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When two high-energy particles collide the most typical
outcome is the creation of new particles—for the most part
hadrons. The space-time evolution of such processes has al-
ways attracted much interest. Among the earlier investiga-
tions one should mention the papers by Heisenberg1 and Wa-
taghin,2 but the most intensive discussion of the problem
began after Fermi,3 Pomeranchuk,4 and Landau5 published
studies on the statistical and hydrodynamic descriptions of
the evolution of such systems. In later years the space-time
evolution of the multiple particle creation was studied with-
in the framework of the multiperipheral model'' (originally
involving single pion exchange;6 subsequently using the par-
ton description7) and also of the quark-gluon plasma model
(see, for instance, Ref. 8 and literature cited therein). The
space-time evolution of the parton cascade in electron-posi-
tron annihilation and in the deeply inelastic hadron creation
is also of great interest (see, for instance, Refs. 9, 10).

It should be emphasized at once that the problem incor-
porates two different, albeit closely related, aspects. The first
is the space-time structure (topological, fractal, and so
forth) that is formed during the collision of hadron matter
cluster. The second is the nature of motion and interaction
(with each other and with vacuum) of partons in the "boil-
ing operator liquid (?)".

The problem of the hadron cluster structure has been
discussed in terms of models employing a classical or quasi-
classical description of the process, treating the cluster as a
volume containing compressed, expanding hadron matter
(see Refs. 1-5, 8). On the other hand, the quantum field
approaches usually treat the development and evolution of
the parton cascade.6'7'9'10

Particle physics is distinguished by the fact that the ac-
tual volumes in which interactions, defined by the size of the
hadrons, take place are so small ~ 1 fm3 and the interaction
time scales are so short ~ 10 ~24 s, that it is possible to "ob-
serve" the process only via the final reaction products. The
only methods of varying the "probes" measuring the hadron
medium, i.e., of changing the space-time resolution of a giv-
en process, are changing the energies of the colliding parti-
cles or singling out certain classes of events associated with
particular characteristics of secondary particles.

Generally speaking, both the properties of hadron mat-
ter and the evolution of the parton cascade may be quite
irregular. Here we shall describe two recently advanced hy-
potheses regarding the possibility of extracting from experi-
mental data the intermittence of the formed hadron matter
cluster1 [ and the fractal dimensionality of the internal ran-
dom motion of partons.12

From the physical perspective, intermittence means the
appearance of structures (generally of various scales) in the
medium, such as eddies or deformations, or regions of inho-
mogenous densities in the liquid (which could have been

initially featureless on a scale much greater than the mini-
mal, say interatomic, length scale). From the mathematical
perspective, intermittence is characterized by the presence
of rare but pronounced peaks in the behavior of a random
variable. The easiest method of distinguishing such behavior
from its more regular counterpart is by considering the high-
er moments of the appropriate distributions. In an intermit-
tent medium these will be markedly enhanced. The proper-
ties of intermittent media have been described, for instance,
in Refs. 13 and 14, as well as the recent review article by
Zel'doviche?a/.15

In particle physics, the study of intermittence could
shed new light on the nature of fluctuations in the space-time
evolution of the hadron matter cluster during multiple parti-
cle creation, as well as on the internal structure of the clus-
ter. Precisely with this goal in mind, the authors of Ref. 11
suggested investigating the way in which the factorial mo-
ment distributions (see (2) below) over the rapidity y de-
pend on the rapidity scale—the width 8y of the accessible
rapidity range. Purely statistical fluctuations2' should yield
no dependence whatever over a small range, whereas the
existence of intermittence should lead to a power-law depen-
dence of moments on the rapidity range 8y. In particular, the
transition region from one behavior to the other should indi-
cate the (rapidity) scale of structural elements in the medi-
um (see Fig. 1 below).

Let us note that the rare inelastic interaction events
with strong peaks in the rapidity distribution of secondary
particles have already been observed in high-energy experi-
ments involving hadrons and nuclei.16"23 Such events can
yield information on the coherent emission of hadrons by the
medium,24"26 on the phase transition of quark-gluon plasma
into hadrons,27'28 and on minijet formation.29'30 At the same
time it should be emphasized immediately that intermit-
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FIG. 1. Fifth order moment as a function of rapidity resolution 8y for a
smooth distribution (4). Evidently the behavior changes when 8y~d.
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tence of rapidity distributions only determines the size of
structures (clusters) on the rapidity scale, and not in actual
space-time.

