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Although comparatively little effort has been devoted
to analyzing the angular momentum of radiation, studying it
experimentally, or exploring the possibilities for making
practical use of associated effects, research on these ques-
tions dates back many years and is definitely of interest.

Soon after the development of Maxwell's theory it was
shown that ponderomotive forces arise in an alternating
electromagnetic field. In his classic experiments, P. N. Lebe-
dev showed that light exerts a pressure on an object which it
strikes, i.e., that it has a momentum as well as an energy. A
few years before Lebedev's experiments, in 1897, Sadovskii,
a university professor in Tartu, asserted1 that circularly po-
larized light should have an angular-momentum flux. Sa-
dovskifs theory initially drew objections from Shaposhni-
kov,2 who analyzed an infinitely extended plane wave. Later,
however, it was shown in studies by Abraham,3 Epstein,4

and Ehrenfest5 that a real, collimated, circularly polarized
quasiplane wave should have an angular momentum. About
forty years later, in 1935-1936, Holborn in England6 and a
group of physicists at Princeton University led by Beth,7

working in consultation with Einstein, proved experimental-
ly that circularly polarized light has an angular momentum.
In Ref. 7, a circularly polarized wave was passed twice
through a half-wave plate which could be rotated around the
axis of the light wave. After the passage of the light, the plate
acquired an angular momentum proportional to the number
of photons which had passed per unit time. These exceeding-
ly subtle experiments not only confirmed Sadovskii's hy-
pothesis but also made it possible to determine Planck's con-
stant within ~10%. In Beth's experiments the angular
momentum was directed along the propagation direction of
the light wave. From the methodological standpoint, how-
ever, nothing significant resulted in terms of an analysis of
the angular momentum. While the first principles of the the-
ory of the electromagnetic field are clear, in the detailed
analysis of many aspects of this theory in the literature on
angular momentum one runs into omissions, imprecision,
and sometimes erroneous statements. In the well-known
textbook by Pohl,8 for example, we read the assertion that
the angular momentum must coincide with the propagation
direction under any conditions.

In the present note we analyze the properties of the an-
gular momentum of radiation and the possibilities for an
experimental study of this angular momentum. We are con-
cerned primarily with time relationship between the nature
of angular momentum and the particular features of the ra-
diation source and of the wave process itself (the presence of
plane or nonplane waves). The radiation may have both a
spin angular momentum directed along the propagation di-
rection and an orbital angular momentum. In particular, the
angular-momentum flux may not coincide in direction with

the Poynting vector S under certain conditions.
We first consider the classical treatment of the problem.

The angular momentum of radiation with respect to a given
point 0 or a given axis is defined by

M = ^r j [ rS]dT, (1)

where r is the radius vector, and d-r is a volume element. By
definition, we have MLS, and for an unbounded plane wave
propagating along the z axis there is no angular momentum:
M2 = 0. For a real plane wave, which is spatially bounded
(along the x and y axis), however, this is not the case. As was
shown in Ref. 19 and 20, a finite contribution to Mz is made
by the boundary region of the wave packet [ expression (1)
can be written as the sum of three integrals, one of which
converts into a surface integral; it is this integral which de-
termines Mz ] . According to Heitler,9 a circularly polarized
plane wave which is nonvanishing only inside a cylinder with
an arbitrary radius R and an axis along z has an angular-
momentum component

by virtue of the surface effect; here

(2)

= - -

is the energy, and v is the frequency of the radiation. In the
classical case, an angular momentum can arise for a plane
wave either along or opposite the direction of the Poynting
vector. For spherical waves centered at the origin of coordi-
nates one can also distinguish waves of two types, which
correspond to two possible polarizations of the plane wave
and which convert into each other when the replacements
E^H and #-» — E are made. These are waves of electric
and magnetic multipole types. By virtue of the spherical
symmetry, each wave type, like an atomic level, can be addi-
tionally characterized by an orbital quantum number / (the
multipolarity of the radiation) and its projection m. The
numbers / and m correspond to spherical harmonics Y,m ,
which specify the angular distributions of the intensity. Mul-
tipole expansions in / and m are studied in detail in Ref. 9.

