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The basic ideas and a number of results of the theory of low-energy excitations and localized
electronic states, which are responsible for the universal low-temperature anomalies in glasses
and unusual electronic properties of nonmetallic glasses, primarily glassy semiconductors, are
reviewed. The basic hypotheses and models, previously proposed in this connection in order to
explain the numerous empirical data, are discussed. Recently developed concepts regarding soft
atomic configurations as a significant feature of the structure of glasses, determining new types of
low-energy excitations in such anharmonic systems and of localized electronic states—self-
trapped electron pairs with negative correlation energy, with very strong interelectronic
attraction—are examined. The above-mentioned properties of glasses are analyzed on the basis of
this theory and briefly compared with experiment. Some important problems in the theory of
glasses are indicated.
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1. INTRODUCTION

During the last decade glasses and glassy materials, as
well as some other amorphous systems, have become an ob-
ject of intensive experimental and theoretical study.'~ Glass
is customarily classified as an amorphous solid, which is pre-
pared in the form of a massive sample during the cooling of
the melt at a sufficiently high rate g>>¢, to some characteris-
tic vitrification temperature 68(q) >6(q, ) =1T,, appreciably
lower than the crystallization temperature T, (often
T, =2T/3). Since the crystal is thermodynamically stable
at temperatures T < T';, the glass, which exists at tempera-
tures T'< T, is a nonequilibrium metastable system, whose
lifetime ¢, , however, is macroscopically long.

Glasses, like other amorphous materials, are character-
ized by a definite short-range order with no topological or-
der.! Topological disorder corresponds not only to the ab-
sence of crystalline long-range order, but also to the fact that
the topological properties cannot be reduced to those of a
real crystal."® Short-range order for an atom A4; of a given
type (i =1, 2, ...) is usually characterized by a definite
number of nearest neighbors (coordination number) z; and
a pair distribution function p!'’(R) for these neighbors,
with a fixed “‘average” relative arrangement of the neigh-
bors, at distances of the order of the average interatomic
distance a,~3 A. Experimental methods (x-ray, neutron,
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etc.) for studying the structure of glass usually give informa-
tion about the short-range order—truncated, “one-dimen-
sional” version of the real three- (or two-) dimensional
amorphous structure.! However the presence of “intermedi-
ate” range order over distances of the order of a,~ 10 A is
being increasingly observed experimentally.

The properties of glasses are in many ways anomalous
both at high temperatures 7T~ T, and low temperatures
T'<#wp, in the sense that they have no analogs in standard
crystals. At the same time at temperatures 7<%, some
similar anomalies have been found in superionic conductors
and specific crystals, including crystals containing high con-
centrations of defects of the off-center type or radiation-in-
duced disordered regions (see, for example, Refs. 1, 4, 5, and
31). The models most widely employed for describing the
structure of glasses are apparently the model of a ““contin-
uous random network” (CRN) of atoms connected by cova-
lent bonds and the related model of “random close packing”
(RCP) of atoms. The CRN model is often employed to de-
scribe the structure of amorphous silicon (a-Si) and chalco-
genide glasses (a-C; _, Q, where C=Se, Teand Q=P, As,
Sb, Ge, Si, where 0<x £0.5-0.6), while the RCP model is
employed for describing metallic glasses, i.e., the amorphous
alloys M, Q, _, with x=0.7-0.8 (M is a transition metal
and Q=Ge, Si, P, B, and others). Such models actually take
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only the short-range order into account and are microscopi-
cally uniform. At the same time they address the large disor-
der, the significant fluctuations in the numbers v of atoms
in separate structural units from even (average) values
vo=2k (k=1,2,...) characteristic for crystals, and the
significant relative fraction (=~30%) of the corresponding
local atomic configurations for which symmetry axes of odd
(2k + 1) order (fifth and seventh orders with v, = 6),
which are not encountered in ideal crystals (but are typical
for quasicrystals; see, for example, Ref. 130), are character-
istic.

On the other hand, less disordered, but microscopically
more nonuniform models are under discussion. Thus in the
model of Ref. 7 the glass looks more like a multibond system
of atomic clusters with dimensions of ~a,~30-100 A, con-
taining smaller clusters of size ~a,~ 10-15 A. In such mod-
els the intermediate order can be taken into account, while
the universality of the anomalous properties is correlated
with that of the structure of the overall “inner surface” of
this complicated system of clusters.”® Another model of
glass, essentially a thermodynamic model, attributes the
anomalous properties of the glass to the existence of “free
volume” v =v — v§ largely in the form of voids with a size of
~a;, near which significant motions of atoms occur (vis the
random volume per atom and vg is its characteristic value,
close to that of the crystal; v¥ ~a; ).° In models of the CRN
type or cluster models the distribution of the excess volume
of the glass, compared with the crystalline distribution, can
be more complicated.

The enormous number of different glasses can be divid-
ed into three basic classes according to the width E,,, of the
main optical gap: 1) dielectric glasses, including oxide ones
(a-Si0,, etc.), with a more or less significant relative frac-
tion of ionic bonds and very large gap width £, =5-10eV;
2) glassy semiconductors, including chalcogenide semicon-
ductors, with predominantly covalent bonds and a modera-
tely large gap width E,,, =~ 1-3 eV; and, 3) metallic glasses
(no optical gap).

This review is devoted to a discussion of the present
status of the theory of anomalous (in the sense indicated
above) properties of glass far from the vitrification tempera-
ture T, (TS T,/2). The following are primarily discussed:
1) low-temperature (T <fiwp, ) properties of nonmetallic
glasses (Secs. 2 and 3)" and 2) electronic phenomena in
glassy semiconductors (GS) at temperatures TS T,/2
(Secs. 4 and 5). Because the length of this article is limited
we shall talk primarily about recently developed concepts
and the theory of low-energy excitations and localized elec-
tronic states in glasses based on them. The main experimen-
tal facts and earlier models proposed to interpret them are
discussed very briefly, in particular, because they are exam-
ined in detail in a number of reviews cited below. In addition,
the references cited for this review are unavoidably only rep-
resentative and not exhaustive.

2. LOW-TEMPERATURE PHENOMENA IN GLASSES

2.1. Basic experimental facts

The anomalous (in the sense indicated above) behavior
of the basic properties of glasses (g) at low temperatures
T <fiwp (see, for example, Refs. 10-12) can be illustrated
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on the example of the heat capacity C, (T) and the phonon
thermal conductivity y, (T). The values of C, and y, at a
fixed temperature T are respectively significantly higher
C, > C{® and lower y, €<y than in the corresponding
crystals (0). At the same time (Fig. 1),>'"!? at least for
temperatures 7% 30 K,

ACe=Cy—CP m p T +a, (T) T3, O< n<0.3,(2.1)
e =1 I*™, 0m =< 0.25, for T<<1K, (2.2)

or y,=const (“plateau”) at moderate temperatures
557530 K, where a,(T) has a broad maximum
(“hump”). Outside the last interval a,(7)=ap
~const R &>, exceeding the Debye coefficient, determined
from the measurement of the velocity of sound,
al®P=C{P/T*(RC§/T*). At higher temperatures
T( = fiwp /2) both C; and y, are observed to increase as T’
increases.’ Variations of the coefficients 8, and y, for all the
great variety of glasses studied are unexpectedly small,

g '=30-100eV'*" and ¥, ~107*-107° W-K™ -cm™".
It is also interesting that B, and ¥, depend on T, (see, for
example, Refs. 31-33).

In glasses the phonon or photon mean-free path lengths
low (0,T), the coefficient of absorption @, ., (0,T) of a
weak acoustic (ac) or electromagnetic (em) wave, and oth-
er acoustic and dielectric characteristics as well as nonlinear
phenomena (suppression of the absorption of a wave with
increasing intensity of the wave, effects of the echo type,
etc.), somewhat reminiscent of those occurring in spin sys-
tems at very low temperatures 71 K (see, for example,
Refs. 3, 11-14), also exhibit anomalous behavior.

Three basic features of the low-temperature properties
of glasses can be distinguished®: 1) anomalousness; 2) uni-
versality; and, 3) characteristic nature, i.e., the main contri-
bution does not depend on the impurities (for example, He
atoms in a-Si0,).

([T (M)

I I n

FIG. 1. Schiematic diagram of the empirical temperature dependence of
the reduced heat capacity C, (7)/T > (curve 1) and phonon thermal con-
ductivity (2) of glass at low temperatures 7€ #iwp, .* Curve 3 corresponds
to the usually expected Debye heat capacity for the empirical velocity of
sound (the relation between the curves 1 and 3 is typical, while here the
relationship between curves 1 and 2 is not). There are three clearly defined
regions of 72 I) Ts51 K; II) 557530 K; II1) higher temperatures
T(«fiwp ).
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2.2. Tunneling model

The phenomenological tunneling model, used for inter-
preting the above-mentioned and other anomalous proper-
ties of glasses, is based on two hypotheses'''®:

1. There exists in the glass a finite concentration ¢
(«1) of “atoms” (separate atoms or small groups of
atoms), to each of which there corresponds not one ( as usual
in a crystal), but rather two positions of equilibrium, close
both in  energy (EpE,)), &=E, —E;=2(A?

+J) 2 ¢fiw,, and spatially (|x;, —x,|=Il<ap), ie., a
two-well potential with the bottom of both wells differing in
energy by 2A«fiw, and a tunneling amplitude
J = fiw, exp(-1) €he,, where w, is the characteristic fre-
quency of intrawell oscillations.

11. The density of the distribution of the random values
of w,, the mass of an “atom” M, and the interwell distance /
is narrow (w,~wp, M=const, /~const <a,), but uniform
for statistically independent A and A = c,J(2MVy)'/?
X (cp~1):

P(A, ) =P, = const for 0<A<A,, and A, >4
> Amia (> 1), (2.3)

(2)

and in addition it is often actually assumed that the heights
of the barriers satisfy V<V, (<o) and A, SV,

while A SA (Vo ) > L for V,, T, (see Refs. 2, 15, and
16). In this model the main low-energy excitations & <fiwp
are “two-level systems” (TLS), corresponding to the split-
ting of the ground level of the potential well into close levels
E,and E, owing to weak atomic tunneling and asymmetry of
the two-well potential and in many respects being analogs of
spin 1/2. As usual, two types of interactions of TLS with
acoustic and electromagnetic waves with frequency w are
distinguished: 1) resonance interactions for fiw = % and 2)
relaxational interactions, arising with modulations of the
levels of the TLS of the population of the levels, and relaxa-
tion of the population (see Refs. 11-16). In different regions
of values of & ( € fiwp ),T( €fiwp ) and other parameters of
the material the resonance or relaxational processes can
dominate, and the relaxational processes can be single-
phonon (for T« 8,~10 K <#iwp ) or they can include a
large number of phonons (for T'> 6,).'"'%'%-2*?% An impor-
tant prediction of the model is that a dependence of the non-
resonant phenomena, determined by the contribution of
TLS, on the duration of the experiment ¢, is established. This
dependence is brought about by the very large spread in the
values of the amplitude J(A) and relaxation time
(& ,J) «J ~2, so that both values 7 < ¢, and 7>, can be
encountered, and only TLS with 7 Sz, contribute to the real
phenomena.'"®

The most important consequences of the model are the
following: 1) the TLS contribute to the heat capacity
Crs (Tt,) <« Tp(t, ), where @(t.) <Int, for ¢, < 7p,, or
@(t.) =const for t, > 7., Where 7,, is the longest relaxa-
tion time of the TLS (finite for A =A,,,, < « ), and 2) reso-
nance scattering of the thermal acoustic phonons by TLS
contributes to the thermal conductivity y, ~T>.'""'® The
model can qualitatively interpret a number of phenomena in
glasses at temperatures 75 1 K, including nonlinear effects
of the echo type, determined, by analogy to spin systems, by
the longitudinal and transverse (owing to the interaction
between TLS “spins”) relaxation.''!21418:24-27 Thig analo-
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gy, however, is limited: transverse relaxation also occurs for
separate TLS.?®

Comparison of the formulas and estimates obtained in
the tunneling model with the corresponding experimental
data (for temperatures TS 1 K) gives the following values
for the basic parameters of the model*'*'>3!:

Py~ 101 —10% ¢ =2 eV~ and |54] & 0.3—1 eV, (2.4)

where b, is the characteristic coupling parameter of the TLS
with the low-frequency acoustic phonons (@ €wp ). At the
same time for a concentration ¢y (&,) of TLS with energies
% <%, it turns out that ¢y 5 (¥, = 1 K) = 107°-107°.

