These reproduce Wolfenstein's results.4 We note that P, Ap,
lm are constants, and the expressions for them are the same
as the vacuum expressions when 6m is replaced with Q.
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FIG. 6. Graphical representation of neutrino oscillations in constant-den-
sity matter (a) and in the adiabatic regime (b).

In the graphical representation of evolution, v is de-
scribed by the rotation of the vector v around v,m with con-
stant cone angle and frequency. The position of vlm remains
constant (Fig. 6).

The manifestations of resonance are as follows. Accord-
ing to (3.27), the oscillation depth is sin2 26m, i.e., it has a
resonance dependence on the density of the medium and on
neutrino energy. When/? = pR (6m = 45°), we have Af = 1,
and the depth is a maximum for arbitrarily small degree of
vacuum mixing.

When a medium of density p intercepts a neutrino beam
with a continuous energy spectrum, the neutrino oscillations
will be resonance-enhanced for energies E~ER (p), where
ER is the resonance energy. When E = ER, the density is a
maximum. In the energy interval (ER — A£ R )— (E R

+ A£R), where &.ER = £R tan 2(9, we have Ap> 1/2. At exit
from a layer of thickness d, the probability P(E) of finding a
neutrino of the initial type is an oscillating function of energy
with frequency determined by d (Fig. 7). The envelope of
P(E) is the same as the resonance curve Pem (E)
= sin220m(JE).

3.3.2. Adiabatic regime. Integrating with respect to <p in
(3.22), and using (3.23), we obtain the following expression
for the impurity angle30:

'cos q)' dq>'.

(3.28)

f ^r2- (l — -^r--2sin<p'-cot20.)
* md * trfi

Hence, when Qm/epA is small, we have 6>a = 0° + O(9m/
<p d ) . Similarly, it follows from (3.23) that^> = <p* + O(6m/

In the case of constant density [see (3.21)], Om ~dp/
dx, 6m =£ const. However, if the density varies slowly, so that

em«i>d, (3.29)

we may assume in the first (adiabatic) approximation that

ea«6°a, 9=4d (3.30)

[see also (3.23)]. The dynamics of the oscillations in the
adiabatic regime, determined by (3.30), is as follows.

(1) The impurities vim in a given state v are determined
at the initial time and are conserved throughout the evolu-
tion process. In other words, condition (3.29) signifies that
the off-diagonal elements of the evolution matrix for vlm

(3.20) and, hence, the vlm<->-v2m transitions can be neglect-
ed, and the vlm evolve independently. As in (3.20), this is
analogous to the situation in a constant-density medium.

(2) The flavors of the eigenstates v,m determined by 0m

vary in accordance with the density variation. This is the
basic difference as compared with a constant-density medi-
um.

The adiabatic condition is given by (3.29). It is particu-
larly critical in a resonance layer9 f o r p = p R - Actually, the
derivative 6m, which is proportional to the factor R in
(3.21), is a maximum at resonance:

1 dp
2ApR d( 2ArR '

where

(3.31)

(3.32)

is the spatial half-width of the resonance layer. On the other
hand, the quantity ip d = 2ir/lm is inversely proportional to
R ' /2, and the oscillation length /m is a maximum at reso-
nance. Substituting for q>R and 0* from (3.31) in (3.29),
we find that 2ArR Iir. Consequently, when

(3.33)

the parameter 9m /ip d, characterizing the precision of the
adiabatic approximation, is of the order of 0.1. The adiabatic
condition in the form given by (3.33)9'10 signifies that at
least one oscillation length fits into the resonance layer. This
is a most important condition because most of the changes in
the v-beam occur in the resonance layer.

The adiabatic condition (3.29) has a simple geometric
interpretation: the rotation of the vector v around vlm on the
surface of the cone should occur more rapidly than the rota-
tion of the vector vln) (i.e., of the cone itself) in flavor space.

Conservation of the impurities v,m when the flavors of
the v,m themselves change determines the properties of the
oscillations under adiabatic conditions. If the initial state is
the electron neutrino, then, account to (3.30) and (3.25),

O _ QO _ DOD a — °a — t)m,

<p=

(3.34)

FIG. 7. The v,-vf transformation probability as a function of energy in a
layer of constant-density matter of thickness d.

Substituting for 6>a from (3.34) into the general formulas of
Section 3.2, we obtain

P = cos2 6Vcos2 9m + sin2 9Vsin2 6m, (3.35)
,4P = sin 26V sin 2Bra.

These results can also be obtained graphically.' '•l6'22-33

Solution in the adiabatic regime constitutes (1) rotation of v
over the surface of the cone with constant cone angle 6 °m and

768 Sov. Phys. Usp. 30 (9), September 1987 S. P. Mikheev and A. Yu. Smirnov 768



(2) rotation of the cone itself, determined by the angle Qm

(Fig. 6).
The adiabatic solution (3.35) has the following proper-

(3.40)

ties. 11,16,22.23

(a) Universality. The angle 0m (?) is determined by the
density p(t) at time^ Hence, in accordance with (3.35), the
average probability P(t) and the oscillation depth Ap (t) are
determined by the instantaneous values of the density at the
initial (?0) and running (Z> instants of time, and do not de-
pend on the density distribution. P and Ap do not depend on
the frequency or phase of the oscillations. The dependence of
Pand Ap on time is confined top:

P ( t ) = P (p Av(t) = Ap (p (t)).

Universality can also be formulated in terms of the di-
mensionless variable1 U6 (see also Ref. 23)

n = (p-PH)(ApHr1, (3-36)

i.e., the distance from the point pR on the density scale (in
units of A/9R ). Using the definition given by (3.36), we have

« = — ( t a n 2 6 ) - ' , p = 0,

= 0 , p = PR,
= +00,

In terms of 77,

sin29m =

(3.37)

(3.38)

and the oscillation parameters (3.35) assume the form (Fig.
8)

~P(n, «0) = -

Av(n, Bo)=[(n

(3.39)

(b) Monotonic variation of /"with density. There is a
single-valued relationship between P and p. When the neu-
trinos are created in a layer with initial density pQ and then
enter regions with lower p, P decreases monotonically for
PO>/°R and increases monotonically for pu<pR with de-
creasing p. When the neutrinos are created in vacuum, and
propagate in a medium with increasing density, P decreases
from its vacuum value 1 — sin2 20/2 to sin2 0 asp-* oo.

(c) Nonoscillatory transition. ' 1J6-33 As the initial den-
sity increases («„-> oo ), the oscillation depth tends to zero:
Ap ~rt0~" ' and P(n) approaches the asymptotic relation:

0,26 -

FIG. 8. Mean probability/"(broken lines) and oscillation depth Ap (solid
lines) as functions of n for different initial conditions («„) in theadiabatic
regime.

(Fig. 8). This can be explained as follows. When nQ~
-> oo , the initial mixing angle 6 °m is close to ir/2 ( Fig. 4 ) , i.e.,
v(0) is practically identical with one of the eigenstates
v(0) ~ve =v2m, and adiabaticity ensures that v(t) ̂ v2m (t)
throughout subsequent evolution. There are then no oscilla-
tions in P(t), which are a measure of the noncoincidence
between v and v,m . The changes in the v-beam described by
( 3.40) are due to the change in the flavor of v2m . On the level
diagram (Fig. 3), a nonoscillatory transition corresponds to
motion over a particular trajectory: H* (p) or //2 (p)- The
cone angle 6>a is equal to 0 or -ir/2.

(d) Effect at exit. If the neutrinos are created in a dense
layer and leave the object for pf = 0, then, at exit, n = — I/
tan 20 and the oscillation parameters are given by

(3.41)

When there is little mixing in vacuum, and the initial densi-
ties are high, we have Pr -sin2 0 + ( l/4«o )• In the nonos-
cillatory limit («„> 1/4 sin2 6), we have ~P( = sin2 0 (Ref.
9). The final neutrino state then coincides with a v,-state
with a particular mass. The smaller the vacuum angle and
the greater the density pQ, the greater is the suppression of
the flux of the neutrinos of the original kind that can be
attained.

(e) Manifestations of resonance. For a fixed initial val-
ue «0, the oscillation depth reaches its maximum at reso-
nance (forp = /O R ) :

The oscillation depth is a maximum (Ap = 1) only in the
resonance layer, and only when the neutrino is generated for
p =/9R («0 = 0)- In all other cases, Ap (n = 0) < 1 and,
moreover, Ap is close to zero for a nonoscillatory transition.
This is a significant difference as compared with oscillations
in a homogeneous medium, and is due to the fact that the
oscillation depth is determined not only by the mixing angle
9m, but also by the impurity angle 0a, while, in a medium
with varying density, 9a=£0m. At resonance, P= 1/2 inde-
pendently of «,,. It is precisely in the resonance layer
(n = — 1 h i ) that the largest changes occur in the prop-
erties of the v-beam: A/> = P( — !,«„) — P(!,«,,)
= «0[2(«o + 1) ] " l / 2 , and this value of AP increases from
1/2 to l/i/2 as «() rises from 1 to «„-> oo.

The above results correspond to strict conservation of
impurities v,m, i.e., 0a = 0°. The first correction in &m/<f>
~9m/Hd to the adiabatic approximation can be written in
the following form in view of (3.28):

* ft
-5s-cos<p'dcp'. (3.42)

When the density variation in monotonic and sufficiently
slow, the oscillating factor under the integral sign ensures
that the correction increases with time and, for arbitrary tp,
can be estimated from |A0J < \0m/Hd\mM = |0m/ff d|R«).

3.3.3. Departure from adiabaticity. When (3.29) is not
satisfied, then vlm<->v2m transitions become significant. The
impurities vim in a given neutrino state v are not conserved:
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FIG. 9. Graphical representation of neutrino oscillations: a—departure
from adiabaticity in the resonance layer, b—density jump.

the impurity angle 0a changes, and this change depends on
the phase of the oscillations (Fig. 9). The phase itself is de-
termined not only by the difference between the energy lev-
els Hd, but also by variations in the impurities v,m .

The set of equations given by (3.22) and (3.23) is con-
veniently analyzed by transforming from time as the variable

dea

-2 sin ? •cot

(3.43)

(3.44)

where

-(4-)dp \ - l ApR
7R

The first term on the right-hand side of (3.44), namely,
g=4irx sin~3 26>m, is equal toHd/0m ^f>d/0m, i.e., accord-
ing to (3.29), it is a measure of the degree of departure from
the adiabatic state. If the derivative dp/drdoes not vary with
r too rapidly, g decreases as resonance is approached
(| sin 26m | -»1). At resonance, £ = 4-irxR, where

When the density variation is slow, the term g is domi-
nant. It corresponds to the first correction (3.42) and, when
it is taken into account, the phase change that accompanies
passage through the layer of the medium in which 6m varies
from 6 °m = 9m (p0) to 6m =6m(p) is given by

x (9m) d9m
sin' 29m

(3.46)

where <p0 is the initial phase. Substituting for tp in ( 3.43 ) , we
obtain the change in the cone angle:

= ea-6»a= (3.47)

If an average is taken over <p 0, then, according to (3.47),
the correction A0 a is zero. This is so because A«p in (3.46)
does not depend on 0a.

The adiabatic condition is particularly critical at reso-
nance, so that, as the density rate of change dp/dr varies, the
departure from the adiabatic conditions occurs first in the
resonance layer. One can then use the linear approximation
for the distributionp(r). Actually, for small mixing angles
0, the width of the resonance layer is small (Ap~p tan 20),
and virtually any functionp =p(r) can be replaced in it with
a linear function. Since it is precisely in the resonance layer

that the strongest transformations occur in v-beams, the de-
viation of p (r) from the linear form outside this layer has no
significant effect on the final results. In the case of a linear
density variation, the solution of the above system of equa-
tions for the wave functions i/>e and ̂  can be found in ana-
lytic form.24'25'37'49'80 Eliminating the wave function ^
from (2.10), we obtain a second-order differential equation
for if>e, which can be reduced to the Weber equation. The
solution of this takes the form of parabolic cylinder func-
tions.

Certain important conclusions follow directly from the
general form of (3.43) and (3.44), and from the known re-
sults for the analogs of mixed neutrinos. In the case of a
linear density variation dp/dr = (dp/dr)R = const, the pa-
rameter x in (3.44) is found to be a constant, x = XR, and
this defines the limit of adiabaticity in the resonance layer
(3.45). When the initial density is high,p0>pR, and the final
density is low, pf 4pR, then, for small mixing angles, the
limits of integration in (3.43) and (3.44) have the fixed val-
ues 0° =±7r/2 and d(

m = 0. The solution (<9a at exit) then
depends on the single parameter XR :

(3.48)

When the density varies exponentially, so that p(dp/dr) '
= H = const, and //> ArR ( the condition for the validity of
the linear approximation), it follows from (3.48) that 0a

and, hence, P, depend on 6, Am2, and E in the following
combination: tan 20//*~sin2 26(E/hm2)~l (this result
was obtained by A. Messiah in a different form'9). This pe-
culiar scaling is realized in the outer layers of the Sun.

