Crystallization of a three-dimensional electron gas
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The most important results of theoretical studies of crystallization of a three-dimensional
electron gas are presented. The crystallization criterion, magnetic field effects, viscous-liquid
model, and possibility of experimental realization of Wigner ordering are considered. The results
of experimental studies in compensated semiconductors published during the last two decades are
analyzed in detail using the concepts of Wigner crystallization. It is shown that thereis nota
single convincing experimental proof of the existence of Wigner crystallization, and that all
known experimental results can be explained in a noncontradictory way by the magnetic-field-
induced localization of electrons in potential wells created by randomly distributed impurities.
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INTRODUCTION

More than 50 years ago E. Wigner demonstrated that
under certain conditions a low density electron system must
crystallize. Since, according to estimates, the required densi-
ties are much lower than the electron densities in real metals,
this prediction of Wigner for many years was considered as
an elegant, but unrealistic idea. A significant number of
theoretical studies which made the criteria and conditions of
electron crystallization more precise have appeared, but no
experimental proofs were available.

In the last 10-15 years the interest in this problem has
increased dramatically in connection with the study of one-
and two-dimensijonal systems. In 1979 it was found that the
electrons captured on the surface of liquid helium form a
two-dimensional Wigner lattice. In the opinion of many re-
searchers, there are convincing proofs of the existence of 2-D
electron crystallization in inversion layers of metal-semicon-
ductor interfaces, placed in a strong magnetic field. Approx-
imately 20 years ago, there was expressed a possibility of
crystallization of the ion plasma on the surface of white
dwarfs and neutron stars, where magnetic fields reach ~ 10°
and ~ 10" Qersted, respectively.

The problem of the existence of Wigner crystallization
in a 3-D electron system was discussed for the first time
already in the 60s. The first paper which attempted to ex-
plain some peculiarities of the Hall effect in a #-InSb semi-
conductor by assuming that a 3-D electron lattice is formed
in a magnetic field was published in 1968. In 1979, the same
assumption was made in regard to a n-Hg, 3 Cd,, Te semi-
conductor. Since then, a number of publications have ap-
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peared in which the assumption about the existence of elec-
tron ordering in n-Hg,4,Cd,,Te 1is supported and
developed. The review paper of Ref. 1a and the collection of
papers of Ref. 1b are devoted to the subject of Wigner crys-
tallization.

This review describes and analyzes the most important
results of theoretical and experimental studies of 3-D elec-
tron gas crystallization.

1. ELECTRON-LATTICE STABILITY

For sufficiently low concentrations, an electron gas
will, as indicated for the first time by Wigner?, spread in an
orderly way against the background of homogeneous posi-
tive charge of ions (‘“‘jellium”), forming a nonconducting
crystal lattice. Such an electron crystal is stable under the
condition that the average potential energy of interelectron
interaction is larger than the average kinetic electron energy.
In fact, if the Coulomb repulsion energy exceeds the kinetic
energy, the electrons will try to keep the largest possible dis-
tance from each other. Such a situation arises at sufficiently
small concentrations of electrons #, i.e., for sufficiently large
interelectron distances 7, = (3/4mn)'/>. If we express r, in
units of the Bohr radius ag = # 2/mge?, i.e., putr, = ry/ag,
then the Fermi energy of a free electron gas will be
er = 3.68/r? Ry and the average kinetic energy of electrons
will be £ = (3/5)e = 2.21/72 Ry. The Coulomb repulsion
energy of two electrons is £,,, = ¢’/r, = 2r, Ry. For suffi-
ciently large 7., the kinetic energy z~ r,” > becomes smaller
than the potential energy €, ~. ', and cannot destroy the
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ordered electron structure, the formation of which is favored
by the electron repulsion.

It is obvious that the stability of an electron crystal is
determined not only by the relative contribution of the po-
tential £,,, and kinetic Z electron energies, but also by the
vibration amplitude of electrons near their equilibrium posi-
tion. The zero-point vibration amplitude in an electron crys-
tal is proportional to 7, */* and is small for sufficiently low
concentrations. With the temperature rise to a value
~k 5 Ty exceeding the energy of electron-electron interac-
tions, the electron crystal “melts.” "

Obviously, one can obtain the stability criterion of an
electron crystal without taking into account the lattice vi-
brations by equating the potential and kinetic energies. This
imposes conditions on the critical values of the interelectron
distance r<", or on the electron concentration #.,. From the
condition €, = &, we obtain for a free electron gas

nif¥ap ~ 0.56. (1)

a1,

In the Hartree-Fock approximation without taking into
account the exchange and correlation terms, £, = 1.2/7,
Ry, and

1,84, nilfap~0.34. (2)

In the Hartree-Fock approximation with exchange
(e = — 0.916/r, Ry and correlation (&, = — 0.88/r,
Ry) terms, £,,, = — 0.596/r, Ry and

pot
3.7, nilfagp=~0.17. 3)

In the last two decades, alot of attention has been devot-
ed to the critical parameter of electron crystallization 7{".
Various methods have been used to calculate it, but the most
reliable results are obtained only for the ground state calcu-
lations. A method used most often for the estimate of r{" is
the method based on the empirical Lindeman melting crite-
rion. According to that criterion, the crystal lattice melts if
the average displacement of an atom is {%2) '/, i.e., the aver-
age amplitude of its vibrations, reaches a certain critical
fraction & of the interatomic distance R: (12)'/?/R = 6. The
accuracy of determination of the crystal stability criterion
depends, obviously, on the accuracy of the § estimate. The
parameter § is not calculated theoretically, but must be esti-
mated from the experimentally found melting temperature
Ty . The value of § turns out to be practically the same for
metals of one class. Thus, for sodium and other alkali metals,
an estimate from the formula, relating § and the Debye and
melting temperatures, to the interatomic distance and atom-
ic weight?, gives §~ 1/4. At T = 0 K, the amplitude (u?)'/?
of an electron crystal is determined by the zero-point vibra-
tions of electrons. Assuming that only longitudinal vibra-
tions with the frequency w, = (4we’n/m,)'/? are impor-
tant, Nozier and Pines* have obtained

(@htr 1 ( i

172 1
R rs \ 2meup )

T2
From here it follows that an electron crystal must melt at
r~ 20, nyllap~3.1-1072 (4)

Coldwell-Horsfall and Maradudin demonstrated® that the
value of {" is very sensitive to the choice of the parameter §.
From their formula, 7" = 0.4056"*, it follows that for
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8§ =1/4r" =104, and for § = 1/2r{" =6.5. According tocal-
culations of Kugler®, r' ~490 for § = 1/3 and r** =~ 1540 for
8 = 1/4. In the Ref. 6 it was shown also that the neglect of
the phonon dispersion by the authors of Ref. 4 leads to a
significant underestimate of r{".

Another method for the estimate of 7", suggested by de
Wette’, starts with an assumption that the melting of an elec-
tron lattice occurs as a result of the disappearance of bound
electron states. This approach is based, in effect, on one of
the fundamental properties of a solid-state material, i.e., that
the particles from which it is composed, occupy spatially
localized potential wells which have at least one stable
bound state. If the concentration of particles is high enough,
and the radius of a potential well is small enough so it con-
tains no bound states, a solid state cannot exist. It is assumed
further that the cause of the formation of the bound electron
states are electron lattice defects, namely, interstitial elec-
trons and vacancies. According to de Wette, the potential ¥,
acting on an electron is a cell with a radius 7, and explicitly
depending on its coordinate r, is influenced by the lattice
defects, located outside of the considered cell, i.e., at 7> r,.
This means that ¥ depends on the coordinates of other elec-
trons implicitly (through r). Thus, the lattice defects locat-
ed in the area r> r,, determine whether the bound states in
an electron potential well in the area 7 < r, are formed. The
upper and lower limits of " values were estimated for two
sharply different forms of the potential in an elementary cell
as follows:

50 < 1 < 100, 6.2.103< nilPap < 1.2-102. (5)

Van Horn®, who reconsidered de Wette’s analysis, gives an-
other estimate for #¢*. Unlike de Wette, Van Horn takes into
account that not only interstitial, but also the site electron
levels broaden forming an energy band. For that reason, not
all site electrons can move to interstitial positions. Assuming
that the potential in both site and interstitial positions can
be approximated by the harmonic oscillator potential
V(r) = r*/r}, and using the statistical Thomas-Fermi mod-
el, Van Horn found the proportion of electrons in sites and
interstitial positions as a function of the Fermi energy £ and
r.. The Fermi energy was found from the condition that the
sum of both contributions is equal to unity (i.e., that the
total concentration of electrons is constant). It was taken
into account that in a body-centered cubic lattice (the lowest
ground state energy corresponds to such symmetry), an in-
terstitial electron is either in the center of the side, or in the
middle of the cube rib, and, therefore, an electron in a lattice
site has six near neighbors located in interstitial positions.
The critical parameter " was calculated under the assump-
tion that the lattice melts if half of all electrons moves into
interstitial positions, i.e., if there is an equal probability to
find an electron in a site or in an interstitial position

27,

niPag ~ 2.3.102 6)

An error can be due to the inaccuracy in the choice of the
potential, in the energy of formation of an interstitial elec-
tron, and in the number of interstitial neighbors surrounding
a site electron. In addition, if one assumes that the melting
starts when not halfbut a quarter of electrons moves to inter-
stitial positions, then r{" = 65.

The most reliable values of <" have been obtained in
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calculations of ground state energy, which enable one to es-
tablish the most precise relationship between the potential
and kinetic energies. Carr et al.>'° calculated the energy of
the ground state of an electron crystal, £,, with higher accu-
racy than Wigner,” by properly taking into account the lat-
tice vibrations

1,79 2,66 0,73
&= - + 82 T2
s 8

= +0 (7). (7
The first term in (7) represents the energy of direct electro-
static interaction of electrons (Madelung energy) aligned
into a regular lattice against the background of a uniform
positive charge of ions (the “jellium’ model). It turns out
that the main contribution to this term is made by the inter-
action of the ith electron with the positive background in the
same ith cell (the difference between the interaction energy
of the ith electron with the other j electrons and the interac-
tion energy of the same ith electron with the background in
the j cells is small). Other terms in (7) can be found by
expanding the potential energy in a Taylor series in powers
of displacement of electrons from a lattice site. The second
term describes energy of lattice vibrations. Other terms are
anharmonic corrections to the energy. In addition, the ener-
gy £, contains exponential terms ~exp( — const:#!/2),
caused by the exchange interaction. However, at large 7, > 6,
when an overlap of the wave functions is small, these terms
are much smaller than the other terms in expression (7).
According to Refs. 9, 10, the critical parameter is

n3ap 2 0.10—0.12. (8)

¥ ~5—86.

However, this value of #{" cannot be identified with the criti-
cal electron-electron distance at which the lattice melts,
since it is equal to the limiting value of r, above which the
expression (7) for g, converges.

Kugler® calculated values of 75" using the self-consistent
harmonic approximation (RHA)?, in which the anhar-
monic crystal is described by a set of harmonic oscillators.
The main idea of the theory is reduced to the choice of the
trial Hamiltonian for the oscillators. The best choice of the
trial oscillators is sought with the help of a variational calcu-
lation of the free energy. The value of #“ is calculated from
the condition that the RHA approximation is not valid (i.e.,
that the RHA approximation does not have solutions):

1T 22, nilPapa2.8.1072, (9)

The inclusion of the anharmonicity effects not included in
the RHA approximation leads to significantly larger values
of K"

r A& 700, nellap~ 8.9-1074, (10)

Unexpectedly large variations of #£" values, found from
the calculations of the binding energy &,, are determined by
the accuracy of calculations. We have already mentioned
that the interaction between cells of an electron lattice relat-
ed to long-range order contributes comparatively little to the
energy &,. For that reason, the violation of the long-range
order during melting (7" characterizes the lattice melting)
has a relatively small influence on the quantity €, and, there-
fore, the reliability of the calculation of r{" essentially de-
pends on the accuracy of calculation of £, Besides, as is
known, a significant error is related to the calculation of the
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correlation energy £, . In the last several years, quite reli-
able results have been obtained for £, with the help of the
variational Monte-Carlo methods (see Ref. 11).

Recently, Ceperley!? basing his work on the previous
calculations of ., , used the Monte-Carlo method to calcu-
late the critical parameter r{". According to these calcula-
tions, the parameter 5" is slightly different for paramagnetic
and ferromagnetic Fermi liquids. In the case of crystalliza-
tion of a paramagnetic Fermi-liquid, we have

rE=754+5, nilapa (8.3 +0.5).10-3. (11)

For crystallization of a ferromagnetic Fermi-liquid it was
found'? that:

r& =100+ 20, nylap= (6.2 4 1.3).-1073. (12)

At the present time it is generally accepted that these values
of " are the most reliable.

2. CHARGE DENSITY WAVES

Some idea about charge density waves (CDW) can be
obtained by considering the simplest model of a metal, i.e.,
the “jellium” model, according to which the ion lattice is
replaced by a uniformly distributed positive charge. It would
seem that in this case the ground state of an electron system
should correspond to a spatially uniform density of the nega-
tive charge. However, such an assumption turns out to be
wrong, if the interelectron interactions are taken into ac-
count. Overhauser has shown'? that states of an electron
system with a nonuniform charge distribution, i.e., CDW
states, correspond to smaller energies, i.e., energetically are
more favorable than states with a uniform distribution of a
charge. The CDW state is the ground state in which the
electron charge density p _ oscillates in space.

p— = po 11 + a cos (Kr)l; (13)

here p, is the average electron charge density (which does
not depend on the coordinates), and the wave vector K and
amplitude a < 1 change with the temperature in such a way
that the free energy remains at a minimum.

The oscillations of electron density must induce large
electric fields in a metal, if the background of the neutraliz-
ing positive charge of ions has elastic rigidity. These electric
fields will inhibit the formation of CDW’s. The CDW states
can be formed only in the case when the system of ions is
deformable, i.e., if periodic displacements u = B sin(K-r)
can occur in the positive background. Then the local density
of positive chargeis p, = — po(1 + div u), and the charge
neutrality will be preserved everywhere if @ = BK. The ques-
tion about whether the ground state of CDW can be formed
in a specific metal depends on how well the ion lattice can be
approximated by a deformable “jellium” model.

Spatial modulation of charge density can occur under
the condition that each electron experiences the action of the
oscillating potential V(r) = ¥V, cos(Ker). The potential
V(r) is caused by the exchange and correlation interaction
of electrons.

Since ¥, is a function of the wave vector k, the quan-
tum-mechanical problem of finding the ground state of
CDW includes the solution of the integral equation for
V,(k). An approximate solution of the Schrodinger equa-
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tion with the potential ¥(r) has the form*
Y (1) = exp (ikr) + P, exp li (k + K) rl
+ p —exp li (k — K) ], (14)

where B, are functions of k and differ from zero only if
Vo(k)#0.

The wave function (14) is what leads to charge modula-
tion, since

[ (r)* ~ 12 (Bs +P.) cos (Kr).

The charge modulation amplitude a in expression (13) is
given by the average value 2 (8, + 3_) for the occupied
states of the electron system. From expression (14) it can be
seen that the CDW wave vector K can be viewed as a vector
of the reciprocal lattice of an electron crystal. Using a vari-
ational method (S and S_ were viewed as variational pa-
rameters), it was found that 5, = O for the values of 7, from
0 to some value r, above which 5, increases with 7.