The method of calculating factorial moments using ex-
perimental data on multiple creation processes suggested in
Ref. 11 is extremely simple. Let the full range of rapidities A>>
accessible at a given energy be broken up into M segments of
length Sy, i.e., A>> = M8y. Consider events with multiplicity
«. For each of them, calculate the quantities

M

M' ' ^ (km-l)\n\ (1)

m=l

(where km is the number of particles in the wth segment) for
different integers /> 1.3)

Averaging over all observed events we obtain the rth
factorial distribution moment:

M
feml(re-QI

m=l

A remarkable property of the factorial moments F{ is
that for even arbitrarily high multiplicities they coincide
with ordinary rapidity distribution moments C, calculated
in the usual manner. Let us dwell on this for a moment. The
probability of finding km particles in the mih segment pm

makes real sense only when averaged over an infinite number
of realizations. Only then can one formulate the probability
distribution P (/>„... pM) and define its moments as

M

C, = A/'-i 2 { [I APiP(Pi, ...,PM) Pim. (3)

It turns out that the quantities Ff calculated from formula
(2) at finite multiplicities n coincide with the C, moments
(see Ref. 11): that is, factorial moments to a great extent
suppress the effect of statistical errors produced by the finite
number of observed events. Later we shall demonstrate this
assertion within the framework of a concrete model. For
now let us consider the properties of these moments.

First, it is obvious that the higher the moment number /,
the more pronounced is the strongest peak in the distribu-
tion.

Second, it is fairly simple to prove generally for regular
distributions (see Ref. 11) that when the rapidity range is
divided into sufficiently small segments (<5y-»0) the mo-
ments C, are independent of Sy.

Third, the moments C, calculated for regular rapidity
distributions begin to depend on Sy only when the magni-
tude of Sy begins to approach the characteristic scale over
which the distribution changes significantly. If 8y is further
increased the behavior of the moments C, becomes unstable
and irregular. This is illustrated in Fig. 1 where we plot the
fifth order moment C5 as a function of Sy for a model of a
regular rapidity distribution consisting of a plateau featur-
ing a Gaussian cluster

_ 9 .

(4)

By plotting C5 for different cluster widths rf = 0.2, 0.4,
and 1.0, Fig. 1 demonstrates that the moment is independent
of Sy when Sy<£d, begins to decrease when Sy^d, and then
behaves irregularly as Sy increases further. Interestingly,
this behavior of distribution moments is preserved when the

individual events obey distribution (4) but the cluster center
is randomly scattered over the entire rapidity range. In this
last case the total distribution consists of a level plateau and
exhibits no structure, but the distribution moments reveal
the underlying cluster structure of individual events.

Fourth, when intermittence is present, the moments C,
exhibit a power-law dependence on Sy. The power is deter-
mined by the way in which the particles are distributed after
successive division into ever smaller rapidity ranges, i.e., by
the scale of the structural elements in the studied medium. In
order to characterize the successively diminishing scale it is
useful to define a method of dividing the rapidity range Aj>
into ever smaller segments. To this end, let us divide the
range into some number A of segments, then divide each of
the segments again into A segments, and repeat this proce-
dure v times to eventually obtain M segments of length Sy.
Clearly

K"=M = -W- (5)

In the above prescription, the numbering m of each concrete
segment among the total number of segments M {m = 1,
2 M} can be replaced by an equivalent numbering v of
indices a, {a,,...,av} which label the successive divisions,
and the probability of turning up in segment m can be re-
placed by product of probabilities of turning up in the appro-
priate segment a, at each successive division:

n ">,->=IT n (6)

where W{a,} = AW{U:} and W=\. If the normalized
J J

quantities W{a.j } are random and independent, the distribu-
tion (6) describing their product will be intermittent,11'15

and hence C, will depend on Sy according to the power law

C, = M*' (7)

where the power
__dh L C L

V'~~ d l n 6 y ' (8)

depends on / and W{aj}. This is easy to demonstrate for a
concrete model. Let each division of the expanding medium
(string, plasma, etc.) produce with a low probability P a
higher density fluctuation on the rapidity scale
(W{a.j} = 1 + a), compensated by the higher probability
1 — P of producing a less dense fluctuation
(W{aj}=\-b).

Evidently,

W = p (1 - P) (1 - b) = 1, (9)

whence it follows that b-^a given /?< 1.
The distribution moment takes the form

( I D
This model may be used to compute the fifth order mo-

ments taking into account the statistical fluctuations C5,
suppressed fluctuations C5, and factorial moments Ff as
functions of (5y4>. We simulated 1000 events with five succes-
sive divisions ( v = 5 ) and parameters A — 2, 13 = 0.1,
a = 0.27, b = 0.03 in equations (9)-( 11). The results of the
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FIG. 2. The role of statistical fluctuations in the moment analysis method
is appareiu in the difference between moments incorporating such fluctu-
ations (InC5—circles) and moments with fluctuations suppressed (InC,
—points). Factorial moments (InF,—crosses) practically coincide with
ordinary, fluctuation-free moments and are well described by the analytic
prediction of a straight line from (9)-(11).

calculations are plotted in Fig. 2. It is evident that statistical
fluctuations markedly change the moment—the difference
between C5 (circles) and C5 (points) is large. On the other
hand, in the calculation of factorial moments F5 (crosses)
are statistical fluctuations suppressed and indeed F5 ~ C5, as
anticipated (see discussion of formula (2) ) . The numerical
values of F., and C5 fall very nearly onto a straight line pre-
dicted by theoretical computation (formula (11) yields the
value of the slope ^5 =0.14). Consequently, corrections
due to the finite multiplicity « incorporated in the calcula-
tion of factorial moments (2) are indeed important if the
results are to make physical sense.