Departure from adiabaticity in the resonance layer
means that, at resonance, the v2m*-*vlm transformations
take place, i.e., there are transitions between the energy lev-

(3.45) els H*, H2. In this respect, the neutrino problem is analo-
gous to the quantum-mechanical problem of transitions in
atoms in which an external perturbation produces level
crossing. Landau36 and Zener37 have obtained a solution for
a perturbation that is a linear function of time. The probabil-
ity of the 2-. 1 transition is PLZ = exp[ - (ir/2)kH /iH],
where A// and H are, respectively, the energy level differ-
ence and the matrix element describing the 2-» I transition
at the crossing point, i.e., at resonance. In the case of the
neutrino, (3.20) shows that iH = 20m, A# = (HA

2

-H*)R = Ha
R and (&H/iH)R = Hd/29m = 2pxR, i.e.,

the v2m -. vlm transition probability is

PLZ = exp (— n2x (3.49)

The correspondence with the neutrino problem is
achieved when the neutrinos are created far enough in den-
sity from/?R [ (p — pR )/ApR > I ]. When this is so, 6 °m = TT/
2, the cone angle is #a = ir/2 (cos #a =±0), and v(0) = ve

~ v2m. This means that the system occupies a particular lev-
el H f . Tlie probability of finding v, and v2 at exit is cos2 0a

= PLZ and sin2 #a = 1 — jPLZ, respectively. Substituting
these in 13.17), we obtain the average probability of the tran-
sition rc -»ve from the region of large p to the region with
p = 0 (Refs. 24, 25):

P = PLZ COS2 6 + (1 — PLZ) Sin2 9

= sin2 6 + PLZ cos 29. (3.50)
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In the adiabatic case (XR S 1), we have PLZ < 1 and (3.50)
reproduces the result of the nonoscillatory transition:
P~sin2 0. As XR decreases, the probability of the v2m -*v,m
transition increases and so does P. Departure from adiabati-
city reduces the depth of the resonance transformation.

The expressions given by (3.49) and (3.50) reflect the
asymptotic behavior. Whe ve is created near resonance, it
contains appreciable impurities, and v2m and vlm occupy
both levels. In that case, we must take into account not only
the v2m -.vlm, v2m transitions, but also the vlm ->v2m, vlm

transitions, i.e., interference between the corresponding ma-
trix elements.45 Moreover, the probability P1-2 is then no
longer equal to PLZ (3.49).

3.3.4. Strong departure from adiabaticity. Density jump.
If the density and, hence, Om very rapidly, so that 9m > <jp d

(x <£ 1), the first term on the right-hand side of (3.44) can be
neglected. Dividing (3.43) by (3.44), we obtain

d9a tan 2<9a
dtp ~ 2 tan q>

which provides us with a direct and unambiguous connec-
tion between changes in the cone angle and changes in the
phase. Integration of this with the initial values (pQ and 0 °
yields

sinq)= sin (p0-sin 20» (sin 29a)~'. (3.51)

Substituting this expression in (3.43), and integrating
between 6°m and O m ( t ) , we obtain

cos 20a = cos 20£ • cos 2 (6m — Q°m)

-cos<p0.sin2e£.sin2(em-e«,), (3.52)

where <p and #a do not explicitly depend on time, and the
result of the evolution process is determined exclusively by
the change in the mixing angle (0m —0%,). Essentially,
(3.51) and (3.52) describe the behavior of the neutrino state
for a jump-like change in the density at some time t °. When
<p0 = OorTT-, (3.51)land (3.52) show that?* = 0, 6»a (0) = 0°

In the graphical representation, this corresponds to an
instantaneous rotation of the axes {vm } in the flavor basis.
There is also a discontinuous change in the components of v,
which also rotates around the new position v,m. When
<p0 — 0 or IT, the jump leaves v unaltered in flavor space.
However, it is more convenient to consider the graphical
representation in terms of probability. Here, the vector g
corresponding to v remains unchanged at the time of the
jump for any initial condition.

4. GENERALIZATION OF THE THEORY OF NEUTRINO
OSCILLATIONS

In this Section, we present a generalization of the theory
due to 1 ) allowance for the finite length of wave packets, 2 )
the inclusion of a third type of neutrino, and 3 ) allowance for
absorption effects and motion of target particles. Oscilla-
tions to sterile states are discussed.

4.1. Separation of wave packets22'27'33

A rigorous description of oscillations must be based on
an examination of wave packets. In vacuum, a mixed neu-
trino state is a set of two (or more) such packets that corre-

spond to states with particular mass. In a medium, the mixed
neutrino is described by wave packets of eigenstates v,m. It is
precisely these v,m that have the particular phase and group
velocities.

The length of a packet (crp) depends on the conditions
under which the neutrinos are generated. If a neutrino is
created in the decay of a particle, TP is equal to the smallest of
the following three quantities: 1) the decay time T, 2) the
time between two inelastic collisions rCO|, and 3) 1/kT (Tis
the temperature of the medium) if r>rcol. When the neu-
trino is created in collisions, rp is determined by the time of
flight and the length of the packets representing the colliding
particles.

The wave packets in a mixed v-state have 1) different
phase velocities yph and 2) different group velocities. The
former leads to oscillations, and the latter results in a separa-
tion of the wave packets in space. The packets separate from
one another, their overlap decreases, and this changes the
picture of the neutrino oscillations.71 The "point" descrip-
tion of oscillations, discussed above, remains valid if the sep-
aration of the wave packets in space can be neglected.

The group velocities of the eigenstates in the medium
are given by

A

„ _ d£j ,. „

Using the explicit form of H*, and introducing the dimen-
sionless parameter n, we find from this that

(4.1)= Az>T cos 20. (- n + tg 20) («2 +

where Auv = y, — v2 = — A/n2/2A:2 is the group velocity
difference in vacuum. The dependence of Aym on density has
the following properties (Fig. 10). Asp increases, the differ-
ence Ai>m decreases monotonically. At resonance, Aym

= yv sin 20, and, at pR =pR/cos2 20, the difference Aym '
vanishes and then changes sign. The density pR , for which
the group velocities ylm and v2m are equal, is equal to the
resonance density for the mass oscillations (v^Vj). For
P^>PK , Aym ~ — Ayv cos 26, and, if the angle d is small, we
have Aym ~ — Auv, i-e., the separation of the packets is op-
posite to that in vacuum. In the resonance channel, the medi-
um suppresses the separation for any p: |Aym|<|Ayv .

In a medium with constant or slowly-varying density
( under adiabatic conditions ) , the states v,m evolve indepen-
dently, and the separation of wave packets over a path length
Lis

-2 -1 0 1 2 n

FIG. 10. Group velocity of neutrino eigenstates as a function of «:
v = ("im + "2m )/2; tan 20 = 0.4.
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(4.2)

Separation effects can be neglected when D(L)-^Tp. Be-
cause of the superposition principle, separation does not af-
fect average probabilities. Actually, if, in the neutrino state,
the fraction of vlm at a particular time is cos2 #a and the
fraction of v2m is sin2 Oa, the probability of finding vc

in the packets vlm and v2m is P^ = cos2 0a cos2 6m and
P2 = sin2 0a sin2 6m, respectively. Hence, it follows that Ps

=Pl+P2 = P, i.e., the total probability of finding ve,
summed over the packets, is equal to the average probability
in the case where the packets overlap completely.

The separation of packets changes the oscillation depth,
which is proportional to the degree of overlap of the packets.
If the time dependence of a packet is described by
exp( — t /TP), then

Ap — Apex.p (— \D\r~1), (4.3)

where A ° is the oscillation depth in the case of complete
overlap.

We note that, according to (4.1), the separation of
packets in media with p >pR and p <pR has different signs.
When the neutrino crosses the resonance layer, separation
effects before and after resonance cancel one another out,
and this may lead to a restoration of packet overlap.

4.2. Oscillations of three neutrinos in matter

Let us now consider the oscillations of ve, v , and VT on
the assumption that ra, < w2 < «?3 and that the degree of mix-
ing is small. This case is the most natural from the point of
view of quark-lepton symmetry (unification of quarks and
leptons) and the seesaw mechanism of neutrino mass gener-
ation.73

4.2.1. Mixing and resonances in a system of three neu-
trinos. The oscillation dynamicsjs now described by (2.2),
in which \br = (ib., ibu, 1/>T), M2 is a 3x3 matrix of the

" •". yV /** y"\

squares of the masses, and W= diag( We, W^, WT). The
neutrino eigenstates in the medium, v,m (/' = 1,2,3), and the
mixing are determined as in the case of two neutrinos. The
3x3 mixing matrix S that relates the eigenstate v,m to the
states with definite flavor (vf = SVm) depends on three an-
gles'" and satisfies the diagonalization condition

S+ r r f, rrdiag J:n~ / E/d ZT^ ET'-Kno ^^n = ujag ^J7|, n2, f*3f»

where H* (i = 1,2,3) are the energy levels in the three-
neutrino system. It is convenient to parametrize 5
with the aid of jthe Gell-Mann matrices39-40 Ua: S
= U7(if>m)Us(f>m)U2(com), where 4>m ={if>m, <pm, com}
are the mixing angles in the medium. When p = 0, the v,m
transform into the v,-states with masses m( (i^= 1,2,3), and
S becomes identical with50 = U7(ip)Us(<p)U2(6)), i.e., the
vacuum mixing matrix.

In the lowest-order perturbation theory, elastic interac-
tions of v^ and vr in an ordinary medium are identical, i.e.,
W^ = WT. The difference WT - We = W^ - We arises
from scattering of vc by electrons, due to charged currents
[see (3.26) ], so that W= diag( W, 0, 0).

In higher orders, there is a difference between W^ and
WT due to the difference between the muon and r-lepton
masses.41 For an electrically neutral medium

3ct

In ̂ - (Np+ A Na)] ,

(4.4)

where a = 1 / 1 3 1 , #w is the Weinberg angle, m r and m w are
the r-lepton and IP-boson masses, and Np and Nn are the
proton and neutron concentrations, respectively (see, how-
ever, Ref. 41). Comparison with (2.6) yields W^ - WT

= 5X 10 ~5 W. Hence, it follows that, first, the refraction
length for the/z — r channel, /gr, is greater than /§" by four
orders of magnitude, so that the thickness of the medium
within which interactions appreciably modify v^ — VT oscil-
lations is greater by four orders of magnitude than d0 =± m N /
GF . Second, W^ — WT and Wf — W^ have opposite signs.
Consequently, in the case of direct mass hierarchy, m3 > m2,
resonance will occur in the antineutrino channel v^ —VT.

The diagonal elements of H,Ha = (M2
a/2k) + Wa(p)

are linear functions of/7, and, when the degree of mixing 4> is
small, their crossing (Fig. 1 1 ) determines the resonances in
the three-neutrino system:

(4.5)

where PR, PR, andp£T (the corresponding resonance densi-
ties) are called the lower, higher, and ^r-resonance densi-
ties.

There are three resonances in the 3v-system.9> The
Ha(p) are the asymptotes for the energy levels H* as

For the mass hierarchy Af2<^Af
(4.5) are separated:

<Af2, the resonances

PR : WCM\ (W^-

(4.6)

The /- and A-resonances lie in the neutrino half-plane (Fig.
11) and the/zr-resonance in the antineutrino plane. (When
Wp — WT > 0, all three crossings occur for p > 0.)

Let us now introduce the intermediate densities/? andp'
so that PR 4,p <pR <^p' <p£T, assuming, for example, that
P = (PR?* ) ' / 2 and/?' = (p* \P%\) "2- The density intervals
0 — p,p — p',andp>p' are called the lower, higher, and/ur-
resonance regions.

The mixing angles <J>m depend on the density and, as p
varies, the eigenstate basis rotates in flavor space. General
expressions for <t>m (p) are obtained in Ref. 5. They become

FIG. 11. Energy levels in a three-neutrino system plotted against the den-
sity of matter.
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FIG. 12. Mixing in a three-neutrino system as a function of the
density of matter.

significantly simpler near resonances39 and in the first order
in the sines of the vacuum mixing angles.40'42 Figure 12 illus-
trates qualitatively the rotation of the basis {v,m } for small
vacuum mixing.43 As p increases from 0, {vm } rotates first
in a plane near (ve,v^ ) (the region of the/-resonance), then
in (ve,vr) (the region of the fc-resonance) and, finally, in
(v^ ,vr). For densities much greater than all the resonance
values, the eigenstates v,m have pure flavors and mixing is
suppressed.

4.2.2. v-oscillations in the adiabatic regime. In the case
of mass hierarchy, the adiabatic condition splits into the fol-
lowing three conditions for each of the resonances
separately:
<PmH«-l

) #? -#21 « i > ^
<^ 1. As in the 2v-case, the v,m propagate

independently, there are no vim<-+vjr transforma-
tions, and the v,m impurities in v(t ) are conserved. The ex-
pressions for the oscillators transformation probabilities
(Pap) are direct generalizations of the corresponding ex-
pressions in the 2v case:

'

where the average probability is

the oscillation depths are

•^pij = 3m (Po)ai ^m (Po)aj ^m (Pt)ip S~m (Pi)jfl>

and the phases are
t

-I id t ' .

