1. V. Kukushkin and V. B. Timofeev. Density of states of
two-dimensional electrons in a quantizing transverse magnet-
ic field. The question of the density of electron states in a
random defect potential lies at the heart of the discussion
about the energy spectra of two-dimensional (2D) systems
in a transverse magnetic field.' This problem is particularly
important because we seek a microscopic description of
magnetotransport in two-dimensional space charge layers
when the filling of quantum states by electrons (filling fac-
tor) varies over a wide range. In order to construct a micro-
scopic theory we require sufficiently complete information
about disorder present in the system or, more precisely,
about the random potential (its amplitude and extent) pro-
duced by scattering centers. Equally important is the change
in electronic screening of random potential fluctuations as
the filling factor changes. A certain class of problems can be
addressed experimentally via spectroscopic methods which
sample the energy distribution of the single-electron density
of states D( E). The method is based on the changes in lumi-
nescence spectra produced by radiative recombination of
2D-electrons with photoexcited holes in silicon metal-insu-
lator-semiconductor structures (p-Si (001)-MIS struc-
tures).? This method, which is fully described in Ref. 3, per-
mits us to observe how the energy distribution of the density
of states (DS) varies with the filling of Landau levels by
electrons, as well as with the amplitude and extent of the
long-period fluctuations of the random potential, magnetic
field, and electron mobility.

Figure 1 illustrates how, in the absence of a magnetic
field, the luminescence spectrum of 2D-electrons is a step
function of energy (spectrum 2) in accordance with con-
stant DS at H = 0. The spectrum acquires structure in a
transverse magnetic field due to Landau quantization (spec-
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trum 3). The energy values corresponding to the bottom of
dimensional quantization band E, and the Fermi energy E
at a given 2D-electron concentration are determined by the
familiar Landau fan diagram (see the upper section of Fig.
1). The two-dimensional nature of the electron system being
investigated is established by the appropriate shift in the
quantization scale hw_ as the sample is tilted in a uniform
magnetic field (spectrum 4).

It was found that the luminescence linewidth, which
reflects the width of DS peaks in the Landau levels, oscillates
depending on the fiiling of quantum states by electrons (the
filling factor).* In systems with more than one Landau level
oscillations are observed when the filling factor of the upper-
most occupied level changes (Fig. 2). When the filling factor
is one-half, the width I of the DS peak is minimal I" ,, and
depends on the magnetic field H and the electron mobility u
as I i o« (H /u)"? in accordance with the short-range ran-
dom scatterer theory (see Ref. 1). When the filling factor of
the Landau level is unity, the DS peak is broadest: T, is
determined by the amplitude of iarge-scale random potentiai
fluctuations. At unity filling factor the density of states in
the energy gaps is no longer exponentially small because of
long-period fluctuations. The oscillatory behavior of DS at
the Landau levels as a function of filling factor and the tem-
perature dependence of the width of the levels are adequately
described by the nonlinear screening of the random potential
due to charged impurities.’

The luminescence technique makes it possible to study
the structure of the Landau levels, i.e., to determine the spin
and intervalley spiitting and carefully measure how the os-
cillations of these splittings, which are due to electron-elec-
tron interactions, change with filling factor.® Finally, the
method described can be successfully applied to measure the

FIG. 1. Radiative recombination spectrum of 2D-electrons with photoex-
cited holes (2D, lines) measured at pumping level W= 10"* W/cm?,
T'= 1.6 K, 2D-electron concentration ns = 2.7-10'* cm ~? and magnetic
field # =0 (spectrum 2), H =7 T and perpendicular to the 2D-layer
(spectrum 3), and H = 7 T tilted 60° from the normal to the 2D-layer
(spectrum 4). Spectrum 1 is obtained at ng = 0. The BE line corresponds
to exciton emission from the bulk, with excitons localized at boron atoms.
In the upper part of the figure we plot the Landau level fan diagram which
determines the bottom of the dimensional quantization band E, and the
Fermi energy E, in the H—0 limit.
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Coulomb gaps in the spectrum of incompressible Fermi lig-
uids that are present in the fractional quantum Hall effect.’
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FIG. 2. The width of the Landau levels y as a function of the filling factor v
(v=ngh/eB)atH=1T,T=1.6K, W= 10"*W/cm?for various Lan-
dau levels V.
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A. G. Vinogradov, A. S. Gurvich, S. S, Kashkarov, Yu.
A. Kravtsov, and V. L. Tatarskii. The backscattering en-
hancement effect. To date, all known effects of random inho-
mogeneities on propagating waves have been deleterious in
some way: beam broadening, loss of coherence, decrease in
mean field intensity, and so forth. Relatively recently, how-
ever, Vinogradov and co-workers predicted the backscatter-
ing enhancement effect, which always increases the mean
intensity of the wave.' The effect was experimentally ob-
served soon thereafter.2 Although the effect has been known
for some 15 years, it continues to attract scientific attention
because of its constantly discovered new manifestations and
numerous new applications.

The main point of the effect is as follows. Let a point
source S irradiate a point scatterer 7, which isimmersed in a
randomly inhomogenous medium, and let us choose the ob-
servation point P displaced a distance p from the source §
(Fig. 1, a). Let 7(p) be the average (over the ensemble of
random inhomogeneity realizations) scattered field intensi-
ty at observation point P and let I, be the field intensity in
the absence of inhomogeneities. It turns out that in the case
of backscattering (p = 0), i.e., when the observation point P
coincides with source S,

I>1, (n

This inequality, established in Ref. 1, indicates that with the
switching-on of inhomogeneities the mean backscattered in-
tensity is unexpectedly enhanced. This backscattering inten-
sity enhancement is due to the double passage of the wave
through the same inhomogeneities in the medium. '

747 Sov. Phys. Usp. 30 (8), August 1987

The magnitude of the effect is conveniently character-
ized by the enhancement coefficient N(p) = I(p)/I,. In
Ref. 1 it is shown that

N (p) =1+ B; (o), (2)

where B, (p) = (7(0)7(p))/(10)2 is the correlation func-
tion of relative intensity fluctuations 7 /1, due to the single
passage of the wave over the paths connecting the scatterer
to the receiver and the scatterer to the source. Because of
energy conservation the enhancement 4 in the case of “‘ex-
act” backscattering (p = 0) must be counterbalanced by
some decrease in ¥ when the wave is “nearly*‘ backscattered.
As a result the backscattering indicatrix has a characteristic
maximum at & = 180° and minima at angles close to 180°
(Fig. 1, b). The dashed line in Fig. 1, b represents the circu-
lar indicatrix of small particle scattering in a homogenous
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