The presence of an oscillatory potential ¥(r) in the
Hamiltonian leads to the appearance of energy gaps in the
electron spectrum £(k). The gaps are formed in the planes
perpendicular to the vector K at a distance K /2 from the
point k = 0. The CDW state will be the most favorable ener-
getically if the contributions of all occupied states to the
exchange and correlation potential ¥(r) coincide in phase.
This is guaranteed under the condition that the Fermi level
£r is located in the gap; the wave vector of CDW in that case
is K=2ky (#ik ¢ is the Fermi momentum). Since the magni-
tude of K is determined by the diameter of the Fermi surface
2k, it is, generally speaking, incommensurable with an in-
verse lattice, i.e., there is no integer &, for which the magni-
tude of the inverse lattice vector g = nK (the wavelength of
CDW is about the same as the lattice period, but is incom-
mensurable with it). Of course, the existence of commensur-
able CDS’s is not forbidden. A commensurable structure of
CDW can be realized, for example, in metallic compounds
consisting of various ions. Thus, phase transitions between
commensurable and incommensurable CDW structures
have been observed in quasi-two-dimensional metals of the
type TaS,.

Before the work of Overhauser, it was assumed that in
the Hartree-Fock approximation, the lowest energy state ¥
of a degenerate electron system is the well-known Fermi
sphere of occupied states described by plane waves. Such a
function V¥ corresponds to the ground state of a gas of nonin-
teracting fermions, for which the charge density is spatially
uniform. Overhauser, in essence, has shown that for the one-
electron states (14) with K= 2k and properly chosen
B, (k), the ground state ¥, i.e., a CDW state with a modu-
lated charge distribution, corresponds to a lower energy,
than the solutions of the Hartree-Fock equations for the case
when the exchange and correlation interactions with a uni-
form distribution of a charge are not taken into account.”

Obviously, it is necessary to answer the question as to
what is the relation between the electron crystal and the
CDW. In a Wigner crystal the electrons occupy sites of a
strictly periodic lattice, and for sufficiently large #, the wave
functions do not overlap. However, if the density of the elec-
tron system increases (r, decreases), the wave functions
start overlapping, the role of the exchange and correlation
interactions increases, and spatial oscillations of the charge
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density (13) and the CDW’s may appear. A CDW state can
be viewed, thus, as an intermediate phase between the
Wigner crystal and the normal metal with a uniform charge
distribution and 2<r, <7.

The possibility of formation of a CDW in the case of a
three-dimensional gas essentially depends, as was already
mentioned, on the degree of deformability of an ion lattice
and its closeness to the model of a deformable “jellium.”
Overhauser holds the opinion that alkali metals are the most
suitable three-dimensional objects for observation of
CDW’s, since the ion—ion interactions in them are weak, and
the ions can easily occupy positions corresponding to a mini-
mum of their potential energy. The existence of CDW’s has
been reliably established in quasi-two-dimensional sys-
tems.”

3. ELECTRON CRYSTAL IN A MAGNETIC FIELD

The concept of CDW’s turned out to be useful for
studying electron crystals in a magnetic field. It was found
that the magnetic field can induce a phase transition of a
system of interacting electrons into the CDW or the Wigner
crystal states.’*'% In a strong magnetic field, for which the
cyclotron energy fiw, (o, = eH /myc, His the field strength)
exceeds the average thermal energy k gz T'and the Fermi ener-
gy €r, the electron spectrum becomes quantized. The condi-
tion #iw. >£r can be written in the form /<A, where
1= (c¢#i~/eH)''?is the cyclotron radius of a wave function,
A g =k ¢ 'is the Fermi wavelength. The quantizing magnet-
ic field reduces the Fermi energy £ ~H ~2 and, thus, in-
creases the ratio ,,, /Z, and this favors electron ordering. It
is obvious that at larger electron concentrations one needs
larger magnetic fields to satisfy the inequality £, > €, which
corresponds to a stable electron lattice. This follows directly
from the crystallization criterion for a free electron gas
which can be obtained by comparing the potential energy e*/

r, with the Fermi energy in a magnetic field
ep =27 21 *n?/my:
Igry(or Lgniy. (15

Obviously, the physical meaning of (15) is the same as the
meaning of the crystallization criterion in the absence of the
field: ag Sr, (or ag Sn~"'?) (this relation is the result of
the condition €*/r, 2 # 2(37*n)>'*/2m,).

A rather detailed study of the ground state of Wigner
crystal and of the CDW states in a magnetic field was carried
out by Kuramoto.'® He studied the lattice anisotropy and
the charge density which arises as a result of the localization
of a wave function in the direction perpendicular to a mag-
netic field within an internal region of the size R S/ and of
the ordered alignment of electrons along the magnetic field,
caused by Coulomb repulsion. The Wigner-Seitz cell was
chosen in the form of an ellipsoid of rotation.®’ The anisotro-
py of the lattice is characterized by the ratio of the long and
short ellipsoid axes ¥ = ¢/a (c and a are the half-axis lengths
of the ellipsoid). For a given electron density, the electro-
static Madelung energy reaches a minimum when the anisot-
ropy parameter is ¥ = 1. This means that the direct Cou-
lomb interaction favors an isotropic configuration of
charges; however, the anisotropy of the kinetic energy
caused by a magnetic field makes a Wigner lattice elongated
in the direction of magnetic field more stable.
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The wave function in a magnetic field can be written, as
is known, in the form

2242 22
4% aaq ) » (16)

¥ () = (272 aay V2 exp ( —

where the variational parameters are

24ye}? —1/4 .
a, = (1 e (Y)) » ey = afrs¥h(6vf, (v)) A,

oFrd

LW, f y (¥) are some irrational functions of 7%,
o* =eH /mc, e§ = egm/myx®, r* = r,ag /a8, e5 = mye*/
2112, a¥ = agmyx/m, m is the effective electron mass, x is
the permittivity. Using variational methods, the binding en-
ergy £, and y were calculated as a function of #* for InSb. It
was found that ¥ decreases with an increase in r*. This result
has a simple explanation. If the interelectron distance signif-
icantly exceeds the size of the charged area near the lattice
site (i.e., the size of the wave function), the shape of an
electron cloud does not affect the Coulomb interaction—
only the spatial position of charges is important. For this
reason, the anisotropy of a lattice decreases in order to in-
crease the Madelung energy. On the other hand, the anisot-
ropy of the charge density increases with an increase in r*.
This can be easily seen from a comparison of the dimensions
of the wave function (16), @, and g : @, =~/and depends on
r¥ very weakly, while a; increases significantly with an in-
crease in r¥ (for the parameters of InSb g increases more
than four-fold when r¥* changes from 1 to 10).

With an increase of electron concentration, the overlap
of the wave functions increases and the concept of a Wigner
crystal becomes less and less valid. In fact, with a decrease of
r¥, the importance increases of the exchange interaction,
which is stronger in the direction parallel to the magnetic
field than in the direction perpendicular to the field. This
anisotropy of €., is due to the fact that the extension of the
wave function in the direction perpendicular to the field
(a, =1) is significantly smaller than the semi-axis g of the
elementary cell ellipsoid, while the extension in the direction
parallel to the field (g, ) is close to the length of semi-axis c.
This means that in the direction parallel to the field the over-
lap of the wave functions of electrons of neighboring cells is
larger than the overlap of wave functions in the perpendicu-
lar direction. Calculations for InSb show that for H = 10°
Oe (//a$ =0.1) and r# = 1, the ratio g, /cx0.5, while a, /
a=0.17.

An analysis of the expression for the binding energy ¢,
shows that the zero-point vibrations are suppressed by a
magnetic field in the plane perpendicular to H. The energy of
these vibrations becomes negligibly small if the field is suffi-
ciently strong (w*/2e%)r**> 1.

The oscillations of the charge density in the direction
parallel to the magnetic field, i.e., linear CDW’s in the direc-
tion of H, have been studied in Ref. 16. An electron system
for that case was modeled in the form of a number of electron
chains parallel to the field. Using a variational method and
taking into account the exchange interaction between the
electrons in each chain, the energy of the ground state, the
amplitude of the CDW with a wave-vector K = 2k ¢ and the
distance between electron chains have been calculated.

The variation of the charge density in the direction of
the magnetic field is given by an expression analogous to
expression (13)
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FIG. 1. The energy ¢, of the ground state of an electron as a function of r#
for the cases of the Wigner crystal (WC), a CDW and a uniform distribu-
tion (UD) of electron density (Ref. 16). The parameters are for InSb;
H=10° Oe.

p (z) = po [1 + A cos (2kp 2)], (17

where p, = n,/L, n, is the number of electrons in a cylinder
with the length L.” The amplitude 4 of a CDW decreases
with an increase of the Fermi momentum #k .. For InSb and
H = 10° O¢, A decreases with an increase of the parameter
a3k g from 1 to 3 by more than five-fold.

Figure 1 shows the dependence calculated in Ref. 16 of
the ground state energy £, on the interelectron distance ¥
for a CDW, a Wigner crystal and a uniform distribution of
electron density. The energy &, for the uniform distribution
was calculated by the standard Hartree-Fock approxima-
tion. From Fig. 1 it can be seen that ¢, for a CDW and a
Wigner crystal have very similar values for a rather wide
range of distances r¥. The state with a uniform distribution
of electron density is unstable even for such high concentra-
tions for which 7* = 0.5-1.

Calculations'® show that even for high electron concen-
trations, when the exchange interaction between electrons
becomes essential, the energy of a CDW state is slightly low-
er, than for case of a uniform distribution of charge. From
this can be concluded that in strong magnetic fieldsat 7=0
K, the CDW phase must dominate in a wide range of elec-
tron densities. The author of Ref. 16 leaves open the question
whether the transition of the chain phase into a three-dimen-
sional CDW phase (taking place with an increase of electron
density) occurs continuously or abruptly. Kuramoto sup-
poses that the correlation interaction must not violate the
stability of a CDW phase at high electron concentrations
(this conclusion is based on some qualitative consider-
ations).

Until now, in this section we discussed mainly the
ground state energy of a Wigner crystal in a magnetic field. It
is clear that this quantity, though very important in princi-
ple, cannot be directly compared with experimental data.
The characteristics, which can be measured directly, are the
threshold field H y, and the critical temperature T, at which
a state with uniform density becomes unstable towards the
formation of a CDW or of a Wigner crystal. The critical
temperature 7, and the threshold field H v , as a function of
electron concentration, were calculated in Refs. 15, 17, and
18.

Kleppmann and Elliott'® also calculated the electro-
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TABLE I. Threshold field H w for various electron concentrations n.

n, 1014 cm™? 1 3 5 7 10
InSh Hw, kOe 2.4 5.7 8.8 12 16
Hg,.,Cd,. . Te Hy, kOe 3.7 9.2 14 19 26

static Madelung energy and compared the total energy of
localized states with the energy of delocalized states for alow
density electron system. The stability criterion of a Wigner
lattice in a magnetic field at 7= 0 K and for various values
of n and H have been obtained from the condition of energy
equality of localized and delocalized states. Table I shows
the values of the threshold field H y, for several electron con-
centrations n, which we calculated using the approach of
Ref. 15 for n-InSb (m =0.014 m,, =17) and
n=Hg,3Cdy,Te (m =4.9-10"m,, » = 17).

The main qualitative result of Ref. 15 is that, as one
could expect, the critical concentration n_,, corresponding
to the condensation of an electron system, increases with an
increase in the magnetic field.

We consider now the results of calculations of Ger-
hardts'® on the dependence of the critical temperature T, on
magnetic field and electron concentration. The calculations
in Ref. 18 are carried out within the framework of the Har-
tree-Fock method for the extreme quantum limit of magnet-
ic fields. It is assumed also that the cyclotron energy fiw®* is
larger than Coulomb energy (calculated per electron)
which for an unscreened Coulomb potential V(r) = e/xr is
equal to % /r¥. Three inequalities of the extreme quantum
limit

e*
hog > r? ,

hwg > kgT, Aot >ey (18a)
can be written in a different way (up to coefficients of the

order of 1).

ag \2 T «1/2 l l
() > 1> > (18b)
Here it was used that
e2 %1 3 _
eh =kgT* =Gt 3 r¥ay’ = nt,
ha? ak |2 Rk,
TC :8]‘;( 1 ) , EF:kBTF: pra) kF:2n222n

(the last equality is equivalent to ep = (16/9)fiw*
X (eE°/fw*)?).

For the semiconductor Hg, 3 Cd, , Te, for example with
a¥ = 1.8-107° cm, the conditions of the extreme quantum
limit (18) are satisfied at temperatures below several de-
grees Kelvin, if the magnetic field exceeds several
kilooersted.

Gerhardts'® starts by considering an electron gas of uni-
form density, obeying in the absence of a magnetic field the
Fermi-Dirac statistics. The problem is solved by a variation-
al method. First, the free energy, including the effects of
electron-electron interactions, is found. Then, the values of
some parameters are determined, at which the state of an
electron system with a uniform distribution of charge den-
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sity becomes unstable, i.e., at which the CDW energy in a
magnetic field becomes less than the energy of a uniform
system. The critical temperature T, is expressed in terms of
the parameters which correspond to the transition of the
system into a CDW state with an anisotropic distribution of
electron density. In the calculations, the dispersion law £(k)
at H =0, corresponding to the Hartree-Fock approxima-
tion, is replaced by the simple quadratic expression
g(k) = # *k 2/2m. Here the author of Ref. 18 starts from the
unquestionably correct surmise that in the Hartree-Fock ap-
proximation one can hope to obtain correct results only
qualitatively. In the limiting cases of strong and weak degen-
eration of an electron gas, one obtains the analytical expres-
sions for T,

Too B rpexp [ - HEDEY (1,<Tw),  (19)

T

To=22 (rer¥2 (I, T), (20)
where 8 = 1.78 is the Euler constant, ® is a dimensionless
parameter, logarithmically dependent on H and n. Expres-
sion (19) refers to the extreme case of weak interelectron
interaction atk . = (Tx/T*)""?> 1, i.e,, to the weak mag-
netic field limit, and the expression (20)—to the case of
strong interaction a}k g €1, i.e., to the strong field limit.
The area of intermediate magnetic fields (intermediate cou-
pling) is calculated numerically. In numerical calculations
the Coulomb potential ¥(r) is replaced by a screened poten-
tial.

The results of calculations are given in Fig. 2. The esti-

(ar/l)
300 500
ﬁ

T T ‘

. 100

T

/s =03

0 | 1

20

1 1 1
60 10
H, kOe 0
FIG. 2. The calculated critical temperature 7, divided by the Bohr tem-
perature T *, asa function of magnetic field for n-Hg, ; Cdy , Te (T* = 2.7
K).'"® The curves are for r* = 0.5, 0.4, and 0.3 correspond to electron
concentrations 7 = 3.1-10'%, 6.0-10'%, and 1.4-10"" cm ™%,
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mates made by the author of Ref. 18, led him to conclude
that for an unscreened Coulomb potential one obtains curves
analogous to the curves in Fig. 2, but the T, are slightly
increased (approximately two times at the maximum), and
the maxima of T, (H) are shifted towards lower magnetic
fields (H ., decreases approximately by a factor of 0.7).
The results of this estimate are physically clear, since the
unscreened Coulomb potential is stronger and the transition
takes place, thus, at a slightly higher temperature than the
transition for a screened potential. The estimates for
Hg, s Cd,, Te show that for the concentrations n~3-10—
1.5-10"" cm~? and H = 5-10* Qe, the critical temperature is
T.51K.