/* and /4 p are functions of the instantaneous values of density
at the beginning (p0) and at the end ( p , ) of the evolution
process, and do not depend on the density distribution at
intermediate times. It follows that dynamics reduces to
"geomerty," i.e., to the determination of mixing for p = p0

andp = PI . The characteristics of the oscillations can be ob-
tained graphically.43'44 The initial state v(0) fixes in the ba-
sis {v,m} the positions VR of the vector v ( f ) for which it
crosses the "real" volume (Fig. 13). The components of
v(0 in this volume at an arbitrary time lie within the tetra-
gonal pyramid formed by the VR . The shape of the pyramid

remains unaltered in the course of neutrino evolution, but
the pyramid rotates in flavor space together with the basis
{vm}. The motion of v(r) is "frozen into" the basis {vm}.
When the initial state is identical with one of the eigenstates
v,m, the pyramid degenerates into a unit segment. This is
accompanied by a nonoscillatory transformation, in accor-
dance with the change in the flavor of the particular eigen-
state. The system remains in a particular energy level H f
during the evolution process. The graphical representation
can be used to draw the following conclusions.42'43'44

A) During successive crossing of the two resonance re-
gions, the maximum suppression of neutrinos of the original
type is proportional to the square of the sine of the mixing
angle in vacuum, /)~sin2<t>, and not to the fourth power of
this quantity, as one would expectI0>39 on the assumption of
factorization (i.e.,P = P^cP'e^c ~sin2 w sin2 <p = sin4 4>).
Actually, if ve is created at/?,, = p'', then in accordance with
Fig. 12, v(0) = ve ~v3m (pH) and, in the final state corre-
sponding to p = 0, v f ~v 3 m (0) = v3~vr +s^,v/J + svve,
i.e., ve is transformed mostly into V T , and the probability of
its remaining in the original state is Pe _ e ~s2.

B) The type of transition (final-state flavor) depends
on the initial density: vc created in the layer with p() = p'
transform mostly into V T , ve, whereas ve created at pH = p
transform into v f i .

C) The type of transition depends on the direction of
the change in density. ve transform into VT if the density
varies from p' to 0, and ve transform into v^ if the density
varies in the reverse direction (from 0 top') (see also Refs.
42,82,83).

4.2.3. Reduction of the three-particle to the two-particle
problem.l0-19-4-1-44 The problem becomes much more compli-

FIG. 13. Graphical determination of the parameters of v-oscillations of
the three-neutrino system in the adiabatic regime.
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cated in the general case, which includes departure from
adiabaticity. However, if the neutrino mass spectrum has a
hierarchy, then evolution in the 3v-system can be reduced to
evolution in the 2v-system in certain particular density inter-
vals. Accordingly, the 3v-transition can be expressed in
terms ofthe probabilities discussed above for 2v-transitions.

Reduction of the 3v-problem to the 2v-problem in a
given density interval Ap means that, in this particular inter-
val, we can introduce neutrino states vAp (combinations of
the original v f ) such that

vf=<9vAp, (4.7)

and the system of three equations can be separated relative to
these states. Two equations for two of the vAp remain cou-
pled, but the equation for the third v*p turns out to be inde-
pendent.

Strict decoupling ofthe system does not occur in a vary-
ing-density medium. The orignudevolution matrix //can be
reduced to (2X2^+ 1) blocks #—#b using p-dependent
0Ap, i.e., 0^ = 0^ ( p ( t ) } : H$p = O +HO. However, the
set of equations for vAp then acquires the additional term
— 0 +dO/dt, which prevents decoupling:

Hence, the condition for the approximate decoupling of vAp

is

where (H Ap) aa are the diagonal elements of the matrix Hb.
This condition is obviously identical with the adiabatic con-
dition for the vAp. We note in this connection that complete
decoupling ofthe system occurs in the adiabatic regime, and
vfp = v,m. Since the adiabatic condition is particulary criti-
cal at resonance, and becomes weaker with distance from the
resonance, there will be a decoupling from the neutrino for
which resonances lie outside the interval Ap and far enough
from it. Clearly, this situation occurs in the case of mass
hierarchy whenp^ <^p£ < \pn\-

If, for a given va, the resonances lie far outside the inter-
val Ap, the^yariation of 0Ap (p) with p within Ap will be
small.^and 0A/) can be regarded as a constant. The terms
ib+db /dt are then absent, but the 2 X 2 + 1 block structure
offf^p js reached only for a single value ofp, while, at other
points in Ap, it will be modified. The decoupling condition is
then that the modification in Ap must be small.

In the region of the lower resonance (p = 0 — p), the
degree of freedom associated mostly with the heaviest neu-
trino (v3) is decoupled:

where ^ and cp are the vacuum mixing angles. Using the
explicit form^of the evolution matrix for v1 = O'~ ' vf, i.e.,
H1 = b'+HO', we find39'"'44 that v( and v^ form a 2v-sys-
tem with the mixing angle, the difference between mass
squared, and the interaction matrix, respectively given by

6 = «, Am 2 «m^, W" = diag (Wcos2q>, 0), (4.9)

and the state v'T is decoupled.
In the region ofthe higher resonance (p — p'), the de-

gree of freedom associated preferentially with v2 is "frozen":

0" = ?7,(i|>). (4.10)

The states v* = ve and vh
T (v

h = U1 ~ ' vf ) from a 2v-system
with the parameters

e=q>, *, Wh = Aiag(W, 0), (4.11)

and the state v£ is decoupled.
The strongest modification of the 2 X 2 + 1 structure in

both cases occurs on the boundary between the regions for
p =p (Refs. 43 and 44).Jt can be^ characterized by addi-
tional angles of rotation AO' (^), AOh (p), which restore the
2 X 2 + 1 form of the matrix H *p :

sin 2Acp « sin 2q>-p (Pj,)"1 « sin 2<p-wi2m~1, (4.12)

sin 2Aw « sin 2co • p^p~' « sin 2w • m2m~l. ( 4. 1 3 )

The parameters sin 2A«p and sin 2A<a are the uncertainties in
the transition amplitudes due to the reduction of the 3v
problem to the 2v problem. In the case of mass hierarchy
(/M2</n3), A^>, A<y, the block structure modification, and,
hence, the above uncertainties, are all small, even for large
vacuum mixing angles.

We note in conclusion that the/ir-resonance lies in the
v-channel, and has practically no effect on the above /- and h-
resonances.

4.2.4. Probabilities of oscillatory transformations in the
3v-system. The probability amplitude for the oscillatory
transformation va — VQ as the neutrino beam crosses the
upper (p0 ~p ) and then the lower (p — p( ) resonances is

< (p,, (p, Po)]Tf/?Va, (4.14)

where Va and Vp are the vectors in flavor space {ve, v^, VT}
that determine the initial and final states: for ve, for exam-
ple, Fe = (1, 0, 0), and so on. The structure of (4.14) is as
follows.

A) The matrix f/J performs the decomposition ofthe
initial state into the v*-states that decouple the system in the
region ofthe A-resonance (4.10).

B) AH (p, p0) is the transformation matrix for the re-
gion ofthe A-resonance:

MO o

(4.15)

where A £(a) (pa,p) is the v* ->v^ transformation amplitude
for propagation between pa and p; the elements A ^(a>

(a, /? = e, r) are determined by the dynamics of the 2v-os-
cillations, and satisfy^ 2. 16).

C) The matrix t/J gives the decomposition ofthe v-
state on the boundary between the h- and /-resonances into
the states v'a that decouples the set of equations in the region
ofthe lower resonance [actually, it follows from (4.8) and
(4.10) thatv' = U}vh].

D) A1 (pf ,p) is the transformation matrix in the region
of the lower resonance:

(4.16)
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where/^(a) (a,/?=je,//) satisfy (2.16).
E) The matrix U7-U5 performs the decomposition of

the v-state at exit into the basis of states with definite flavors.
When the neutrino is created and propagates only in the

region of the lower (higher) resonance, we must substitute
•^ f~ ****• S^ -^
A = \(Ae = 1) in (4.14). When the neutrino propagates in
the direction of increasing density, the matrix between Va

and Vp in (4.14) must be transposed.
In accordance with (4. 14), the amplitude for the trans-

formation ve -> ve is

Ae_e = A™ (C\AW- W^O + A'M (44«e) + s^A™)

(4.17)
(sv s sin <p, cv scos <p, and_so on). Hence, the probability
averaged over the period is P = P ' P h + K, and

K = ( - 34 + 24) + 44 + s\c\Pl

where, for small q>,

(4.18)

s^1)); (4.19)

and P' = \A (M and P h = A f e ) |2 are the probabilities of
2v-transformations in the region ofthe /- and /2-resonances;
Rh — Re.(A H

e
M*A H

T
M) is the interference term that can be

expressed in terms of P h with theaid ofthe equations for the
probabilities: RH = {Ph/H) +H[Ph - (\/2)}}/H
(2.19). In the adiabatic regime: RH = -«0(«o + D~ 1 / 2

(n 2 +l ) -" 2 . When «>1, this yields Rk =
— t a n 2 ( f } ( \ — 2 P h ) / 2 . We also have the estimate
1/J* | <[/"•(! -P'1)]1 7 2. The factorized term in (4.18),
(4.19), i.e., P'Ph, corresponds to successive ve ->ve trans-
formations in the region ofthe higher and lower resonances.
The term that upsets the factorization of AT is due to the fact
that the states that decouple the set of equations are not the
same as the states with definite flavors. The complete ve -> ve

transformation is accomplished not only through ve at
p = p, but also through VT : ve -» VT -» ve. K contains the fac-
tor sin2 (p. When P' and P h are appreciably greater than
sin2 ep, the factorized term reproduces the total probability
with sufficient precision. When P' and/or PH are at the
level of maximum suppression, K is of the order of P' P h.
When both factors P' and Ph are small, K provides the
dominant contribution: P=sin2 <p.

Similarly, we can obtain the probabilities of v^ -»ve and
VT -» ve transformations: P^e = (1 - P') + 0(4 ),
pT^e =p'(i -Ph) + 0(4).43

4.3. Oscillations into sterile states

The picture ofthe oscillations vf <->-vs (/= e, JJ,,T) is the
same as in the case of oscillations in flavors. The difference
between them reduces to a change in the refraction length 70.
In general,

lQ = 2nmN(Y2GFp^]AiYi)~
i, (4.20)

i

where A, is the difference between the scattering amplitudes
ofthe oscillating neutrinos in an /-component medium (in
units of -/2~G P k ) and 7, is the number of particles of type ;'
per nucleon. The length /„ is determined by the sum 2,/4, 7,.
For the ve — v^ oscillations, Ac = 1 and 2,/4, 7, = 7e. A
sterile neutrino has no weak interactions, so that the differ-

ence A2, (/ -(0)N, ] arises from the scattering ofthe v( by all
the components ofthe medium, which is due to both charged
and neutral currents. For the ve <->-vs oscillations in an elec-
trically neutral medium ( Ye = Yp ),

16 we have

3^ = ̂ —5-^. (4.21)
i

Hence, for a medium consisting mostly of hydrogen
( Yn ^ Yp ), we have 2,^4, 7, = 7p = 7e , so that the ve - vs

and ve — v^ refraction lengths are equal (l^ = l^e). In an
isotopically neutral medium ( Yn = Yp ) , we have
2,-/4,. 7, = Ye/2, and I™ = 2/ge. For a medium consisting
mostly of neutrons, the sum 2,^4,- 7,- = — Yn/2 changes
sign, and /os may be much smaller than /ge.

The differences between the interactions of VM ( vr ) and
vs in an electrically neutral medium are due to v-scattering
by neutrons and are such that 2,^4, y, = — Yn /2. The con-
tributions of neutrons and protons then cancel out.

Let us now introduce the effective density

so that /0 = 277WN (V2~G fp
efr ) ~ 1. The analysis given above

for the ve — v^ oscillations can be extended to other channels
in terms of peS without change. The specificity of particular
channels is then represented by /9eff .

4.4. Effect of inelastic neutrino scattering and absorption on
oscillations44

The effects of inelastic interactions and of absorption in
the direct wave are described by the imaginary part of the
scattering amplitude Im/(0). Correspondingly, the diag-
onal elements of the evolution matrix acquire imaginary
parts:

where W\ =2, Im/?(0)#,-*-' and Wl is equal to the
quantity Wa, discussed earlier in (2.11). Using the optical
theorem, we obtain

where i is the square ofthe total energy in the center-of-mass
system. The difference W* — W* between the real parts
and the imaginary parts W\ determine the refraction length
/0 and the mean free path /a, respectively, and, since
W*- W*~W*, we find from (4.22) that l0/la^W1/
WR ^GpS/^TT2. Hence, it follows that the ratio of /0 to /a is
determined by the neutrino energy, and is independent ofthe
density ofthe medium, where, for low energies s^ G p ', the
refraction length is much smaller than the mean free path
(/0</a) . Since W[j^W^, absorption not only reduces the
intensity ofthe ve and VM waves, but also modifies the oscil-
lation picture. When absorption is taken into account, H is
diagonalized by the matrix S(dah) which has complex diag-
onal elements: cos 0m in S(9m) must be replaced with
cos 8ab exp(i<p). We then have tan 29ab_= tan 26m -cos <p,
and s in<p= — ( W\ — W\ )sin 26m/H. According to
(4.22), op is small at low energies: sin op^Gs/^ir2. In the
lowest order_in tp, the parameters of adiabatic oscillations
are P=e" A (e - A / i cos2 0° cos2 8m + eAA sin2 8°
Xsin2 <9m ),Ap = sin 26°m -sin 26m, where
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= - j (Wl
e + Wl) Af , &K=. - j (Wl - cos 29n

[cf. (3.35) ]. The average probability is thus a combination
of two exponentials, the oscillation depth decreases with
time more rapidly than Af, and universality is lost.

