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An active transformation of a physical system implies its motion. A passive transformation of the
system is a change in the method of describing it. An analogy transformation means transition to
another physical system, similar in some respect to the original one. In some cases
transformations of one type may imitate those of another. The operation of particle permutation
in quantum mechanics implies a passive transition to describing the same state of the system by a
different method of introducing particle numbering. The problems of transitions from describing
identical particles to describing different ones and that of “explaining” the probabilistic meaning

of wave functions statistically are touched upon.
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1. INTRODUCTION

Various types of transformations are considered or used
both in physics discussions and in calculations. In many
cases the content and object of these transformations are not
sufficiently clearly defined, thus becoming a source of confu-
sion. And yet the transformations, just as any mathematical
procedure, can be a reliable instrument in the hands of the
researcher, but only when it is totally clear to what purpose
and how they are applied.

The term “transformation” is used in physics in a sub-
stantially wider context than a transformation of some set
into itself. Therefore, the theorem that mappings of any set
ontoitself form a group is, generally speaking, not applicable
to all transformations considered in physics. Consequently,
it is useful to mention the mathematical nature of the corre-
sponding transformations.

Almost thirty years ago Bargman' introduced the terms
“active transformation” and ‘passive transformation.”
Since then these terms have been used by many authors. It
seems, however, that they are used in various contexts, some
of them differing from the original definition. It is advisable
to classify the transformations used in physics, and on this
basis, in particular, to explain terms such as *‘particle ex-
change’ or “particle permutation,” and, in this context, us-
ing the example of the probabilistic meaning of wave func-
tions, touch upon the problem of explaining some concepts
by others.
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2. ACTIVE TRANSFORMATIONS

According to the original definition,' an active trans-
formation of a physical system is its motion, i.e., a variation
in its characteristics under the effect of some internal or ex-
ternal interactions. We are dealing with motion of the same
physical system, evolving in time, and considered either as
approximately isolated, or coupled with other systems and
treated from the point of view of the same reference system
and by the same method of description. Strictly speaking,
there exists only one example of active motion—the evolu-
tion of the universe. Most of the time we treat or consider
active motions of systems of bodies or particles, weakly cou-
pled with other systems.

Active motions are continuous. No jumps or reflections
are included. The result of active motion of a body, occur-
ring between some initial and final times, can lead to a con-
figuration which could have been obtained by a jump at the
initial moment of time if such a jump were feasible, but this
configuration refers in reality to another, subsequent mo-
ment of time, so that in the evolution space of the system,?
parameterized by independent system coordinates and time,
these two positions correspond to points shifted not only in
coordinates, but also in time.

It is important to note that the active motions of arbi-
trary physical systems do not form groups, but only partial
semigroupoids." For time displacements (¢, —#,) (simulta-
neous variation is implied of all time-dependent characteris-
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tics) the products (#,—1%,) X (t;—1,) are defined only for
t; = 1,, and in this case provide the transition (¢, —17,), and
no single displacement (¢, —¢,) has an inverse [besides the
identity (#—¢)]. This is so because macroscopic systems (at
any rate from multimolecular to planetary level) vary irre-
versibly, while the isolation of microscopic systems from
macroscopic ones is an approximate idealization, whose
meaning consists of the fact that in considering some interac-
tions occurring during a quite short time interval, such as
collisions, one can ignore the interaction of particles with
macroscopic systems.

3. PASSIVE TRANSFORMATIONS

All kinds of variations of methods of describing physical
systems refer to passive transformations. It is well known
that each physical state, motion, or effect admits many dif-
ferent descriptions. Examples of variations in descriptions
are canonical transformations of phase space in mechanics,
including transitions to different reference systems, both in-
ertial and noninertial, transitions to different representa-
tions in quantum mechanics, or changes of gauge in electro-
dynamics. Sometimes the same concepts are associated with
different terms, or the description of effects is translated into
a different language (in the terminological or linguistic
sense, in the sense of notation or machine language). All
these changes are examples of passive transformations.