In recent years different macroscopic structural models
of TLS in glasses, the relations between which are by no
means understood, have also been proposed (see Refs. 7, 9,
32-38, 46, and 47).

2.3. Problems of the tunneling model

The tunneling model, however, has a number of prob-
lems, including the following basic ones (see Refs. 2 and 8):
1) what is the general nature of the tunneling “atoms” and
why are there so many of them, ¢y 5 (£, = 1K) <1073 2)
why is P(A,4) uniform over A and especially over 4; 3) why
is the TLS-phonon coupling so strong that |b,|> fiwop; 4)
why, as proposed additionally in Ref. 18, a) are there two
types of TLS and b) do the values of |b,| for them differ
significantly; 5) what is the nature and properties of excita-
tions with moderately low energies & =~ 5-30 K, determin-
ing phenomena in glasses at temperatures 7'~ 5-30 K, and
how are they related to the tunneling TLS (see also Refs. 20,
30, and 45)?

In the structural TLS models mentioned above only the
first problem and in part, the second problem are actually
discussed, but there are no estimates of P, and 1—),, and the
problems 3)-5) are essentially not studied.

Thus the tunneling model and the above-mentioned
structural TLS models have led to a number of achievements
in the qualitative interpretation of the experimental data and
some predictions (dependence of C, on ¢,) as well as to
significant problems. The existence of the problems obvious-
ly indicates that the structure of low-energy excitations in
glasses is more complicated than assumed in the tunneling
model and its modifications.

3. LOW-ENERGY EXCITATIONS AND PHENOMENA IN
GLASSES

In this section the theory of low-energy excitations of
the atomic subsystem of a glass, differing substantially from
TLS in “rigid” two-well potentials (TWP) (w,~wp ) and
also from phonons, is reviewed. This theory, having essen-
tially a microscopic basis and not directly related with the
specific model of the structure of the glass, is the key and
actually leads, to a large extent, to the solution of the above-
mentioned problems and analysis of the basic low-tempera-
ture properties of glasses, at least for temperatures 7% 30
K.8'39'40

The theory is based on the model of soft atomic local
configurations, the soft configurations being regarded as a
fundamental component of the structure of the glass. Some
of the structural TLS models mentioned above, like the tun-
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neling model, may turn out to be particular cases of the mod-
el of soft configurations.

3.1. Model of soft atomic configurations and critical
potentials

In an amorphous system there exist such large (though
rare) fluctuations of the parameters of the local atomic con-
figurations and deviations from their average values, corre-
sponding to the short-range order, that in each such configu-
ration the motion of some “‘atom” (separate atom or small
group of atoms) along a definite coordinate x occurs in a
local potential ¥ (x) with an anomalously small quasielastic
parameter
The local potential ¥(x), characterizing the change in the
potential energy of the entire system in a multidimensional
configuration space accompanying the displacement of an
“atom” X in a small region Ax Sa,~ 1 A and fixed values of
all other atomic coordinates, can be characterized not only by
values of k(x) > O, as happens, in particular, near the minima
of potentials (k=k(x,;,) >0), but also by k(x) <0 for val-
ues of x corresponding to unstable configurations near an
“atom.” The latter indicates that the local potential V(x) is
not a single-well potential and has at least one maximum near
which k(x,,.) <0. The local configuration near such an
“atom,” for |k(x)| <k, can be restructured comparatively
easily with a significant displacement |x| Sa,, and in this
sense it is soft, while the “atom” itself is bound quite weakly
with the surrounding configuration. In other words, such a
local configuration is close to being unstable, and small
changes in its parameters give rise to a significant change in
the position and form of the local potential of a weakly bound
“atom.” The local potentials under study, called in this con-
nection critical, are strongly anharmonic and are thereby dis-
tinguished from the usual type of harmonic single-well atomic
potentials. The latter correspond to most atoms in an amor-
phous system, and only a small fraction ¢, €1 of the atoms is
characterized by the unusual, critical, potentials. On the basis
of this theory glasses are amorphous systems in which ¢, as-
sumes its highest value, reaching a limiting value comparable
to the solid state, ¢, = (¢, )max (in an ideal crystal ¢, = 0).
In this sense glasses are solids with a significant anharmoni-
city of the bonds. As demonstrated in this theory,®**' the
typical, most likely critical potentials, realized for a small
fraction ¢, €1 of atoms, are characteristic only for one of the
modes of the motion of the “atom,” its “critical,” slow
(|k(x)] <k°) mode x (the faster motions of the atom and
other atoms for k = k ¥ are averaged over time, leading only to
a constant renormalization of the parameters of the critical
mode; see Sec. 3.3). The formula describing the critical poten-
tial is approximated here by the expression®*°

V@)~ 4 ma2+Ea3+2%) for Inl< 1 and B<1,(3.1)

adequate in practice for actual, not too large displacements
|x| =1 of the “atom”; this can be verified in an obvious man-
ner in specific models. For the other modes the atomic poten-
tial, as usual, is “rigid” (k=k ), single-well, and harmonic.
The coordinate x of the critical mode is scaled to the atomic
unit of length ao( = 1 A), and it is assumed that ¥(0) =0 and
x=0 for one of the extrema of the local potential;
A=(1/2)k%a} ~30eV and k“=Mw}, are the standard
scales of the elastic energy and atomic quasielastic constant;
750 and £50 are the basic random parameters of the local
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|k(x)|=|d*V(x)/dx?| <k @ =Mw}, ~30 eV/A2

configurations in the amorphous system. Obviously, £ char-
acterizes the asymmetry of the potential with respect to the
critical mode, whose typical (most probable) values are
small, £? <1, in agreement with the condition of mechanical
stability (see Refs. 8 and 40). Similar single-mode expressions
describe the behavior near the critical point of the thermody-
namic potential in the theory of thermodynamic phase transi-
tions*’ and some general characteristics of the system in the
mathematical “theory of catastrophies.” 3

The main characteristic of the structure of glass in this
model is the density of the distribution of configurational
parameters F(7,£) = F(n, — &), which gives a “two-dimen-
sional” description of the structure [compare p; (R) in Sec.
1]. Generally speaking F(7,£) must have a maximum near
n=n=landé=E foré =0o0r = + £,£%<], for most
atoms in the usual “rigid” (k~k®) single-well harmonic
potentials, including potentials of the type ¥(x) =~Ax?, cor-
responding to the extrapolation of (3.1) into theregion 7~ 1
(Fig. 2). The rapidly (but not necessarily monotonically)
decreasing “tail” of F(7,£) on the 5 axis for %% corre-
sponds at first to the critical potentials (k <k ) for || <1,
and then in the more distant region for 7 <0 and |7| R 1 to
the “rigid”” two-well potentials with k = k © in each well (see
discussion below).

Local atomic potentials are characterized here by the
number of wells and the spectrum of the random values of
the intrawell quasielastic constants k=K (x,;, ), 0<k S k9,
with the probability density distribution G(k) of the type

c@={{Fopse—0mmma 32
The expressions for k(7,£) have the form®*!

ko= k= k (5 = 0) = k<O < A©

for n<°>5%‘<n<<1; (3.3)

=k ,=k(x, ) =200 (AF AY2), (3.4)

A=1—21 for

™ fnl=—n<1,

or

k=ki<k®, k=k<k9 for 0<<n<n®«1 (3.5)
correspondingly for critical single-well potentials for
Xmin = Xp=0, as well as critical two-well and “singular”’ po-
tentials for x, =x,, = (36/8)(— 1+ AY?)(j=1) or
Xmin =1{X0,x,} (j = 2). At the same time in the (7,£) plane it
is possible to separate two lines of ecritical points,

F(7,& = const),6(k)
Fo
{
" /;—n"
N
/. rd ,
a7 a7 71 7

FIG. 2. General possible forms of the function F(7,5 = const) (the case
with F¥=F(0,£)#0)® (compare Ref. 124). 1') Monotonic behavior or
1”) nonmonotonic behavior (for Fy  =F(7)» FoR F, =F(1,)>F§).
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k(n,£) = 0, separating three classes of critical potentials: 1)
single-well (CSW); 2) two-well with an appreciable inter-
well barrier (CTW) of two types: near £=0 for
7<0(j=1)andneary = £2/4for0<n <79(j=2);and,
3) “singular” (CSP) near both lines of critical points.

We point out in this connection the following: the form
of the separate potential wells and interwell barrier for CTW,
though different for different values of 5 and £, approaches
the harmonic form as |5](j = 1) or £ *(j = 2) increase; the
singular potentials here can be regarded as “intermediate” in
the sense that they are similar to CTW with a vanishing bar-
rier or CSW with an inflection point; the physical characteris-
tics of the critical potentials, differing from the single-well
potentials (i.e., CTW and CSP), are translationally invariant:
the values and forms of the dependences for them do not
change under a translation of the origin of the coordinate
system from one extremum to another.