The dependence of T, on H and # is determined by the
dependence of the Fermi temperature on these quantities,
since T ~ (n/H)?. For weak fields, T, decreases rapidly
with an increase in electron concentration. The minimal val-
ue of the field H, necessary for the induced transition to the
CDW state at a fixed temperature, increases with an increase
of n. For high values of H, the temperature T, increases
approximately linearly with an increase of n. For weak
fields, T, first increases with H, and then, at sufficiently
large H, as can be seen from Fig. 2, T, starts to decrease.
These rules qualitatively agree, in general, with the results of
Kleppmann and Elliott,'® if one assumes that an increase of
T, corresponds to an increase of the binding energy in a
Wigner crystal. There is, however, one significant differ-
ence: according to Gerhardts, for sufficiently strong mag-
netic fields, T, decreases with an increase in H, as, according
to the Ref. 15, the binding energy increases monotonically
with H.

For a fixed concentration of electrons, the Fermi-Dirac
statistics valid for weak fields at high fields is replaced at the
temperature 7, by Boltzmann statistics. Correspondingly,
the chemical potential of the system & = £f. (in weak fields)
becomes negative for high fields. The temperature T,
reaches its maximum value at £ = 0, what corresponds to
T./Tg =3.5. In the limit of strong electron degeneration,
the component K, (which is parallel to the magnetic field
H = H,) of the wave vector X [see (14) ], corresponding to
the temperature T, is equal to (K| =2k . With an in-
crease in the magnetic field, the value of {K | decreases and
becomes equal to zero at £ /kg T<1.11,0rat T,/T > 1.10.
The crosses on Fig. 2 mark the points on a curve for which
T./Ty =1.10.

Two results of Gerhardts'® attract particular attention.
In the region of intermediate magnetic fields, at a constant
concentration z, a phase transition of the second kind from a
uniform electron distribution phase into a linear CDW
phase must take place; for high fields and a temperature
T,(H)>T.(H), a transition of the first kind into a CDW
phase with hexagonal lattice symmetry must take place. Fu-
kuyama'’ also came to the conclusion that for sufficiently
strong fields, a transition of the first kind must take place. If
one lowers the temperature at a fixed value of the magnetic
field strength, the CDW state must transform into a Wigner
crystal either gradually, as Kuramoto'® thinks, or abruptly,
i.e., experiencing one more phase transition, which is deter-
mined by the melting temperature T, of a Wigner lattice.
Such a phase transition from a CDW state into a Wigner
crystal can occur if T (H)<T,(H). At the present time,
however, there are no reliable data on the quantities 7, and
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T\, and the question about transformation (continuous or
abrupt) of a CDW state into a Wigner crystal state remains
open.

4. ON THE POSSIBILITY OF EXPERIMENTAL REALIZATION
OF WIGNER ORDERING

It is natural to pose a question: In what materials and
under what conditions can one expect to discover the effects
related to Wigner crystallization? Metals with high electron
concentrations, for which 2<#, <7, are, obviously, unsuita-
ble objects. Mott has assumed (see Ref. 19) that crystalliza-
tion of a three-dimensional gas can be expected in strongly
compensated semiconductors and magnetic dielectrics.

4.1. Compensated semiconductors

Consider an n-type semiconductor, InSb for example.
By doping it with acceptors, it is possible to reduce signifi-
cantly the concentration of free electrons and to create, in
this manner, a material in which there are many (e.g., 30~
100 donors per electron. Compensation allows one to model
low-density electron systems. In this approach it is impor-
tant that the ion background in a compensated semiconduc-
tor would be almost uniform. In fact, in the InSb or
Hg, s Cd,, Te type semiconductors, the Bohr radius a} of an
electron orbit is large and the orbit encompasses many
doping centers. For example, in Hg,,Cd,,Te with
n=Np —N, =10"cm™?and (N, /N ) = 0.99 an elec-
tron “sees” within its orbit (in its plane) approximately 300
impurity ions (for n = 10'* cm ~>an orbit covers =~ 60ions).
Under these conditions, one can use the “jellium” model, on
which all theoretical work on Wigner crystallization is
based.

One must keep in mind, however, that the fluctuating
electric field of randomly distributed impurity atoms, which
is particularly strong in compensated semiconductors, can
cause a breakdown of order in an electron system, i.e., lead to
the destruction of a Wigner lattice. This fact must be taken
into account in interpreting the results of measurements,
since not even a minimally rigorous theory exists which
would simultaneously treat electron correlation and effects
caused by disorder. In any case, at the present time one
should not expect quantitative agreement of experimental
data with the results of theoretical studies of a low-density
electron system, immersed in a “jellium”’ of ions. In an anal-
ysis of experimental data for n-type InSb or n-type
Hg, s Cd, , Te compensated semiconductors, one must also
take into account the fact that a significant overlap of donor
electron orbits leads to the formation of an impurity band.
Let us make one more remark referring to the interpretation
of transport processes in a magnetic field. It is usually ig-
nored that in sufficiently strong magnetic fields the trans-
verse radius of the Bohr orbit @, =~ 1 becomes less than the
distance between the impurity ions 7, = N;,~ /?, and then the
system of ions cannot be approximated by a uniform positive
background. For H 2 10* Oe we have / < 7, with an impurity
concentration of N, 5 10'® cm . This means that theoreti-
cal studies of electron crystallization based on the “jellium”’
model cannot be used, strictly speaking, for interpretation of
experimental data in strong magnetic fields, for which / < ;.

Compensated semiconductors have been proposed as
objects for searching for Wigner crystallization because at
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large a} they simulate the conditions for the “jellium’ mod-
el. At the same time, it is exactly in compensated semicon-
ductors that the random potential of impurities can, most
probably, prevent the formation of an electron lattice. For
that reason, it is interesting to explore the question whether
one can expect to find Wigner crystallization in uncompen-
sated semiconductors with low concentration »n, for which
the requirement of the theory concerning a uniform positive
background is not satisfied.

In uncompensated semiconductors of high purity (for
example, Bi, _, Sb, ), the concentration of electrons, which
is equal to the donor concentration N5, reaches 10'2-10'3
cm™3. For such N, the distance between donors
ro =N '/? exceeds the Bohr radius a¥, and the ion back-
ground is nonuniform. The electrons will “feel” the random
distribution of donors. One neglects this and assumes that
donors are distributed regularly, then even in that case one
cannot expect to find ordering of electrons. The point is that
the Wigner and the Mott conditions for electron localization
in uncompensated semiconductors are similar. A rough cri-
terion for Wigner crystallization 7, 2 af can be obtained by
comparing the electron interaction energy ~ e*/sr, with the
electron kinetic energy ~# 2n*/3/m. The Mott transition
criterion based on the comparison of the electron kinetic
energy with the interaction energy of two electrons on the
same site of a crystal lattice ~e?/xa, can also be written in
the form r, % af for n = N . Because of the qualitative coin-
cidence of the two criteria, it is not clear how to distinguish
experimentally the effects accompanying each of these tran-
sitions.

Using various physical considerations one can obtain
for the critical impurity concentration N corresponding to
a Mott transition, an equality which is more accurate than
the rough condition , =N ;™ '’ =a%:

NBun ~0.25. (21)

When a magnetic field is present, the following criterion is
usually used instead of the rough condition r; =/

(Nxaha) )/~ 0.25, (22)

where a, =2/ =2(cti/eH y)""?, a; =a}/In(akly")?,
H 4 is the magnetic field at which the Mott transition takes
place.

If one assumes that the expressions (11) and (12)
(n!7a¥% ~7-107%) for the Wigner ordering and expression
(21) for the Mott transition are sufficiently accurate, then it
is easy to see that in an uncompensated semiconductor elec-
trons are localized on donors even for a concentration », that
exceeds by approximately 4 orders of magnitude the critical
concentrations n., of Wigner crystallization. For
Hg, s Cd,,» Te, for example, we have Ny, ~ 102 cm ™3, and
n. ~10® cm 3. Thus, in uncompensated semiconductors it
is practically impossible to discover electron condensation,
since at concentrations n.. < n < N, electrons remain local-
ized on donors.

The decisive experiments for the discovery of Wigner
ordering would be neutron diffraction studies of an electron
lattice, but for electron concentrations # < 10'* cm ™2 such
experiments at the present time are practically impossible.
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4.2. Magnetic insulators

Let us assume that a crystal lattice has Nsitesand n < N
electrons. In order to move to an unoccupied (““irregular’)
site, an electron must acquire an energy of the order of e/
xr,,where r, ~ N ~'/3, This energy will decrease when more
and more electrons are transferred to ““irregular” sites. With
a temperature rise, phase transitions of the first and second
order can take place to a state in which all sites are filled
randomly. Such order-disorder transitions have been dis-
covered for the first time by Fervey in 1935 in the magnetic
material Fe,O,. In oxides with a mixed valency of the mag-
netite type, the effective mass of charge carriers increases
because of the formation of polarons, as a result of which the
kinetic energy becomes smaller than the potential energy.
Under such conditions one can expect, generally speaking,
formation of Wigner crystallization (see, for example, Ref.
19). However, taking into account the fact that in magnetic
insulators, according to the Hubbard model, which consid-
ers only the short-range forces, energy-band splitting can
take place for any number of electrons per atom, it is difficult
to hope to separate effects which depend critically on Cou-
lomb forces. To that one must add the uncertainty in the
problem of magnetic properties (ferromagnetic or antiferro-
magnetic?) of an electron crystal.

5. ELECTRON CRYSTALLIZATION AND ACTIVATION
CONDUCTIVITY

At T =0 K, an electron crystal is an insulator, since
there is an energy gap for one-particle excitations.?’ Motion
of the lattice as a whole is ignored, 1.¢., it is assumed that the
lattice is fixed. It is necessary to understand the nature of the
conductivity mechanism in a Wigner crystal, i.e., the nature
of excited states responsible for the charge transfer. It seems
probable that these states are related to defects in a Wigner
lattice. This surmise was offered by Care and March,?' who
proposed to treat conductivity as a diffusion process analo-
gous to diffusion of atoms in solids. Charge transport is ac-
complished via the electron vacancies, the states of which
are separated from the ground state by an energy gap. The
vacancies are formed as a result of electron transitions from
sites into interstitials. Similar transitions take place at suffi-
ciently high electron concentrations, i.e., for sufficiently
narrow potential wells. The coefficient of electron diffusion
via vacancies, D ~exp( — Ae/ky T), is related to the elec-
tron mobility 2 by the Einsteinrelation D = (kg 7 /e)u. The
main contribution to the diffusion activation energy Ac is
made by the vacancy formation energy. Using a rather sim-
ple model, de Wette’ has obtained an estimate Ae=~0.2/r,
Ry. At temperatures T~ Ae/ky an electron lattice is not
stable and decays. The concept of the Wigner crystal has
meaning only under the condition k z T € Ac.

From general considerations it is clear that in the ab-
sence of a magnetic field, the energy Ac¢ is of the same order
of magnitude as the Madelung energy ~e*/xr,. At H #0,
the vacancy formation energy can vary. Assuming that this
variation is proportional to the square of the electron dis-
placement from a site, which for strong fields is of the order
of the magnetic length /, Care and March?' came to the con-
clusion that Ae~H ~'. They affirm that their conclusions
agree qualitatively with the experimental data of Somer-
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ford.?* In connection with this let us turn to experimental
results.

Somerford measured the conductivity ¢ in magnetic
fields up to 10 kOe at temperatures 0.27< 7<4.2 K in strong-
ly compensated samples of #-InSb (the compensation degree
was K =N, /N 208, Np = (24)-10" cm~?). In sam-
ples of similar quality, Putley®® measured o( /) and the Hall
effect at 7> 1.3 K. While at 4.2 K the conductivity decreases
several-fold as the field increases to 10? Qe, at 0.27 K this
decrease reaches six orders of magnitude®* from o~ 10~
Ohm 'em™'to 0~1077 Ohm~' ecm™! (for H~ 10? Oe,
0~10"" Ohm~' cm™', for the studied range of tempera-
tures, and for H~10*0Oe c~10"20hm~'cm~'at 4.2 K
and 0~10"7Ohm~'cm~"' at 0.27 K). A sharp decrease in
conductivity starts at fields 52 kOe. The Hall coefficient
|R | infields H < 10° Oe changes little with temperature; with
a field increase |R | decreases with an increase in 7, and for
H~10* Qe this decrease in the interval 1.5-20 K reaches
almost two orders of magnitude, from 210’ cm®/C down to
~2-10° em*/C. According to Putley? for H = 8.2 kOe and
in the temperature interval 1.3—4.2 K, |R | decreases by a
factor of =20, and increases by a factor of =~ 500. This means
that the electron mobility increases by a factor of ~25 witha
temperature rise, assuming that only one type of charge car-
riers participates in conduction.

Theactivation energy Ag, calculated from experimental
curves of R(T) (4samples) and o(T) (2 samples) is almost
one order of magnitude below the prediction of the theory of
Jafet et al.** for the ionization energy of a hydrogen-like
impurity center in the extreme quantum limit. With an in-
crease of the magnetic field A¢ increases, but, according to
the conductivity measurements of Ref. 22, that increase is
significantly less than the increase found in the Hall effect
data® (Fig. 3). Besides, the quantity Ae¢ itself, found from
conductivity measurements, is smaller than the value of Ae
determined from the Hall effect measurement. An impor-
tant feature of the Hall effect measurement is the presence of
the threshold field H § =3 kQe, below which no activation
energy is found. A sharp (but without abrupt changes) de-
crease in conductivity in Putley’s experiments starts at ap-
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FIG. 3. Activation energy as a function of magnetic field.”> 1—Theory of
Jafet et al.**; 2—calculations of Durkan and March?®; 3-6—Hall effect
data, Putley®® with N, from 4.5-10'* cm 3 and ¥, from 3.8:10"*cm ™3
(curve 3) to 10.10'* and 9.8-10"* em —, respectively (curve 6), 7—con-
ductivity data of Somerford.?
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proximately the same fields. At 7= 1.3 K, the Hall coeffi-
cient |R | increases =~ 50-fold when ¥ increases from 3-10°
Oe to 8-10° Qe.

A quick look at Fig. 3 is sufficient to become convinced
that in none of the cases the activation energy decreases in a
magnetic field, as predicted by Care and March.?! Accord-
ing to the Hall effect measurements, A¢ increases approxi-
mately linearly with the field H; the increase of Ae(H) is
slower from the electrical conductivity data. This qualitative
discrepancy between the experimentally found behavior of
Ae(H) and the one suggested by the authors of Ref. 21, al-
lows one to affirm that the theoretical estimates of Ref. 21
are not suitable for interpretation of the experimental results
being discussed

A more realistic explanation of the behavior of Ae(H)
is given by Durkan and March.?® First of all, it was necessary
to understand the reason for the large difference between the
activation energy values found in experiments with compen-
sated n-InSb samples and the quantities £, calculated by Ja-
fet et al.>* The energy &, of electron ionization from a donor
to a conduction band is calculated in Ref. 24, while in the
experiments of Refs. 22 and 23, in the opinion of Durkan and
March, the observed activation energy is related to the tran-
sitions of electrons from the ground state of an impurity to
the first excited state (i.e., the activation energy of the type
£,). Durkan and March studied the behavior of Ae(H) for
that situation and took into account the screening of impuri-
ty ions by free electrons.>® Taking screening into account
leads to a significant shift of impurity levels, but the magni-
tude of the energy gap between the ground state and the first
excited impurity state is not very sensitive to screening and,
therefore, to the electron concentration n. The authors of
Ref. 25 calculated the dependence of this gap on the magnet-
ic field and found that it agrees satisfactorily with the experi-
mental data (curve 2 in Fig. 3; the calculated activation en-
ergy increases in a magnetic field, as well as the ionization
energy €,, and the activation energy &, of the hopping con-
ductivity). Thus, according to Ref. 25, the activation energy
Ae determined from the Hall effect, is determined by the gap
between the two lowest donor states.