Each passive transformation has an inverse, but they
also do not always form a group, only a partial groupoid.
Only in special cases can the transformations be combined in
an arbitrary order. Thus transitions to describing physical
systems from other inertial reference systems, obtained from
an original one by a shift in coordinates or time, by spatial
rotation or a Galileo or Lorentz transformation, form a
group, since products of these transformations are defined in
an arbitrary sequence. Passive transformations can be either
continuous or discrete, including reflections. Several de-
scriptions of the same effect can be realized simultaneously,
for example by different observers, a comparison of which is
a passive transformation of descriptions.

The aforementioned variety of descriptions of each phe-
nomenon precludes the identification of our knowledge con-
cerning a phenomenon with any of its descriptions. More
accurately: the image of a phenomenon (an objective, al-
though perhaps also a relative one) is the class of equiv-
alence of its descriptions. Differently stated, our knowledge
concerning each phenomenon is relative not only because no
measurement can be carried out with absolute accuracy and
completeness, but also because its description always con-
tains both elements reflecting the effect, and elements relat-
ed only to the method of description. In particular, the quan-
tum-mechanical state vector is the class of equivalence of
wave functions (projections of this vector) in all possible
representations.

The variety of methods of describing physical systems
makes it possible to select for each problem the representa-
tion most suitable for its solution. The clarity of terminology
and the appropriateness of notation are an important peda-
gogical tool, but the essence of the phenomena described is
independent of the passive transformations.
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4. ANALOGY TRANSFORMATIONS

The active and passive transformations of physical sys-
tems do not exhaust all transformations used in physics.
There exists no generally accepted term for transformations
not included in one of the types considered above, and we
call them analogy transformations. They consist of a transi-
tion from considering some physical system to considering a
different system, similar in some respect to the original one,
i.e., possessing some similar features with it, but at the same
time also containing different characteristics, less essential
in the context under consideration.

An analogy transformation for some physical transfor-
mation, in particular, is a qualitative, or, if possible, a quanti-
tative mental construction of a model of the original system,
reflecting, on the one hand, all the essential properties of the
system in the aspect considered and of the interactions in it,
and sufficiently simplified, and on the other hand, capable of
undergoing a mathematical analysis. If these two require-
ments can be combined, the model constructed serves for
analysis of experiments (finding of parameters), prediction
of results of new experiments, and use of properties of the
system for technological applications.

An example of an analogy transformation is the transi-
tion from considering a right-handed screw to considering a
left-handed one, or a transition from a crystal rotating polar-
ized light to the right to studying a crystal of similar struc-
ture, but rotating the light to the left. In this case we exclude
actively affecting the system, i.e., preparing a left-handed
screw or a left-handed crystal from material of their right-
handed counterparts, not only because this is possible only
in principle and is not done at all in comparing correspond-
ing objects, but also primarily because this is what is needed
for making the indicated comparison at the same moment of
time. The transition from a right-handed object to a similar
left-handed one is not a passive transformation, since the
transition to a different reference system or a method of de-
scription for all the coupled systems cannot remove the ob-
jective difference between them, so that a left-handed nut
can not be screwed onto a right-handed screw. A reflection
of the reference system is equivalent to a transition from a
right-handed to a left-handed object only when one ignores
the variations in the description, occurring during reflection
for objects not subjected to an analogy transformation.

Another example of an analogy transformation is the
so-called time reversal. E. Wigner, who first investigated in
detail the application of this transformation to quantum me-
chanics, wrote*: ““The term ‘reversal of the direction of mo-
tion’ is, apparently, more accurate, though longer, than the
term ‘time reversal’.” Indeed, in this operation the state of
motion of some physical system is contrasted with the mo-
tion of a different system, differing from the first by reversal
of the directions of motion of all the particles of the system
and the directions of all the angular momenta at the same
moment of time. The case in which the reversed system is
obtained from the original one by means of actively influenc-
ing it is excluded from consideration, since the system thus
reversed would be formed in a successive moment of time,
while the states of several other systems would also change.
The transformation of reversal of direction of motion is
equivalent to the passive transformation of time reversal for
isolated microsystems only.
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The analogy transformations do not always form
groups, since there is no inverse for the mapping of a com-
plex object on a simpler one, and the products of transforma-
tions are not always defined in an arbitrary sequence.