The relationship between this general model and the
specific model of the structure of the glass (including one of
the models noted above in Secs. 1 and 2¢), described by ran-
dom configurations of the parameters Y and their distribu-
tion p(Y), is determined, as soon as the explicit form of the
functions 7(Y) and £(Y), the mode x, as well as
the function F(3,€) = fdYp(Y)6n — n(Y)5(& —&(Y)
have been found. In particular, Y can be the angles between
the covalent bonds and/or between the faces of neighboring
elementary polyhedra of the amorphous structure (see Refs.
1 and 41). In the general case, however, the existence of soft
configurations as a possible component of the structure of
the glass (g) must be related with the excess, compared with
the crystalline (0), average volume v, per atom &v,
=uv, —1,>0, i.e, by a deficit of the (average) density
8pa = Pa — Po<0, whose magnitude is highest in glasses,
|6p | ~0.1p, (the relationship between the breakdown in
long-range order in a crystal as the volume increases with
T = const and the appearance of multiwell potentials was
first pointed out in Ref. 44 in an analysis of melting). In this
connection it may be assumed that the expression

n=v{p,—1v) =8, —Q, v=const ~1,

(3.6)

is of a quite general character; here v is the random volume
per atom, scaled to the atomic volume a3 (d = 3 or 2), and
v, is its critical value characteristic for the material, and a
mode of the “‘compression-expansion” type is the critical
mode. For a critical mode of a different type (shear, rota-
tional, etc.) 77 and £ have a different microscopic meaning.
The simplest model of the type (3.6) (Fig. 3), in which the
local configuration is a fragment of a chain including the
“atom” (0) and the nearest neighbors ( — 1, 1), with some
angle 6 between the bonds, has been studied in a number of
articles.®*%4'45 In this model both the standard “rigid”’ and
anomalous, critical atomic potentials are determined direct-
ly, while the function F(7,£) can be expressed directly in
terms of the radial distribution function for the second near-
est neighbors in the glass.

The concentrations (relative fractions) of atoms in sin-
gle-well (c{"), two-well (c{*’) and singular (¢{*’) critical
potentials are determined by the function F(7,£) in expres-
sions of the type

n )
a=fa { a7,

0

-~

n
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FIG. 3. Three-atom fragment: potential energy of the system relative to the
displacement of the atom (0)—single-well (1) or two-well (2).%4!

n(zrj)
{ [ FoLganae =2, 3)

=12 (r)
nij

(2) _
Cp =

(3.7)

for

3
[{rmpande=1, =3 &<t.
r=1

Here the parameter 7* € 1 depends slightly on the phenome-
non under study, and the typical values 7* ~0.1-0.3; 7}’ can
be found from the definition of both ( j = 1,2) types of CTW
(r=2) and CSP (r=3), for example, 7{¥ =~ — 7* and
742 = 0. The empirical smallness of ¢{?’ [ > crps; see (2.4) ]
corresponds to the smallness of the scales 7. and
£.=(329°/9)"/? for the decay of F(7,£) on the 7 axis for
|7| <1 and on the £ axis 7”7, <1 and {” 1. Using the
approximation, valid in some specific models,

—n)e =+ )
F(n, 8~ (20m) (289 D exp [ L1 GE1T

0<E<1, for >0 and E<1 (3.8)

or for |p| <1 and é=£
F(n, §)ze“F0exp::—c for 0<Fy=F(n, L)< 1,

(3.9)
we obtain the estimate, 7. ~0.1 ~(A7)? and £2 ~ (A£)?
~0.1 for typical values ¢, ~0.1 and ¢ ~10°2 ¢y, 5 [see
(2.4)] in glasses and, apparently, the order of magnitude

estimate F,~ 1072 Thus in the cluster model of a glass’
(Sec. 1)

cu(d)~(—%)d, & (@)~ (L), a=3 (or d=2);

a3
(3.10)
a; &~ 3A, a,~6—124,
(3.11)

==, (3) ~ 107t—10"2 for

ie., ¢, ~0.1 for a,~10 A, ¢{?=c¢(3)=1075-10"° for
a,~50-100 A, if it is assumed that soft configurations are
characteristic for atoms on the “surfaces” of arbitrary clus-
ters, while CTW correspond only to atoms binding “the sur-
face” of clusters of a large a,.**’

In conclusion, we note the following. For glasses it may
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be assumed that typically the function F(7,£) decreases
monotonically or slightly nonmonotonically (for F,, S F;
Fig. 2) for 7 <7, at the same time, multiwell local atomic
potentials with a concentration ¢, (€1), in particular,
two-well potentials (¢ «1), practically reduce to critical
two-well potentials, ¢, ~c?=~c{®. The concentrations c,
and ¢{?> must decrease from their highest values in glasses to
low values in amorphous silicon (a-Si), like the parameters
7. and &, of the function F(#,£). This is associated with the
increase in the mean coordination number from Z~2-2.5 in
covalent glasses to Z=4 in a-Si. These concentrations in
glass, like 77, and &, also, must decrease as the average den-
sity p, increases from p,=p,(c,~107", ¥
~107°-107%) to p, =p,(c, €107'-1072% (¥ €107%), in
particular, as the pressure (p) rises or with annealing (see
Refs. 8,49, and 126). The opposite effect of an increasein ¢, ,
c'?, etc. as p, decreases was observed in an -Si film in Ref.
48. On the basis of the general model of soft configurations it
is also possible to take into account empirically the observed
intermediate order (over distances ~a, or ~a;).

3.2. Low-energy excitations. Density of states. Heat capacity

In soft atomic configurations there arise nonphonon
branches of low-energy elementary excitations & < #iwp , de-
termining the universal properties of glasses at quite low
temperatures 7€ fiwy, . These excitations correspond to low-
energy excited states (¢, ,E, ) of quantum, one-mode anhar-
monic oscillators with the atomic potential (3.1), which for
typical values of ¢, ~0.1 may be assumed not tointeract with
one another in the zeroth-order approximation (see below
and Ref. 8). The Hamiltonian of such an oscillator has the

form8‘4°‘52’56
A= — ey 2t V(@) =wh,
HY,=Ep, (n=0,1,2, ..), (3.12)
h= — S + KXo KX 4 X8,
E=€,(n, &)=we, (K, K,)=E,—E,, (3.13)

Ki=my', K,=E&n; 12, X=un;t2,

k2
&= gpr KW= A}, ~ hopni/? < hop

€9

for ML= (7)1/3<<1.

Even though there is no general analytic solution to the
problem of the spectrum of an anharmonic oscillator in the
entire (7,£) plane it is still possible to obtain a significant
part of the information required below, about the behavior of
low levels E, (n,£) and excitations with energy &, (%,£) in
significant regions |7| <1 and £ *<1. Thus in the case of a
symmetric potential for 0 <7 <1 and £ = 0 it is possible to
construct general formulas determining E, (%)
=FE, (n,& = 0).°® In this case

E,(n=0)=3.2"%%w (n—f—%)ml )
sothat the gap widths £, . ;, — E, for n>>1 are much greater

than the smallest gap width E,(0) — E,(0) = 1.5w for a
completely anharmonic oscillator, while
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Ey ()~ ho () (n+)

foran almost harmonic oscillator with@ (%) = wp 7'/ *<wp
for 7, €7 < 1. One can see already from the foregoing that
the atomic dynamics in soft configurations is characterized
by a new vibrational energy scale w € #wy, and a correspond-
ing scale 7, for 7 and £ % namely, here w is the analog of #w,
in the tunneling model [in which, however, #iw, =~ fiwg ; see
(2.3)]. In reality w~ 30 K and 7, ~ 102 for typical values
&~ 1K and 4~30eV. The spectrum of energies & of exci-
tations of the system of oscillators (3.12) is practically con-
tinuous in accordance with the continuous nature of the dis-
tribution F(7,£) and the overlapping of the energy bands
&, (n,&) for n>1. In this spectrum there are three basic
regions®:

E<w &~wandw<g<Khop, (3.14)

corresponding to three classes of excitations of different
physical nature (and enumerated by the number ¢ =1, 2,
and 3).

Excitations with very low energy & = &, <w, corre-
sponding to the lowest excited state E|, are not vibrational
for E,(0) — E4(0) > w, but arise only because of the small
splitting of the ground state E,(i) in CTW wells (i = 1,2)
owing to the weak atomic tunneling with amplitude Jand/or
asymmetry of the potential 2A=|E,(1) — E,(2)|, as soon
as the usual condition for the existence of a bound state in
eachwell &, < Vg (Vp is the height of the interwell barrier)
holds.?*° Such excitations are analogous to TLS, introduced
in the tunneling model (Sec. 2b), differing from the latter in
a number of respects.® Thus unlike the tunneling model in
the two types of CTW described above (3.4, 5) there arise
two branches of TLS (j = 1,2), which, generally speaking,
have different properties (see below). The energy of the tun-
neling TLS of the jth branch [compare (2.4)]**° equals

Ehs =821 = wells (K,, K) =23+ A} < w,

; (3.15)
Ji~hof exp(— M) <w, 20;=w |yl f;({{)<w
for significant values |7;| € 1 and barrier height
; 1/v, _ v,
by =v; @MVERY 2 ~ ) T By, gy~

and 1/2<v; <2/3 for which the condition &5 < ¥ holds;
at the same time each potential well has an almost harmonic
form and @’ ~w¢ [*#~" is the frequency of almost har-
monic oscillations in such CTW, w < #w{’ <#w,. Here
&i=|K,|, £&,=9K%/32=7, 7,=8(4K,K;2—1)/9 and
§j =10-3£(5)~¢ 3/2,f2(§) ~§2, v, =2/3 fOI‘/lj > 1 (the
interwell distance /; ~a,(1,§;) "> 2 ayn, ). Here, unlike
(2.3), thereis a correlation between A ; and 4 ;» Which can be
explicitly manifested in some effects (see Refs. 8 and 51).
Excitations with moderately low energy & ~w(g = 2),
determined in practice by the oscillator equations for E, for
n = 1 and in part for n = 2, correspond to quasilocal anhar-
monic oscillations of the atoms, primarily in the singular and
partly in the one-well, critical potentials [see (3.3)-
(3.5)].%325% It turns out that for these vibrational excita-
tions the energy ¢, (K,,K,) = &,,w™ ' varies nonmonotoni-
cally on the K, axis as the asymmetry |K,| increases, and has
at least one minimum at the points K={K K,}
= K ¥ ={0, + K *} for K * ~ 1. Moreover, these points are
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analytical critical points of the spectrum (see Ref. 53), and
in addition both points are equivalent in the sense that
£,(0,K*)=¢,(0,— K*) fore, (K,K,) =¢,(K,, — K;):

0en (K, Ks) -0

e (3.16)

- (i=1, 2).
Taking into account the numerical calculations and topo-
logical theorems, about the critical points of the spectrum in
the (K,K;) plane,>*** it may be concluded that the critical
points K * are saddle points and at these points the energy of
the anharmonic vibrational excitations is & =we~w. In
Ref. 52 this follows directly from an analysis of the formula

Men=rn (Ki—5K:)  (n,=0.4) (3.17)

for Ag,=¢,(K.,K,) — €% (with &,=we, and
=g, (0,0); €% = 1.5), obtained from the relations in Ref.
55 with |K [ <1 and K} €1, and from the two facts noted
above: the decrease in the contribution of the anharmonicity
as |K | and/or K } increase and the translational invariance
of the characteristics of multiwell potentials. The conclusion
that the critical points K  have a saddle character [like the
conclusion regarding the function ¢, (K ,,K,) for |K,| <1 and
K% «1] was drawn in Ref. 56 taking into account the trans-
lational invariance, mentioned above, on the basis of the fact
that in a numerical calculation of g, (K ,,K,) it is impossible
to construct a topologically consistent picture of isoenerge-
tic lines, if the critical point is a minimum.

Generally speaking, the critical points of the spectrum
for & ~w do not necessarily reduce to saddle points (a de-
tailed analysis of this question has not yet been performed;
there apparently exist preliminary arguments favoring the
existence of a minimum also—a critical point for ¢, (K ,K,)
for n>2).