In specific applications (cores of collapsing stars or ear-
ly Universe), the oscillatory transformations must be taken
into account both in the incident and scattered waves. For
small s, when Im~l0<£l3, we use the following picture: 1) the
oscillatory transformations occur between two successive
inelastic collisions and 2) the coherence of the v-state is dis-
turbed in each such collision, and noncoherent neutrino
fluxes with fixed flavors, that were present in v at the point of
collision, begin to oscillate. The resultant oscillation effect is
determined by the ratio of the mean free path /a the width of
the resonance layer ArR =p(dp/dr)~' tan 20, and the di-
mensions of the object itself. (We shall assume that the adia-
batic condition is satisfied: /* < ArR.) When ArR </a and
RZla, strong oscillatory transformations occur in the v-
beam in the region of the resonance, and a small number of
collisions (RZla) will not lead to averaging.

When A/-R S/a (the density changes little over one
mean free path), strong oscillatory transformations will not
occur.

When R^>la, a large number of purely inelastic colli-
sions will lead to the averaging of the probability, P-> 1/2,
even for small mixing, and ArR -4 /a •

Suppose that a neutrino passing through a layer of mat-
ter undergoes k inelastic collisions, in which case the prob-
ability of an oscillatory transition in the layer is44

(4.23)

where h = n(n2 + 1) "2, n = (p — pR )/A/3R, and n0,nf,
and h, are the values of h at the point of creation of the
neutrino, at exit from the layer, and at the point of the /th
collision, respectively. 10) We note that h] < 1, so that Pk -> I/
2 as k— oo . If at least one of these collisions occurs in the
resonance layer, we have h = 0 and Pk = 1/2. The product
in (4.23) can be estimated as follows. Consider a layer near
the resonance layer of width ra <la. The probability of a
collision in this layer is Pcol < 1, i.e., neutrinos pass through
without collision. On the boundary of the layer, we have
n = «a =/za /pR A/-R , where /*a = pR /a . Since h increases
with distance from resonance ( we are assuming that the den-
sity varies monotonically with r ) , we can write

IJ n\ = H + (PR *. (4.24)

Hence, the effect of inelastic collisions is small if the number
of collisions is

ft <C ul (PR ArR)- (ArR)-2. (4.25)

Since ArR ~tan 29, (4.27) yields the upper bound for the
vacuum mixing angle. Averaging occurs for k > (/za /
pR ArR )2 and P~ 1/2.

4.5. Medium containing relativistic particles44

This situation occurs in the cores of collapsing stars and
in the early Universe. The effect of the medium is determined

by the product (f/k)N, where N is the particle number den-
sity. Transforming to the reference frame in which the target
particles are at rest, and using the Lorentz invariance of the
phase acquired by the waves along the path between two
given points (or the invariance of the oscillation depth), it
may be shown that

where v is the velocity, n ( v ) is the target-particle density,
and 8 is the angle between the direction of motion and the
neutrino momentum (k). The ratio//A: then has the same
form as for a target at rest. For an isotropic distribution of
target particles, the second term in (4.26) vanishes after in-
tegration with respect to 0 and "Nf"/k is found to be the
same as for v = 0. The quantity TV in the resulting expression
is the total particle-number density in the target in the labo-
ratory frame.

5. APPLICATIONS OF NEUTRINO OSCILLATIONS IN MATTER

Strong oscillatory neutrino transformations in mat-
ter1" occur when the following conditions are satisfied.

1) The resonance conditions: the neutrino must cross
the resonance layer.

2) The adiabaticity conditions, or the conditions for
weak departure from adiabaticity. Here, the density must
vary sufficiently slowly with distance.

In addition:
3) The thickness of the medium must be large enough.
4) The medium must be asymmetric with respect to the

oscillating components; the particle and antiparticle number
densities must be different.

5) The initial fluxes of oscillating neutrinos must be
different.

6) The number of inelastic collisions must be small.
In this type of medium, resonance and, hence, strong

transformations, occur either for the neutrino or the anti-
neutrino.

The conditions enumerated above are satisfied for par-
ticular values of neutrino parameters (Aw2, sin22#) in the
Sun, the Earth, the cores and envelopes of collapsing stars,
and the early Universe.

5.1. Oscillation suppression factors in the Sun

5.1.1. Physical conditions. The picture of v-oscillations
depends on 1) the density distribution in the medium, 2) the
distribution of neutrino sources, and 3) the conditions gov-
erning neutrino generation, i.e., the type of nuclear interac-
tion and the parameters of the medium at the point at which
the neutrinos are created. We shall use these parameters in
accordance with the standard solar model (SSM)46 (Fig.
14).

The maximum (central) density pc determines the up-
per boundary of the resonance region on the Lm2/E= \/y,
sin2 20 diagram [see (3.7)]:

cos 29
2-10-' eV2

cos 29
(5.1)

When 0 is small, this boundary is practically independent of
sin2 26> (Fig. 15). For a neutrino with Aw2/E> (h.m2/E)n,
there is no resonance. When A/nVE1 = (Aw2/7i)0, there is a
resonance at the center of the Sun. As h.nr/E decreases, the
resonance layer shifts from the center toward the surface.
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FIG. 14. a—Distribution of density p and of its gradient dp/dr
in the Sun, b—spectrum of solar neutrinos.

The boundary of the adiabatic region on the Am2/£,
sin226» diagram follows from (3.34), (3.32), and (3.33):

sin" 29 =2jt ^J_ dp \ 1
~ P

(5.2)cos 29 \ p ar / p=pR

where ^R = pR(km2/E, cos 29) (Fig. 15). In the wide
range p = 0.02-90 g/cm3, the distribution p(r) is exponen-
tial, p(dp/dr)~* =h = const, and (5.2) assumes the
simpler form

" i 1.8-10-"
sin2 28 =

(Am-/£)(eWMeV '

Equations (5.2) and (5.3) determine the lower boundary of
the adiabatic region. As Lnr/E decreases (for fixed 9), the
spatial width of the resonance layer, A/-R ~ h tan Id, remains
practically constant and the resonance oscillation length in-
creases, /* ~E/Aw2, so that (3.34) ceases to be valid.

In the region on the Am2//?, sin2 29 diagram below the
boundary (5.3), the conditions for the validity of the Lan-
dau-Zener result (3.49) and (3.50) are satisfied for
sin2 20 < 0.1 and AwV^S (Am2/£)0/2: the width of the
resonance layer is ArR ~h tan 26^h and we can use a linear
approximation for/? ( r ) . The transition probabilities now de-
pend on the combination (Aw2/.E)sin2 29 and increase with
distance from the boundary (5.3). The "triangle" formed by
(5.1), (5.3),and sin2 26 = 0.1-0.2 is the region of strongest
oscillatory transitions in the Sun.

The separation between the wave packets can be esti-
mated as follows: D(RQ)<\kvv\R& = (bm2/2E2)RQ

70'

l-s

"itf-7

I
70'

10'
7O' 70 ~ 70'

FIG. 15. Boundaries of resonance regions in the Sun, adiabaticity regions
(solid lines), and regions of partial (broken lines) and complete (dotted
line) separation of wave packets. The figure also shows the resonance
region in the Earth (dot-dash line).

[see (4.1) ]. Its effects are small when D(R&) is much less
than the length rp of the neutrino packet, for example,
D (/f0 )< 10 ~ ' rp. Hence, the upper boundary of the region
on the diagram of Fig. 15 in which the separation can be
neglected is

Am8 1 „ T> / c A )
=— — -Jf- 1L • \ ->-^ 1
E 5 ^0

The pp-neutrinos have rp of the order of the length of the
( 5 3 ) packets of colliding protons, rf ~T^\ rp1 is, in turn, deter-

mined by the time between collisions: r£=i>prp ~ l/<rp«p,
where np is the charged-particle density and crp the electro-

magnetic interaction cross section. Estimates121 yield r|Jp

~ 10~9-10~8 cm. For boron neutrinos: rp=crB, where rB

is the time between two collisions with the 8B nucleus: TP

=± 3 X 10~9-3 X 10~8 cm. The same result is obtained when
rp is estimated from the temperature dependence: rp ~ I/
A:r~2xlO"Kcm (Fig. 15).

The effects of wave-packet separation increase with in-
creasing Aw2/£. Let us determine the boundary of the Aw2,
sin22f? region in which complete separation occurs by de-
manding that the wave-packet overlap vanishes before the
resonance layer: D R ( L R ) = rp) where LR (Aw2/£',sin22^)
is the distance between the center of the Sun and the layer
with p = pR and D is defined by (4.2) and (4.1) (Fig. 15).
According to Fig. 15, wave-packet separation is either com-
plete or partial on most of the region in which there is a
strong resonance effect on the Sun, and the separation is
greater for pp-neutrinos than for boron neutrinos.22

5.1.2. Suppression factors. The oscillatory suppression
factor Ps (E,A.m2, sin2 29) is defined by

F (E) = Ps (E) F° (E), (5.5)

where F° and Fare the vc fluxes at exit from the Sun, without
and with oscillations, respectively. Because of differences
between source distributions in space, the factors P^(E) are
different for v^a) neutrinos from different reactions (a = pp,
Be, B,...). The finite size of the region in which the neutrinos
are generated and the finite energy resolution of equipment
lead to the averaging of the oscillations over their period,
and Ps (E) in (4.1) represents the average oscillatory effect.

For a point source of ve at the center of the Sun, the
suppression factor is equal to the average probability of find-
ing ve at exit (see Section 3):Ps = Pe^e (£YAw2, sin2 29).
Conditions (5.2) and (5.3) for fixed 9 then determine the
boundary of the adiabatic region iny = £YAw2:
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The adiabatic approximation is valid fory <ya and it follows
from (3.41 )33 that

(5.7)

where>>0 [see (5.1)] is equal to the quantity E/Lm2 for
which the resonance condition is satisfied at the point of
creation of the neutrinos (in this case, at the center of the
Sun). Foiy>y^, the adiabatic condition is violated and, for
small mixing angles [sin2 2<9=:(3xl(r3-lCr ' ) ] , we can
use the Landau-Zener result.24'25 In accordance with (3.50)
and (3.47),

(5'8)

where h = p ( d p / d r ) ~ l . This formula is not valid at very
small angles such that sin

220<10~3 and for j>a =o>0 for
which the creation of the neutrinos occurs near resonance.

The dependence of the suppression factor (5.7), (5.8)
on y has the bath-tub shape (Fig. 16a), and the entire inter-
val of y corresponding to a strong effect can be divided into
three parts.

A. The region in which the resonance is turned on
(adiabatic edge of the bath-tub). When>><>>0, the resonance

vwvvvwvwwvwvvwwww

0.2

FIG. 16. a—Suppression factor for the ve flux in the Sun as a function of
E/km2; b-f—neutrino oscillations with different E/Am2 (the separation
of packets is not taken into account and the oscillation period has been
increased for the sake of clarity).

density pR (y) is much greater than the central density pc,
the effect of the medium is negligible, the oscillation picture
is identical with the vacuum picture, and P = 1 — sin2 20 /2
(Fig. 16b). As y approaches y0, pR -»p0, and the medium
begins to amplify the oscillations, so that their depth in-
creases and P at exit falls, y = y0 is the point at which reso-
nance is turned on:pR = p0 corresponds to the generation of
the neutrinos at resonance, the oscillations in the resonance
layer occur with maximum depth, and P(y0) = 1/2 (Fig.
16c). For y>y0, pR <p0 corresponds to the crossing of the
resonance layer by the neutrinos. As y increases, this layer
shifts toward the surface of the Sun, the oscillation depth
decreases, and P also decreases (Fig. 16d). The width of
region A is proportional to sin 20.

B. Region of maximum of suppression (bottom of the
bath-tub). For values ofy for which 4«o [/>R (j) ] >sin~2 9,
the conditions for nonoscillatory transition are satisfied, and
P(y) ^sin26» - [4«2(^)]-'=sin2 0 (Fig. 16e).

C. The region of departure from adiabaticity (y>yB).
The oscillations are now irregular (Fig. 16f) and P(y) in-
creases in accordance with (5.8).

At the vacuum mixing angle decreases, the left-hand
edge of the bath-tub does not change its position, but be-
comes steeper. The bottom descends and the right-hand edge
shifts toward lower y.yz ~sin2 26, so that the bath-tubs be-
come narrower. The shape of the right-hand edge does not
change between wide limits of sin2 20 (Fig. 17).