The angular momentum lost by the radiator (e.g., an
atom) at the origin of coordinates is perceived as a spherical
outgoing wave from the radiation source. For the composite
system consisting of the atom and the field, angular momen-
tum is conserved. A net angular momentum emitted by the
atom crosses any spherical surface enveloping the source.
Although the absolute angular-momentum density ap-
proaches zero with increasing sphere radius R, the integra-
tion volume simultaneously undergoes a corresponding in-
crease. The magnitude of the total angular momentum
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which crosses the spherical surface is nonzero, and is given
by expression (2), according toadirectcalculation.3'10Fora
plane wave, there is no transverse component of the angular
momentum (withMz = 0) by virtue of the gauge in variance
of the theory. Such a component would exist if the photon
had a zero rest mass and thus three independent polarization
states. In the general case of nonplane waves, however, in
contrast with the case of a plane wave, it is generally neces-
sary to consider the longitudinal component of the field. Let
us examine this question in more detail.

The radiation from any source generally carries off
fluxes of energy, momentum, and angular momentum. The
particular features of the formation of the angular-momen-
tum flux are conveniently studied in the example of the radi-
ation from a rotator.

As was pointed out some time ago by Sommerfeld,10 the
problem of the radiation from a rotator reduces to one of
ordinary dipole radiation. The field of a rotator may be treat-
ed as a superposition of the fields of two dipoles, which are
oriented perpendicular to each other and which are radiat-
ing out of phase (or it may be treated as a superposition of
the fields of three mutually perpendicular dipoles, in the case
of a three-dimensional rotator). The equations for the dipole
radiation in the general case of an arbitrary nonplane wave
(in which case, the field can not be treated as a plane wave,
even over a short distance) are given in Ref. 11:

(3)

(4)

here E^ and H^ are Fourier components of the electric and
magnetic fields, k is the wave vector, d is the dipole moment,
n = R/J?, and R is the radius vector to the point in space
from the origin of coordinates, which is the position of the
radiator. At distances small in comparison with the wave-
length (kRg^l), we can ignore terms ~\/R0 and l/R%;
then

M = -=j- [3n (dQn)— dj
•"0

corresponds to the static field of a dipole. There is no mag-
netic field in this approximation. In an analysis of electro-
magnetic radiation over distance large in comparison with
the wavelength it is customary to ignore terms ~ \/R o and
I/RO; in this approach, one finds the following standard
expression for the wave in the wave zone:

-Ill I H( l ,-----4- |dMn]exp(jA-fl0) .

In both limiting cases, of small and large values of R0, terms
~ l/R 2 in E^ are ignored. As Heitler pointed out,9 these
terms play a fundamental role, determining the angular mo-
mentum in the case if a spherical wave. We wish to stress that
for spherical waves with a singularity at the origin the elec-
tric vector has a component ER along the direction of the
Poynting vector. In this case we have

A/, =: \ diR(ERlfz-EzHs).

Expression (2) remains in force. A finite contribution to M2

FIG. 1. Radiation in the plane of a rotator.

is made by the intermediate region with ER ~ l/R % and
H~ \/R0 (for a magnetic multipole we would have E~ I/
RQ,

Accordingly, if we ignore terms of higher order in H^,
(~ l/R o ) and in Ea (~ l/R %) in accordance with the dis-
cussion above, we are left with terms ~ l/R0 in H^ and ~ I/
R0and ~\/Rl inEu.

The flux of the Poynting vector dS through an area R2

dfl (flis the solid angle) is expressed in terms of E and H:

dS = - - 2 Ro [EHA] R2 dQ. (5)

The flux of angular momentum across an area R 2 dfl is also
expressed in terms of these fields:

dM = -̂ - 2Re[R[EH*]]R2dQ = —[RS]E2dQ. (6)

Substituting E and H from (3) and (4) into (5) and (6),
and retaining only the terms listed above, we find

dS = ~ 2 Re { —*« | [d*n] |2 n f -^jp- [d* (nd)

— (nd)(nd*)n]}dQ, (7)

dM = -^-Re{i(nd)(nd*)}dQ. (8)

We consider a rotator in the x, y plane (Fig. 1). For a rotat-
ing dipole we can write the expression

d = d0 t cos + eu sin (9)

where ex,ey (and ez) are unit vectors. We assume
d = d0 exp( — ioit); we then have

= d0 (ex ieu) (10)

For clarity we will calculate d S and d M for n lying in the x, y
plane (Fig. 1). Substituting (10) into (7), (8), we find

Jf3

d M = — i dQ.