5. COMPARISON OF TRANSFORMATIONS

The definitions of the three types of transformations
mentioned are not always mutually exclusive. Firstly, the
identity transformation can refer to any of these types. Sec-
ondly, passive transformations are a special case of analogy
transformations, in which a system similar to the original
coincides with the original, but is treated from a different
point of view.

If some characteristics of the transformed systems are
not taken into account, or the transformation is applied to a
bounded object, considered as isolated, it is possible that
transformations of one type imitate transformations of an-
other type. Thus, a body moving as a result of some active
influence of other bodies into a new position changes its co-
ordinates (ignoring a shift in time and motion of other bod-
ies) in the same way, as if it were to be considered from the
point of view of a new coordinate system, undergoing a dis-
placement oppositely to the active spatial shift of the body,
provided one disregards the fact that other bodies, not affect-
ed by the shift, do not change their positions in the former
case, and are shifted all together at once in the latter case.
Exactly the same can be said about active rotation of a body,
conditionally equivalent to opposite rotation of the coordi-
nate system, as well as about corresponding measurement
pairs of body velocities, and Galileo or Lorentz transforma-
tions. The Poincaré group forms a set of passive transforma-
tions, but not of active (in the full sense of the word) motions
of bodies or particles. Therefore it is untrue, as is sometimes
stated, that the active and passive points of view on each
transformation of the Poincaré group are completely equiva-
lent.

Charge conjugation transformations and other internal
symmetry operations of isolated microsystems are in essence
analogy transformations. However, in the corresponding ab-
stract space they have the appearance of either the result of
an active rotation, or of a passive transformation, and there-
fore can be included in symmetry groups.

6. PARTICLE PERMUTATION

In the presentation of quantum mechanics the section
on systems of identical particles is particularly difficult to
explain. R. Mirman® investigated the reasons for this diffi-
culty in detail, and found that none of the available text-
books contained a flawless discussion of this point. The var-
ious authors do not define the meaning of “particle
permutation” or “particle exchange,” and attempt to ex-
plain one of the terms ““identity,” “equality,” and *‘indistin-
guishability” by another, while the corresponding concepts
do not have noncoinciding definitions.

Considering the original and translated literature on
quantum mechanics in the Russian language,®>° it is easily
noted that, although all authors lead their readers to identi-
cal and correct equations for wave functions of systems of
identical particles, the presentation of this point is lacking
everywhere in completeness and consistency. All authors of
the books mentioned and of the books quoted by Mirman do
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not provide a clear response to at least one of the two ques-
tions: 1) What kind of transformation is the “particle per-
mutation” operation (or of what does it consist); and: 2)
Does the wave function obtained by this operation describe
the same state as the original one, or a different one? Many
authors of the books mentioned totally avoid both problems,
and more directly to the equations; the meaning of the trans-
formations is left outside the boundaries of the text.

Using the example of a system of an electron on Earth,
and an electron generated by decay of an unstable particle in
another galaxy, Mirman shows that the active interpretation
of particle permutation is already eliminated by the require-
ment of causality. In none of the books considered do the
authors insist explictly on explaining particle permutation
as an experimental intrusion into the system investigated,
but the words “let us permute the particles” lead an insuffi-
ciently sophisticated reader specifically to this incorrect in-
terpretation. As a result he visualizes particle permutation
roughly as a permutation of identical nuts within one ma-
chine.

The transformation called particle permutation con-
sists of comparing wave function values at points of the rep-
resentation space differing by the replacement of permuted
particles, and, consequently, is an analogy transformation,
relating wave functions of systems, in which the particles
play permuted roles.

On the other hand, the same transformation can be con-
sidered as a passive transformation, consisting of a transition
to describing the same state of the same system using a differ-
ent method of numbering the particles?’ or, what is the same,
by a different order of axis sequence in the representation
space, such as configuration space.**

Figure 1 shows these two points of view on the particle
permutation transformation for the wave function ¥ (x,,x,)
of the simplest case of one-dimensional motion of two identi-
cal fermions, with ¢(x,,x,) = — #¥(x,,x,). The arrow
pointing to the left and upwards denotes comparison of the
values of the same wave function at different points of con-
figuration space, while the arrow pointing to the right de-
notes comparison of wave function values, selected at the
same point, but with different methods of introducing co-
ordinates.