For samples with higher concentration of dopants than
those studied in Refs. 22, 23 for which the electron concen-
tration was n~10'® cm >, the screening effect in strong
magnetic fields can, according to Ref. 25, significantly lower
the ionization energy of donors. At the same time, for un-
compensated samples of InSb with 7 ~ 10'® cm~3 in magnet-
ic fields up to 200 kOe, the good agreement of the depend-
ence of ionization energy on the field® with the Jafet theory
is established.?* One can expect that for compensated sam-
ples with concentrations n~10" c¢cm~? in strong fields
H3 10% Oe, for which the impurity band narrows signifi-
cantly, the values of Ae found from the Hall effect must be
close to the values predicted by Jafet e a/.** To our knowl-
edge, such measurements have not been made.

The reasons why the values of Ae found from the con-
ductivity and the Hall effect measurements??** are different,
and why their dependences on the magnetic field are differ-
ent, are unclear. Care and March?' try to explain this by the
fact that for fields below some critical field (H,~ 3-4 kOe),
conductivity and the Hall effect are determined by the elec-
trons from the lowest impurity band, which diffuse through
a Wigner lattice. For fields higher than the critical one, the
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donor functions are compressed so strongly that the Hall
conductivity can be realized only by the activation of elec-
trons to an excited impurity band (which, possibly, overlaps
with the conductivity band). But in that case it remains un-
clear why for conductivity to exist there is no need for the
activation of electrons to excited states in fields H > H,,. Pos-
sibly, the reason is more in the insufficient reliability of the
Ae values found from electron conductivity measurements,
as Somerford himself recognizes.?” The analysis of the mea-
surements of o is complicated by the fact that at such small
values of Ag, the variation in the probability of scatteringina
magnetic field can mask a comparatively small increase in
the activation energy Ae(H). In the case of one type of car-
rier this must affect the magnetoresistivity, but not the Hall
effect.

It is useful to look more carefully at the weak anisotropy
of conductivity observed by Somerford®? upon rotation of
the magnetic field. The absence of anisotropy which one can
expect in the case of electron crystallization in a magnetic
field (see Section 3) allows one to conclude that the ordering
of the electron system has not been found. It is appropriate to
remind here that in the region of conductivity via impurities,
0., and o, differ little in sufficiently strong magnetic fields,
so that the weak anisotropy of magnetoresistivity can be as-
sociated with the impurity conductivity.

6. ELECTRON CONDENSATION IN InSb

The existence of a threshold magnetic field H, below
which no activation energy was found in the Hall effect and
the conductivity measurements is considered by the authors
of Ref. 21 as a demonstration of electron condensation. Since
the electron concentration in InSb samples used in Refs. 22
and 23 is small, the screening effect (which depends on the
magnetic field) can be ignored. Care and March?! assume
that for the fields H < H, conductivity is realized by elec-
trons from the lower impurity band. With an increase of the
field above the threshold H, the overlap of the donor wave
functions decreases to such an extent that the system goes
into a nonconducting state, i.e., the Wigner electron crystal-
lization takes place. A rough estimate of the field H , corre-
sponding to the Wigner ordering can be obtained from the
condition /=7, For n=4.9-10" cm™?® this condition is
achieved in the field H y, =~ 230 Qe which is significantly low-
er than the threshold field H £ = 3-4 kOe found from Hall
effect measurements.

The main objection to the interpretation of experiments
of Refs. 22 and 23 on the basis of concepts of electron crystal-
lization is that one is dealing with electrons from the impuri-
ty states which are exposed to a significant influence of a
random potential. It is in this direction that one must look
for the causes of the special features in the Hall effect and
conductivity measurements discovered by Putley and So-
merford.

First of all, one has to note the fact that the Hall elec-
tron mobilities 4 = | R |o for samples of InSb from Ref. 23 at
T = 4.2 K indicate strong scattering: #i/7 > £ (7 is a relaxa-
tion time). This inequality becomes stronger with an in-
crease of the field H. For example, for a sample with
n=4.9-10" cm~" and the compensation degree K ~0.9 at
T=42 K and H=5-10* Oe we have #/7ep ~5, and for
H=8-10" Oe we have #/7ex =~ 35. Therefore, the conduc-
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tivity is indeed realized via the impurity states, while the
“band” nature of the conductivity becomes ever weaker as
the field increases. Thus, one is dealing with donor-band
electrons. The strengthening of the inequality #/7>¢r ina
magnetic field corresponds to an increasingly larger electron
localization in the wells of the potential pattern created by
the random distribution of donors and acceptors in a crystal.

For transitions caused by the disorder of impurities one
can obtain only a relatively rough estimate for the criterion
for the existence of an electron transition (which we shall
call the Mott-Anderson transition), similar to the condition
(21). Let us consider the transition from a dielectric state
into a metallic state in the absence of a magnetic field.

Fluctuations of the impurity distribution form a ran-
dom potential pattern with an average well width y. The
quantity ;/<1:‘p where £, is the energy of a flow level. The
conductivity will have a metallic character, i.e., electrons
will be delocalized, when £ >¢,. The Fermi energy & is
determined by the concentration n of delocalized electrons,
n=Np - N, =Np(l-K), where K<1. All impurities
are ionized, i.e., Np = N7, N, =N ;. We shall call fol-
lowing condition

<<er. (23)

the criterion of the Mott-Anderson transition. The typical
size of the fluctuation wells is equal to the screening radius
R, =a%/2(nat’)"’®. In the strong doping limit, N, a¥’> 1
(N, = Np + N L), each fluctuation well contains a suffi-
ciently large number of impurities N; = N, (47/3)R 3> 1.
In that case, » can be estimated as y=~(e%/
%xR,) (47N, R )"/ This expression can be transformed to
the form
(N a2

— 14-K)L/2

The Fermi energy is

h? h? 1—K \2/3
e = 75— (3n2n)2/3:—2m (3n2N )23 ( — )

= gf (3n®naf’)?3. (25)

From (23)-(25) we find

ni3a} > 0.42 (%)2/31 or P o 1’5( 1flx )2/3‘
(26)

In the absence of compensation (K =0 and
n = Np = N,),oneobtains from (26) N |”’a¥ 2 0.42, which
is noticeably different from the Mott criterion (21). The
reason for the difference is related, probably to the fact that
the expression for ¥ from Ref. 27 is by its meaning a result of
the law of large numbers and is valid in the limit of the strong
inequality ¥, a%’> 1 (for example, N, at>>10-100). Besides,
one should not forget that instead of the condition £ >¢, the
condition £ >y was used. Nevertheless, qualitatively the
criterion (26) reflects correctly the dependence of the con-
centration n (or V; ) on the degree of compensation K. For
InSb samples studied by Putley®® K ~0.9 and, according to
expression (26), r**"<0.2. As analysis, for example, that of
Gerhardts'® has shown for the case of Hg, 3 Cd, , Te crystals
with n=10" cm ™3, for r*° of the same order of magnitude,
a Wigner transition should take place ( the value of the Bohr
radius a% = 6.4-10 ¢ cm for InSb and 1.8-107° cm for
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Hg, s Cdy, Te, i.e., they differ by only a factor of three). It is
obvious, therefore, that under such conditions the electron
transitions caused by Wigner crystallization are difficult to
detect against the background of effects related to localiza-
tion of electrons on impurities.

In a quantizing magnetic field #iwv¥* > ¢g, the Fermi en-
ergy decreases (e ~H ~?) and at the same level H,,, the Fer-
mi level in a doped compensated semiconductor will be be-
low the flow level (the energy £, changes with the field
slower than £ ). When the Fermi level descends into the
wells of the potential pattern, the electrons become local-
ized. The threshold field H,, of electron localization in poten-
tial wells is given for the case of classical screening (the elec-
tron wavelength A isless than the screening radius R,,) by the
expression®:

ay1/2,7/8

12 \1/6 ch
HONHZ(T) T———Ni”a . (27)

An estimate of H, from expression (27) for the samples
studied by Somerford?* and Putley®® leads to the following
results. For a sample with 7n=2-10" cm~3 and
Np = 1.8X10" ecm™ (K =0.8) (Ref. 22), H,~0.9 kOeg;
forasample withn = 4-10"*cm~%and N, = 3.6:10"*cm ™3
(K =0.8) (Ref. 22), Hy~ 1.5 kOe. These values of H, are in
agreement with the values of the threshold fields H §*, found
by Somerford in his conductivity measurements, i.e.,
H 3§52 kOe. For a typical sample in Putley’s experiments
with n =4.9:10® cm~2 and Np =4:10" cm 3 (K =0.9),
expression (27) gives H,=~200 Oe, which is approximately
one order of magnitude below the experimentally deter-
mined value of H §. A discrepancy between the values of H,,
and H § is, possibly, due to the rather rough estimate of N
and N, in Ref. 23, to which expression (27) is rather sensi-
tive,

For fields H > H,, conductivity has an activation char-
acter, ie., for sufficiently high temperatures kzTX¢,
— £p = £, electrons are excited above the flow level and be-
come delocalized. The activation energy increases, obvious-
ly, with an increase in the magnetic field. Besides, conductiv-
ity can contain a nonactivation component, if there are many
donors and the overlap of the donor wave functions is suffi-
ciently large. Therefore, as a result of random distribution of
dopants, conductivity by activation can arise at low tem-
peratures, with the activation energy increasing in a magnet-
ic field.

What arguments are given in support of the suggestion
that the experiments of Putley and Somerford give some evi-
dence of electron crystallization? Durkan and March?® ex-
press the opinion that the evidence for Wigner crystalliza-
tion in Putley’s experiments is given by the rather sudden
(i.e., observed only at certain H) appearance of the activa-
tion change in the Hall coefficient. If one studies carefully
the curves from Putley’s work, it is difficult to agree that the
activation energy appears in a strictly fixed magnetic field.
There was no reason to expect that, just as, incidentally,
there was no reason to expect the same also for other electron
transitions. Magnetic-field-induced localization of electrons
in potential wells must also take place, according to the crite-
rion £ = €, at a well defined value of H. In practice, how-
ever, the transition from a delocalized state to alocalized one
is always noticeably “smeared” so that one cannot distin-
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guish using the “sharpness” characteristic (even if such
were to exist) between a Wigner crystallization and a local-
ization appearing as a result of disorder.

Care and March? assert that the assumption about lo-
calization of electrons caused by a random distribution of
dopants does not allow one to explain experimental data of
Somerford,?* who found in his electric conductivity mea-
surements the activation energy up to temperatures of 0.27
K. The authors of Ref. 21 express the opinion that since,
according to Mott, the impurity conductivity by activation
must be replaced, at sufficiently low temperatures,
by the conductivity with a variable hopping length
o~ [exp( — To/T) 1'%, Somerford’s results do not corre-
spond to the conclusions of the theory of electron localiza-
tion resulting from disorder. This opinion of the authors
does not seem convincing, since it is well known how diffi-
cult it is to distinguish the activation exponential depend-
ence from the Mott exponential (see Section 8.2). [tis not at
all obvious that Somerford’s data at low temperatures can-
not be described by an exponential of the form exp( — 7T,/
T)'/* (unfortunately, Somerford himself did not attempt to
do that). Besides, it is quite possible that the temperature in
Somerford’s experiments is still insufficiently low for a tran-
sition to a conductivity with a variable length of hopping. In
our opinion, there is no support for thinking that experi-
ments of Putley and Somerford give some evidence of
Wigner ordering in electron systems.

7. VISCOUS-LIQUID MODEL

Adkins®® made an attempt to explain qualitatively the
influence of randomly distributed defects on the conductiv-
ity of an inversion layer, in which the electron system is or-
dered due to correlation effects. The model suggested in Ref.
29 is valid, in the opinion of its author, also for a three-
dimensional case. Considerations of Adkins can be summar-
ized as follows.

When the interelectron correlation dominates, the elec-
trons, in the absence of a structure (and, first of all, of a
disorder) of the positive background, become localized rela-
tive to each other, forming a regular lattice. If such® Wigner
crystal, for any reason, occupies only a part of the solid’s
volume, then in the case of translational motion it will par-
ticipate in charge transport. However, the disorder in the
background fixes an electron lattice in space and violates its
translational symmetry, since the position of each electron is
determined not only by correlation, but also by disorder.
The electron system in the presence of disorder becomes sim-
ilar to a polycrystal: A lattice is broken up into small crystal-
lites, inside which the regularity of the electron lattice is
preserved. The position and orientation of each crystallite
are fixed in space as a result of influence of the background
disorder and neighboring crystallites. Such a description of
an electron system is obviously oversimplified. In reality,
there will be no well defined regions with a rigid crystal or-
der, separated by sharp boundaries. An electron lattice will
be deformed and strained, and the correlation in the position
of electrons will decrease smoothly with distance. Such a
structure is similar to a supercooled liquid. The distance
over which the spatial correlation in the liquid remains sig-
nificant, corresponds to the size of a crystallite in the poly-
crystal description of the system.
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At T =0 K, this electron liquid becomes frozen as a
glass. At T %0 K, the energy of thermal motion causes a
restructuring of the system; an electron diffusion analogous
to the diffusion of molecules in a normal liquid arises. The
electron mobility in this model must change with tempera-
ture in an activation manner, similar to the changes of fluid-
ity in the theory of a viscous liquid. Unlike the case of the
classical liquid theory, according to which a certain amount
of energy is needed to cause relative motion of atoms, in the
electron liquid model electrons must overcome the potential
barriers created by the background disorder. Practically all
the electrons participate in the flow of the liquid, since they
are forced to do that by Coulomb forces. One-particle pro-
cesses are suppressed, since the energy required for the exci-
tation of an electron from a state localized in the liquid to a
delocalized state, is rather large, of the order of e2/xr,.
Therefore, the main features of the Adkins viscous-liquid
model near the transition of an electron system from a di-
electric into a metallic state are as follows: Practically all the
electrons participate in conductivity, and their mobility var-
ies with temperature in an activated manner.