Finally, at higher energies w < & <#iwp, there exist two
branches of quasilocal, almost harmonic vibrational excita-
tions (g =3), corresponding to both &, and/or &,
for |K,|>1 or K3>»1 and generally higher levels,
# . (n>2).>>°75% The spectrum of these excitations, like the
spectrum of TLS also (genetically related with it in CTW),
does not have critical points. The corresponding vibrational
frequencies wy’( j = 1,2) arerelated in the usual way with the
effective quasielastic constant of the critical potential
k9 (9,€): 0 =~ (kY /M)"? for k> kY (> 0), in particu-
lar, k "~k (0 < <l) ork @~k 982 gk (see Sec. 3a).
Such excitations make a contribution of the same character as
phonons (for F ¥ EF(O,E ) #0; see Fig. 2) to the vibrational
excitations of the glass.

With regard to the foregoing we shall make the follow-
ing remarks. It is actually assumed that the elastic and other
interactions between oscillators (3.11) and their excitations
(3.13), as well as interactions between the latter and excita-
tions of other types (phonons, etc. ), do not alter the classifi-
cation and quasistationary nature of these excitations or the
basic results of the theory (though they can give rise to some
additional effects—for example, transverse relaxation in a
system of many TLS; see Secs. 2b and 3d). A detailed study
of this problem has yet to be performed, although for TLS
the foregoing has apparently already been largely confirmed
within the framework of the tunneling model. Furthermore,
the low-energy excitations (3.14) in soft configurations, pri-
marily vibrational, are quasilocal in the same sense as in
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crystals'”: their lifetime is finite already as a result of interac-
tions with acoustic phonons, whose spectrum overlaps the
spectrum of the excitations (3.14). Finally, as already point-
ed out, all excitations (3.14) have here the same origin, and
are determined by the low excitations of the states of the
oscillators (3.11), so that the transition from one class
(g = 1,2,3) to another, accompanied by a change in 7 and ¢,
is continuous, while the density of states of their spectrum
n(¢), determined by the formula (3.2) [for Q=& and
Q(n,&) = & (n,£)] can be described by the same expres-
sion. However, keeping in mind the different dynamic char-
acter of the excitations of these three classes, it is convenient
to approximate for & <#wp, the expression for n( %) in the
form of a sum of the corresponding contributions:

n(€) = nrs (§) 6 (8, — &)

+ nanv (€) 0 (& — &) 0 (& — &
+ nuv (8) 0 (8 — &),

where the effective limiting energies &,,=gq,,w for
g, ~0.1-0.3, g, =3, while 8(x)={1if x> 0; 0if x <0}.

For excitations with the lowest energy, ie., two
branches of tunneling TLS (j = 1,2), just as in the tunneling
model, the density of states depends on the duration of the
experiment ¢, while the distribution over A and A, P(A,4),
is independent of t.. It turns out that

(3.18)

nTLS(gv te) = NP (87 te)

for gmln =2J Amin) < € < w, (3.19)

ne=lim nris (&, t) for w>E>Eny.  (3.20)

te—boc

At the same time n g is virtually independent of #’, since the
variations in F(%,£) are small for the variations
S ~8(£2) ~n, ~1072&n, ~10~". The weak function
@(&,t.) increases (or decreases) as & increases like &> for
O<a<l (or |a| = —a<«l). Here A, corresponds to the
top boundary of the range of barrier heights ¥_,, which is
assumed to be finite (as in the tunneling model), in agreement
with the finite energy of the strongest interatomic bonds; for
the empirically typical for some glasses & ;, 10~ ° K (see
Refs. 34 and 24), 4., ~(2MV,,..1)''?/# corresponds to a
value of V., (% 1eV) not much greater than 7,. In situa-
tions typical for glasses®* in (3.19), at least when F, ~eF ¥
where F=F(0,£) 0,

n%lzw_lFoNo.E _ N

R A - =0
f(O e

for N,~102cm™2 (3.21)
This agrees with the empirical value (2.4) with 7% ~10% eV
for the plausible typical value F,~(1—3)-1072 [see
(3.9)]; this could provide an answer to the question of eval-
uating ¢ty g in the problem (1) of the tunneling model (Sec.
2.3).

Unlike (2.3), here P(A,4) is almost uniform over A [just
as nyp5 (£) ], increasing (or decreasing) slightly like A* for
|%| €1 as A increases, but it is not uniform over 4,

P (A, M= POY(A, }),

for 0<A<w and Anin =4, (&) min <A <Amaxs> Amin ~ 3;
P(A,1) has a maximum at some A =4, decreasing as

A~ G775 forlarge A > A, and A, is apparently closer to A
than to 4,,,, -

min
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The dependence of nr (%, t.) on ¢, here differs appre-
ciably from In #, precisely because P(A,A) is not uniform as a
function of 4 49;

nTLS (81 te) @ p (87 te)r

P&, tg=1—[1+ L) o]

) (2

L(z)=2ln-2,
where
180 (8) =7 (8, J)exp[2 (A — M AWaln 2};;;.,(”

for iwy’ from (3.15). As a function of ¢, p( %, ¢, ) reduces to
In ¢, from the tunneling model only for sufficiently small
values of t, S7 = 7, (€) (w/¥%)?, but the dependence is
much weaker for 7, »7 (typical values are 7~10~° s for
w)» & =0.1 —1K). This fact and the existence of two types
of TLS may make it possible to eliminate the inconsistency,
pointed out in Ref. 18, between the tunneling model and the
experimental data.

The density of states n,uy (%) of quasilocal anhar-
monic vibrational excitations with energy ¥ ~w is deter-
mined by the sum of the regular ng (%) and singular ng (%)
parts. Here ng (%) is of the same scale as np g (%, ¢, » ),
extrapolated for & ~w; in particular, below the first critical
point of the spectrum &, ~w for & <&, and & ~w, it
should be expected that (see Refs. 54 and 62)

nR (.8):-172(3%

for ng (&) = ng ( — &).°* The function ng (%) is deter-
mined here by the sum of contributions of the critical points
[see (3.16), and also Refs. 54 and 62],

nAHV(g)% nr(€) + ns(®),
or,for |& — &, |<wand 6 <w, e<w,

Rapy (€)=~ ng (€) ~ Foﬂilzw iN,In

)2, pa~ FoNandiu, (3.22)

—_— (323
[€—%c1+6 (3.23)

when F, ~ F 3 50. The width of this entire band of the spec-
trum is of the order of w, though it is somewhat smaller; the
height of the peak is ng (&', ) »>ng (&,. ), i.e., it stands out
appreciably against the regular phonons (see Ref. 8, p. 284).
Since for anharmonic oscillations %, is appreciably smaller
than even &, — &, (see above), the contribution of the os-
cillator levels E, and E | is largest in the region & ~w. In the
approximation in which only the contribution of these levels
and therefore excitations with energy & = &, Sw is taken
into account, the latter can be interpreted as effective TLS.
For such vibrational TLS, however, n,4v (&) does not de-
pend on ¢, (for real 7, > #i/w~10""?s), unlike ny.5 (%, 2. )
for tunneling TLS. In agreement with (3.9), a rough esti-
mate of the concentration c, v of centers of such vibrations
gives ¢, ~0.1> cagy ~¢P =1072-1073 (> s ).

Finally, for quasilocal harmonic vibrational excita-
tions, realized in the same two-well potentials as the tunnel-
ing TLS and in a significant fraction of the single-well poten-
tials, the density of states has a Debye form, at least when
Fy~F %50 (see, however, Refs. 57, 58, 124):

"uv (&) = NoDyFla®  for Fiwp > &= o> w,

3
Do—'\’o"lalz( ) ~ Y0 Yo~ 1, nuy (W) ~ ng (w)
(3.24)
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The heat capacity of glass C, (T) at sufficiently low
temperatures T < fiw,, determined by the excitations under
study, is expressed, as usual, in terms of their density of
states. For very low temperatures 7 <€ w the heat capacity is
determined by the contribution of tunneling TLS, and the
expression for C, (T) has the form [see (3.19)-(3.21)]

Ce(T) ~ Cris (M= BT, o] 1.
ﬁg Eﬁg (te) ~ ne.

This relation can be made to agree with the empirical for-
mula (2.1) for O<a = n €1 [see the discussion in connec-
tion with (3.21) for the dependence on ¢, 1.

At moderately low temperatures T~wC; (T) is deter-
mined here by the anharmonic vibrations (3.23), and the
sum of Schottky contributions « (&/2T)% ch~? (#/2T)
for the effective vibrational “TLS” in the region of the peak
in the density of states 7,y (&), At the same time C, (T)/
T3=C Auv (T)/T?hasat,-independent maximum of width
Sw in the region T~w,*? which agrees qualitatively with
the observed “hump” @, (T,) for ¢, (T) in (2.1) for
55Ts30K and T, ~15-30 K (see Fig. 1).

Finally, at higher temperatures 7> w the contribution
of the harmonic vibrations (3.24) to C,(T) has a Debye
form®”°8;

Cuv (N~

(3.25)

2 NoF3D,T®. (3.26)

It remains unclear, however, whether or not this contri-
bution is significant for the empirical excess Debye heat ca-
pacity (ay T?) in (2.1). For this part of the heat capacity the
simultaneous contribution of “soft” acoustic modes [with
(@) max €@p, if such modes exist in glasses] and vibrational
excitations, whose density of states is characterized by a
peak at & ~ 30K, of the type (3.23) (see Refs. 59-61), may
turn out to be significant.

3.3. Scattering effects. Heat conduction

In the theory under study resonance and relaxation
scattering processes and the absorption of acoustic (phon-
ons) and electromagnetic (photons) waves, as well as scat-
tering of neutrons, described by quasilocal nonphonon exci-
tations (3.14), should determine most of the universal
unusual properties of glasses at quite low temperatures T or
for quite low energies fiw (transfer of energy AE) of the
scattered “particles,” at least for TS w~10-30K or fiw Sw
AE Sw (in the tunneling model only the TLS play the role of
such excitations). As usual, the interaction of low-energy
excitations of the glass with an electromagnetic wave gives
rise to appreciable scattering (absorption) effects, when for
these excitations the characteristic magnitude of the electric
dipole, for the diagonal or off-diagonal matrix element, is
high enough, p, =10~ '*~10~'" CGSE. Such values of p, are
realistic in a number of nonmetallic glasses (a-Si0,, a-As,S,,
etc.), being determined by the asymmetry of the local chemi-
cal bonds in soft atomic configurations (some particular re-
alizations of this asymmetry are discussed, for example, in
Ref. 93).