7. IDENTICAL AND DISTINCT PARTICLES

Changing coordinates in the representation space is
also possible when the particles differ in some respect. In this
case, however, the operators expressing the system charac-
teristics in one set of coordinates in terms of those in another,
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as well as the matirces transforming the wave functions, do
not form a representation of the finite permutation group,
but do form a representation of a finite partial groupoid,®*
where the products are defined not in an arbitrary order.
Thus, for two particles the groupoid of rearrangements con-
sists of three elements: the identity, the direct transition, and
the inverse transition; the squares of each of the two transi-
tions are undefined. The unitary irreducible representation
of this groupoid is one-dimensional, contains a single arbi-
trary phase, and consists of unity and direct and inverse
changes of the wave function phase by the indicated fixed
phase. However, the change in the phase of the wave func-
tion can always be attributed to a gauge transformation [the
groupoid is embedded in the U(1) group], while the value of
the arbitrary phase does not affect any observable. There-
fore, for a two-particle system the deviation of the groupoid
of rearrangements from the permutation group is not essen-
tial. For a three-particle system the groupoid of rearrange-
ments is of order 28, contains two arbitrary parameters, and
the effect of the corresponding unitary representations of
this groupoid does not reduce to the effect of unitary repre-
sentations of the permutation group of three particles. The
groupoid is embedded in one of the subgroups of the SU(3)
group. The Racah coefficients for addition of three angular
momienta also form a representation of this groupoid (the
parameters, arbitrary in the general case, are expressed in
terms of the angular momenta).

As to the state of a system of several noninteracting
particles, a verbal paradox is indeed generated. On the one
hand, if the particles do not interact (or even cannot interact
due to the nonsatisfaction of the causality conditions), their
joint wave function is the product of particle wave functions,
as is the case for any system of noninteracting clusters. On
the other hand, if this state of the system is assigned a wave
function symmetrized in the representation variables, this
does not result in observable consequences, since these parti-
cles interact with any third system independently of each
other.

In the example of particles in different galaxies, pro-
vided by Mirman, the wave function cannot, naturally, be
symmetrized until particles begin to interact, but the use in
place of it of a symmetrized function does not lead to a
change in any observable effects. Similarly one resolves ap-
parent paradoxes with symmetrized systems of neutral K-
mesons, provided by the authors of Ref. 29. A fully relativis-
tic quantum theory of systems of particles, which allows for
the description of systems both of particles interacting for a
long time (exchanging infinite series of field quanta), and of
noninteracting particles, will have to trace out the conver-
sion, during the evolution process of the system, of the non-
symmetrized wave function into a symmetrized one as a re-
sult of particle interactions. It is essential that the theory
must be relativistic, because under the assumption of infinite
propagation velocity of the interactions systems of identical
particles are symmetrized instantaneously.

The authors of Ref. 29 categorically reject the possibil-
ity of theoretical assertions not verifiable experimentally in
principle. However, we have already discussed above passive
transformations as transitions between different descrip-
tions of physical systems. Clearly, an assertion of superiority
of one description over another cannot be verified (though
the rate of convergence of the approximations in an approxi-
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mate description of the physical system can be quite different
for them). Similarly, the presence or absence of certain wave
function symmetry of a system of noninteracting particles is
an assertion which does not have observable consequences,
and therefore cannot be verified.

8. CHANGE IN TERMINOLOGY AND DEFINITION OF
CONCEPTS

A change in terminology is a passive transformation.
Naturally, by itself it cannot serve as a means of defining or
explaining a concept the term for which is being changed. An
example is the problem of *‘explaining” the probabilistic
meaning of a wave function. One concept can explain an-
other, either if they are defined independently, and then it is
proved that they reflect one and the same entity, or that the
concept being explained is a special case of a more general
concept, or if the concept being explained is directly defined
as a consequence of the concept providing the explanation
on imposition of certain conditions.?” Nothing like this ex-
ists in attempts of explaining the probabilistic meaning of a
wave function in terms of the quantum ensemble con-
cept,'®" since there exist no distinct definitions of these two
concepts.