The following assumptions are made for an estimate of
conductivity: 1) each microscopic activation act is accom-
panied, as a result of interelectron correlation, by the motion
of a whole group of electrons; 2) the disorder in the position
of impurities, acting on each electron separately, fixes it in a
particular place, but the correlation interaction favors the
fixation in space also of neighboring electrons. For that rea-
son, when an electron is thermally excited from its fixed po-
sition, the whole group of electrons moves; 3) the structure
of the electron group is preserved in the process of sequential
hopping (this point represents a rather rigid requirement).
For a group of z electrons, performing thermally activated
hopping over a barrier of height W, the diffusion coefficient
is

D itva L Bl exp (= 00) (28)
where L is the hopping length, v is the hopping frequency.
Since the surrounding liquid prevents large displacements of
a group of electrons, the most probable are hops over a dis-
tance L, of the order of the interelectron distance 7,. For that
reason, L ? in formula (28) can be expressed in terms of the
electron concentration: L >~#~2/3. Using the Einstein rela-
tionship for mobility 4 = (ze/k g T')- D, we can find an esti-
mate for conductivity o = (n/z)zep = enp (n/zis the num-
ber of electron groups per unit volume, ze is the charge of
each group):

ze2nl/a

L =

Theactivationenergy W depends on the nature of disor-
derand on electron concentration n, decreasing to zero when
the entire system goes into a metallic state. The parameter z
characterizes the relative proportion between the influence
of correlation and the influence of the background disorder.
According to Adkins, one can expect that with an increase of
n, the parameter z will increase, and the barrier height Wwill
decrease. The barriers disappear, obviously, and the elec-
trons become delocalized when the kinetic energy of elec-
trons (the energy of plasma vibrations) exceeds the binding
energy at a site.
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The described model of an electron liquid is qualitative
and cannot serve as a basis for a quantitative analysis of con-
ductivity. This refers also to the low temperature region,
where conductivity with a variable hopping length domi-
nates, and Wis a function of temperature.

In Ref. 29 a qualitative picture of the formation of the
Hall effect is also studied. It is assumed that the correlation
is sufficiently strong to force all the electrons to move in
external fields. A small number of sites can exist at which the
electrons are tightly bound, and where the correlation forces
are not sufficient to force them to move. The liquid will flow
around such sites. Since electrons do not tunnel, but move
classically above the barriers, they are exposed to the influ-
ence of a classical Lorentz force. At the same time, it is not at
all obvious that the classical Hall effect must be in evidence
in an electron liquid, since almost all the electrons are not
moving. The classical Hall effect, however, must arise, ac-
cording to Adkins, in an electron liquid because the liquid
can transmit pressure.

In the case of noninteracting charged particles the Lor-
entz force, acting only on the moving particles, is balanced
by the Hall field force, and the Hall coefficient R is deter-
mined by the concentration of mobile particles. The Lorentz
force in an electron liquid arises only when the hopping of a
group of electrons takes place. The arising Hall field leads to
the formation of a pressure gradient in the liquid, and all the
electrons, even those that do not move, participate in the
transfer of pressure. Thus, the effect of the Lorentz forceon a
group of electrons during hopping is transmitted to the sur-
rounding liquid and is balanced mostly by the constant ac-
tion of the Hall field Ey on the liquid as a whole. From the
comparison of these two forces [jXH] =enEy, (j is the
current density, »n is the total concentration of electrons) we
find the Hall effect coefficient |[R | = 1/en.

Thus, in the limiting case of strong interelectron corre-
lation, the Hall effect depends on the total concentration of
electrons (and mobility in that case increases in an activa-
tion manner with increasing temperature. In the other
(known) limiting case of noninteracting particles, the Hall
coefficient reflects the activation-induced increase in elec-
tron concentration taking place with a temperature rise
(mobility in that case is assumed constant or changing slow-
ly with temperature). With increasing z, more and more
electrons become bound in sites, the Hall coefficient in-
creases and, finally, begins to increase exponentially with
increasing temperature. In the intermediate (between the
two extreme cases) situation, the Hall coefficient can be ap-
proximated, according to Adkins, by the expression

=‘%z(1—z). (30)

8. ELECTRON LOCALIZATION IN Hg,,Cd, . Te
8.1. Wigner condensation?

In the last several years an extensive discussion has de-
veloped on the nature of the metal-dielectric transition in-
duced by a magnetic field in an n-Hg, 4 Cd, , Te semiconduc-
tor. Some authors®°—* assert that in a strong magnetic field
an n-Hg, s Cd, , Te electron gas condenses into a Wigner lat-
tice or into a CDW state. According to other reports*—>* a
viscous liquid is formed. Experimental data are reported de-
monstrating that the metal-dielectric transitions are caused
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by the “freezing-out™ of band electrons into impurity lev-
els.*>*! The suggestions were expressed that the electron
phase transition takes place within the impurity donor band,
separated from the conduction band.**** Finally, proofs are
given of electron localization in the wells of the potential
pattern created by a random distribution of impurities.**’
Let us discuss the main results of the cited references.

Nimtz et ql.>° studied the magnetoresistance (p. and
P ) and the Hall effect in n-Hg,, s Cd, , Te crystals with elec-
tron concentrations of n = 4.5-10" cm™> and n = 6.4-10"
cm~? at temperatures of 1.5 K and 4.2 K, in magnetic fields
up to 8.5-10* Oe. The compensation X in these samples esti-
mated from electron mobility is, respectively, about 0.5 and
0.7. It was found that below a certain magnetic field H = H ',
Pxx and p_, increase almost by two orders of magnitude, and
for the fields H> H’ this increase becomes significantly
smaller. At 42 K, H' is =36 kOe for the first sample, and
=~ 67 kOe for the second sample.

The authors of Ref. 30 assert that in the region H< H ',
the electron system is ordered. Conductivity in that phase is
realized by the motion of a Wigner lattice as a whole through
the sample from the cathode, where it is formed, to the anode
where it is destroyed. According to the authors of Ref. 30,
the reasons for the conclusion that electron crystallization
has been observed in these experiments are the following: a)
the presence of a threshold field H'; b) its increase with an
increase of concentration #; ¢) a sharp growthof p,, andp,,
at H<H'.

These arguments in favor of Wigner crystallization are
based on an obvious misunderstanding. It is correct that in
case of electron ordering the resistance has to increase sharp-
ly in a magnetic field, and that there must be a threshold field
separating the electron gas and electron crystal phases. It is
also correct that this field is larger for higher electron con-
centrations. However, Wigner condensation has to arise in
magnetic fields exceeding the threshold field. Resistance in
the condensed phase shiould then be not only larger, but also
increasing with the field faster than for the electron gas
phase.

There are no principally new results in the work of
Nimtz et al.>' as compared with Ref. 30. It is emphasized
there that the temperature below which the curves p,, (H)
have a breaking point, is significantly higher than the critical
temperature 7, which corresponds, according to the calcu-
lations of Refs. 15, 16, and 18 to the beginning of electron
crystallization. The values of H' for which the curves of
Px (H) have breaking points, differ by a factor of 4-6 from
the critical field H+, for the Wigner transition calculated in
Ref. 15. The reason for the discrepancies between the experi-
mental results and the results of calculations of Ref. 31 are
not clear, but they suggest that the breaking points of the
curves p,, (H) are related to electron ordering.

In Ref. 31 it is noted that at low temperatures at which
the curves p,, (H) have breaking points, the anisotropy of
magnetoresistance is very small: p,, differs from p_, only by
~10%, and this, supposedly, agrees with the theoretical
concepts about electron crystallization. However, as we
have seen in Section 3, an electron gas, crystallizing in a
magnetic field, becomes one-dimensional, as a result of
which the anisotropy of magnetoresistance must sharply in-
crease, and this is, in fact, observed in layered conductors. A
weak anisotropy of magnetoresistance in the low tempera-
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ture region, as well as a decrease in the slope of the curves
Pxx (H) and p,, (H) for fields H> H ' are typical for impuri-
ty-type conductivity.

The discussion of the charge transfer by a Wigner lat-
tice as a result of its motion as a whole through the crystal is
not consistent with the concept of an electron condensate-
dielectric, if one does not have in mind the viscous liquid
model (see Section 7). All the above-mentioned allows one
to assert that the interpretation of the authors of Refs. 30 and
31 is incorrect.

From the measurements of time dependence of the hot-
electron current j in Hg, s Cd, , Te samples with 7~ 10"
cm ™, Nimtz et al.’**"*® determined the energy relaxation
time 7. Knowing 7, it is possible, using the energy balance
equation jE7, = C_AT.,, to find the thermal capacity C, of
an electron system for the values known from measurements
of j, of the electric field E and of the temperature increase
AT, =T, — T, in an electric field. The curve of C, (T, ), as
well as that of 7,(7,.), has a maximum at 7, ~1.8 K
(H=40 kOe) and 7, =2.3 K (H = 60 kOe) (the lattice
temperatureis 7; = 1.5 K). The authors of Ref. 33 interpret
therise of 7, and, therefore, of C, with a decrease of T, from
3.5 to 2.5 K as a transformation of an electron gas into an
electron liquid, for which the thermal conductivity is larger
than the conductivity of the gas. A decrease of C, with a
decreasein T, below 2.3 K is caused, according to Nimtz, by
the formation of a Wigner crystal.

The curves of 7, (T. ) were determined also for n-InSb
inRef, 48 (n = 1.2-10" cm—3) and in Ref. 49 (n = 7.7-10"
cm™?). The curves 7, (7, ) and C, (T, ) are analogous to the
curves for Hg, ; Cd, , Te, i.e., they have a maximum at some
value of T,. The authors of Ref. 49, however, interpret the
results of measurements on the basis of a one-electron ap-
proach, without involving interelectron correlations. The
decrease of 7, with a decrease of 7, from 7., =6 K to
=~ 1.5 K is explained by a change in the probabilities of scat-
tering by the piezoelectric and deformation potentials, while
adecrease of 7, with an increase of 7, above 10 K is associat-
ed with an increase of scattering by polar phonons. This in-
terpretation seems well-founded and is therefore, quite prob-
ably, valid also for n-Hg, ; Cd, , Te, an analog of n-InSb.

Rosenbaum et al.>* studied the standard galvanometric
phenomena in n-Hg, ;¢ Cd,; ., Te crystals at 0.01<7<0.7 K
for fields H<75 kOe (electron concentration # = 1.4:10'*
cm ™ ?, mobility at 77 K 4 = 1.5-10° cm?/v-sec, and the com-
pensation estimated from mobility, X~0.4). A sharp in-
crease of p, (H), p,, (H) and the Hall resistance p,, (H)
was found for the fields H>H}*, HZ, and H.

Analyzing the Hall effect measurements, Rosenbaum et
al.** exclude the possibility of electron freezing-out to isolat-
ed donors as a possible reason of the p,, (H) increase, since
in that case the electron concentration would have to de-
crease exponentially with the temperature decrease
[n~TV2Xexp( —ep/kgT),ep (H)—is theionization en-
ergy of a donor], and the slopes of the curves Inp,, (H)
would have to be different at different temperatures. This
does not agree with the results of Ref. 34, according to which
the curves p,, (H) are practically parallel for H > H 5", Later
measurements of Shayegan et a.>>*° have shown that the
slope of the curves In p,, (H) at H> Hg increases with a
temperature decrease from 1.3 t0 0.5 K, as well as in the case
of n-InSb. If one assumes, as the authors of Ref. 34 do, that
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carriers of only one type contribute to conductivity, then the
slope increase with decreasing temperature indicates a de-
crease of n, i.e., a freezing-out of electrons.

In the opinion of the authors of Ref. 34 localization of
the Anderson type, caused by disorder, also cannot be re-
sponsible for the increase of p,, (H), since then the field H §
would not depend on 7, but the measurements show that
H ¥ increases from 6.5 kOe to =9 kQOe with a temperature
increase from T'= 0.01 K to T = 0.7 K. The authors of Ref.
34 associate the temperature dependence of H §” with elec-
tron crystallization. Later we discuss briefly questions of
possible influence of disorder on this dependence.

Rosenbaum et al.’>* see the reason for the increase of
Py (H) for H> H § in the transition of an electron system at
H=H{ toa CDW or a Wigner crystal state. Under these
conditions, one should expect that the critical temperature
of transition, T, depends on the critical field H }”. However,
the observed increase of H §” with temperature T does not
agree with the theoretical predictions of Refs. 17 and 18;
according to Ref. 18 for strong magnetic fields 7, ~H '
(Fig. 2). In this situation the authors of Ref. 34 decided to
use an estimate of the melting temperature T, of a Wigner
lattice suggested by Kleppmann and Elliott.'> An approxi-
mate relation between Ty, and the binding energy ¢, of
atomsin crystals of inert gas (Ne, Ar,Kr,etc.) kg Ty ~£,/8
(Ref. 3) was used for calculation of T, inan electron crystal
(in this case £, has the meaning of the electron binding ener-
gy). Such an estimate gives dT ', /dH ~0.3 K/kOe. The ex-
perimentally determined value is 0.22 K/kOe. This agree-
ment, which is the main argument of the authors of Ref. 34 in
favor of the hypothesis concerning electron ordering at
H > H{ seems to us an illusory one. First of all, the empiri-
cal formula for T, does not take into account the dominant
influence of a magnetic field, which significantly changes the
conditions for the formation of a Wigner crystal. Secondly, it
is not at all clear whether the Wigner lattice must necessarily
transform at the melting temperature into a uniform elec-
tron gas (a sharp transition) or to an intermediate CDW
phase (a more or less *““smeared” transition).

The authors of Ref. 34 assume that for the studied con-
ditions the random distribution of impurities is not essential
since the radius of the electron wave function is large. An
estimate, however, shows that for n = 1.4:10' cm ™3, the
Bohr radius a} = », = n~'/? and, therefore, for K =0.4, a¥
only slightly exceeds the interimpurity distance =N ,;~ '.In
this case, the very existence of a Wigner crystal is quite ques-
tionable, and any estimates using the formulas of the “jel-
lium” model are even more unreliable.

Now let us return to the question about the temperature
dependence of the field H §”. An entirely acceptable explana-
tion is offered by Shayegan ef al.>**° They associate the shift
of H§ with temperature with the influence of a screening
effect on the magnetic-field-induced Mott transition. As
Fenton and Haering have shown®° (see the discussion in Sec.
5 of the experiments of Refs. 22 and 23), the screening de-
creases the electron binding energy to a donor. With a tem-
perature increase, some bound electrons become deloca-
lized, and, as a result, the screening of the potential of
impurity ions increases. This, in turn, must cause a further
generation of free electrons and suppression of the dielectric
state. For that reason, one needs larger critical fields H,, for
the metal-dielectric transition to take place. The tempera-
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ture dependence of H, under such conditions must be deter-
mined by the details of the structure of the impurity band
and the nature of the change in the binding energy with in-
creasing screening.

One can offer also another explanation of the form of
H ?(T), which also is not related to Wigner crystallization
and is based on the model of overlapping band and impurity
states®! (this model will be discussed later during the discus-
sion of Refs. 36-38). As the temperature rises more and
more electrons become delocalized and their average energy
£ increases. Therefore, one needs larger magnetic fields in
order to displace the electrons closer to a band edge and
practically localize them. Quantitative estimates of hybri-
dized band and impurity states are complicated in that case,
but such an examination gives the qualitatively correct ten-
dency of the change of H, with temperature.

The interpretation of experiments on hot electrons in #-
Hg, 76 Cdy 4 Te suggested by Field et al®> seems rather
probable at first glance. They measured the volt-ampere
characteristics in samples with n=1.4-10" cm™? at
T=10-100 mK in a magnetic field H = 64 kQe. It was
found that for weak electric fields £ 1 mV/cm deviations
of the volt-ampere characteristics from linearity begin to
take place. Nonlinear conductivity is small; even at the low-
est temperature of 10 mK it does not exceed 10% of the
linear conductivity. With a temperature rise to 300 mK, the
nonlinearity  disappears. For magnetic fields
20kOe = HR H { =8 kOe, the threshold electric field E ,, at
which deviation from Ohm’s law begins to take place, de-
creases and at H > 20kOe, E , increases linearly with H. The
authors correctly note that for the ionization of electrons,
bound on donors, one needs electric fields exceeding E 4 by
several orders of magnitude.