Averaging of the suppression factors over the spatial
distribution of neutrino sources reduces the slope of the left-
hand (adiabatic) edge of the bath-tub, and the region in
which the resonance is turned on expands (see Fig. 17). The
reduced slope of the edge is due to the fact that, for given

0.5-

, MeV/eV2

FIG. 17. Suppression factor P in the Sun as a function of E/km2 for
different mixing angles in vacuum with allowance for the finite dimen-
sions of the neutrino sources: pp—solid lines, 7Be—broken lines, "B—dot-
dash lines. The shaded region shows ve regeneration in the Earth, aver-
aged over one year.
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y = E /Am2, the adiabatic suppression is weaker for ve gen-
erated forp<pc as compared with ve created at the center
(p=pc): Ps[y,y0(p')]>Ps[y>yo(Pc')]- The maximum
averaging effect occurs for the pp-neutrinos for which the
dimensions of the generation region are a maximum. The
shape of the right-hand edge of the bath-tub for
sin22#>3X 10~3 remains practically constant. At smaller
angles, for which the resonance layer lies near the center,
double nonadiabatic crossing of the resonance layer must be
taken into account.25

5.1.3. Suppression factors in the case of three-neutrino
oscillations. When the mass spectrum has a hierarchy, the
suppression factors for the 3v-transitions can be expressed in
terms of P' and P h, i.e., the suppression factors for 2v-
transitions over the upper and lower resonance regions
(4.18), (4.19). Ph and P1 are practicaly equal to the 2v-
factors P[(E/k.m2), sin220] discussed above. The differ-
ence between P h, P' and P is due to the presence of the
boundary p between the resonances, and is negligible in the
case of a mass hierarchy.43'44 According to (4.9) and (4.1),

s2(f-m;\ sin2 2w),

-3\ sin22(p) E>E,

where E is defined by the condition p (£) = pc. When E <E,
the upper resonance region is absent, so that P H = 1.

The total suppression factor is a superposition of P'
and Ph. The "bath-tub" Ph (E) is shifted relative to the
"bath-tub" P' (E) to the right, so that its left-hand edge lies
at an energy greater by the factor m2cos2 tp /m\ than the left
edge of P' (Ref. 10). Depending on the magnitude of m\
cos2 (p /m\, there are two qualitatively different mutual dis-
positions of/3' and P h. They are determined by the ratio of
the energy at which the A-resonance is turned on
(E o = y0m\ ) and the energy E 'a corresponding to adiabati-
city at /-resonance. 1) E(>EQ. The bath-tub Ph is in-
scribed ' 3 > into P' or significantly overlaps P'. 2) E 'a < E £.
The bath-tubs are completely separated and the bottom of
Ph does not overlap the bottom of P' (see Fig. 18b).

In accordance with the general analysis given in Sec.
4.2, the maximum difference between P3 (4.18), (4.19) and
Pl P h occurs in the region of maximum suppression of both

P-factors (Fig. 18a). The product P'Ph satisfactorily re-
produces P 3 whenever P ' and P h are much greater than
their minimal values sin2 o> and sin2 (p. When E(4E%, there

70"

FIG. 18. Suppression factors in the case of three-neutrino oscillations
(broken line:/3'/"•).

is practically no overlap between the bath-tubs, and P3 is
equal to either P ' or P h in the corresponding energy inter-
vals.

5.1.4. Oscillations into sterile neutrinos. The ratio of ef-
fective densities /9es and/?6'1 is determined by MHe. i-e., by
the mass abundance of 4He:

Pes

pen
1-

2 (2-./IfHe)

At the center of the Sun, M He =^0.65, so thatp"//^" =^0.76.
The distribution pes (d/o'Vd/-)"1 is practically the same as
the corresponding distribution for the e-p oscillations. It fol-
lows that the only difference between the suppression bath-
tubs for ve — vs transitions and the ve — v^ bath-tubs is that
their left-hand edges (determined by the density at the cen-
ter) are shifted toward higher energies by the factor

5.2. Neutrino oscillations in the Earth 4'8'20'16

5.2.7. Physical conditions. The density distribution con-
sists of several layers with relatively slow variations of den-
sity p, separated by a discontinuity (Fig. 19). In the first
approximation, there are two intervals: 1 ) p = 3-6 g/cm3

(the mantle) and 2) p = 9-12 g/cm3 or (depending on the
model) 9-19 g/cm3 (the core).

The material of the Earth can be regarded, with good
precision, as isotopically neutral, so that 7e = 1/2 and the
effective density for the ve-vM and ve — vr oscillations is
pig =p/2. In accordance with this distribution (see Fig.
19), the region in which the resonance effect occurs [see
(5.1)] is (Am2/£)res=2xl(r7-Kr6 eV2/MeV. This is
much narrower than for the Sun and, in contrast to the Sun,
it has a lower limit and lies inside the solar resonance region
(Fig. 16). When sin22f?<0.2, resonances in the core and
mantle of the Earth are found to be separated:
A core ̂  core m
'VR Vmin —Pmm-

The thickness of the material of the Earth is of the order
of mN/GF, so that the dimensions of the layers limit the
regions Aw2, sin220 of the strong effect. For the mean den-
sity of the core p — 11 g/cm3, the resonance oscillation
length is /* = 3.5 X 103 km/sin 20. When sin 2<9<0.25, half
this length becomes greater than the diameter of the core and
oscillations with maximum depth do not succeed in develop-
ing. There is an approximately similar limitation on sin 20
for resonance in the mantle.141 Since /* ~R , and the di-

12.
m

O

,
R, W km

FIG. 19. Density distribution in the Earth for two different models.
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mensions of the neutrino sources (atmosphere, etc.) are rel-
atively small, averaging over the oscillation period does not
occur in the Earth. The strong oscillation effect is due to the
fact that, in this case, about half the resonance length /* fits
into the thickness of the Earth. The effect is sensitive to the
density distribution.20

5.2.2. Suppression factors in the Earth. "The basic prop-
erties of the graphs of Pe_e (£YAm2, sin2 26) = />„_„ (E/
Am2, sin2 26) are as follows (Fig. 20):

A) The suppression factors have two well-defined
peaks that correspond to resonances in the mantle and core.
The density distribution can be represented very approxi-
mately by a set of constant-density layers. The resultant sup-
pression fact is then the superposition of two resonance en-
velopes, into which the oscillating curves are inscribed (see
Section 3.3.1). The large width of the left-hand peak is due to
the considerable density spread in the core.

B) As the mixing angle decreases, the oscillation
lengths increase and, when sin2 26 < 0.06, oscillations of
maximum depth do not succeed in developing, i.e., P does
not reach 0.

C) As the zenith angle i/> increases, the thickness of the
medium traversed in the core by the neutrinos decreases rap-
idly and vanishes for cos ^<0.84. In the mantle, this thick-
ness initially increases, reaching its maximum for
cos ^=0.84, and then decreases. Accordingly, as ̂ increases
(fixed B), the peak corresponding to the core initially disap-

pears, and then the peak corresponding to the mantle disap-
pears.

For cosmic neutrinos (solar neutrinos or neutrinos
from gravitational collapses), a significant separation of the
wave packets is found to occur, so that states of definite mass
fall on the Earth and evolve independently within it.
The ve, VM (vs) fluxes are determined by the v2-*ve transi-
tion probability: P2e (for v, ̂ ve; Ple = 1 — P2e). The dif-
ferences between P2e and P^ _ e can be followed by consider-
ing the example of constant density (see also Ref. 48). The
oscillation depth is equal to the difference between
A ™x = sin2 (26m - 6) and A ™x = sin2 0, where, for
ve ++VP, the corresponding quantities are sin2 26 and 0 (Fig.
7). The maximum depth A™*=\ is reached for <Tax

- (7T-/4) + ( 6 / 2 ) , and the maximum A ""(£) is shifted
relative to the resonance energy of the ve ++v^ channel: £max

= £ R (1 + tan0-tan20).Forboth.E<£'R and£>£R,we
have A ™ax^ sin2 6, i.e.,_the oscillation depth is zero and the
average probability is P = sin2 6. For small mixing angles,
P, ~Pr 2e —J v-e •

The range in which the resonance effect occurs in the
Earth does not exceed one order in £/Am2, so that, in the
case of three neutrinos and a mass hierarchy, the suppression
factors for upper and lower resonances does not overlap.

For oscillations into sterile states, peff(ve — vs)
= peff(ve — Vp )/2 and, correspondingly, the resonance

length of the ve -> vs oscillations is greater by a factor of two

FIG. 20. Suppression factor for the Earth as a function of E /
Am2 for different values of the mixing angle in vacuum and
different zenith angles.

ro'
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than that for the ve — VM oscillations. This means that the
conditions for strong oscillatory transitions are satisfied less
well for the ve -»vs process. The suppression peaks are shift-
ed relative to the vs -> VM peaks by a factor of two, and the
two peaks are appreciable only for large d and cos ̂ ~ 1.

5.3. Neutrino oscillations in matter and the spectroscopy of
solar neutrinos

5.3.1. Solar neutrino fluxes in installations. Regenera-
tion of ve in the Earth. The resultant oscillation effect pro-
duced along the path between the point at which the neu-
trinos are created and the point at which the neutrino
detector is located consists of effects produced in the solar
material itself and in the material of the Earth (at night,
when the Sun is below the horizon). The latter effect pro-
duces diurnal and seasonal modulation of the neutrino
flux.16

A noncoherent flux of neutrinos with definite masses
(v, and v2) is incident on the Earth's surface. Loss of coher-
ence occurs because of the separation of the v, and v, wave
packets in the Sun and along the path between the Sun and
Earth, and also as a consequence of averaging at the point of
neutrino generation. The fraction of the v2 in this flux is
k2 = (cos2 6 — Ps/cos 26, where Ps is the suppression fac-
tor in the Sun. The resultant suppression factor can be writ-
ten as P— &2P2e + (1 — &2).Pie or

= (Ps+P2e-2P2ePs-sin2e)(cose)->. (5.9)

where P le and P2e are the probabilities of transitions in the
Earth. A large portion of the region of the strong effect in the
Earth (Fig. 20) lies inside the region of maximum suppres-
sion on the Sun whenever Ps = sin2 6. At the same time,

P = P, (5.10)

i.e., the neutrino state at exit from the Sun is the same as v2.
Outside the region of the strong effect in the Earth, we have
P = PS.

Theve flux is regenerated in the Earth.16-29'31-48 Some of
the VM (or VT, vs) formed as a result of the ve -» VM transfor-
mation on the Sun return to the original ve state. The total
suppression factor increases (see Fig. 18). Regeneration oc-
curs at night, and its average effect is a maximum in the

winter and a minimum in the summer.47-48-49

5.3.2. "Solutions" of the solar neutrino problem. The
rate at which the37Ar atoms are created in the Cl-Ar experi-
ment (Q "T

p), averaged over 70 series of measurements,50 is
lower by a factor of 2-4 than the expected rate of production
under the influence of the ve in the standard solar model:51

<?A*P

This discrepancy constitutes the solar neutrino problem, an
dean be explained in terms of resonance oscillations in the
Sun and Earth. The suppression of the rate of production of
37Ar as a result of oscillations is described by

flA
h
r(sin229,

4- J d£(TAr(£)2nPa(£, Am2' sin2 29),
(5.11)

where

N = f
JE.^

a = Be, B, pp, pep, O, and N and aAr is the cross section for
the v"Cl — e ~37 Ar reaction. The quantity R Ar is determined
by multiplying the spectrum by the suppression factor Pa

(suppression bath-tub). The relative position of/"0 and Pa

on the E scale depends on Am2, so that, as A/n2 decreases, the
bath-tubs shift to the left relative to the spectrum. The size of
the bath-tub for sin2 26 Z 0.01 is much larger than the ob-
served part of the spectrum, and the suppression effect
amounts to 10~2 over a wide range of energies (Figs. 17 and
18). This means that, for a given sin22f9, we can choose a
mutual disposition of F° and Pa (i.e., the magnitude of Aw2)
for which R * = 1/2-1/4. The values of sin2 20 and Aw2,
for which a 2-4-fold suppression of the rate of production of
37Ar is observed, are referred to as "solutions" of the solar
neutrino problem. The equation R*r(sin2 29, Aw2)
= a = const defines lines of equal suppression (isosnu

line15') on the sin2 26, Am2 plane9'10'45 (Fig. 21). The solu-
tions lie between the isosnu lines a = 1/2 and a = 1/4.

Depending on the neutrino oscillation regime and the
nature of the distortion of the energy spectrum, ;t is possible
to identify a number of types of "solution."