In order to apply this method to analyzing experimental
data one must observe a sufficiently large number of events
with fairly large multiplicities (since all formulae for mo-
ments are averaged over distributions). Such an analysis has
not been attempted to date. Instead, Bialas and Peschanski''
attempted to employ the proposed method to a single event
with an exceptionally large number of secondary hadrons—
the Si-AgBr interaction studied by the JACEE collabora-
tion.22 They concluded51 that such an event cannot be de-
scribed in terms of statistical fluctuations only. This is illus-
trated in Fig. 3.

Points and circles in Fig. 3 refer to the values of the
moment F5 calculated for slightly shifted rapidity ranges;
crosses label factorial moments when experimental data is
made to fit a smooth, intermittence-free distribution.31 The
discrepancy between the factorial moments calculated from
experimental data (points, circles) and those calculated for
a smooth distribution (crosses), as well as the agreement of
the former with the intermittence model indicate that there
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FIG. 3. Factorial moments calculated for the Si-AgBr experimental
event22 are fairly well described by the intermittence model (9)-( 11) and
obviously differ from smooth distribution moments.31

exist fluctuations on different scales that are not purely sta-
tistical. A word of caution: even with a multiplicity « = 1000
the error in a fifth-order moment can reach 15-20% (see
Ref. 11). As usual, the error is inversely proportional to the
square root of the number of events and decreases with in-
creasing multiplicity.

In conclusion, we can state that the proposed method''
has already suggested the existence of intermittence in mul-
tiple creation processes. Its application to high-energy data
promises many interesting new results. In particular, it is
hoped that by separating out the purely statistical fluctu-
ations this method will allow us to distinguish intermit-
tence15 from fixed-scale dynamical peaks24"26 associated
with the finite-wavelength gluon emission by the medium
caused by the passage of the incident particle.

Let us now turn to the parton evolution in multiple cre-
ation processes. Obviously it will be determined by the na-
ture of these processes and particularly by the structure of
the formed cluster. Recall that in the simple multiperipheral
cascade model the partons execute Brownian motion6'7

between the points at which particles are created. The mean
square impact parameter p2 (distance in the transverse
plane), which determines the inclination b of the diffraction
cone in the differential elastic scattering cross section, is pro-
portional to the number of steps, i.e., the average multiplic-
ity n. Each break in the trajectory corresponds to the cre-
ation of a particle:

• n. (12)

—in the multiperipheral model both n and b increase log-
arithmically with energy. In fact they increase differently,
with n growing rather more quickly. The simple linear con-
nection between the cone inclination and average multiplic-
ity can be violated even in the multiperipheral model by tak-
ing into account rescattering and parton transformations.
The parton diffusion then becomes more complicated, and
the parton diagrams begin to resemble branching electrical
networks or fractals.32'34

Here an obvious question arises: what is the internal
dimensionality of the parton random walks in the system?
This dimensionality is denoted by D ̂  and is defined as34

b ~ P2 ~ w

with

(13)

(14)

where 8 is the anomalous diffusion coefficient indicating
that the diffusion coefficient depends on distance according
to

v. (p) = xp-s.

From (13) we obtain

(15)

(16)

Thence it follows that experimental data on the average mul-
tiplicity and inclination of the diffraction cone can yield the
internal dimensionality of the parton random walks. The
corresponding results for proton-proton interactions are
plotted in Fig. 4. In a first approximation they are described
by a straight line whose slope yields
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FIG. 4. Experimental data on the average multiplicity n and diffraction
cone inclination b for pp- and pp-interactions (points) determine the di-
mensionality of the internal random walks of the partons. From the slope
of the drawn line we find D!f,~7.5, i.e., either the parton random walks
are tangled with repeated returns to the origin or the number of partons is
large.

(£>w)p 7.5±1.5. (17)

Such a high (recall that for Brownian motion 0 = 0 and D '^
= 2) internal dimensionality of parton random walks im-
plies that a parton repeatedly diffuses back to the origin
many times, i.e., its trajectory is quite tangled.