Field et al.** relate the nonohmic dependence of /(E) to
the collective motion (“sliding”) of the Wigner crystal do-
mains, which have been pinned by impurities before an elec-
tric field has been turned on. This effect is analogous to a
collective motion of CDW'’s in quasi-one-dimensional and
layered structures, for example, in NbSe (see Ref. 52) or in
graphite in a phase induced by a magnetic field H>210
kOe.* In these materials the nonlinearity of j(E) also starts
at fields E; ~mV/cm. The temperature dependence of the
field E 4 [adecrease of E4 (T)] is, according to the measure-
ments of Ref. 35, analogous to the E, (7T) dependence in
materials of the NbSe; type, which, incidentally, until now
has not found an unambiguous explanation. However, un-
like the case of layered materials, nonlinear conductivity in
Hg, 3 Cd,, Te is, as has been noted, unusually small: In an
electric field E~mV/cm, o increases only by ~ 10%, while
in crystals of the NbSe, type it increases severalfold.

It is natural that the low values of the threshold fields
E ; might suggest a thought concerning the motion of the
CDW domains, as is the case in quasi-one-dimensional met-
als NbSe,, etc. However, in three-dimensional structures,
the fluctuating impurity potential can easily destroy the or-
dered electron system. One can offer another explanation of
the origin of the nonlinear behavior of j(E) characteristics
taking place in electric fields ~mV/cm.

For an intermediate compensation (we recall that for
the samples studied in Ref. 35, K =0.4) the state density has
a Coulomb gap. Usually, an energy gap is A <1 meV. This
means that for electric fields £ 1 mV/cm, electrons can be
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FIG. 4. Temperature dependence of longitudinal
magnetoresistance for n-Hgys Cdo, Te’®  a:
n=234-10" cm™3, ©=4.610° cm*/Vsec; b:
2 n=3010" cm~3, ©=5510" cm?/Vsec; H
(0e): 0 (1),1:10* (2), 3-10* (3), 5-10% (4), 7-10*
(5) and 11-10* (6).
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excited through the Coulomb gap with the result that the
volt-ampere characteristic becomes nonlinear. Obviously,
with a temperature increase one needs lower electric fields
for ionization of electrons through the energy gap, since the
thermal “smearing” of the Fermi level increases. As far as
the E 4 (H) dependence, mentioned in Ref. 35 is concerned,
its cause within the framework of the suggested explanation
is still not clear, since the theory of conductivity in a magnet-
ic field for the case when the Fermi level is at a minimum of
the state density is not available.

8.2. Viscous liquid?

We now discuss the results of papers in which some
special features of the transport phenomena are considered
as evidence in favor of a viscous-liquid model (see Section
7). Nimtz et al.>'~3>3%-38 gjve the results of measurements of
magnetoresistance, photoconductivity and volt-ampere
characteristics of n-Hg, s Cd, , Te samples. The parameters
of the studied samples are approximately the same as in Ref.
30: at 42 K, n=3-10" cm >, u = (4.5-5.5)-10° cm?*/
Vsec. For samples with n=3.0-10" cm™3, yu =5.5-10°
cm?/Vsec and n = 3.4-10" cm ™3, u = 4.6-10%, cm®/Vsec,
the compensation is K = 0.4 and K = 0.5, respectively. For
the temperature range 1.4-10K, p,, and p,, increase sharp-
ly in a magnetic field—for T'= 1.4 K and 4 < H =100 kOe,
P and p_. increase by 3—4 orders of magnitude. For fields
H = 10* Oe and in the interval from 1.5-2 to 5-10K (Fig. 4),
p., decreases with increasing T. This decrease can be de-
scribed by the exponent p,, = p, exp(Ae/ky T). In the re-
gion of lower temperatures 1<7<2 K, p,, has a weaker de-
pendence on T, and for HX 5" 10* Qe, Pz (T) becomes
saturated.

Nimtzeta explain the dependence of resistance
on activation by the increase of electron mobility at constant
concentration, in agreement with the viscous-liquid model.
Since, according to Refs. 30-33, the Hall coefficient changes
rather weakly in a magnetic field, the authors of Refs. 37, 38
have performed measurements of photoconductivity and
volt-ampere characteristics with the aim of finding out
whether the dependence of resistance on activation is caused
by changes in concentration or mobility.

In the experiments on photoconductivity, electron-hole

133.36—38
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pairs were generated using a pulsed laser with a frequency
exceeding the forbidden band. It was observed that the dark
conductivity o =enu, increased by Ao=-e(A-
nu, + Apu, ), with An = Ap. Since in HgCdTe u, > iy, the
relative change in conductivity is

Ag _ An ) (31)

—_— ~
o} n

Measuring o and Ao as functions of temperature and of
the electric field E, it is possible to obtain information about
variation of # with T"and E, assuming that the concentration
of photocarriers An is constant. The measurements of o(T)
and Ao (T) dependences in a longitudinal field H = 5.5 104
Oe from 1.4 to 4.2 K have shown that Ao increases with the
temperature approximately as ¢. The same is true for the
curves o(E) and Ao(E) for fields E up to 2 V/cm at
H =5.5-10* Oe and 1.4 K. Based on the equality (31), the
authors of Refs. 37, 38 conclude that the temperature and
electric field have practically no effect on electron concen-
tration, and the dependences o(T) and ¢(E) are caused by
changes in the electron mobilities u, (T) and u, (E).

This conclusion is based on the assumption that during
the measurement process the concentration of photocarriers
An does not change with the temperature (or with the field).
Because of the different equilibrium mobilities of the ther-
mal and photoexcited hot electrons the measurements had to
be carried out over time periods t» 7, (7, is the energy relax-
ation time). However, during these time intervals ¢, the ini-
tial concentration of minority carriers An must change as a
result of recombination. The authors of Ref. 38 assert that
they succeeded, using a certain fitting procedure, to deter-
mine those values of Az which correspond to an initial time
period t = 0. Therefore, in their opinion, An is approximate-
ly constant, and, therefore, n =~ const, and the electron mo-
bility increases with the temperature rise from 1.4 to 4.2 K.
This conclusion about the constancy of concentration does
not seem to be convincing. First of all, there is no confidence
that one can reliably determine the initial value of An by
approximating the slowly varying part of a photosignal by
functions exponentially decreasing with time. Secondly, in
the presence of compensating impurities creating a fluctuat-
ing potential, one cannot exclude the possibility of capture of
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FIG. 5. Conductivity o (dashed lines) and photoconductivity Ao (dots)
as a function of temperature for n-Hg, ; Cdy, Te with 7 = 3.4:10" cm 3,
4 = 5-10° cm*/Vsec at H = 5.5-10° Oe.®

minority carriers by the defects during short intervals of
time smaller than the measurement time ¢. In that case,
An#const, and n = n(T).

Starting from the fact that the conductivity changes
with the temperature in an activation manner, Nimtz et a/.®
tried to describe experimental results for o(T) and Ao (T)
using exponential functions. It turned out, however, that as
T decreases below 2-3 K, one starts observing a significant
deviation from the exponential (Fig. 5), both for o(7T) and
Ao(T). The curves o(T) and Ao(T) can be described by an
expression of the type

o(D)=oexp (—-25) +0, (7, (32)
where o, is a rather weak function of temperature.

In the opinion of the authors of Ref. 38, the tendency of
o(T) to saturation (in the field H||j) with an increase of T,
as well as the saturation of p,, (T) (Ref. 36), is related to a
shunting effect of a surface layer of high conductivity, which
does not depend on the temperature. However, such an ex-
planation is not valid for photoconductivity, since the mag-
nitude of Ao depends only on the excess charge carriers in a
sample independently of the spatial inhomogeneity of the
conductivity o. A conjecture was expressed, therefore, that
at T2 K and H = 5.5-10° Oe the electron mobility z, be-
comes comparable with the mobility of holes x,,, and both
ty and p. do not depend on T. The relationship (31) does
not hold, then, and one cannot expect an activation depend-
ence of photoconductivity. As we can see, in order to explain
the deviation of dependences o(T) and Ao(T) from expo-
nential dependences, physically different assumptions have
to be made. .

Thus, Nimtz et al.>*# assert that if one ignores the
shunt effects, which become noticeable at T7<2-3 K, the

dependence o(T') can be described by an exponential caused .

by an activation change in electron mobility. In the opinion
of the authors of Refs. 37, 38 such a dependence corresponds
to Adkins’ model of the flow of viscous liquid of correlated
electrons through a crystal containing randomly distributed
defects.
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One can suggest a more realistic, in our opinion, inter-
pretation of the experimental data of Nimtz et al.3*-**3¢-8
The critical concentration of impurities corresponding to a
Mott transition is, according to expression (21),
Ny =ny =2.7-10 cm™® for uncompensated n-
Hgo s Cd,,, Te samples [# = 6-10'* cm ™2 for samples with
K = 0.4 according to (26)]. Therefore, for donor concen-
trations N > 10" cm ™2 the Fermi level is above the flow
level in the region of delocalized valence band states, and the
electrical conductivity has a metallic character (see Fig. 4,
curves 1).

It is easy to see that the impurity states do indeed merge
with the conduction band, if the width of the impurity band
W is estimated, let us say, in the strong binding approxima-
tion. For a typical sample from Refs. 36-38 with
n = 3.4-10" cm 3, the interelectron distance r, is approxi-
mately 0.9-10~% cm. In compensated samples, the distance
between donorsrp <7, <al ( = 1.8:10~°cm). Forasimple
cubic lattice W=6%2/mri >10meV (for a fcc lattice,
W> 15 meV). These values of W significantly exceed the
ionization energy of an isolated donor
ep =#%/2mal?~0.2 meV.

A typical property of impurity-type conductivity is the
strong electron scattering, for which # 2/7 > g, (see Section
6). For typical samples from Refs. 36-38
ep =#2(37°n)*3/2m=2.9 meV is larger than #/7=0.5
meV, i.e., scattering is weak for H = 0, and conductivity is
realized over band states. The picture changes in a magnetic
field. In the extreme quantum limit fiw*>£p, which is
achieved at HZ4 kOe, e ~H ~2. At H=10* Oe,
£r =7.5-10"2meV, and this is by almost an order of magni-
tude less than #/7, even if one does not take into account a
decrease of 7 in a magnetic field. Thus, for the fields H 2 10°
Oe, scattering becomes strong, and this indicates conductiv-
ity via impurity states. The Fermi level descends from the
region of delocalized into the region of localized states.

Now it is easy to understand the reasons for the de-
crease in p,, with increasing temperature 7 and the appear-
ance of activation conductivity. As the temperature in-
creases a step of the Fermi distribution function becomes
‘“smeared,” the average electron energy  increases, and
more and more electrons with energies £ 2 #i/7 with higher
mobility appear. As a result of the increase in the number of
electrons with higher mobilities, p,, decreases with an in-
creasein T. A similar situation exists for #-Ge (Ref. 51) near
the metal-dielectric transition for n 2 ny. The difference
consists of the fact that in #n-Ge with n 2 n,,, the Fermi level
is located at H = O in the region of localized states, where #/
7> €p, while for samples of n-Hg,,Cd,,Te at H=0,
n> ny and the Fermi level lies above the flow level, e > #/
7. In magnetic fields HZ10® Oe, #i/r>&e in n-
Hg, 3 Cdg, Te, and the change inp,, (T) is completely analo-
gous to the change in p(7T) at H = 0 in n-Ge

The decrease in p,, (T), as well as the decrease in p(T)
in n-Ge, cannot be described by a single exponential or pow-
er function law. Some sections of the p,, (T) curves can be
approximated by exponential dependences of the type of
exp(Ae/kgT) orexp(T,/T)* with 1/4<a<1/2, or even by
power functions. For example, experimental points from

" Ref. 36 (see Fig. 4) for H = 2-10* Oe fall on the straight line

Inp,, (T ~'?) in the interval 1.5-8 K, and for H = 3-10° Oe
in the entire interval 1.5-10 K where p,, (T) is decreasing.
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The impossibility to approximate p,, (7T') by a single law in-
dicates a deep similarity of the situations in Hg, s Cd,, Te
and Ge. This is supported also by the fact that the experi-
mental temperature dependence of conductivity o,, (T) (see
Fig. 5) is described by a function of the type (32), typical for
transport of the charge via the mixed band and impurity
states near the metal-dielectric transition.>’

With an increase in the magnetic field, a pseudogap in
the density of states between the localized (#/7>¢&g) and
delocalized (#i/7 < &g ) states increases as a result of com-
pression of the wave functions, and the Fermi level descends
below the flow level. As a result of thermal excitation of
electrons from the Fermi level above the flow level, conduc-
tivity acquires an activation character. In sufficiently strong
fields, the impurity states are separated from the band
states—a gap is formed (the Mott transition). With an in-
crease of H the range of temperatures increases where
o, ~exp( — Ae/kgT). We must note that the values of
Ae(H) (=0.1-1.5meV) and 0,, (=0.01-0.1 Q" 'cm ™) at
T% 10K are typical for the impurity-type conductivity. The
closeness of values of p,, and p,, in magnetic fields up to 10°
Oe indicates the same. In the region of temperatures corre-
sponding to the transition from the impurity-type conduc-
tivity to band conductivity, the Hall coefficient |[R(T)| has,
asarule, a maximum. Such a maximum in a magnetic field at
H~5-10% Oc was observed by Nimtz er a/.>* in a sample of
n = Hg, 3 Cdy, Te withn=2-10"" cm > and p =3-10* cm?/
Vsec. Unfortunately, for cleaner samples of n-Hg, ; Cd, , Te
(Refs. 36-38) there are no data on the measurements of
|R(T)| in the region of magnetic fields, where a maximum
should be observed.

The studies of the authors of Refs. 44 and 45 support the
correctness of the above interpretation of the work of Nimtz
et al. On the curves of o,, (T) for n-Hg, s Cd, , Te crystals
with X =~0.7-0.8 in the temperature interval 1.7-30 K, one
can select areas where o,,(7) increases exponentially.
0,. (T) can be described by an exponential in the region
T = 3-10 K with Ae =1 meV; below 3 K, the dependence is
weaker, and above 10 K—stronger. However, in the entire
interval of growth of o, (7) 1.7-30 K the curves cannot be
approximated by a single law, nor can this be done for the
curves of o,, (T) for the samples from Refs. 36-38. The Hall

coefficient | R | decreases in magnetic fields exceeding a cer-
tain threshold field H §, with the rate of decrease of |R(H)|
diminishing as the temperature increases (see Fig. 8 in Sec-
tion 8.3). An analysis shows that the concentration of light
electrons, i.e., electrons activated above the flow level, in-
creases at higher temperatures. The picture of temperature
dependences of o,,(T) and R(T) convincingly demon-
strates the changes in electron concentration and is not con-
sistent, therefore, with the viscous-liquid model.

Concluding the discussion of the work of Nimtz and
coauthors we cannot agree with their unqualified assertion
that “the magnetically induced Wigner condensation of
electrons behaving like a viscous liquid is established). De-
pendences p,, (T,H,E) andp,, (T,H) (see Fig. 4and 5) can
be explained based on the model of overlapping band and
impurity states between which, in sufficiently strong mag-
netic fields H, there is formed a gap, increasing with increas-
ing H.