10~

7S~8
/- Quasivacuum
2 Regenerative

FIG. 21. a—Lines of equal suppression (isosnu lines) of
the rate of production of "Ar in the Cl-Ar experiment on
the Am-, sin- 19 plane. The numbers shown against the
curves are the values of the suppression factors. Broken
lines bound the regions of strong diurnal modulation of
QAr [the numbers shown against the curves represent the
ratio QAr (night)/QAr (day)]. The dotted curve defines
the region in which appreciable diurnal modulation of
Qa, is expected in the Ga-Ge experiment, b—Regions of
different "solutions" of the solar neutrino problem.
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0.5-

FIG. 22. Mutual disposition of suppression "bathtubs" and of the spec-
trum of solar neutrinos in different solutions (distortion of the ve -spec-
trum), a: 1—adiabatic "solution," 2—nonadiabatic "solution"; b: 1—
mixed in the 2v-case, 2—quasivacuum; c: regenerative; d—mixed in the
3v-case.

A) Adiabatic solution.9'10'15-12-23 Am2 = 8xl(r15

-12 X 10~5 eV2, sin2 20 = 0.003-0.3 The neutrino spectrum
lies on the left edge of the bath-tub (Fig. 22a), its high ener-
gy part is suppressed, the pp-neutrino flux varies very little,
and neutrinos in the central part of the spectrum undergo
intermediate suppression. Oscillations occur in the adiabatic
regime.

B) Nonadiabatic solution.9-10-15'17-18-19-24-26 Aw2 = 1.5
XlO~8-4.5xlO-8 eV2/sin226>, sin2 26*-0.004-0.4. The
spectrum lies on the right edge of the bath-tub (Fig. 22a); its
low energy part is suppressed. The B, Be, etc., neutrinos that
contribute to the production of 37Ar propagate in the nona-
diabatic state; the pp-neutrinos enter the region of maximum
suppression and their flux is reduced by the factor sin2 6.
When sin2 20=0.3, some of the pp-neutrinos are found in
the region corresponding to the resonance effect in the Earth
and experience diurnal and seasonal modulation.

C) "Mixed" solution. Sin2 20<0.004,
Aw2 = 7 X 10~6-8 X 10~5 eV2. For small mixing angles, the
suppression bath-tubs are found to be so narrow that high-
energy neutrinos lie on the nonadiabatic edge and the low-
energy neutrinos on the adiabatic edge (Fig. 22b). The mid-
dle portion of the spectrum is most highly suppressed. The
structure of the isosnu lines (Fig. 21) is due to the fact that
the main contribution to Q Ar is due to two types of neutrino,
namely, boron and beryllium neutrinos (£ = 0.86 MeV).
The second peak at A/w2 ~ 10~5 eV2 corresponds to the sup-
pression of resonance in the Sun for the Be neutrinos.

D) The "quasivacuum" solution. Sin2 20= 3/4-8/9,
Am2 = 3xlO~5-10~7eV2. The spectrum lies at the bottom
of the bath-tub, which is raised to the height P = 1/4-1/2.
The suppression is roughly the same for all parts of the spec-
trum, i.e., the result is the same as the average vacuum result.

E) "Regenerative"solution.47-48 8m2 = 10~6-5-10^6

eV2, sin2 20 > 0.1. The spectrum of boron neutrinos lies in
the region of the resonance effect in the Earth (Fig. 22c).

a*
'

•az

March 6 October 12

I

3 16
hours

1ZO 240
days

300

FIG. 23. Regeneration of the ve-flux of solar neutrinos in the Earth. The
suppression factor for the rate of production of Ar in the Cl-Ar experi-
ment, averaged over the year, is shown as a function of the time of day (a).
The daily average is also shown as a function of time in the course of the
year (b). For Am3 = 1.5- !0"6eV2, sin2 26 = 0.4.

The production of 37Ar occurs at night. At the latitude of
42°, at which the Davis experiments were performed (and
the Ga-Ge detectors will be located at roughly the same lati-
tude), regeneration is mostly due to resonance in the mantle.
The core of the Earth provides a small contribution. The
maximum diurnal effect, averaged over the year, occurs at
02.00 and 22.00 hours (Fig. 23a); the maximum annual ef-
fect, averaged over the day, occurs at the beginning of March
and in October (Fig. 23b). These results correspond to the
maximum amount of matter traversed in the mantle along
the neutrino path.45 When Am2 = 3x lO~ 6 eV2 and
sin2 29 = 0.3-0.1, strong annual modulation is in conflict
with the Davis data.47-48

The situation with three neutrinos (in the case of mass
hierarchy) is conveniently analyzed using the two-neutrino
Am2, sin2 20 diagram45 (Fig. 21). Each of the resonances is
represented by a point on the diagram. Two resonances (/
and h) can occur in the Sun and the solution in the 3v case is
determined by two points. Since the edges of the bath-tubs
are slowly-varying functions of 0,, the same Q Ar suppression
can be achieved for any pair of points lying on the corre-
sponding lines hj and /,• (Fig. 23): one lies on /, and the other
on h^ By comparing the A, , /, lines with isosnu lines for the
2v-solutions (Fig. 21), it is possible to show that:45

1) very approximately, a given suppression R AT is
achieved in this case when the /- and //-resonances lie on the
2v isosnu lines a, and a2 satisfying the condition a ,a2 = R Ar

2) when the required (experimental) suppression is
R Ar, at least one of the resonances must lie between the
isosnu lines corresponding to R Ar and R A

7
r
2. This means

that, in the 3v case, the isosnu lines transform into isosnu
bands

3) if one of the resonances lies on the a ~ 1 isosnu line,
the other must lie on the line a = R Ar

p: the 3v-solution re-
duces to the 2v-solution. These statements are valid pro-
vided the suppression of (?Ar is not too strong. Moreover,
they rely on the approximate factorization of the 3v-prob-
ability, i.e., P~P'Ph (see Sec. 5.1).

The three-neutrino oscillations yield two new types of
solution.

A) Mixed solution for 3v. The //-resonance lies on the
adiabatic branch: Am2 = 0.8x 10~4-2X 10~4 eV~2,
sin2 26 = 10^4-10~'; the /-resonance lies on the nonadiaba-
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FIG. 24. "Solutions" in the case of three-neutrino oscillations. Solid lines
with the same number define the position of the h- and /-resonances in the
mixed solution; broken lines have the same significance in the nonadiaba-
tic solutions.

tic branch: Am2 = 1(TVsin2 26 - 4- 1(T Vsin2 2(9 eV2,
sin2 2(9 = 0.01-0.3 (Fig. 24). The P' and Ph bath-tubs
overlap slightly, and the resultant suppression has the form
shown in Fig. 18b. High-energy neutrinos (8B) then lie on
the adiabatic edge of Ph and are transformed mostly into VT ,
whereas low-energy neutrinos lie on the nonadiabatic edge
of P' and transform into VM . The middle part of the spec-
trum (pep and 7Be-neutrinos) is suppressed to a lesser ex-
tent (Fig. 22d).

B) Nonadiabatic solution in the 3v-case. Both reson-
ances now lie on the nonadiabatic branch (Fig. 23) and this
corresponds to configuration a) (Fig. 18). The low-energy
part of the spectrum is suppressed, but the suppression shape
is more complicated than that in the 2v-case. In particular,
the pp-neutrino flux can be reduced to much greater extent
than the neutrino flux at intermediate energies.

The effects observed in the case of 3v-oscillations can be
shown on the isosnu diagram m2, m} for different values of
the mixing angle.39

The results for oscillations into sterile states are practi-
cally the same as those obtained above for ve <-»v,i. There are
two differences: the region of the adiabatic solution is shifted
by a factor of 1.3 in Am2, and regeneration effects in the
Earth are much less well defined.

We note that the solution of the solar neutrino problem
with allowance for the effect of the medium can be obtained

for small vacuum mixing angles, down to sin2 26 = 10 3.
This is significantly different from the solution based on
vacuum oscillations, for which maximum or near-maximum
degree of mixing is required.

5.3.3. Spectroscopy of solar neutrinos. The question we
have to answer is: do resonance neutrino transformations
occur in the Sun and in the Earth and, if they do, what is the
magnitude of Am2 and of the mixing angles? The conse-
quence of resonance oscillations is a definite distortion of the
energy spectrum that depends on A/n2 and 9. This means
that the solution of the problem must rely on the neutrino
spectroscopy of the Sun,52 based on radiochemical experi-
ments with different reaction thresholds, and direct mea-
surements of the ve spectrum by electronic methods.

Apart from the chlorine experiment that we have al-
ready discussed, and which is sensitive mostly to the high-
energy part of the spectrum, the most important experi-
ments with solar neutrinos have been the following.

A) Gallium experiment.53'55 The low threshold for the
v71Ga-+e71Ge reaction (£,„ = 0.235 MeV) means that the
pp-neutrinos can be recorded (the SSM contribution of the
vpp to QGe is about 80%). The isosnu lines /?Qe = Q0c/
Q cfeM with R oe < 0-5 are similar in shape to the isosnu lines
for Cl-Ar, but are shifted downward relative to the latter (in
Am2) by the factor EB/Epp ^30 (Refs. 9 and 38). When
/?0e >0.5,the/?Ge (Aw2, sin2 26) = const lines have a more
complex structure because g0e includes the contribution of
neutrinos from a larger number of reactions than for Q A r .
Forgiven/? Ar = 1/2-1/4, the suppression of the rate of pro-
duction of 71Ge can range from 0.97 in the adiabatic solution
to 0.05 in the nonadiabatic solution (Fig. 25a). Similar lim-
its for R Ge yield the mixed 3v-solution. Diurnal and annual
modulation due to the effect of the Earth are expected in the
nonadiabatic and quasivacuum solutions.

B) Scattering by electrons57 and deuterons.5" Direct
electronic methods have high experimental thresholds
(Eth = 5-10 MeV) and are sensitive to boron neutrinos
alone. Studies of ve e and ve d scattering reveal the presence
of a distortion of the spectrum which, in the case of reso-
nance oscillations, is determined9'10'15 by the suppression
factor P(E) (Figs. 17, 22). By recording the time at which
each v-interaction occurs, it is possible to search for diurnal
modulation of the ve flux.16 Lines of equal suppression of the
total number of events are close to the isosnu lines in the Cl-
Ar experiment.48 Neutrino-deuteron scattering (other nu-
clei are also being discussed59) can be used to determine the
ratio of the number of events due to neutral currents [which
are not sensitive to ve<->-vM (VT ) oscillations] and charged

0
10 s 10 z 16'~' sln22# 10 3 10
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FIG. 25. Suppression factors for the production rate, a: 7 lGe in
the Ga-Ge experiment, b: 7Be in the Li-Be experiment as func-
tions of sin2 26 for different magnitudes of suppression of QAr

(indicated by the numbers shown against the figures).

S. P. Mikheev and A. Yu. Smirnov 783



TABLE I.

Solution

Adiabatic
Nonadiabatic

Mixed
Regeneration

Pseudovacuum

Nonadiabatic 3v

Mixed 3v
Low solar

temperature
Vacuum oscillations

(average)

Spin precession in
magnetic fields

vc -> vtfi decay

Ga-Ge,
*Ga

>0.9
0.03—0.1

0.1—0,9
<0.2

-1/3

<0.1

0.03—0.9

0.7

1/3

0.3—0.5

0.1

Li,
Ru

0.6—0.8
0.1—0.3

0.1—0.8
0.4

-1/3

0.1—0.3

0.1—0.8

0.7

1/3

0.3—0.5

0.2

Suppressed in
the spectrum

High£
Low E

Intermediate E

High and , low

Equal suppression

Low

High and
low£

High£

All equally

Low E

Low E

Modulation

Absent
Diurnal annual

Qo,
Absent
Diurnal annual

Q*,
Absent

Absent

Absent

Absent

Absent

Semiannual
l l-year^Ar

Absent

NC/CC- effect

Present for fla-
vor oscillations

Absent

Absent

currents, and hence to obtain information on flavor oscilla-
tions.

C) Lithium experiment 50-52-56 (v7Li-*e7Be). the
threshold for this reaction is £\h = 0.861 MeV and the ex-
periment is sensitive to the middle part of the spectrum for
low temperatures at the center of the Sun. The predictions
for most of the solutions are intermediate between gAr and
Qae (Fig- 25b). The only exception is presented by mixed
solutions, in which QBe may be found to be weakly (3v) or
strongly (2v) suppressed (in contrast to £?Ar and QGf).

Additional information will be provided by the molyb-
denum experiment,60 in progress now, and the planned Br-
Kr experiment.61

Table I lists the effects expected in the above experi-
ments for different "solutions."

5.3.4. Solution of the solar neutrino problem. The low
rate of production of 37Ar in the Davis experiment can be
explained by astrophysical factors, i.e., the fact that the stan-
dard solar model is either incorrect or incomplete, and by the
properties of the neutrinos themselves, namely, decay, vacu-
um oscillations, and transitions to right-hand sterile states
due to spin precession in the magnetic field. The question is:
how to establish the true reason for the observed deficit of
electron neutrinos and can we distinguish resonance oscilla-
tions from other effects?