(11)

(12)

We see d S is directly along d M here, and d M is directly
along ez; i.e., in this case these vectors form a right angle
with each other. Relation (2) also holds in this case (d S and
d M do not depend on <p, and an integration can be carried
out over cp). In a similar way, we can calculate d S and d M
for an arbitrary direction of n (Fig. 2). In the general case we
find

<iS = -|_ k*dl (1 + cos2 6) de - n,

dM=-*l,
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" ' (14)

Integrating over the solid angle, we find the following results
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FIG. 2. Radiation from a rotator in an arbitrary direction.

for the total flux: S= 4ck2d3
0/3, Mz =4k3d*0/3. In other

words, general relation (2) holds. The fluxes of angular mo-
mentum and energy can thus make an angle with each other
in any part of a spherical wave generated by a rotator. This
assertion applies not only to the near field but also the far
field. We do wish to stress, however, that in the latter case
the spherical wave is assumed to be propagating in some
constant solid angle. If, with distance from the source, the
radiation detection area remains constant, so that the solid
angle decreases, we will ultimately arrive at the case of an
ordinary plane wave, which has no longitudinal component
of the polarization, and no angle can arise between M and S.

We turn now to the quantum-mechanical treatment of
the problem of the angular momentum of radiation. As in
the classical case, there is no point in examining an unbound-
ed plane photon, since the wave vector is normalized to an
arbitrarily large but finite volume. In quantum mechanics
the momentum of a photon and its angular momentum are
described by noncommuting operators. This statement
means that states of a photon with a definite angular momen-
tum do not have a definite momentum, and vice versa. A
plane wave can thus have only a spin angular momentum.
According to Ref. 9, a bounded, plane, circularly polarized
wave which is propagating along the axis (the z axis) of a
cylinder of arbitrary radius carries an angular momentum
Mz = + U/v. If E = hv, then we have Mz = +h; i.e., a
spin of 1 corresponds to each plane circularly polarized pho-
ton. The spin component is directed along the wave vector
(and has a magnitude of ± 1). There is no transverse com-
ponent of the spin by virtue of gauge invariance. If a plane
wave is characterized by the quantities Px, Py, Pz, then a
cylindrical wave and a spherical wave are characterized by
Px, Mx, Ua.ndM2, Mx, and U, respectively.

For a spherical wave we need to consider the orbital
angular momentum in addition to the intrinsic angular mo-
mentum of the photon. In the quantum-mechanical case, the
relations M2 = hi (I + 1), Mz = mh hold for the angular
momenta of spherical photons. In the problem of the radi-
ation from a rotator, the angular momentum along the axis
arises specifically because the wave is spherical, rather than
planar. In such a wave the momentum is not determined.
The part of this wave which is cut out by the solid angle Aft
carries angular momentum only to the extent that this wave
differs from a plane wave. Under these conditions there may
be an angle between S and M. This angle ultimately arises
because there is a longitudinal component of the electromag-
netic field, which we must take into account to the extent to
which there is a deviation from a plane wave. On the whole,
there is a complete correspondence between the quantum-
mechanical and classical descriptions of the angular mo-
mentum of radiation by virtue of the integer value of the spin
of the photon.

The early methodological difficulties and errors in the
analysis of the angular-momentum problem stemmed from
ascribing to unbounded plane waves a kind of absolute na-
ture; later on, the difficulties stemmed primarily from the
separate analyses of the near and far zones. As has been men-
tioned already, the intermediate zone plays an important
role in the formation of the angular momentum. For a sys-
tematic analysis of the angular momentum of radiation, we
should thus either consider the overall system consisting of
the source and the radiation or directly consider a longitudi-
nal component of the field which stems from a deviation
from a plane wave.

Analysis of nonplane waves requires generalizing the
ordinary concept of the Stokes parameter in an analysis of
polarization states. Roman12 and Barakat13 were the first to
point out the need for a generalization of this sort for non-
plane waves. In general, a description of the properties of
electromagnetic waves by means of Stokes parameters is
inadequate. For a plane wave, the Stokes parameters s0, slt

s2, s3 completely specify the polarization state and can easily
be determined experimentally. For a quasimonochromatic
plane wave propagating along the z direction we would have

s2 = 2 (a,a2 cos (q^ — q>2)> , s3 = 2 <a,a2 sin (<p, — <p2)> ,

where a j and a2 are the instantaneous amplitudes of the two
mutually perpendicular components Ex and Ey, and <pt and
<f>2 are their phases. The Stokes parameters are determined
experimentally by measuring the intensity I(%, 8) in the di-
rection of a light wave which makes an angle x with the *
axis (8 is the retardation of the y component):

s0 = 7(0°, 0) + 7(90°, 0),
s, = 7(0°, 0)-/(90°, 0),
s2 = 7(45°, 0)-7(135°, 0),

., = /(45-, -=-)- / (135-,-=.) .