We turn now to the special features of the dependences
Pxx (H,T) andp,, (H,T) discussed by Shayegan et al. in Ref.
39. They consist of the following: 1) below a certain tem-
perature T, and in fields Hy*SHS HY, p,, changes more
with temperature than p,,; 2) for the field interval,

< H<HYat T < Ty, thecurveofp,, (H) has asmalldip

(Fig. 6). At T> T,, the dip disappears, Shayegan et al.*®
consider this relatively small dip as a serious anomaly, which
they associate with the state of viscous electron liquid. The
authors of Ref. 39 assert that their attempts to describe p,,
andp,, with the help of the two-band model was not success-
ful. According to Ref. 39, the first peculiarity in the behavior
of p,. (T) and p,, (T) can be explained if one assumes that
there is only one type of electron with constant concentra-
tion n, and the mobility changes with temperature in accor-
dance with the viscous-liquid model. As far as the dip in
Py (H) at T < T, is concerned, it is, according to the authors
of Ref. 39, caused by an increase in n as H increases. It is
assumed that as H increases either the number of electrons
localized on impurities decreases as a result of an increase in
interelectron correlation (the correlations release electrons
from the potential wells), or the velocity of the flow of a
correlated liquid around the localized states increases “in
order to compensate the deficiency of delocalized states.”
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This interpretation is rather artificial and not convinc-
ing. Peculiarities of p,, (H,T) and p,, (H,T), observed by
the authors of Refs. 44 and 45 can be rather easily explained
within the framework of the two-band model, when both
light electrons (concentration #,) and heavy electrons (con-
centration n,) participate in transport phenomena. Approx-
imately one can assume that the former are band electrons
with energies £ > €,, and the latter—electrons with £ <¢,,,
moving via the impurity states. Assuming constancy of the
relaxation time, one obtains for arbitrary magnetic fields

Oy = H  naf+ noPi3 - (ni+ng) (WRGH?/c?)
VT ke (naPy - nglly)®F (n1F ng)? (RpEHE/c2)
- naby + nolly - Wikly (Hane - Wong) (H2/c?)
x= (1B = ngla)® A (ny - ng)? (WP HE %)

An analysis shows that for the typical values of the param-
eters n,~10" cm 3, u, ~10° cm?/Vsec, n,~10'® cm 3,
1,7 10% cm?/Vsec for field intervals from 8-10° to 3-10* Oe,
there must be a change in the slope of the curve p,, (H) (a
dip), while for H 3-10* Oe p,, increases monotonically in
complete agreement with the data of Refs. 34, 39, 40, 4347,
At temperatures 7> 4.2 K, n, increases, n, decreases, and
the dip disappears.”

From the expressions given above it also follows that for
H < HP,thedependenceofp,, (T) on T'in the low-tempera-
ture region must be stronger than that of p,, (T). Thus, for
H=10 Oe an increase of n, with an increase of T from
1-10" to 3-10" ¢cm ? and a corresponding decrease of n,
from 1-10" cm~* to 8-10" cm~? leads to a decrease of
P, (T by a factor of 1.5 and of p,, (T')—by a factor of 5 (it
is assumed that the mobilities 4, = 10° cm?/Vsec, u, = 10°
cm?®/Vsec vary negligibly little with 7). For stronger depen-
dences of n,(7T) and n,(T) on T the difference between
Pxy, (T and p,, (T) is even larger. Our interpretation of the
peculiarities of the curves p,, (H,T) and p,, (H,T) is, obvi-
ously, an approximate one, since for the conditions dis-
cussed it is not possible, strictly speaking, to separate elec-
tron states into localized and delocalized ones. However,
based on the more general model of mixed band and impuri-
ty states, it is possible to explain qualitatively the peculiari-
ties of ¢, (H,T) and p,, (H,T).

It is interesting to consider the dependences of the fields
HF H and Hy on n for Hg, ,4Cdy,, Te samples from
Ref. 39 (Fig. 7). Together with experimental results, Fig. 7
gives the calculated values of the critical fields H ; and H y,
for the Mott and Wigner transitions, respectively, and for
the beginning of the extreme quantum limit region
(fiw? = eg ) H . The authors of Ref. 39 have determined the
field H , from the equality, similar to expression (22)

nata; ~ (0.25)% (33)

Let us note that, based on the meaning of the Mott transition
criterion, expression (33) must contain not the electron con-
centration, but the donor concentration [see (22)]. The
field H, was estimated from the formulas of the work of
Kleppmann and Elliott.'” One must emphasize that the er-
ror in the estimates of Hy, from the formulas of Ref. 15,
which, incidentally, are valid for T'= 0K, is rather large and
can reach an order of magnitude and more. On the other
hand, the estimates of H , too, cannot claim greater accura-
cy because of some uncertainty in the value of the right-hand

693 Sov. Phys. Usp. 30 (8), August 1987

00
9 B [
S+ -
20t s
. //
. 7
10— /ﬁ
- Ve v
= 3
Y ® /// /
5_— il /
d //
| - v—1
2 / o-2
<1 -3
1 f 1 £l
10" 2 5 107

n,cm—3

FIG. 7. Critical fields as a function of electron concentration for
Hg, 76Cd,,, Te.* 1—H & 2—H 5%, 3—H . The continuous line corre-
sponds to H, (the Mott transition), the dashed line to H, (Wigner
transition ), dot-and-dash line to A ,—the extreme quantum limit.

side of (33) and, what is more important, because the com-
pensation, which, as we have seen [see expression (26) ], can
change the value of N, is not taken into account.

At the same time, the experimental points H §” lie rather
close to the curve H, (n), and this indicates that a Mott
transition may be taking place at H = H " the impurity
states become separated from the band states. The authors of
Ref. 39, 40 who give the following arguments are inclined to
the same conclusion. If the energy of the ground state of an
isolated impurity center £, exceeds the binding energy of
electrons in a Wigner lattice g,= (¢*/xr,), the system of
electrons undergoes a Mott transition to a dielectric state for
fields H> H . According to Fenton and Haering,* ey, is
always larger than ¢, for any reasonable value of the right-
hand side of expression (33). The proposition that at
H = H @ aMott transition is taking place is developed by the
authors of Refs. 39, 40 in Refs. 42, 43, which we shall discuss
in Sec. 8.3.

Summarizing the discussion of the experimental results
of Refs. 39, 40, one must note that these papers do not pro-
vide any proof of the existence of a viscous electron liquid.

8.3. Disorder

We turn now to articles 40—47, in which the special fea-
tures of galvanomagnetic phenomena in n-Hg,;Cd,, Te
crystals, similar to the ones observed in Refs. 39, 40, are
explained by localization of electrons on impurities. The
authors of Refs. 39, 40 (see Sec. 8.2) came to the conclusion
that the increase of p,, (H) for fields H > H §”is caused, most
probably, as for the case of n-InSb, by a Mott transition.
Rather convincing proofs of the freezing-out of electrons
onto impurities in n-Hg, _ , Cd, Te (0.18<x<0.35) are giv-
en by Raymond e al. (Ref. 41) and de Vos et al.>*

In Ref. 41 samples with n = 10'*-10'® cm~? and the
compensation X from 0.3 to 0.95 have been studied for fields
up to 200 kQOe. Assuming that only band electrons (n,, i,)
and partially localized electrons of impurity states (75, u,)
participate in charge transport, with u, > u,, they took into
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account the contribution of heavy electrons (#,, 4,) to the
diagonal components of the conductivity tensor o,, (H),
o,, (H), and neglected that contribution into the Hall com-
ponent o,, (H). Then, the concentration », in the magnetic
fieldsu ,H /c> 1 and u,H /¢ €1 can be expressed in terms of
the measured quantities R and o, in the following manner:

OxyH 1 RH?

1= =

ec. “ec (RHPps *

In fields H<200 kOe, the term p2, cannot be neglected, and,
therefore, the simple formula #n = 1/ecR cannot be used for
the determination of n,.

Measurements have shown that n, depends on H only
very weakly until a certain value of the field, and then starts
decreasing sharply. Thus, for a Hg, ;5 Cd, ,s Te sample with
n,=10"cm~2 and K = 0.5 at 4.2 K, n, decreases sharply
for fields H>70kOe (at H=~180kOe, n, = 10" cm~?). The
critical concentration of a Mott transition for this sample
[expression (21)] is Ny = 10" ¢cm ™3, so that at H =0 all
the electrons are in the conductivity band. For fields H>70
kQe, the impurity states are separated from the band states,
and the created gap increases as H increases. The depend-
encen,(1/T) for a Hg, (s Cd, 14 Te sample with the impurity
content &, = 4.5-10" cm ™3, which is somewhat smaller
than Ny, = 10" cm 2 for this composition, shows that the
activation energy increases with H, in accordance with the
theory of Yafet e al. (Ref. 24) for an isolated ion.

For a sample with x=0.18 and r,~8-10"* cm
(K =0.6), Raymond er a/. (Ref. 41) have obtained for
H 230 kOe the same activation dependence of #,(1/T) as
for samples with higher doping, but, unlike the latter, n, in
this sample starts decreasing already in relatively weak mag-
netic fields. The last fact the authors explain by the presence
of aresonance level, lying at H = 0 above the Fermi level and
associated not with a minimum of the conductivity band at
k = 0, but with a side minimum. With an increase of H, the
last Landau level intersects the resonance level, and the
largest part of band electrons is “frozen out” into it. A simi-
lar hypothesis about the presence, high in the conduction
band, of a resonance level, associated with Te vacancies, was
suggested by Nimtz et a/.*’, but with an opposite purpose—
to explain the absence of the electron freezing-out at H =0
into shallow donor levels which, in their opinion, are absent
in Hg, _,Cd, Te with x > 0.16. The authors of Ref. 37 see
some support to their assumption in the work of Swartz et
al.3® who calculated the position of a donor level formed by
vacancies of Te, and came to the conclusion that it is located
high in the eonductivity band. The results of calculations of
Ref. 56 seem unconvincing since they are carried out for an
unrealistic localized potential of an impurity (Slater-Koster
approximation), and the calculations use 21 (!) fitting pa-
rameters.

The direct proof of the existence of shallow donor levels
in n-Hg, ; Cd, , Te and of electrons bound on these donors in
sufficiently strong magnetic fields, has been obtained in
studies of the cyclotron resonance on impurities.*?*> The
infrared transmission spectra with #iw =~ 10.5 meV in fields
H = 3-10 kOe at 1.4<7<6 K of samples with » = 3-10"’
and 6-10'3 cm~? have been studied. The transmission spec-
tra, depending on the magnitude of the magnetic field, show
two minima—one caused by the cyclotron resonance of band
electrons; and the other, caused by cyclotron resonance of

-3
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impurity electrons. In the case of impurity resonance elec-
trons are transferred from the ground bound state to an ex-
cited state with the same spin. The dependence of the energy
difference between the peaks of cyclotron resonance for im-
purity and band electrons #fiw; ~#fiwcc on the magnetic field
H agrees, with an accuracy to about 20% (as for InSb), with
the results of calculations (including the effects of non-
parabolicity) for the model of a hydrogenlike donor. The
observation of the impurity cyclotron resonance in
Hg, s Cd, , Te gives unambiguous evidence that in sufficient-
ly strong magnetic fields electrons are bound on shallow do-
nors in the ground state.

Of interest is the fact that impurity cyclotron resonance
has been discovered in fields smaller than the field H,, at
which a Mott transition is taking place. In the opinion of
Shayegan et al.,*>*? “even on the metal side of the metal-
dielectric transition, the delocalized electrons are in the do-
nor-band states which are separated from the states of the
true conduction band.” The authors of Ref. 43 also explain
the dip on the curve of p,, (H) by metallic conductivity via
an impurity band (separated from the conduction band),
which is treated as an infinite metallic donor cluster, existing
in a crystal together with isolated donors. The increase of
Pxy (H) at H> HF is caused by the “macroscopic” metal-
dielectric transition, which, according to Ref. 43, is caused
by the breakdown of a cluster.

The interpretation of the unquestionably interesting ex-
perimental data of Ref. 42 is obviously inconsistent. The
authors surmise, undoubtedly with justification, that at
H=~H{ =~ H ,; a metal-dielectric transition is taking place,
i.e., a separation of impurity states from the band states.
However, the explanation of the impurity cyclotron reso-
nance for the fields H < H,, based on the assumption con-
cerning the coexistence in a crystal of an infinite cluster of
donors and isolated donors seems rather artificial. The ex-
periment can naturally be explained within the framework of
the model of merging band and impurity states. In such
mixed states, which are realized with high probability in
compensated samples (the samples used in Refs. 42, 43 are
clearly compensated: according to estimates, for a sample
with n=3-10" em—3, K~0.7 and for a sample with
n=6-10"cm™3, K~=0.8), the impurity electrons preserve,
to some extent, their “individuality” (Ref. 51), as a result of
which, together with cyclotron resonance of band electrons
impurity cyclotron resonance is also observed.

Pxx» Pz and p,, were studied at 1.4<T<30K in samples
with compensation X = 0.6-0.9 in papers of Refs. 44—47. It
was found that for samples with n = (2-5):10" cm™?,
Pxx (H) and p,, (H) increase sharply in fields A > H §" and
H> HE, and with a temperature rise, the magnitude and
slopes of the curves p,, (H) and p,, (H) decrease rapidly.
The resistivities p,, and p,, change with the field and the
temperature to a much greater extent than had been predict-
ed by the theory of scattering of electrons by impurity ions in
the extreme quantum limit,’” and are not described by one
exponential law. The Hall coefficient |R | decreases in fields
H exceeding a certain field H§=1.5-4 kOe, but this de-
crease is much slower than the increase of magnetoresisti-
vity: for fields up to 20 kOe, p,, and p,, increase by 1-2
orders of magnitude, while |R | decreases for the same fields
by not more than a factor of 2-3. Figure 8 shows the depend-
ence on the magnetic field of the resistivity R(H) for a n-
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FIG. 8. R as a function of H for n-Hgy,,Cdy,, Te.*
1 n=11-10" cm~3 u=1310° cm?/Vsec, K=0.6,
T(K)=1.7(1),3.6 (2),4.2 (3), 12.3 (4), 16.7 (5) and 85
(6).

10 20

Hg; 19 Cdgy 2 Te sample. Such a falling-off of the curves
R(H) is typical for a situation when the electrons participat-
ing in conductivity have significantly different mobilities
222 7%

The analysis of the R(H) and p,, (H) dependences
within the framework of the two-band conductivity model
allowed one to establish that for fields H > H §, the concen-
tration of light electrons n, decreases, and the concentration
of heavy electrons n, increases (the sum n, + n, remains
constant). At H= 10 kOe, the decrease of n,(H) slows
down. Such a variation of n(H) is similar in appearance to
freezing-out onto donors. In order to establish whether, in
fact, this effect is related to freezing-out of electrons, we use
expression (22) toestimate the critical field H , at which the
impurity states become separated from the conduction band.
For samples with N = (2-6)-10'* cm~2 studied in Refs.
44, 45 the values of H, are in the range of 60-130 kOe,
which is larger than the measured values of H § by one or
two orders of magnitude. This means that the established
decrease of R (H) and, correspondingly, of n, (H), cannot be
explained by the freezing-out of electrons onto donors.