The interaction of TLS (¢ = 1) and, apparently, also of
quasilocal excitations (3.23) (¢ =2) with low-frequency
phonons is determined by a mechanism similar to the “strain
potential’’ and arises because of the change in the form of the
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critical potential (3.1) in the field of the wave®$*™®° (com-

pare the mechanism of Ref. 66). The external, relative to the
oscillators (3.12), “field” A should change the configura-
tional parameters (7,£) and the spectrum of these excita-
tions:

N g (A)=1+0ng;(m, & A), &g — &g (M, & A),
n(€) 7 (& A etc, g=1,2 j=1,2
(3.27)

Here A can be the parameters of the acoustic (e,) or electro-
magnetic wave as well as the variations of the parameters of
the system (the density p, , the conduction electron density,
or the quantum numbers of the electronic state). The Hamil-
tonian describing the coupling of the excitations with low-
frequency phonons H , and the coupling parameter
b{? (,£) have the form (see Ref. 64)

H =V (23 Tgs (€0) Eas (o)) —V (23 1, &) = eofg; (2),

leo| € 1, (3.28)

B, B = (1, B, B i

B (n, 8 = 00 (0, ©) il ) (m, B oL, (3.29)
where N

for (@) = a4, =k

Wy e,

Unlike the tunneling model, here b {#’ are random quantities,
whose distribution density can be quite broad, and the corre-
sponding mean values b (%’ can differ appreciably in magni-
tude and have a different sign even for different branches
(j=1,2) of the same class (q) of excitations, in particular,
for both branches of TLS, as proposed on an empirical basis in
Ref. 18. For tunneling TLS |b,|,..x is much larger than the
expected scale #iwp, **:

1557 s = 15 Y [ max ';“D ~03—1 eV (3.30)

L
for characteristic k ~k V&7, <k with £~10-3 in accor-
dance with (2.10), while for the excitations (3.23) it is more
likely that

1587 max = 1B $hiv lmax~ wni* & 0.1—0.3 eV.
Such a large value of |b,| > fiwy, (it is usually of the order of
fiwp, ) arises as a result of the softness of the configurations
(k<k"), whose generalized susceptibility x( =k ~') is high.
Tofind b (¥’ (7,€) (or b ¢, (7,£) and their probability density
function p (b {#’) it is necessary to take into account the fol-
lowing®'*4%67 (see also Refs. 15, 16, 18). The interaction of
TLS and the excitations (3.23) with high-frequency (@ > o, )
‘“‘phonons,” adiabatically following the motion of the “atom”
in a separate well of the critical potential (3.1), should lead
only to a constant renormalization of the parameters of the
potential, which may be regarded as already taken into ac-
count. However, real relaxation processes and polaron type
restructuring of the excitation as well as their coupling pa-
rameters with the medium are determined by the interaction
with low-frequency phonons (@ < @, ), in particular, it is pre-
cisely the latter that affect in a decisive manner the tunneling
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of atoms®” (see also Ref 19). At the
same time here the limiting frequency is . = w/#,
& 115 €W <Hwp, B This separation of the contributions for a
tunneling atom, interacting with excitations of the electronic
fluid of the metal, was first explicitly traced in Ref. 67a. In the
situation at hand this separation can apparently also be made
in the approach of Ref. 67, and the corresponding calculations
for b (¥ (9,£) and p(b {¥’) have yet to be performed. An at-
tempt was recently made to calculate b )5 by directly averag-
ing the contribution (e,) of the high-frequency oscillations in
the Hamiltonian for the coupling of the TLS with the field of
the atomic vibrations € = e, + e, (see Ref. 51).

In the theory under discussion the phonon thermal con-
ductivity y, of the glass at very low temperatures T €<w~ 10~
30K, as assumed also in the tunneling model (see Sec. 2.2), is
determined by the resonance scattering of thermal phonons
by TLS [on that one of their branches on which the coupling
parameter |b, | is largest, see (3.30) ]. At the same time, taking
into account (3.19) we have y, « T2~ *,|a| €1, and the best
agreement with the empirical dependence (2.2) is achieved
for 0 < @ <1. At moderately low temperatures (T ~w)y, (T)
can be determined by resonance scattering (#iw = &) of ther-
mal phonons by vibrational excitations (3.22) and (3.23): the
effective ~ phonon  mean-free path is /% (x,T)
~[ng (2xT)2xTth x1 ™' (x=%w/2T), ) that
Xe < T?1% (1/2,T) =const, corresponding to the plateau
near T~w in a region of width Sw, in agreement with the
empirical dependence y, (T) at temperatures S K S T530K
[see (2.2) and Fig. 11°2 (see Ref. 3 and also Ref. 60 for a
discussion of other interpretations of the plateau for y, (T);
possible mechanisms for y, (T) at higher temperatures T,
w< T <%w,, are discussed in Refs. 3 and 56).

Thetheory under study predicted in a natural manner'®
that the cross section ¢, (q,AE) for inelastic scattering of
neutrons, proportional to the density of the scattering exci-
tations n( & )%, g, (q,AE) « n( &) for scattering inelasticity
AE = &, should contain a peak at AE ~w~10-30 K. This
peak corresponds to the scattering of neutrons by the excita-
tions (3.23), whose density of states has a peak at & =~ w, and
its width is comparable to, but less than, w. This peak in the
neutron scattering near AE ~ 20 K in a-SiO, glass was found
independently in Ref, 68, where the scattering excitations
(3.23) are associated with the coupled rotational motions of
SiO, tetrahedra. On the basis of the model of soft configura-
tions (3.1) the concentration of anharmonically vibrating
atoms, corresponding to the excitations (3.23), was evaluat-
ed from empirical data®®: ¢,y ~0.01, which is consistent
with the estimate made above. It is possible that the low-
energy peaks at =~ 10-30 K in the Raman scattering and IR
absorption spectra,’ observed in a number of glasses (a-
Si0,, and others), are determined by the interaction of the
IR radiation with the same excitations (3.23) (compare Ref.
46). The tensor characterizing the intensity of the scattered
light with a frequency shift ( — Aw) in an amorphous medi-
um,? T® (Aw) «n(& = fihw), has a peak corresponding to
the peak (3.23). It is also possible that the strong scattering
of phonons with #iw =~ 10-20 K observed in glasses (a-SiO,
and others)® is determined by their coupling with the exci-
tations (3.23), as soon as the average binding energy |5 v |
Capv Can  be comparable to fw=w [compare
|brislers (8o = 1K) <&,].”7
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3.4. Concluding remarks

The foregoing theory of low-energy excitations in
glasses is based on the reduction of the set of structural pa-
rameters of the local atomic configurations to only two basic
parameters (7,£). This theory, in which the behavior of the
density of states n(% ) agrees reasonably well with experi-
ment and anharmonic vibrations (3.23) are predicted with
the universal energy scale w= 10-30 K and a corresponding
peak in the neutron scattering, actually gives the solution to
the problems (1)-(4a) and (5) of the tunneling model and
apparently the key to the solution of the problem (4b), noted
in Sec. 2.3. The tunneling model appears to be a particular
case of the model of soft configurations for & S &, €w, in
which the important problem is the problem of determining
the structure of the “atom” in the soft configuration in a
specific glass. The excitations of interest are actually quasi-
stationary for & 5w, and the basic parameters of the system
w, 7., and F,, generally speaking, depend on T,, for
T, « T, <A, corresponding to some correlation between
the structure of the glass for T< T, and vitrification.?>>2 At
the same time ny s (€,T,) « T, "F§(T,) «C, (TS 1K)
and |b 5| & T for y = 1 = x, which agrees with the experi-
mental data®“*? for |br 5| and, for a suitable assumed
Fo(T,), for nps (8,T,).

Among the problems of the theory we call attention
first to the analysis of the explicit form of F(7,£;T, ) in spe-
cific models of the glass structure, which is equivalent to
determining the explicit structure of the “atom’ in the soft
configuration, and the interactions of excitations with phon-
ons and with one another (compare also Refs. 20, 70, 71, and
76).

4. ANOMALOUS ELECTRONIC PHENOMENA IN
NONMETALLIC GLASSES

4.1. Some basic empirical facts

The anomalous character of many electronic properties
of nonmetallic glasses is ultimately determined by the pres-
ence of specific electronic localized states, as a rule absent in
crystals, in the mobility gapof width E, = E¥ — E},i.e.,in
the region of localized states, separated by mobility thresh-
olds E* and E* from regions of nonlocalized states—va-
lence (v) and conduction (c¢) “bands” (see Ref. 74). States
of impurity centers or local structural defects (see Refs. 7,
72, and 73) play an important role in dielectric glasses, while
in glassy semiconductors the states of the characteristic local
centers are of primary importance. For glassy semiconduc-
tors (chalcogenide glasses, etc.) two sets of electronic prop-
erties have been discovered which are incompatible in the
traditional one-electron theory and which depend weakly on
the concentration ¢, ( €1) of impurity atoms injected during
the preparation of the glass.>™ Thus the energy W, of acti-
vation of the electrical conductivity o = o, exp( — W, /T),
i.e., the position of the Fermi level { in the gap depends
weakly on ¢;, 7, and the electric field F for 107°
S¢ 510722107, TS T, /2 and FS 10° V/cm, as does the
energy of the main peak of the photoluminescence Epy , and
this indicates that the density of states g(E) at the center of
the gap is high. On the other hand, in thermal equilibrium
there is no paramagnetism, which appears under illumina-
tion (photo-EPR ), and the intrinsic optical absorption edge
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(minus the weak Urbach tail) is sharp (and there is no Mott
conductivity at the Fermi level’*-7), i.e., as if g(E) ~0. The
following relations were found empirically for glassy semi-
conductors:

By =2Ep =2E 5 =Ex (PL)22W, =Epc = E,, (4.1)
Ipy =1, exp( — Tl)

A

for T, sk%ﬁwp/z and T, ~T, ~2040K , (4.2)

where E ¢, E 4, and E x (PL) are the thresholds for photo-
conductivity, intragap absorption, and excitation of photolu-
minescence, whose fading (suppression with time under illu-
mination), unlike its intensity /p; , depends slightly on 7.

4.2. Anderson’s phenomenological model

The following hypothesis was proposed in order to
eliminate the obvious inconsistency noted above®””: the sta-
tionary states in the gap are populated only by single (with
spin ¢ = 0) electron pairs with a negative correlation energy
U=E(2)+ E0) —2E(1) <0 (E(n) is the energy of the
state occupied by n electrons; n =0, 1, 2). The interelec-
tronic attraction, as also in the case of polarons (see Refs.
76-79), appears here in the intrinsic structure of the glass
owing to the deformation of the medium and the corre-
sponding gain in energy 8E <0, U= U, + 8E <0 with an
interelectronic repulsion energy U, < |8E |. This phenome-
nological model of the states in the gap is described by the
Hamiltonian>"

H:He+Heev He:ZsElnl.av HeezzUinif;lip (4.3)

where ﬂee is the Hubbard interaction operator (see Ref. 80),
a particular case of the Shubin-Vonsovskil polaron model,?*!
for the case of attraction with U; <0; 1, is the occupation
number operator; and, s = + (1/2) =(1,l). Hereit was as-
sumed that the one-electron terms E; at the sites (i) corre-
spond to a wide probability density distribution p (E, ) in the
gap, and in addition p(E;) * 10'°-10*° cm~? eV ', while
the energies U; correspond to a narrow probability density
distribution f(U,;)=8(U — U;) with very large |U| =
— U~1eV;thelatter can hardly be determined by the usual
polaron effect (see Refs. 77-79, 82 and Sec. 5 below). As a
consequence the density of states g(E) is generally large in
the gap, and even g(E) 2 10'°-102°/cm? eV. In this model
there arose the problem, among others mentioned below, of
the nature of the empirically determined local charged
centers and almost discrete energy levels [ ~E, /4, =, /2;
see (4.1) and Ref. 74] in the gap (see also Refs. 83-85).