Such diffusion may take place in fractals.34'35 Solving
the appropriate diffusion equations yields the probability of
finding a parton with impact parameter p:

(18)

where D is the Hausdorff dimensionality of the fractal clus-
ter which determines its spatial structure. It is not clear
whether the nature of parton random walks is directly con-
nected with the internal spatial structure of the hadron mat-
ter cluster. Experimental data on iTp-interactions at lower
energies yield (D ̂  )r ~4.

Another interpretation is possible for these results. It
may be that what increases is the number of partons, rather
than the complexity of their trajectories. The cone inclina-
tion reflects the average distance to the parton. Then the
number of Brownian motion steps executed by a parton must
equal ' w , i.e., the number of partons is large

= 1-2/0'-« w
Regardless of the interpretation, experimental data

confirm the utility of statistical-hydrodynamic models of in-
elastic hadron collisions and indicate that equilibrium in the
transverse direction may be established in such systems.

It is of interest to evaluate the internal dimensionality of
parton random walks in multiple processes caused by differ-
ent colliding particles (for instance, electron-positron anni-
hilation). Unfortunately, no such convenient quantity as the
inclination of the diffraction cone is available in such events.
The clearest picture of the parton cascade evolution in elec-
tron-positron annihilation is provided by the Altarelli-
Parisi equations,36 which we can complement by introduc-
ing the dynamical cutoff of the parton cascade evolution.37'38

Here the parameter analogous to the square of the distance is
inverse 4-momentum squared I/A:2 of the parton. It is then
reasonable, by analogy with expression (16), to define the
internal dimensionality of parton random walks as

din A2 '

Without going into the computational details (see Ref. 12)
let us formulate the final conclusion. Using expressions for
average parton cascade multiplicity and experimental data
on its growth with energy (see, for instance, Ref. 39), it is a
simple matter to show that the internal dimensionality of
parton random walks (19) is always close to unity. This
indicates that during the parton cascade evolution in elec-
tron-positron annihilation the partons deviate only slightly
from rectilinear motion. In this the parton motion in elec-
tron-positron annihilation differs markedly from the tangled
paths executed by partons in hadron processes.

Further development of the above-described ap-
proaches could help us understand how the complex nature
of parton random walks is related to the structure of the
hadron medium not only in terms of rapidities but spatially,
to the interactions of the partons with each other and with
vacuum (in particular, with the walls of the "bag"), to the
intermittence of rapidity distributions, and so on. One hopes
that future studies will shed light on these and many other
questions.

GLOSSARY OF TERMS AND DEFINITIONS

Hadrons—strongly interacting particles consisting of
quarks and gluons.

Rapidityj> = ( l /2)ln[(£1 + pL)/(E — pL)\— a kinematic
variable characterizing the motion of a secondary particle
along the collision axis of the primary particles (EandpL

are the energy and the longitudinal component of the par-
ticle momentum).

Deeply inelastic hadron creation—the process by which
hadrons are created (due to a large momentum transfer)
when a high-energy lepton (electron, muon, neutrino)
collides with a hadron.

Diffraction cone—the sharply peaked forward distribution
of elastically scattered particles which results in the elastic
scattering cross section resembling a narrow cone cen-
tered about the collision axis.

Inclusive distribution—the distribution of particles over
some variable (for instance rapidity) which is obtained
when a single (random) particle of a given type is record-
ed in a given event.

"Bag"—a model in which a hadron is pictured as a bag enve-
loping its constituent quarks and gluons.

Multiperipheral cascade—the Feynman diagram of the mul-
tiperipheral model in which particles (or partons) are se-
quentially emitted by the exchanged particle (parton).
The motion of the exchanged parton in the plane perpen-
dicular to the collision axis is analogous to ordinary Brow-
nian motion.

Multiperipheral model—a model in which hadrons interact
by peripherally exchanging a single meson (or parton).

Parton—a constituent of a hadron (quark, gluon).
Parton cascade—the evolution (multiplication) process of

high-energy partons.
Si-AgBr event—the interaction of a high-energy Si nucleus

with a photoemulsion observed by a Japanese-American
collaboration studying cosmic rays.

Electron-positron annihilation—the interaction between an
electron and a positron in which both are annihilated (at
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high energies usually leading to the creation of many had-
rons).

1 'Since this article may be of interest to specialists in other fields of physics
who are unfamiliar with particle physics terminology, a glossary of
terms and definitions is appended.

2)The term "statistical fluctuations" refers to fluctuations in distributions
that are due to the finite statistics (number of events) in a given experi-
ment.

"Segments with km < / do not contribute to the sum since km\/(km

— /)! = k(km — 1) . . . (km — i + 1) equals zero for km < i.
4)It appears that the difference between moments C, and C5 (F,,) is com-

parable to the difference between spatial and statistical moments in spa-
tial intermittence (see Ref. 40); the study of their dependence on the
magnitude of the rapidity range also has an analog in the spatial inter-
mittence picture. "-14-41
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