The [R(H)| and n,(H) dependences can be explained
by taking into account the fact that the samples studied in
Refs. 44, 45 are strongly doped N j, a}® =~ 10-30 and strongly
compensated. In the extreme quantum limit the Fermi level
€g, which at H =0 is located above the flow level ¢, de-
scends below the flow level, and the electrons become local-
ized in the potential well created by randomly distributed
impurities.”® Conductivity, which at H = 0 has a metallic
character, at k 3 TR £,—€ acquires an activation nature. If
the overlap of the donor wave functions is large, then the
low-mobility electrons, tunneling between wells under bar-
riers, contribute to conductivity. Such a situation is realized
in the crystals studied in Refs. 44, 45.

From the condition of equality er (H) = £, (H), one
can find the threshold field H, required for localization of
electrons. Comparison of experimental results with the re-
sults of calculations should be carried out for the least com-
pensated samples for which #/7 < g¢. This is due to the fact
that the compensation degree X is determined with the help
of the Brooks-Haering formula for &, which, of course, is not
valid for the case of strong scattering fi/7> €g.

For samples with K =~0.7-0.8 and ¢ > #i/7, the electron
wavelength A is larger than the screening radius R,,. For that
reason, one should use the following expression for the case
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H, kOe

of quantum screening®®:

. 3mlen aBn'  3ndn , 41—K
HD~ asn 1+K *

e N; e (34)

Fig. 9 compares the results of calculations for H, car-
ried out by the formula (34) with the experimentally found
values of HE for several samples of n-Hg, _, Cd, Te with
x=0.2, K =0.7-0.8 and n = 10"*-10'* cm 3. One can see
from Fig. 9 that there is rather satisfactory agreement be-
tween theory and experiment. For comparison, the curve of
H , (n) corresponding to a Wigner transition, is taken from
Fig. 7to Fig. 9. Realizing that the values of H , calculated in
various papers and, particularly, in the paper of Kleppmann
and Elliott,'® give only approximate values, we still want to
recall the results of Gerhardts'® carried out for
Hg, s Cd, , Te (see Fig. 2). According to Ref. 18, for samples
with 7 = 10'*~10"° cm 2 one can expect a Wigner conden-
sation at temperatures 7 < 1 K, and for fields H y, of several
tens of kilooersted. This is very different from the experi-
mental results for H & shown in Fig. 9. For that reason we
emphasize once again that the explanation of peculiarities of

Hp, kQe
\

llﬁlll

S 1

n, cm~3

10" 107

FIG. 9. The critical field H, as a function of electron concentration calcu-
lated by formula (34), and of the field H § found from Hall effect mea-
surements. 1—H,; 2—H & 3—H,,.
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FIG. 10. Critical field H&, (1) as a function of electron concentration
and the result of calculations of H,, with the help of formula (34) (2).

kinetic effects observed in the temperature range 7'>1 K
and for magnetic fields of the order of H~ 10° Oe using the
concepts of Wigner crystallization (Refs. 30-32, 36, 37)
does not seem convincing.

Since the samples studied in Refs. 44, 45 have a slightly
different content of cadmium (and, therefore, also the Bohr
radii) and the degree of compensation, we show in Fig. 10
the dependence on n of the reduced value of the threshold
field

1+ Kk aop(z=0.2)

R
Ho=3"% % (@)

HR.

As can be seen from Fig. 10, the dependence of H & (n) onn
is practically linear and agrees well with the results of calcu-
lations for

H,, — 11X ag (z=0,2)

T-K —a@  Ho

carried out by the formula (34). .

Aronzon et al***" studied p,, and p,, in strongly
doped and compensated »-Hg, _,Cd, Te samples with
x<0.2 at 7= 14-30 K and for fields H up to 80 kOe. They
also studied the propagation of microwaves. From the mea-
sured phases and amplitudes of microwaves one could mea-
sure the dependences of o, and o,, and the permittivity »
on the frequency of radiation w and on H. It was established
that for each semiconductor sample, there exists a threshold
field H, near which the kinetic coefficients and the permit-
tivity have irregular behavior: 1) at H = Hy0,, =0,, 2) 0,,
and o, decrease sharply with an increase in H, and in the
temperature dependence o, (T) at H > H, there appear ex-
ponential térms; 3) at HR H, the permittivity »(w) under-
goes a jump; 4) at HSH, o, (0)=0,(0),
O (w) = a,, (0),and at H > H, the equalities are not satis-
fied. All these special features can be explained in the same
way as in Refs. 44, 45, namely, that at magnetic fields close
to H,, the transition from metallic conductivity to activation
conductivity takes place as a result of localization of elec-

696 Sov. Phys. Usp. 30 (8), August 1987

trons in the wells of a potential pattern, created by impuri-
ties.

We would like to call attention to a confusion (in es-
sence a terminological one) in the question concerning what
should one regard as a metal-dielectric transition induced by
a magnetic field—the onset of activation conductivity at the
field H = HY occurring as the Fermi level descends below
the flow level, or the appearance of a gap between the impu-
rity and band states at H = H J”? For uncompensated crys-
tals, H § = H ¥, and there is no confusion. For compensated
crystals, at Hy > HR H§ (&g ¢, ), the conductivity o be-
comes activational, although there is also a ““metallic”’ com-
ponent of ¢ via the impurities (at sufficiently low tempera-
tures this can be the hopping conductivity ). At H2 H [’ the
impurity states become separated from the band states by a
gap Ag, and at low temperatures, k g 7€ Ag, the conductivity
becomes of purely impurity type (diffusion- or hopping-
type). In our opinion, it is more logical (although it is not of
fundamental significance) to think that the metal-dielectric
transition occurs at the field H |, where the activation com-
ponent of conductivity appears.

Speaking of the metal-dielectric transition, it is neces-
sary to emphasize that the condition o,, = o,, used in Refs.
46, 47 as the criterion of the transition, is only an approxi-
mate one. This condition can be obtained from simple con-
siderations. For band electrons (&g > ¢, ) in strong magnetic
fields, o,, >0, ; for localized electrons (&g €£,) 0,, €T
and, therefore, the transition (ér =¢,) has to take place
somewhere at o,, ~0,,. However, it is not necessary that
the exact equality o,, ~o,, must correspond to the condi-
tion £ = £, (in particular, because the band and impurity
components of o,, and o, vary with H in a different way).
Numerous experimental results support this.

In conclusion we shall mention the papers of Kasuya et
al.*® and Burns et a/.%* who studied transport phenomena in
SmB, and n-Ge, respectively. In Ref. 58 it was found that in
the interval 0.015<7<0.1 K, the conductivity of SmB, is
constant and by 2-3 orders of magnitude below the minimal
metallic conductivity o, .'® In order to explain the compar-
atively small values of o, the authors of Ref. 58 suggested a
modification of the Wigner crystallization model, similar to
the viscous-liquid model.? The difference from the latter
model is that a group of electrons, localized by a random
potential, tunnel (and do not hop over the barrier) from one
configuration to another one with the same energy. There-
fore the conductivity is of a metallic rather than an activa-
tion nature. Without entering into a detailed discussion of
this model, we note only that the experimental fact o < 0 iq
which forced the authors of Ref. 58 to involve the complicat-
ed scheme of tunneling groups of correlated electrons, does
not require for its explanation any additional hypotheses.
The point is that, as is commonly accepted now (see, for
example, Ref. 59), there is no minimal metallic conductivity
for a metal-dielectric transition, at least, in the absence of a
magnetic field. The quantity o can be much smaller than the
values given by the expression for o, , which Mott suggest-
edin 1972.%°

Burns et al.* have measured p,,, p,, and p,, in a n-Ge
sample with n =6-10'" cm™> and p~350 cm?/Vsec at
0.5<7<4.2 K for fields H<1.5-10° Oe, parallel to the (111)
axis. A uniaxial pressure P, sufficient to change the flow of
electrons from the four valleys into one valley, was applied in
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the same direction. p,, and p,, change with H slowly in a
compressed sample (P #0)at T=4.2K,andat T< 1K, p,,
increases sharply for fields H> HZ=1.1-10° Oe; at 0.55 K,
P, increases by a factor of ~ 10* in the field interval (1.1-
1.5)-10° Oe, while p,, increases only by a factor of 10. In the
absence of deformation the increase of p,, and p,, starts at
lower fields HZ~HZ=4-5-10°0e. Therefore, at
H = 1.5-10° Oe, the anisotropy p,, /p,, reaches ~ 10°. The
authors of Ref. 64 explain the large anisotropy of p(H) by
the formation of a collective electron state—the spin-den-
sity-waves (SDW). They start with the fact that because of
the small g-factor of electrons in n-Ge, both spin states in
fields of ~ 10° Qe are populated. When the states of a degen-
erate electron gas with opposite spins are occupied, then,
according to Ref. 65 the SDW states are formed creating a
gapin the electron spectrum. Since the Fermi level lies in this
gap the diagonal components of the conductivity tensor o,
and o,, disappear as T—0, and the nondiagonal component
0, retains its classical value. Finding the inverse of the ten-
sor o;;, Burns e al.** come to the conclusion that p,, — o,
and p,, -0, which is in qualitative agreement with the ob-
served large anisotropy p,, /p., . This explanation of the an-
isotropy is, in our opinion, incorrect. For the n-Ge sample
from Ref. 64 o,, >0,,, ie., uH /c <1 right up to fields
H=2.9-10° Oe, while according to Ref. 65, the inverse con-
dition should hold: o, <o,,.

Burns et al.* note that impurities must destroy the
long-range order of the SDW states. This may lead also to
the formation of domains of a size much larger than the peri-
od of SDW. The conductivity of the sample will then be
determined by the hopping of electrons between the do-
mains, similarly to what is assumed in the viscous-liquid
model.

The interpretation of experiments of Ref. 64, taking
into account conduction via impurities seems to be more
probable. It is well known that the strong increase of resistiv-
ity p(H) at low temperatures is caused by the transition
from band to impurity-type conductivity. p(H) increases
particularly sharply-exponentially, in the region of hopping
conductivity. In this case, for an ellipsoidal Fermi surface
the exponent depends on the ratio of the longitudinal and
transverse masses. For #-Ge, this ratio is =~ 20, and, there-
fore, p,, (H) must change much faster than p,, (H).>” The
results of measurements support this explanation. In the
case of uniaxial compression along the (111) axis ¢ in-
creases (by a factor of ~2.5), and higher magnetic fields are
required for localization of electrons and a transition to hop-
ping conductivity. The authors of Ref. 64 have observed ex-
actly such a shift of the threshold field H§ towards higher
fields. If for fields 1.1+ 10°< H< 1.5+ 10° Oe the extreme quan-
tum limit were reached (uH /c> 1, #iw*>eg ), the field HF
would be increased in the case of uniaxial compression by a
factor of ~2.5%~6 since ex ~H ~2. For the samples from
Ref. 64, uH /c < 1, and &5 decreases slower (approximately
as H ~') than in the extreme quantum limit.

CONCLUSIONS

In the last sections of this review we have presented the
main results of experimental papers in which the special fea-
tures of the dependences of kinetic coefficients #-InSb and -
Hg, 3 Cdy, Te on the temperature, and the magnetic and
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electric fields are explained by the ordering of an electron
system in magnetic fields, exceeding some threshold field
H,,. The results of papers in which the authors relate the
corresponding peculiarities to localization of electrons in the
potential wells of the pattern created by the random distribu-
tion of impurities are also presented.

The activation character of the variation of the Hall
effect and of the n-InSb conductivity in fields H > H, was the
main reason for the statement?' that in the field H = H, a
system of impurity-band electrons undergoes a transition to
a dielectric state, i.e., Wigner crystallization takes place.
Here, the dominant role played by the random potential
created by impurities is completely ignored.

Quite numerous measurements of the Hall effect, mag-
netoresistivity, photoconductivity and volt-ampere charac-
teristics in n-Hg, 3 Cdy, Te crystals are interpreted by the
authors of Refs. 30-39 as a proof of the formation of a
Wigner lattice, or of SDW, or of a viscous liquid. The analy-
sis given in Sec. 8 shows that these conclusions do not have a
solid foundation. It seems that often the desirable is claimed
to be the reality.

The conclusions of Refs. 4047 in which it is proven
that the peculiarities of kinetic coefficients are caused by a
magnetic-field-induced localization of electrons on impuri-
ties seem quite convincing. It is worthwhile to mention here,
in particular, the papers of Refs. 42, 43 whose authors ob-
served impurity cyclotron resonance in n-Hgg, Cd,, Te.
This can serve as an unambiguous indication of the fact that
in sufficiently strong magnetic fields electrons are bound on
shallow donors.

Summarizing the foregoing one can conclude that none
of the published experimental facts (see Refs. 30—47, 58)
gives any smallest evidence of demonstrating a transition of
an electron system of 3-D semiconductors into the state of a
Wigner crystal (or, a CDW, or a viscous liquid).

Returning to the question asked in Sec. 4, i.e., under
what conditions can one expect an experimental demonstra-
tion of the crystallization of a three-dimensional electron
gas, we have to admit that we do not know the answer as yet.
In uncompensated semiconductors the crystallization prac-
tically cannot be observed since the electrons are localized
on donors (the Mott transition) at concentrations exceed-
ing, by several orders of magnitude, the critical concentra-
tion for a Wigner crystallization. In compensated semicon-
ductors, for which one could expect the realization of the
conditions for the theoretical “jellium” model, a random
potential of impurities prevents the formation of an electron
lattice (this is supported by all known experimental data).

“As calculations show, a three-dimensional electron crystal melts at the
temperature k 5 Ty, which is significantly below £, #¢°/r, (see theend
of this section).

?In English—renormalized harmonic approximation.

YThe wave function ( 14) represents a well-known solution in the empty
lattice approximation of the energy band theory.

“Many researchers are critical of Overhauser’s conclusion concerning the
existence of CDW’s in metals with a spherical Fermi surface (alkali
metals), since correlation effects can suppress the CDW state. A number
of experimental facts which, according to Overhauser, prove the exis-
tence of CDW in alkali metals, admit also another interpretation. At
present it is generally accepted (and supported experimentally) that
CDW’s originate in those cases when there are parallel (congruent) re-
gions on the Fermi surface. Overhauser still holds the opinion that there
are proofs of the existence of CDW in alkali metals. This problem is still
not resolved.

'CDW’s were experimentally found in quasi-one-dimensional chalcogen-
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ides of the transition metals TaS,, NbSe,, etc. (see Refs. 52, 61, 62). At
some critical temperature, such a system goes into a low temperature
phase, in which a spontaneous distortion of the lattice periodicity arises
(a superlattice is formed). The distortion is stabilized by the modulation
of the electron charge density, i.e., a CDW. The CDW is formed because
the electrons of congruent regions of the Fermi surface strongly interact
with the phonons with a wave vector equal to @ = 2k . A decreasein the
electron energy caused by the formation of a gap (the gap arises because
of the 2k ¢ periodicity of distortions) stabilizes the new phase, in which
both the electron density and the position of ions are modulated (see Ref.
63). The CDW’s were detected directly, for example, in electron-micro-
scopic measurements.52%!

9In other papers (for example, Ref. 14), the elementary cell, which in the
situation being discussed is a six-sided prism, was replaced by a cylinder
of the same volume.

"Here an ellipsoid with a large ratio of its axes has been replaced by a
cylinder.

®It remains unclear why the authors of Ref. 39 did not succeed in explain-
ing the peculiarities of p,, and p,, With the aid of the two-band theory.
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