A) Most astrophysical mechanisms for the suppression
of the neutrino flux ultimately rely on a reduction in the
temperature Tc at the center of the Sun. The flux of boron
neutrinos is proportional to Tf and a 5% reduction in Tc is
sufficient to explain the Davis data. The reasons for the low
temperature may include low density of heavy elements,62

the presence of wimps (weakly interacting massive parti-
cles63 ) at the center of the Sun (both factors tend to increase
thermal conductivity), periodic mixing of the medium64 and
other effects. A 5% reduction in Tc has little effect on the pp-
neutrino flux (Fpp ~ T*) and, correspondingly, the predic-
tion for gGe in the Gallium experiment remains almost in-
tact. This situation (RAr ~l/2-l/4and/?Ge ~1) is realized
in the adiabatic and mixed solutions (see Table I). These
two cases can be separated by measuring the spectrum of
boron neutrinos. Astrophysical factors modify the ratio of

the total fluxes of neutrinos from different reactions, but
they do not affect the shape of the spectrum, which is deter-
mined by the elementary process of /?-decay. Resonance os-
cillations on the other hand, do alter the shape of the spec-
trum. In the adiabatic solution, the high-energy part of the
spectrum is suppressed but, in the mixed solution, the low-
energy region is suppressed. Moreover, the presence of fla-
vor oscillations can be established by examining neutrino-
electron scattering and the ratio of neutral to charged
currents on deuterons. In all other solutions, the prediction
is that there should be an appreciable or strong suppression
of Coe > ar>d this cannot be reproduced by changing the mod-
el of the Sun.31

More or less the same situation occurs in the other
mechanism for reducing the boron neutrino flux, i.e., exclu-
sion of the beryllium branch by increasing the concentration
of 3He or reducing the concentration of 4He.

It is important to note that virtually all the astrophys-
ical methods of explaining the Davis experiment encounter
considerable difficulties.

The effects of oscillations in matter are not very depen-
dent on the chosen solar model. The left-hand edge of the
bath-tubs is determined by the central density pc , and a vari-
ation of this quantity between 100 and 200 g/cm3 leads to a
shift of the edge and, hence, of the isosnu lines in the adiaba-
tic solution by a factor of 1.5. The right-hand edge depends
on the single parameter p(dr/dr)~' = h, which is known
very accurately. 16) A change in pc and h does not produce a
large change in Am2.

The Davis result can, of course, be explained in terms of
a combination of different factors. If 7"0 < T < T^M, where
7"^SM is the central temperature in the standard solar model
and T0 is the temperature at which a threefold suppression of
2Ar is achieved, then some of the effect is explained by a
reduced temperature, and oscillatory suppression should be
weaker. The solutions should then lie on isosnu lines with
a>l /2 . Stronger oscillatory suppression is necessary if
T> 7"^SM. The solutions shift to the inner isosnu lines

B) The average effect of vacuum oscillations will be
observed on the Earth1-2-65 for Am2 = 10-2-10~3 eV2,
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10-MO-" eV2, and Am2 = 10-2-10-" eV2. The maxi-
mum suppression factor P = \/n (n is the number of maxi-
mally mixed components) is the same for all parts of the
spectrum. In contrast, in the quasivacuum solution, the sup-
pression is different for different parts of the spectrum, and
modulation of part of the spectrum (vpp or VB ) by the mate-
rial of the Earth is predicted. When Am2- 10"l2 eV2, the
vacuum oscillations are not averaged for the high-energy
part of the spectrum, and the suppression factor is

P « 1 — sin2 -^ ° ^ m ,
2. R

Averaging does occur at lower energies (vpp ).
C) If the neutrino has a magnetic moment fj,v = 10"lo

/HB, where fj,B is the Bohr magneton, spin precession in the
magnetic field of the Sun may produce a transition of ve into
right-hand states, whose weak interactions are sup-
pressed.66'67 Semiannual variations in the neutrino flux, due
to the inclination of the Earth's orbit to the plane of the solar
equator, are predicted.67 The maximum suppression of 2Ar

occurs in March and September during the years of solar
activity. An anticorrelation with the 11-year cycle is expect-
ed. In the case of resonance oscillations, variations are either
absent or annual in character (the maximum suppression of
£?Ar is expected in the summer). A magnetic moment of
10~'°//B can be verified for the ve by laboratory experi-
ments.

D) We cannot exclude the possibility that the neutrinos
decay along their path toward the Earth, and a light or mass-
less scalar particle is emitted: • v' + <p (Ref. 68). The
necessary reduction in the rate QAr is achieved if neutrinos
with energies E0^ 10 MeV have lifetimes of about 500 s. The
suppression factor P~exp( — Ea/E) is the same as the sup-
pression factor in the nonadiabatic solution for small mixing
angles. Decay can be distinguished from resonance oscilla-
tions in flavor by measuring the ratio NC/CC in v-scattering
by deuterons and electrons. In the nonadiabatic solution
with sin2 20=0.1-0.01, the prediction is of a diurnal modu-
lation of the pp-neutrino flux and, consequently, of the rate
of production QQe. For smaller values of sin2 26, the pp-
neutrino spectrum is found to lie on the adiabatic edge of the
bath-tub and its suppression is reduced: <2 oe > Q^ay.

The problem of the solar neutrinos is not confined to the
suppression of the rate of production of 37Ar alone. Other
processes under discussion include possibility correlation
between the Davis data and solar flares,69 anticorrelations
with the 11 -year cycle of solar activity,69'7' and periodicity of
the vc-flux itself.71'72 These effects do not fit into the predic-
tions of the standard solar model. On the other hand, some of
them can be explained by resonance oscillations. The ques-
tion is whether solar neutrinos are responsible for the effect
observed in the Davis experiment. If they are not, a suppres-
sion of Q Ar (ve ) by a factor of more than 2-4 would be neces-
sary. This degree of suppression can, in fact, be produced by
resonance oscillations. Another possibility is that future ex-
periments may show that the ve fluxes agree with the predic-
tions of the standard model. Allowance for resonance oscil-
lations would then enable us to exclude an extensive range of
oscillatory parameters, namely, Aw2 = 10~9-10~4 eV2 and
sin2 20Z 10--\

We now summarize the experimental data that would
unambiguously indicate the presence of oscillations.

1) Suppression of the high-energy part of the spectrum
of boron neutrinos.

2) Distortion of the pp-neutrino spectrum. A strong
argument in favor of resonance oscillations would be a low
rate of production of 7lGe: Q^50.52^ in the Gallium
experiment.

3) Diurnal and annual variations of the v-flux.
4) Different effects in neutral and charged currents.

5.4. Other applications of resonance oscillations

5.4.1. Atmospheric neutrinos. Resonance oscillations in
the material of the Earth can distort the spectrum of atmo-
spheric neutrinos.16 The flux F°a of neutrinos of type
a (a = e,u), crossing the Earth at zenith angle if>, will be
suppressed by the factor F(E) = Pa.a (E/Lnf, sin2 29,
cos i/t) F°, where the factor Pa.a was discussed in Section 5.2
(Fig. 20) and F°(E) is a smooth function. The oscillations
then produce a valley in the spectrum, whose form is compli-
cated and depends on the distribution of the medium along
the neutrino path. According to Sec. 5.2, this valley occupies
not more than an order of magnitude in energy and its posi-
tion is determined by Am2, i.e., £~103-104 GeV (Aw2/l

, < - ) < - )
eV~). The effect is expected for oscillations of ve ( VM ) into
< - ) ( - > < - ) < - )
VT or vs . In the case of ve <-» vfi , the effect is modified by

the fact that the initial flux contains both oscillatory compo-
nents: R = F(ve)/F(vtl) =0.15-0.20. The change in the
fluxes is then given by F/F" = P + Rs (1 -p), where
8 = + 1 ( - 1) for ve ( VM ). Since R<\, the v^ (v,,) flux is
reduced, and the largest effect is thast the vc (v^ ) flux in-
creases (by a factor of not more than R ~ ' ~4-6).

The possible experimental consequences of resonance
oscillations are as follows. 1) The appearance of a structure
on the very smooth neutrino energy spectrum. 2) A differ-
ence between F /F " and unity, where F " is the calculated flux.
3) A change in the ratio of neutrino to antineutrino fluxes
F(v)/F(v) and in the ratio of neutrino fluxes with different
flavors, F ( v e ) / F ( v f l ) , as compared with the predictions
when oscillations are not taken into account. 4) A change in
the dependence of these ratios on the angle of incidence of
the neutrinos. 5) A change in the ratio of the neutrino fluxes
recorded by installations in the upper and lower hemi-
spheres of the Earth, Fu /F,, as compared with the predic-
tions.

In actual experiments, there is a number of factors that
mask oscillatory effects.161™ They include: 1) The energy
and the direction of arrival of the neutrinos are subject to
experimental uncertainty. Actually, an integration is carried
out over very wide ranges of £ and if>. 2) The neutrino and
anti-neutrino signals are added together in installations in
which the sign of the lepton charge is not determined. The
resonance transformation occurs only for v or v, so that
the suppression factor increases on summation:
P(v + v) =P(v) + /3{\ -P(V)}(\ + R) -', where 0 = R
(or 1) if the resonance lies in the v(v) channel and
R = F(v)/F(v) = 0.5-0.6. Consequently, the maximum re-
duction in flux does not exceed 0.3-0.6.

In existing underground installations, the main contri-
bution to the number of recorded muons from the lower
hemisphere is due to neutrinos with energies 10-100 GeV.
Neutrino detectors located deep under water are sensitive to
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the same energy range or, more precisely, to Ev £ 100 GeV.
However, when Ev > 100 GeV, the resonance values
Am2 £ 0.03 eV2 (sin2 20 £ 0.1) lie in the region that has al-
ready been excluded by laboratory experiments.

In this connection, the most interesting studies would
seem to be those concerned with the interactions of neu-
trinos with energies Ev between 0.1 and a few GeV, using
large Cherenkov water detectors. The 1MB collaboration
(USA)79 has measured the ratio F}/FU for VM + v^ fluxes
with energies Ev > 450 MeV. The ratio is in agreement with
the expected value (to within experimental uncertainty), so
that, taking into account the resonance oscillations, it has
been possible to exclude a large range of values of Am2 near
1.1 • 10~4eV or sin2 20£ 0.1. These values of 0and Am2 lie in
the region of the adiabatic solution for the solar neutrinos
(Fig. 21).

5.4.2. Resonance oscillations of neutrinos from gravita-
tional collapses. A powerful and very short (A?<20 s) pulse
of neutrino radiation should be generated during a gravita-
tional collapse.84-85 This pulse carries most of the gravita-
tional energy released in the event ( f v ^ 5 • 1053-1054 erg)
and could be recorded on the Earth86 if the collapse were to
occur in our galaxy.18' The problem is similar to the solar
problem: having been created in the central regionof the star,
the neutrinos cross layers of matter with an enormous den-
sity drop, and may experience very strong resonance trans-
formations.

In the case of a collapse, these transformations have two
aspects. First, there is a change in the neutrino flux and,
hence, in the neutrino signal on the Earth, and this must be
taken into account in the interpretation of observational
data. Second, since the neutrinos play an important part in
the evolution of the star, resonance oscillations may influ-
ence the dynamics of collapse.

A collapsing star shows a number of peculiarities as
compared with the Sun."'16

A) The density distribution varies during the v-burst.
Before the collapse and at its very beginning, the form of
p ( r ) is typical for white dwarfs with central density
pc = 3 • 108-3 • 109 g/cm3 and linear dimensions 3 • 103-3 • 105

km. This core may be surrounded by a tenuous H-He shell
with density p = 10~8-10~~9 g/cm3 and radius 100/?o-
104/}Q . The thickness of the medium in the shell isd=* 107 g/
cm3 <gmN/Gp, and its influence on the oscillations is negligi-
ble. The profile shown in Fig. 26 arises as a result of the
hydrodynamic stage of the collapse, during which the cen-
tral region of the core is rapidly compressed. The central
region is not transparent to the neutrinos. The radius of the
neutrinosphere is Rv = 10-20 km during collapse to a neu-
tron star, and Rv = 20-50 km during collapse directly to a
black hole. The densities in the neutrinosphere are, corre-
spondingly, pv = 10'MO14 g/cm3 and p. = 1012-1013 g/
cm3. Accretion of the outer layers of the core leads to a re-
duction in the mass of the material above the neutrinosphere
and to a steeper distribution p ( r ) .

B) Because of neutronization, the effective densities pefi

and pes for ve -» v^ and ve -» vs channels are very different
from p and from each other (Fig. 26): pefl = pYe

2) ] ( 1 + 6n ) ', where 6n =nn/np increases from 1 on the
periphery to 30-100 in the neutrinosphere. Whenp=± 10'° g/
cm3, 0n = 2 above the neutrinosphere, and pes vanishes. If
A/n2 <0 (ve consists mostly of the lighter component), then
when/) < 10'° g/cm3 the resonance condition is satisfied for
the neutrinos, and when p> 10 10 g/cm3 for the antineu-
trinos. The roles of v and v are interchanged if Aw2 > 0.

For the ve — VM and ve — vs channels, the situation is
similar to the solar situation: the neutrinos propagate from
the region with higher effective density to the region with
lower density. The suppression factors as functions of E /
Am2 have the bathtub shape. Their left-hand edges are deter-
mined by the appearance of resonance at maximum density,
and the right-hand edges by the departure from adiabaticity
in the outer layers. The height of the bottom is sin2 20 /4. As
9 decreases, the bathtubs become narrower, and the right-
hand edges move toward the region of lower E/Am2. Since
pK (r) is a nonmonotonic function, the neutrinos cross two
resonance layers in the case of ve — vs oscillations. The con-
dition for an appreciable oscillatory transition is a strong
departure from adiabaticity in the inner resonance layer

70'

1 -

10 -z.