4.3. Model of “coordination defects”

This problem is solved in an alternative model,®*’

which is also based on Anderson’s hypothesis,” by means of
the following assumption. The states in the gap belong to
specific “coordination defects” in the structure—atoms
whose coordination number z does not equal the normal
number z,, z =z, + 1. The transformation of two neutral
defects D° (with spin & = + 1/2) into a pair of charged
(with spin o = 0) defects is similar to the exothermal reac-
tion

DD — Dj i+ Doy (4.4)

in which the energy released plays the role of the correlation

M. 1. Klinger 708



energy U( <0) of a pair of independent defects (a pair with
an alternative valence). At the same time the scheme of the
energy levels of such defects in the gap is constructed taking
into account the existence of empirically established, almost
discrete levels (=~E,/4, =~E,/2 for |U|=E,/2~1 eV
against the background of an otherwise practically empty
gap. Unlike the model (4.3) this model is based on taking
into account the specific chemical properties of the atoms of
the material, primarily the atoms of the chalcogen (S, Se, Te;
z, = 2), containing ‘“‘unshared pairs” of electrons participat-
ing weakly in the formation of the covalent bonds (singlet),
rather than the characteristic features of the amorphous
structure of the glass.
* *

Both models lead to a number of important conse-
quences, including the predominance of diamagnetism and
the weak effect of external factors (c,,F), which are in ac-
cord with the experimental data; the ground and metastable
excited states of electron pairs must play the role of centers
of the effects characterized by the relations (4.1) (see Refs.
74, 77, 2, 83, 88, 90-99). At the same time there arose in
these models and in the comparison of these models with
experiment a number of serious problems (see also Refs. 88,
89, 100-103, 105), concerning the general nature of electron
pairs with U<O and such large values |[U|~1 eV, of
g(E) (g(E)=10"-10*"/ cm > eV~ or g(E) =0), the na-
ture of the quasidiscrete terms (~E, /4, ~E,/2), and the
binding |U|=E,/2 in the gap, as well as the relations
between the centers of different processes in a glassy semi-
conductor and, finally, the connection between the electron
pairs and the characteristics of the structure of the glass,
determining its low-temperature properties. This could indi-
cate that the structure of the states in the gap is more compli-
cated than assumed in the models (4.3) and (4.4). The ques-
tion of the uniqueness of the concept of a point defect in the
glass, employed in the model (4.4), is also a difficult one (see
below and Ref. 34).

5. LOCALIZED ELECTRONIC STATES IN GLASSES

A more general approach, which makes it possible to
construct an essentially microscopic theory of localized elec-
tronic states in the intrinsic structure of the glass and of the
phenomena determined by them in glassy semiconductors as
well as to solve the problems of the models (4.3) and (4.4),
is based on the idea of self-trapping of electrons in soft atom-
ic configurations of the glass.®3%1%4

5.1. Self-trapped states. Electron pairs with negative
correlation energy

Usually, in particular for polarons,” the interaction of
an electron with its nearest neighbor atoms, which deter-
mines the self-trapping of the electron, is strong and has a
characteristic energy (the constant in the strain potential,
etc.) of the order of several electron volts, but is rarely real-
ized because of the large elasticity (k=~k ©'=Mw? ), hinder-
ing the deformation of the medium (see Sec. 3.1) or the sig-
nificant average velocity of an untrapped electron. At the
same time the self-trapping (ST) energy is W, <0, i.e., the
gain in the energy of the system owing to the interaction of
the electron with the medium it deforms and the characteris-
tic atomic displacement u,=a,x, are small: |W,|
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<#i2/2m.a} ~1€V and u, <ay=~1 A. The self-trapped
(ST) electronic states of interest here differ strongly in this
and other respects from polaron states. Specifically these ST
states are formed primarily owing to the interaction of an
electron with a ‘“‘bare” (in an undeformed medium) local-
ized state ¢, of a small size p, ~a,, with an energy level E
in the tail of the corresponding band, with a weakly coupled
“atom” in the soft configuration (3.1) in the region of local-
ization of #,.'** For a random parameter Q, ( >0) of this
interaction the distribution may be assumed to be narrow:
0y =0Q4(a,) =0s>Q, (py) for p, >a, with the typical val-
ue Q,~ 3 eV. At the same time a strong electron-atom inter-
action is realized largely (if not completely) precisely be-
cause p, ~a, and the soft configuration is comparatively
easily restructured owing to the smaliness of the quasielastic
constant of the “atom” k <k '? (3.3)-(3.5). When an elec-
tron occupies the state ¢, (with spin 1, for example) the
“atom” in the field of the electron experiences a significant
displacement {x|, comparable to unity (at the same time the
surrounding medium is strongly deformed), while the mag-
nitude of the drop in the electronic level Jy(x)=E (x)-
E, ( <0) is comparable to @, while the increase in the po-
tential energy of the “atom’ is comparatively small and also
comparable to Q,, ¥V(x) $0.14~Q, for ¥50.1 K, Ulti-
mately the energy of the system as a whole drops strongly,
i.e., by an amount comparable to Q,, and a ST state of the
electron is formed with a considerable |W,|SQ, and an
equilibrium displacement of the “atom” |x,| & 1. The addi-
tion of a second electron with opposite spin ( | ) increases the
equilibrium displacement of the “atom,” |x,| > |x,|, and the
ST energy. For a singlet (¢ = 0) electron pair |W,| > |W||
(the foregoing discussion concerning the electron states is
true, with a trivial modification, for hole states also). At the
same time the highest values possible for stable pair states
(see below) |x;|nax and |W,|... are extremely large,
1X3| max ~ 1 and | W,| ., ~Qy, unlike the values for polaron
and other ST states. The energy of the ST states here is de-
scribed by the expressions® 104

ERn)y=E, (z,)
=nk; -+ W, + U, , + const

W,=W, (z,) <0, W, (z)

=V@+nJg@andU, = U, (z,) >0; (5.2)
here,, ={1ifn=2;0if n#2}, and
i (Hyy A Q0n®
W, =W k)~ 2,‘;&% <0
for kO k*= p*Q334' %52 (5.3)

WA k), (W]~ e (@) =200, (%)

for O<Ch < k*, 2py ~ 1~ p*, (5.4)

when the equilibrium displacement x, equals, respectively,
almost harmonic (W, ~x2, x{™ ~nQ,/ka}) or anhar-
monic (W, «xj, x{*™ =x{™ (k *)) values. The ST singlet
pair state is stable when its correlation energy is
U=EQ2)+ E0) —2E(1) <0,

_ TrH U _ Q(z) (0) - *
U=U""" (k) c <0 for kK9 >> k> k*, (5.5)

2
kaj
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= TAD =T (k%)

= Uc——%eg (Q,)<<0 for k* » k>0, (5.6)

for
Ue < e Qo) k <by=7 2 (<hO), T™ (k) =0,
(5.7)

and Qod ~'>@(n,£) [mainly for @(7,6) =|5||£|]. These
criteria hold for a significant fraction of the atoms for (3.1),
for the typical values U, ~0.3 eV and Q,~ 3 eV, which cor-
responds to a significant concentration of such pairs in
glassy semiconductors [see (4.14)].7982 The relations
(5.1)=(5.7) actually correspond to the adiabatic approxi-
mation for electrons in the states 3, for #iw, € Q, <4, and
here, as in the theory of polarons, W, =4W, and
|Jq (x2)]:¥(x,) = 1. The adiabatic local potential W, (x)
remains critical, since the parameters 7 and £ renormalized
by the electron-atom coupling remain small in magnitude
[see (3.27)]1°¢:

N>, =n(A)
=(M+nrg®?) [14 30" (% + 2%,)],  |mal <1, (5.8)

E>E=EA)=E+nrg®) (1+x,), B! '
for ¢V’ =4 =" (dJ, (x)/dx)|,_, and |¢¥ | <]; here x, is
the root of the equation x>+ 3x?+A,% +p, =0 with
A, =8(n +ng?) (& + ng®) 2 and pn=16ng"(&
+ ng®) ~3 which vanishes at n = 0.

Since |W,(k=0)|=|Wy(k*)| =¢£,(Qy)~Q, for
U <0, we distinguish two cases:

eg (Qo) > E; or  Eg> g (Qo) (>Ue), (5.9)

for glassy semiconductors (E, =1-3 eV) or dielectric
glasses (E, =5~-10 eV), respectively. In the first case (5.9)
the spectra of the quantities U | and |W,| have an upper
limit, so that

Wl € IWolmax=Wnax=4% [ W 1} max:

=E; and |U| < |U|pax

1 1
max == 5~ Wmax = TEgv

(5.10)

because of the well-known quantum phenomenon of repul-
sion of close-lying interacting terms'®® for states generated
by two bands (conduction and valence) in the mobility gap.
This effect corresponds here to the repulsion of an electronic
term, which drops on self-trapping, from the mobility
threshold E * of the valence band (and analogously for the
hole term ) owing to the interband interaction between states
in the gap from both bands. [These features and the effect
(5.10) were described in Ref. 8 (p.298); see also Refs. 79
and 107.]

Different approaches to the description and analysis of
this effect were developed in Refs. 109 and 110 in a study of
the Schrodinger equation {E,(x) — [E, +J,(x)]}
Yo (x) =21, (x)}-¢,(x) (see Ref. 108), for which a
large part of the matrix elements [, (x) for transitions
between the states i, of ““its own” band (for an electron, the
conduction band) and 3, of the “foreign” band (valance
band) are finite owing to the contribution of
random fields in the glass, with X,|I_x)<(Q, and
[, (x)] & Qs(J,(0)=0=1,(0)=1,(x).” Both ap-
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proaches are apparently limited, though in different re-
spects, and the problem of giving a quantitative description
of this effect remains largely open.

For the second case (5.9) we have

Eg > Whax = | Wy th=0) |=¢5 Q)

=2Umax =2 | U (k=0) i (5.11)

Thus in the case (5.10) the ST pair states with U< 0 are
formed only in soft configurations with not too small values
of kR k, ~QIE [ ' k* withk Sk, (<k®)andinthecase
(5.11) for any k S k;. The states (5.3), generally speaking,
in the case (5.10) make an appreciable contribution for
£, ~E,, but not for £, >E,, while in the case (5.11) there is
no repulsion effect, E,,, €E,/2, so that the situation in
these two cases is different.

We note that-the ST triplet (o = 1) pair states corre-
spond to excitations with a significant energy (per particle)
e* ~U,.,/2 in the gap with |[U(11)|-|UC11)|~|U(11)];
this is analogous to the well-known situation for hydrogen
molecules'®® (see Ref. 79). As usual in such cases, when
E,(11) = E,(1l) + &%, in phenomena involving decay or
the formation of similar pairs (recombination, photolumi-
nescence, etc.) effects depending on the value of the spin of
the pair can be manifested.