(16)

The parameter s0 corresponds to the total intensity of the
light, while s3 corresponds to the difference between (a) the
intensity of the light which is transmitted through an instru-
ment which transmits oscillations with the right-hand circu-
lar polarization and (b) the intensity of light which is trans-
mitted through an instrument which transmits oscillations
with a left-hand circular polarization (i.e., the angular mo-
mentum of a plane wave). The Stokes parameters satisfy the
relation s0 = s, + s2 +

 si- The polarization state of a wave is
imaged by a point on a sphere sl + s2 + s3 = const (a Poin-
care sphere). The Stokes parameters can also be written di-
rectly in terms of the projections (Ex and Ey) of the complex
vector of the electromagnetic wave:

so = <£!> + (El), s, = <££> - (El),
s2 = 2 Re (EXE*), s3 = 2 Im (E*yEy).

(17)

For a covariant description of the polarization properties of
a plane light beam it is convenient to replace the four real
Stokes parameters by the 2 X 2 matrix (a coherence matrix)

(£„£*>
«

<£„££) (18)

where a,- are the Pauli matrices. For an analysis of the polar-
ization characteristics by means of a coherence matrix, one
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uses rotation groups (SU2) and the Lorentz group.
In contrast with the plane wave, which has only two

transverse components of the electric field, Ex and Ey, in the
general case of a nonplane wave we would need to consider a
longitudinal component E2. The 2x2 coherence matrix de-
scribing a plane wave would then be replaced by the 3 X 3
matrix

R,=

(EXE*) (ExE*y) (EXE*)

(EyE*) <£„£•> (£,£*>,

(EZE$ (EZE*) <£z£*)
(19)

The nine quantities r, are generalized Stokes parameters.
The 3x3 matrices p, are basis matrices—analogs of the
Pauli matrices. Explicit expression (for them are given in
Ref. 12. The generalized Stokes parameters can be expressed
in terms of the instantaneous amplitudes a, and the phases £>,
of the components E,

rg = 2(al), ri = (al) — (al), r2 = 2<a,a2cos (cpt — q>2)>,

r3 = 2 <flla2 sin (^ - <p'2)>, r4 = (a\) + <a=> — 2 (a\),

r5 = 2 (a^ cos (q>4 — q>2)> — 2 (a2a3 cos (<p2—q>3)), (20)
re = 2 <aja2 sin (qjj — (p2)> — 2 <a2a3 sin (<p2 — cp3)>,

r7 = 2 <a4a3 cos (<p, — q>3)>, -._ rs = 2 (a,a3 sin (cp, — ip3)).

These nine quantities, which generalize the Stokes param-
eters, are generally independent and form a complete sys-
tem. The longitudinal component Ez is a special case; E and
H are nonequivalent according to (3)-(4). For H, terms
~ l/R0 have been taken into account, and for E terms ~ I/
R0 and ~ l/R I have been taken into account. In the general
case of a quasimonochromatic nonplane wave, a derivation
of the complete polarization characteristic would therefore
in principle require an experimental measurement of all nine
generalized Stokes parameters. In constrast with plane
waves, for which polarization measurements are very simple
in nature, according to (16), the problem in this case is not a
trivial one. The problem is particularly involved for mea-
surements in the low-frequency range, where the plane-wave
approximation breaks down. To derive explicit expressions
for the matrix elements of the coherence matrix, one can use
measurements of the angular momentum and the angle
which it makes with the Poynting vector. As has already
been pointed out, the Stokes parameter s3 corresponds to the
angular momentum; correspondingly, the parameters r3, r6,
and r8 can be determined from the angular momentum. The
net result is that it is worthwhile to take up the problem of
determining the possibilities and effectiveness of measure-
ments of the angular momentum for nonplane waves.