The fact that to find experimentally a probability distri-
bution, in particular to measure the absolute value of a wave
function, one must carry out many observations, does not
provide any justification for defining the concept of prob-
ability in terms of statistics. The latter is essentially the opin-
ion regarding the foundations of the theory of probability,
which at one time was expounded by R. von Mises. This
point of view has never been able to be carried through con-
sistently, and such attempts became only a chapter in the
history of probability theory, when in 1933 A. N. Kolmo-
gorov formulated an axiomatic definition of the concept of
the probability field (see Ref. 31). Later he wrote*>: *The
existence of an axiomatized probability theory rids us of the
temptation to ““define” probability by methods, claiming to
combine their direct scientific persuasiveness with accom-
modation to constructing a formal rigorous mathematical
theory on their basis . . . To this sort of definitions belongs
the definition of probability as a frequency limit with un-
bounded increase in the number of trials. The assumption of
probabilistic nature of trials, i.e., of a tendency of frequen-
cies to group around a constant value, by itself is true (as is
the assumption of randomness of any phenomenon) only
upon the satisfaction of certain conditions, which cannot
hold indefinitely and with unrestricted accuracy. Therefore,
the exact transition to the limit as the frequency tends to the
probable value cannot have any real significance. The for-
mulation of the principle of frequency stability in turning to
such a limiting transition requires determination of admissi-
ble methods of finding infinite sequences of trials, which can
also be a mathematical fiction.” * The opposite opinion con-
cerning the possibility of defining probability as a frequency
limit, in particular, is reflected in definition (1.1) of Landau
and Lifshitz**; however, the subsequent exposition in that
book is not based on this definition.

A source of confusion of the concepts here is the use of
the word “statistics” in two different meanings. Many auth-
ors, particularly nonmathematicians, refer as statistical to
phenomena in which some random factors participate, as
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well as the theory of these effects (statistics in the wide sense
of the word). Thus arose the term “‘statistical physics.” Sta-
tistics in the wide sense of the word (for example, the theory
of ensembles) is a synonym of the concept of fields of ran-
dom events and their corresponding probabilities. In the
case of quantum effects the latter are defined by the wave
functions.

Statistics in the narrower sense of this concept is a set of
methods (and their theory), making it possible to obtain
information concerning some probability distribution on the
basis of a finite number of appropriate experiments. From
the necessity of employing statistics (in the narrow sense)
for estimating parameters of a probability distribution (see,
forexample, Ref. 34) it does not at all follow that probability
itself must or can be “‘explained” by statistics. Therefore, one
should speak not about the statistical, but about the probabi-
listic meaning of a wave function and about szatistical mea-
surements required to establish its absolute value from ex-
periment. If the number of experiments or their accuracy are
not high, the predominance of elements of relative truth over
elements of absolute truth does not justify regarding the ex-
perimental results as nonobjective (unlike the statement in
Ref. 18, p. 59).

The author is grateful to I. A. Yakovlev and G. G. Sam-
burova for useful discussions on the topic of this paper.

"As is well known (see, for example, Ref. 3), a set G of elements ¢, a, b, c,
.. ., in which only the one composition operation a- b of two elements a
and b, leading to an element of the same set is defined, is a group if: 1) the
composition operation is defined for any pair of elements of the set in an
arbitrary order, @' b€G, and b-a€G;, 2) the composition operation is asso-
ciative, i.e., (a-b) ¢ = a-(b-c); 3) there exists a left identity ein G, i.e.,
e-a=a for all g in G, 4) each element acG can be inverted, i.e., there
existsan elementa ™ 'eG, such thata~'-a = e. Various generalizations of
the concept of a group are obtained by weakening one or more of these
conditions. In particular, if condition 4) is satisfied not for all a* G, then
G'is a semigroup. If condition 1) is weakened, i.e., the composition oper-
ation of elements of G is defined not for all pairs, then Gis called a partial
groupoid; at the same time condition 2) can be violated, in particular,
(a-b)c may be defined, but not a- (b-¢). If these two types of weakened
conditions are encountered simultaneously, a partial semigroupoid is
obtained.

?'To reduce this thought ad absurdum, it is said that in this approach it is
allowed, for example, to define a geometric point on a plane as the limit of
spots of chalk, imprinted on a blackboard as the pressure on the piece of
chalk is reduced.
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