Generally speaking, three basic possible types of elec-
tron and hole singlet pairs in ST states, local centers 4 ¥/,
with different values of the charge e* = 7 |e| can be distin-
guished: neutral (/ = 0), singly charged (/ = 1), and doubly
charged (/ = 2). Such a singlet pair is similar to a weak cova-
lent bond in soft configurations. Thus the weak, “irregular,”
covalent bond between the ions of the chalcogen
(C*!' — C=*') can play the role of the center 4?2 in the
glassy semiconductors a—-C,, _, Q, (see also Ref. 2), while
the defects D* ! in the model (4.4) can play the role of 4 *"
centers, and the weak covalent bond in the model (4.3) can
play the role of 4 °. In this sense singlet electron (hole) pairs
in the models (4.3) and (4.4) are particular realizations of
the ST pairs studied. Apparently the 4 £ centers make the
main contribution, since the concentration of broken bonds
is small and local composition fluctuations cause the
charged centers to predominate. This is the key to under-
standing the insensitivity of the properties of such glasses to
the injection of a high concentration of hydrogen atoms
¢y (~0.1), capable of “destroying” the broken bonds, as
well as to the solution of some problems of the model (4.4)
(see Refs. 65 and 105).

5.2. Density of states. Thermodynamic properties

The density of states of the quasicontinuous spectrum
of the system under study in the “mobility” gap per particle
is given by

> ggx)(_Ei‘i) . (5.12)

a=1, 2 E, '=nE,

g(E)=72 gn(E), gn(B)=

where n = 1 corresponds to the contribution of single-parti-
cle states from the tails of both bands (@ = 1,2) with U> 0,
while n =2 corresponds to the ST pair states with
U < 0375104111 Here g¢ (E) is determined by a formula of
the type (3.2)—an integral over k and E, of
g (EGK)S(E—Ey + (— 18 (k)) with 82 (k)n
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= W@ (k) + U5, over the region E ¥ > E_ > E ¥ and
in the case (5.10) with kR &, ie., | Wi (k)| SE,. The
“bare” (in the absence of self-trapping) density of states
gi® (E) of this “band” (&) in the mobility gap, generally
speaking, includes a slowly decreasing function in the region
E¥ «E<E** or E¥ <E<E%* and a rapidly decreasing
function (“tail”’) of the usual form for E < E ¥*and E> E?*
with the typical decay parameter w} ~0.1E, and with the
same scale 6% = |E ** — E *| (see, for example, Refs. 74, 75,
and 122). Here g{*’(E) and g5* (E) are qualitatively simi-
lar, but the rapid decay of g{*’(E) in the gap actually starts
below E * by an amount ~ |W{®| .. ~min{E,,¢e,}/4.

For glassy semiconductors [the case (5.10)] gi® (E) is
determined on the whole by the contribution of the states
(5.3), but for realistic values of E, ~¢, contains also a contri-
bution from the states (5.4). The latter corresponds to the
displacement of the density of states near E * into the gap by
an amount (W 2 — U!*)/2,

max

8%, (B) = G (k) 2 [ E— 25 Wi — U]
for W& =E, > U, and is s1gmﬁcant in an interval of
width ~max{U 5* + w*} around the center of the gap E,
E*—E=E—E*=E,/2 The contribution of the states
(5 3) g5ty (E) decreases in the gap like gi* (E) only near
E** and then deeper than E — ( — 1)y, (A% + w}) for
. ~ 1. However, it decreases slowly in a significant interme-

diate reglon”l

853 (E)w E;—E-f-%U‘c‘" - (5.13)
In this, main, region of E near Egz(m (E) is determined by
two overlapping almost ﬁat bands (5.13), while for ¢, =E,
two “narrower” bands gi7dy;, (E) also make a contribution
(Fig. 4). In this connection we note that here the symmetry of
the characteristics of the electron and hole pairs of states for
glassy semiconductors, empirically determined previously
and reflected in the region | U | = E, /2, proposed in the model
(4.4), is a consequence of (5.10). At the same time
UL =E./2=UZ) notonly for Q§”=Q >, but also for
different Q " and QP (Q§V,0§P R E,). The actual redis-
tribution of the electrons accompanying transitions from the
filled band g%’ (E) of states split off from the tail of the *“va-
lence band” (their relative fraction is f, ~c, ~0.1) into the
empty band g3’ (E) of states from the tail of the “conduction
band” ( f, ~c, ), gives rise to the formation of real stable elec-
tronic (2e), and hole (24), pairs with o =0 and U <0 for
effective |U | = |U | nax = (1/2)E, near E = E. Their density
of states looks like two bands in the quasicontinuous spec-
trum, joining at the common boundary E * = E, with width
~{U,; 8* +w*}<E,/2 and height g,(E©)~=10'"-10%
cm_3eV '(~G(k, )Qow"‘2 X (E*)/AU?), correspond-
ing to a significant concentration of  pairs
c;=a} g,(E)E,/2~fc, ~1077-10% ¢, is the relative frac-
tion of states in the “band tails,” ¢, ~ 10~ "' — 102, Pinning
¢ = E@~E (small bias ¢) relative to an increase in the con-
centration of impurity (non-transition) atoms introduced
during vitrification ¢; < 1077, the electric field FS F*~ (1/
2)E,/In [G(k,)QFw*/ AE}] '=10°—-10""V/cm, or
the temperature 7S 7,/2<T*~|e|a, F*=10° — 10* K, is
determined by the occupied pair states™'"'
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FIG. 4. Schematic form of the density of states g(E) in the mobility gap
for a glassy semiconductor. The labels are explained in the text. The bands
(“*peaks” ), bounded by the dashed curve (and partly cross-hatched), cor-
respond to states occupied by electronic (2e), and hole (2h), pairs. The
dotted curve corresponds to the possible behavior of g( E), when the con-
tribution of g, 4n, (E) is noticeable.

{—E} =Bl —{=—E,

for g(0)=g(E®) ~ 102 —10cm~3-eV~! (5.14)

[compare the model (4.3) as well as the model (4.4) with
g(£) =0]. Such a system (glassy semiconductor) is for all
practical purposes undoped and diamagnetic, since the con-
centration of EPR centers c¢, =g, ({)aiw* is low,
g2,(&) €g,(&) and ¢, €c,, though finite, in agreement with
experiment (¢, S 1075 see Refs. 74 and 111).%

For dielectric glasses [the case (5.11)] g, (E) and ¢, are
many orders of magnitude smaller than in semiconductors:

P _;‘ £ (E) alEy ~ (102—1079) go,

= ollE*—vur)) 5.15
B=TEn < (3.13)

for example, g,~exp(—v)<1l with v=[(1/2)E,-
|U(k = 0)||/w* (for a-Si0, it could happen that v~ 5-7 for
E, =9%eV,w*=02-03¢eVand |U(k=0)|=3eV). At the
same time, in agreement with experiment and unlike glassy
semiconductors, impurity atoms can make a significant con-
tribution to the electronic properties of such glasses already
for quite low concentrations ¢; (€ 1072) in the absence of
appreciable pinning £~ E and single-particle states—EPR
centers—can play an important role.”’

5.3. Localized electronic excitations. Weakly nonequilibrium
phenomena

In this section we shall discuss primarily the properties
of glassy semiconductors, i.e., the case (5.10) and (5.14).
The quasicontinuous spectrum of single-particle localized
excitations [(1le), (1h)], formed in the decay of ground
state ST pairs [ (2e)q, (2h),], has gaps—for thermal (ac-
companying relaxation of the medium) and optical (with-
out thermal relaxation) processes. The width of the thermal
gap is &y, = U,, = 1/2E,, while the width of the optical
gap is £,p = Upay + 2| W) |max = E; "' (compare Ref.
83). At the same time, taking into account the usual genera-
tion of electron-hole (e-4) pairs, the energy of activation of
conduction W, =min{|{ — E*|; &4 +¢&,}=E,/2 (for
typical values w* €< E, and the energy of activation of hop-
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ping conductivity &, € E, ), while the total width of the opti-
cal gap is E,, = min{e,,, E;} = E,, and the optical ab-
sorption edge can be regarded as sharp (see Sec. 4.1) as soon
asit is determined by the decay of ST pairs (or creation of e-4
pairs), while Urbach absorption is determined by the contri-
bution of simple exponential “band” tails (see Ref. 112).
This agrees with experiment.

The quasicontinuous spectrum of localized two-particle
excitations [ (2e).,, (2A)., ] of ground state ST pairs, unlike
the spectrum of possible excitons, does not have a gap (as in
the model (4.3) and in the BCS model of a superconductor}.¥
At the same time low-energy excitations with a per particle
energy of €., €U,,../2=~E,/4 and high-energy excitations
with £, % E, /4 can be distinguished. The latter include also
the triplet ST pairs (2¢),,, (2A),, as well as the excitations
(le) and (1h). Electronic excitations associated with soft
configurations are generally characterized by metastability.
Metastability is manifested most strongly for high-energy ex-
citations, for which restructurings of the atomic bonds corre-
spond to large atomic displacements |Ax|~1 and, in this
sense, the formation of long-lived “defects” (not necessarily
reducing to Frenkel or Schottky defects) relative to the start-
ing structure in the glass, in particular, photostructural trans-
formations in glassy semiconductors (see Refs. 74, 113, 114,
115, 120). The elementary act of such defect formation in-
cludes a Frank-Condon transition with the absorption of a
photon and tunneling transitions or transitions of the Lan-
dau-Zener type,'®* as well as competing thermally activated
transitions—decomposition of defects. Analysis of the proba-
bility P(w,T) and other characteristics of the formation of
defects, induced by the absorption of a photon with energy
fiw =~ E,, leads toa number of preliminary results, of which we
call attention to the following.

The probability P(w,T) is highestat T = 0, and as T'rises
it decreases monotonically for high fiw R E}* X (fiw=E,).
On the other hand, P(w,T=0) =0 for lower energies
tiw<E *(fw ::Eg ) or P(w,T = 0) for intermediate values of
o, E* S fio S E 3*; at the same time P(w,T) varies nonmono-
tonically as T increases, increasing at first and then, owing to
annealingat T, * TX T,,,, decreases (Fig. 5). For fiw R E e
the process, i.e., P(w,T), is virtually independent of w (the
plateau at 7 = const). The threshold energies E* and E **
are the average values of the characteristics E 5 and E pa
averaged over the ensemble of soft configurations, of the adia-
batic potential of the system, corresponding to the transitions
of interest; its barriers cause the metastability of the excita-
tions and “defects” (Fig. 6). At the same time
E*<E¥SE,and EX=E}*=E,.

Plew=const;T)

-

—

7-anr\ T

FIG. 5. Schematic form of the possible types of dependences P(w = const;
T); Tonn i8 the effective temperature of annealing. (1): #iw < E'?, (2)
E>to<EY*, (3) iw>E .