In fact, measurements of this sort were carried out a
long time ago. Particularly noteworthy are the experiments
by Gorozhankin14'15 and Lertes.16 Gorozhankin used mag-
netic dipoles supplied with an alternating current with a fre-
quency of 0.5 MHz and a phase shift a 90°. The rotating
electromagnetic field created by these dipoles drove a rotor
mounted in jeweled bearings into rotation. Lertes produced
a rotating electromagnetic field by means of two electric di-
poles formed by two capacitors with field lines which ran
perpendicular to each other in the horizontal plane. An al-
ternating voltage with a phase shift of 90° was applied to the
capacitors. In plan view, the capacitor plates formed a
square of a sort. Experiments were carried out at frequencies

03 = 4.62-107, co = 1.75-108 and a = 4.48-108. A glass cell
with a volume ~ 100 cm3 was suspended on a thin filament
between the capacitor plates. This cell was filled with var-
ious polar liquids. When a voltage was applied to the capaci-
tor plates, the cell rotated through a certain angle. That ex-
periment was carried out to test Debye's theory of polar
liquids.

Those investigators did not call attention to the circum-
stance that in their experiments the energy flux of the rotat-
ing electromagnetic field was propagating in a direction not
parallel to the rotation axis. Those experiments essentially
demonstrate the presence of a component of the angular mo-
mentum which is perpendicular to the momentum in the
near field.

The following experiment might be carried out to study
the angular momentum of radiation with a wavelength of the
order of 1-1.5 cm (Fig. 3).

The angular momentum is detected by a light metal ring
1, which is a good absorber for radiation at these wave-
lengths. The ring is suspended on a thin quartz filament 2. At
the center of the ring are two dipoles, 3' and 3", which are
crossed at right angles and which are supplied with power
from a common oscillator with a phase shift of + 90°. The
quartz filament is attached to the ring by three branch fila-
ments 2', 2", and 2". A tiny mirror 4 attached to the quartz
filament is used to observe and measure the angle through
which the ring rotates. The sensitivity of this apparatus
might be improved, first (as in Beth's experiments), by mak-
ing use of a resonance effect, by changing the phase shift
from + 90° to — 90° at the frequency at which the ring is
driven or, second, by using a photooptic method to measure
small rotation angles of the mirror.17 This approach would
make it possible to detect rotations of the mirror through a
small fraction of an arc second. Noise of any sort could be
eliminated by placing the entire apparatus in vacuum; radio-
metric effects should be eliminated as a result. The annular
shape of the detector should rule out an effect of radiation
pressure on the rotation of the detector.

The experimental methods for determining the angu-
lar-momentum vector which we have discussed here yield
data on the generalized Stokes parameters for nonplane
waves. At low frequencies the angular momentum at a given

3'

FIG. 3. Schematic diagram of measurements of angular momentum in the
UHF range. 1—Receiving ring, which is the detector of the angular mo-
mentum; 2, 2', 2", 2m—suspension of the ring; 3', 3"—dipoles; 4—tiny
mirror for observing a rotation of the detecting ring; 5—quartz filament.
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power will be higher than at high frequencies. In other
words, the effects which we have been discussing here would
occur in an ac electric motor, where the rotating electromag-
netic field set up by the stator transmits its own angular
momentum to the rotor. Consequently, questions pertaining
to research on the angular momentum of radiation may bear
directly on, for example, research on the effects of low-fre-
quency radiation on biological objects, research on wave
propagation through gyrotropic media, and the analysis of
long-wave radiation in the magnetosphere, with frequencies
between a fraction of a hertz and hundreds of hertz. For such
frequencies, the entire earth is the near zone. There is also
the question of developing specific experimental procedures
for measuring the generalized Stokes parameters (or, in oth-
er words, for measuring the generalized polarization states
for nonplane waves).19'20 On this basis one could obtain ad-
ditional information on the source—information beyond
that which can be extracted from measurements of the polar-
ization of plane waves. The analysis above and the experi-
mental arrangements discussed here show that measure-
ments of the angular momentum of electromagnetic waves
should play an important role here.18

I wish to express my sincere gratitude to B. M. Bolo-
tovskiT, 1.1. SobePman, and L. A. Shelepin for several useful
discussions which contributed to a clarification of this prob-
lem.

It is a pleasure to acknowledge that the ideas expressed

in this note grew out of a study of the book Optics by Acade-
mician G. S. Landsberg, my highly respected scientific advi-
sor.
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