10 -2 to ~s

FIG. 26. Lines of equal suppression of the total energy of a
ve (vc) burst from a collapsing star, and the effective den-
sity distributions: a — V f - V p oscillations, b—ve-vs oscilla-
tions. The figure also shows the region of the strong reso-
nance effect in the Sun (dot-dash lines), in the Earth
(dashed line), and the laboratory limits (dashed region).

70 ~
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while, in the outer layer, the adiabatic condition is satisfied
(or slightly violated). Consequently, both edges of the sup-
pression bathtubs for the ve — vs channels are determined
by the adiabatic condition and, as 6 decreases, they are both
shifted toward lower E /Aw2.

C ) Central regions of the star, r < Rv , are opaque to the
neutrinos. Inelastic collisions lead to the averaging of the
oscillatory result: F(ve ) = F(vs ) (see Sec. 4.4). The aver-
aging effect is reduced with reducing mixing angle and den-
sity pR as compared with pv, i.e., as the resonance layer
shifts to the periphery. Inelastic interactions determine the
upper boundary of the strong effect region on the Aw2,
sin2 29 diagram.

D ) Electrons in central regions are found to be ultrare-
lativistic (see Sec. 4.5).

E) Comparable fluxes of ve, v^, vr, and of their antipar-
ticles are produced during the neutrino opaqueness stage.
The spectra have the Planck shape, with an additional cutoff
at high energies. Because the inelastic interactions of ve and
v^ ( VT ) are different, the neutrinosphere lies deeper, and has
higher temperatures, for VM than for ve . The VM spectrum is
shifted relative to the ve spectrum, with £(VM ) ~2E(ve ).
The total ve and VT luminosities are roughly the same. It is
clear that the VM and VT spectra are the same, and there are
no observable consequences of the /ur-resonance.

F) Spin precession in strong magnetic fields may lead to
appreciable sterile neutrino fluxes, and this may modify the

< - > < - )
observed consequences of ve-«->-vs oscillations.

G) The parameters of collapsing stars are not known
accurately, and may vary from star to star. Here it is impor-
tant to note that the boundaries of the region of the strong
effect and the lines of equal suppression are actually deter-
mined by the central ( maximum ) densities and by the deriv-
ative d In p/dr. A change in the stellar model and in the
energies of the emitted neutrinos leads only to a redefinition
of the parameters Aw2 and sin2 20, but the oscillation effects
themselves remain in force.

5.4.3. Effects of resonance oscillations. Oscillations
change the shape of the energy spectrum and the total energy
8?v of neutrinos of a given type. The suppression factor for

/?Ve(Am2, sin2 26)

2, sin2 26) F ° V ( E ) , (5.12)

where F° and ^0 are, respectively, the va flux and ve ener-
gy without oscillations, respectively. The sum is evaluated
over all the types of neutrino that are created.

The following observable effects are possible.
A) Suppression of the ve peak due to neutroniza-

tion."'27 During the neutrino transparency stage, there are
no appreciable VM ,VT (or vs ) structures, and only the single
component Pe^eF°Vf(E) need be taken into account in
(5.12). The lines of equal suppression RVf (Aw2,
sin2 20) = const are shown in Fig. 26a. Suppression should
become weaker during the opaqueness stage.

( - ) ( - )A - A
B) ve and v/t I vr I spectrum exchange. • The ve

flux leaving the star is F^ = F°VfPs_e + F°^(l -Pc_e).
When the entire energy range of the ve and v^ falls on the

bottom of the suppression bathtub, ve are transformed into
VM and VM into ve to the same extent, so that ve and VM

exchange their spectra. The ve spectrum becomes harder,
E(vc) ~2E0(ve) = 2E(vf ), and the number of ve events in
the apparatus increases, although the total energy of the v-
burst is not appreciably changed. When the spectrum of the
neutrinos falls on the edge of the bathtub, the exchange
between its ve and v^ components is asymmetric. On the
right (nonadiabatic) edge, more ve neutrinos are trans-
formed into VM than vice versa, and the ve luminosity is re-
duced. On the left (adiabatic) edge, the transformation of
the v^ into ve dominates the reverse process, and the ve

signal is enhanced. In the limiting case of a rectangular bath-
tub, the ve spectrum at exit is either the intersection or the
envelope of the original ve and v^ spectra. The lines of equal
suppression (amplification) of the v-burst energy are shown
in Fig. 26a. When Aw2 > 0, analogous effects occur in the ve -
channel but, in this case, it is important to take into account
the laboratory restrictions on the ve mass: mv 5 20-30 eV. It
is quite probable that the two resonances in the
ve — VM — VT system fall into the strong effect region on the
Aw2, sin2 26 diagram. When the 3v-oscillations are taken
into account, the ve -flux at exit from the star is

F (ve) = 2 F» (va) /W
a=e, n, t

where Fa(va) are the initial fluxes (va ) and Pa^e are the
probabilities of va -> ve transformations. We have taken into
account the fact that F°(v^ ) = F°(vT ) and the normaliza-
tion condition 2aPa^e = 1. The problem has thus been re-
duced to a two-particle problem, but Pe.f is now calculated
with allowance for two resonances: P = P'Ph + K (see
Sec. 4.2). Correspondingly, the edges of the complete sup-
pression bathtub and, hence, the distortion of the neutrino
spectrum may turn out to be more complicated than in the
2v case.

C) Strong suppression of the ve (or ve ) flux due to
oscillations into sterile states. For values of Aw2, sin2 20 for
which averaging due to inelastic collisions is small, the
ve <-»vs oscillations lead to a strong suppression of the ve

signal. The shape of the lines of equal suppression of the
energy of the v-burst (Fig. 26b) reflects the position of the
edges of the suppression bathtub along the £YAw2 axis. The
upper branches of the contours are determined by the maxi-
mum effective density pK and by the condition of strong
departure from adiabaticity in the inner resonance layer.
The lower branches correspond to weak departure from
adiabaticity in the outer resonance layer. For the vc -* vs os-
cillations (Aw2 <0), the shape of the upper branches de-
pends on averaging effects due to inelastic collisions.

When the ve ( or ve ) spectrum falls on the bottom of the
bathtub, all its segments are suppressed equally, and one of
the manifestations of resonance oscillations is that the ob-
served energy of the v c (v e ) burst (& ~FEV) is small in
comparison with the energy estimated from the temperature
of the neutrino radiation: i3 =4irRl(l/\6)aT*, where
kTv — (2/l)Ev and Rv is the radius of the neutrinosphere.
When the spectrum lies on the edge of the bathtub, its shape
is expected to be distorted.

According to (26b), oscillations into sterile neutrinos
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lead to a strong (up to several orders of magnitude) suppres-
sion of the ve or ve flux in a wide range of Am2, sin2 20. The
very fact that the v-signal from the gravitational collapse
will have been observed will enable us to exclude a large
range of values of Am2, sin2 26. This is critical for models
with pseudo-Dirac neutrinos, models based on the L-R sym-
metry, and so on.

D) Time-dependence of the effects. Because of accre-
tion of the outer layers on the core, the density distribution
p ( r ) becomes steeper, the adiabatic condition is not as well
satisfied, and the lines of equal suppression shift toward larg-
er Aw2. (We note, however, that there is another possible
regime in which the adiabaticity region expands for large
values of mixing angles and Aw2 that correspond to reso-
nance in the outer layers.) As a result of these changes, the
neutrino spectrum that lies inside the strong effect region
may be found to be partly or completely removed from this
region, or vice versa. Apart from the suppression (increase)
of total luminosity, this will lead to a truncation of the vc or
ve pulse, a delay of the vc or vc pulse, a lack of correspon-
dence between the signal strength due to neutronization and
the subsequent ve-signal during the opaqueness stage, a
time-dependent mean neutrino energy, and so on.

Comparison of the ve and ve signals is an important
experimental method of searching for resonance effects. For
given Am2 and sin2 26, all the above effects occur either for
the neutrino or the antineutrino. At the same time, the ve

and ve fluxes (with the exception of the contribution due to
neutronization) and the total intensities of the ve and vc

pulses are roughly equal in the absence of oscillations. This
means that a significant difference between the observed ve

and ve signals would be an indication of the existence of
resonance oscillations. In principle, the ve and vc signals can
be reconstructed using 1) the data from scintillation systems
designed to record vep-*ne+ events (the detection of the
neutron would distinguish this from ve-»ve scattering), 2)
the data produced by Cherenkov water counters capable of
resolving the isotropic signal corresponding to vcp — ne+ re-

(- > (-)
actions from the directional signal due to ve -> ve interac-

tions,87 and 3) the data from radiochemical detectors of so-
lar neutrinos that are sensitive only to ve.

E) Resonance oscillations in the material of the Earth
can also modify the neutrino signal from a collapsing star.
Since the duration of the burst is S 20 s, the effect is deter-
mined by the instantaneous density distribution along the
path of the neutrino and, consequently, is different for instal-
lations located at different points on the Earth. "'l6 In accor-
dance with Fig. 26, it may then happen that the regions of the
strong resonance effect in the Earth and Sun do not overlap;
on the other hand, they may do so. In the former case, the
< - > (- >
ve — vs oscillations in the Earth lead to a suppression of

the ve (ve) signal; the ve - VM oscillations reduce the ve -signal
if the suppression peak lies on the ve-spectrum, and amplify
it if the peak overlaps the VM -spectrum. In the second case,
the effect in the Earth has the character of a regeneration of
the neutrinos of the original type. The largest ve -signal will
be produced by a system that is maximally shielded by the
Earth.

5.4.4. Effects in collapsing stars and the problem of solar
neutrinos. Despite the fact that the density range in a collaps-

ing star covers completely the density range in the Sun, the
regions of strong oscillatory transformations do not overlap
to any considerable extent. [The overlap is confined to the
region of the adiabatic and quasivacuum "solution" (Fig.
26).] This is so because the core of a collapsing star is a
compact object with R<%RQ, and the density gradient is
much greater than in the Sun. This means that the departure
from adiabaticity is greater for the same density: the adiaba-
tic limit shifts toward larger 6 and Am2. The strong effect on
the Sun need not actually be accompanied by any change in
the v-signal from collapse. If, on the other hand, Am2 and
sin2 26 lie in the crossing region, the following effects are
expected (Fig. 26b): 1) suppression of the peak due to neu-
tronization up to 0.1 [ve ->Vp (VT ) oscillations]. 2) Asym-

< - ) < - > < -1
metric spectrum exchange ve <-»• VM ( VT ), with the result
that the ve (ve) signal is reduced. 3) If the adiabatic solution
ve -> VM with Am2 = 10~4 eV2 is valid for the Sun, it is quite
possible that Am2 for ve -> VM is much greater than 10~4 eV2.
Complete exchange of the ve and vr spectra then occurs in
the collapsing star, and the suppression of the neutroniza-

tion peak is greater. 4) If the adiabatic vc-«-»-vs oscillations
occur in the Sun, the suppression of the ve (ve)-signal dur-
ing collapse may reach 0.1.

Studies of the neutrino signal from stellar collapses may
therefore confirm the oscillatory solution of the solar neu-
trino problem or it will enable us to exclude a particular
range of values of Am2 and sin2 26. In either case, an impor-
tant argument will emerge for the validity of a particular
"solution."

6. CONCLUSION

If the neutrinos are massive, it is quite probable that
they mix. If they mix, they should oscillate. If oscillations do
occur in matter, then interactions between neutrinos will
modify the oscillation picture.

In wide ranges of neutrino parameter values, the mate-
rial of the Sun, the Earth, and collapsing stars amplifies these
oscillation effects, leading to significant changes in the prop-
erties of the v-beams, even for very small mixing angles.

Nonzero neutrino masses and mixing are the only as-
sumptions. The effects have actually been verified for sys-
tems analogous to mixed neutrinos.

The resonance intervals of Am2 and sin2 26 include val-
ues lying well beyond the sensitivity of laboratory experi-
ments. It follows that the search for the effect of resonance
oscillations is a unique method of measuring the mass and
mixing of neutrinos.

Solar neutrino oscillations are, clearly, the most inter-
esting application. The Cl-Ar data can serve as an indication
of the existence of resonance oscillations which then provide
a natural explanation of the Davis data. New effects have
been predicted and will be examined in experiments now in
preparation. Complete solar neutrino spectroscopy may well
provide a very precise determination of the difference
between the squares of the masses and of the mixing angles of
the neutrinos.

Solar neutrinos illustrate all the basic states of v-oscilla-
tions: constant density regime, adiabatic regime, departure
from adiabaticity in the resonance layer, and density jump.

Other applications (v-bursts from gravitational col-
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lapses, atmospheric neutrinos, and so on) are of interest in
themselves, but they can also provide additional elucidation
of the solar neutrino problem.
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