Furthermore, the sign and magnitude of the change in
the volume (thickness of the film) of the glass,
AQ(0) =0(w)-N, in these processes depends on the mag-
nitude of the ratio y,=p,(w)c,/p,(w) c¥*, where p,(w)c,
corresponds to the decay of electron (hole) pairs with the
absorption of a photon, while p,(w)c¥ corresponds to the
formation of new pairs. For ¥,, > 1 the chemical bonds cor-
responding to such pairs become weaker, and “photoexpan-
sion,” AQ(w) >0 occurs. At the same time the number of
two-well atomic potentials and tunneling TLS in them as
well as anomalies caused by them in the heat capacity
C(T)( « T) and other characteristics at temperatures 75 1
K increase. This occurs most likely for #w < E : and
fiw~E,. The opposite occurs with AQ(w) <0 and
AC(T) <Ofor Ts 1 K, when 7, < 1; this can be realized for
fiw > E 3* and fiw = E,;, when the created electron-hole pairs
populate soft configurations with the formation of new elec-
tron (hole) pairs. This situation with AC(T) <Ofor TS 1K
and fio~E,, was apparently recently observed in a-
As,S,. 16

Such effects are one of the manifestations of the general
relationship between anomalous low-energy excitations and
electronic localized states, generated by soft configurations,
in glassy semiconductors.®® The photostructural transfor-
mations under discussion lead, in particular, to the appear-
ance of localized electronic states, so that the optical gap
should decrease |AE,, ()], and its decrease |AE,, (w)]
should increase with @ up to the “platean,” |AE,, |nax
<E,/2 for fiw > E ¥*, in agreement with experiment.''*'"
The existence of long-lived excitations and structural
changes determined by them corresponds to the existence of
their slow relaxation over a long time. The latter is charac-

FIG. 6. Typical adiabatic potentials of the
ground (0) and excited (1) states of the soft
configuration. In the cases of Figs. b and ¢ the
separated bottom branch (I) corresponds to a
two-well potential, while in the case of Fig. d it
corresponds to a three-well potential with
strongly nonequivalent central and side wells.

fwiz) /
!
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/
M
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terized by a macroscopic time scale ( % 10° s) and is also
manifested in other phenomena, in particular, in photocon-
ductivity (see Ref. 121).

Here two classes of possible centers of photolumines-
cence (PL) can be distinguished.®>7*1%

1. High-energy excitations (2e)*% ={(le)* + e*} and
(2h)*® ={(1h)* + h*}, in which the state of one of the
charge carriers (e*, h*) is less strongly localized (p*>a,)
than the state of the other [ (1e)*, (1h)*].

II. ST excitons, {(1e)* + h*}, {(1h)* + e*}, with a
similar structure. The energy of the PL peaks E & (1<I</y),
in the presence of /, types of centers (1</,<4), are close,
EY =~E,/2, and their differences are comparable to the
widths of the peaks ~ [E, #i(2k,/M)'/*]'/~0.1 eV; one or
several PL bands can be distinguished. The threshold energy
for excitation of PL E {" (PL) = E,,,, but is somewhat lower
for the I centers, 0 < E,,, — E{’(PL) S0.1E,,,, and the lat-
ter can determine the significant PL, observed in glassy semi-
conductors for E,, — fiw=0.1E,, and whose kinetics is
monomolecular.!®? The total Stokes shift is very large, E .
(PL) — Ep, = E, /2, which also agrees with experiment.'*?
The fading of PL is determined here by the photo- structural
transformations of PL centers in centers of competing nonra-
diative processes, depending weakly on T. As the pressure p
(density p, ) increases the behavior of the PL can differ for
centers [ and II: E {i” (p) can vary nonmonotonically, with a
section of growth, while E 4 (p) decreases monotonically*;
comparison with experiment''” could make it possible to sep-
arate the contributions of the centers (1) and (2) in PL in
glassy semiconductors.

Thermal quenching of PL (4.2) is determined here both
by the decrease of the probability of a radiative transition
p,(T) owing to the emission of vibrational excitations with
energy & *=20-40 K as T increases (analog of the decay of
the zero-phonon absorption line; see Ref. 62) and by the
growth in the probability p, of nonradiative decay of PL
centers.” Taking into account the latter with specific, differ-
ent in different models,”*~**''® assumptions can lead to the
law (4.2) in a limited range of values of the parameters of the
system. Taking into account the first factor p, (T), however,
naturally leads to the law (4.2) with I, «p, (p,
+p.) txexp(—T/T,) for T>T, =T, =&*
~w=~10-30 K, as soon as the temperature dependence of p,,
is weaker (like PL fading, see above) and p,, >p,. In the
model under discussion the emitted excitations are the excita-
tions (3.23), which interact with the weakly bound charge
carrier in the PL center®>''? (compare Ref. 60, where inter-
layer optical vibrations can play a similar role). Apparently
there is still no general quantitative theory of the law (4.2).

In the theory under discussion the high-energy elec-
tronic excitations—Ilocal charged (or neutral) centers for
different nonequilibrium phenomena in glassy semiconduc-
tors—are also different. This makes it possible to under-
stand, at least qualitatively, the empirically observed differ-
encesin the magnitudes and w and T dependences, which are
difficult to interpret in the models (4.3) and (4.4), of the
cross sections of the correlated photo-EPR, intragap absorp-
tion (with characteristic energy E;, ~E,/2), PL fad-
ing,’*'°! and the significant increase in the number of hole
trapping centers accompanying a weak change in other ef-
fects as the number of donors (77) increases, ¢, ~10°-
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1072 ( S¢,),'™ since the excitations (le) and (1h) make a
different contribution to all these phenomena.®1%%

The relations obtained in this theory in the case (5.10)
and (5.14) for glassy semiconductors®”®

E,, =2E, =2W, =2E, =E,(PL)=E, (5.16)

g

describe the empirically observed correlations between these
phenomena (see Secs. 4.1 and 4.2), i.e. (see also Refs. 8, 79,
110, 121) effective discrete energies against the background
of the quasicontinuous spectrum (compare Refs. 74 and
77).

For dielectric glasses in the case (5.11) many of these
phenomena are much weaker (see the end of Sec. 5.2).

Finally, the low-energy excitations of ST pairs can con-
tribute to the heat capactiy (C, « T), and to the aggregate of
tunneling TLS (see Refs. 2 and 77) and the phenomena de-
termined by them (o'(w) xw® etc.) at low temperatures
T51K in glassy semiconductors. The question of the im-
portance of this contribution remains largely open (see Refs.
84 and 93).

5.4. Concluding remarks

The foregoing theory of localized electronic states in
glasses makes it possible to describe in a unified manner the
properties of glassy semiconductors determined by these
states as well as their correlation with one another and with
the low-temperature properties of such glasses; this is deter-
mined by their common origin in soft atomic configurations.
The fundamental role of the latter and ST states in them is
determined by the “nonbinding” orbitals (unshared pairs,
etc.) and weak “irregular chemical bonds” (of the type Se-
Sein a-As,Se, ), in agreement with the experimental data for
glassy semiconductors.”® The models (4.3) and (4.4) can be
regarded in some sense as particular realizations of the theo-
ry discussed here, on the basis of which the problems men-
tioned in Secs. 4.2 and 4.3 can also be solved. A number of
problems of the foregoing theory concern its quantitative
aspects, as well as the effects of interactions between electron
pairs and their role in the superconductivity of glassy semi-
conductors (see Ref. 123).

6. CONCLUSIONS

In this review some recently developed theoretical ideas
and a theory, based on them, of anomalous low-energy (non-
phonon) excitations and localized electronic states with
strong interelectronic interaction and anomalous phenome-
na in glasses due to them, and, as a rule, absent in crystals,
were discussed. They are determined by the significant an-
harmonicity of the crystal, regarded as a heterogeneous
structure: soft configurations of weakly bound atoms, whose
relative fraction is significant ¢, ~0.1 and which correspond
to significant fluctuations away from short-range order (and
stoichiometry) and, generally speaking, excess (compared
with a crystal) volume, are “dissolved” in a random manner
in the main aggregate of the usual local atomic configura-
tions. In this connection the theory predicts that the density
of states of both the low-energy excitations and the self-
trapped electron pairs with U <O should decrease [see
(5.15)] and that the corresponding properties of the glass
will become weaker as the density of the glass increases
(high pressures, annealing, etc.)® (see also Ref. 48). The
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idea of a “point defect” in the structure of the glass does not
appear unique here (see also Refs. 2, 34, 74, and 105): the
soft configurations (3.1) and 4 *' centers, though they can
be regarded as local centers, are an important component of
the characteristic structure of the glass.>"'3?

I had an invaluable opportunity to discuss a number of
problems in the theory of glassy systems with I. M. Lifshitz.
I thank Yu. M. Kagan, M. I. Kaganov, M. A. Krivoglaz, L.
P. Pitaevskii, M. I. Ryazanov, and I. I. Yaskovets for useful
discussions of some questions examined in this review, and
also S. Hunklinger, who provided me with reprints of Refs.
31, 32 and Refs. 125-127, and K. Tanaka for providing me
with a preprint of Ref. 128.

"The phenomena determined by the participation of conduction electrons
(electronic excitations) are discussed in detail in some recent reviews
(see, for example, Refs. 3, 12, and 31).

?The almost linear, far from E § ., decrease in the term J, (x) = — a|x]|
in the gap slows down and the states of both bands mix appreciably,
Va (x) = €q(xX) ¥y + 2,4, (X9, for 2, |cg, (x)|*~]|c, (x)|?, for suffi-
ciently large |x|. At the same time the term of the ST pair state E_ (x,),
being repelled, stops near E¥_: E (x,)=E% + A, with
W, (x)|=E, — A,,0<A, <E,/2 and A,~(Z,|I,(x)DY? for
E (x*) =E%,. Consequently, W,,, =|W,(k))|=E,(1-6) for
S=(8,)p/Eg <.

3 As the density of the material increases (at high pressure, with anneal-
ing, etc.) ¢,, g,(E), and g,(§) decrease together withc, (5, ) [see discus-
sion below (3.10)], and hence the pinning ¢ and the phenomena dis-
cussed below, determined by centers with U <0, become weaker.

“Optical excitation and migration (conductivity) of ST pairs as a whole
can be neglected here, in agreement with the model (4.3).

SAfter this paper was submitted for publication, the new publications
Refs. 124-129, concerning separate questions discussed in this review,
appeared. In Ref. 124 it is pointed out that together with the case
F3=F (O,Z‘) #0 the alternative case F§ = 0, when in contrast to (3.24)
the density of states of quasiharmonic excitations can have the form
nyy (%) ~o* in the region fiwp, » € = fiw > w, is also possible. Interest-
ing experimental studies of the absorption of low-frequency sound in
metallic glasses are described in Ref. 125; their interpretation in this
article can also have a bearing on the foregoing in connection with
(3.27). The model of Ref. 129 can be regarded as a definite realization of
the general model (3.1)-(3.3) and (3.11)-(3.14) (see Fig. 3) with the
rotational critical mode in (3.1). In the recent paper of Ref. 131 a general
theory of the relaxation of TLS in an amorphous metal is developed
taking into account the electronic polaron effect with tunneling, and an
interpretation is proposed for the anomalous absorption of sound, found
in Ref. 125, accompanying the transition of the metal into the supercon-
ducting state.
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