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Phenomena occurring at the interface of liquid crystals with other (solid, liquid, and gaseous)
phases are reviewed. The basic parameters of the macroscopic surface physics of thermotropic
liquid crystals are studied: the adhesion energy, the surface order parameter, and the surface
polarization; the basic methods for determining them experimentally are described. A great deal
of attention is devoted to methods for obtaining a uniform orientation of liquid crystals. The role
of the surface in phase transitions is analyzed in detail. The effect of the interface on the formation
and structure of defects in liquid crystals is described. The role of van der Waals forces in the
orientation of liquid crystals and in local Fredericks transitions is analyzed.
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1. INTRODUCTION

The interaction of an isotropic liquid with adjacent
phases (solid, gas, another liquid) is an extremely interest-
ing physical problem, since the surface layers of the liquid
are distinguished by their structure and properties from the
bulk.'"* Surface forces are even stronger in liquid crystals
than in isotropic liquids, since owing to the ordered molecu-
lar structure of the mesophase the effect of the interface can
be transferred into the bulk over comparatively large dis-
tances and can determine its thermodynamic properties.

Liquid crystals are intermediate states (mesophases)
between an isotropic liquid and solid crystals. Their charac-
teristic feature is the presence of long-range orientational
order, i.e., ordering of the long (and sometimes also short)
molecular axes. At the same time liquid crystals do not have
a three-dimensional crystalline lattice, i.e., long-range posi-
tional order either occurs along one or two directions or does
not occur at all.

There are a number of reviews*™ and monographs
devoted to different aspects of the physics of liquid crystals.

Among all the liquid-crystalline phases, the phase
which is most sensitive to external disturbances (including
also the action of surface forces) is the nematic phase, in
which only one type of long-range order occurs—order in
the orientation of the long molecular axes (Fig. 1a). Most
studies of the surface properties of mesophases have been
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performed precisely on nematic liquid crystals (NLC). The
other most common liquid-crystalline phases are the choles-
teric (a nematic substance twisted in a spiral fashion on a
macroscopic scale) and smectic A and C phases, shown in
Fig. 1. The smectic substances A and C have one-dimension-
al (along the z axis) positional order, and these structures
are distinguished by the fact that in the C phase the mole-
cules have a matched tilting.

To carry out studies and for different practica] applica-
tions liquid crystals are usually placed in flat capillaries,'®
whose solid walls orient the molecules of the mesophase. The
solid wall thus has a double effect. On the one hand it alters
the structure and properties of the adjacent layer of liquid
crystal. This is an example, quite rare in physics, of the high
sensitivity of a medium to relatively weak surface actions.
On the other hand, the solid surface imposes boundary con-
ditions for the entire bulk sample and thereby determines to
a large extent the behavior of the liquid crystal in external
fields of the most diverse nature. In particular, the condi-
tions on the surface affect the threshold fields and the fast-
response of liquid-crystalline materials, operating in the
most diverse electrooptical display and information process-
ing systems.'>"'® For these applications, optical uniformity
of the liquid-crystalline layers, which depends entirely on
the conditions at the surface, is also extremely important.'’
The question of the role of electric charge in determining the
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FIG. 1. The most common liquid-crystalline phases (the dark arrows
indicate the vector n).

structure and properties of the liquid-crystal boundary layer
is also very interesting.

There is also another reason for studying the surface
properties of liquid crystals. It is obvious that surface effects
will be all the stronger the smaller is the system. The concept
of small size depends on the specific phenomena and type of
system under study. Liquid crystals consist of quite large
molecules and are, as a rule, very soft systems (i.e., the ener-
gies responsible for the liquid-crystalline order are usually
comparatively low). Therefore a film size of the order of, for
example, 5000 A may be regarded as small for liquid crys-
tals. For film thicknesses of this magnitude all size effects
associated with surface contributions to the free energy are
appreciable, while, for example, for helium or simple metals
such films are practically indistinguishable from massive
bulk samples. All physical phenomena in films are very im-
portant and interesting, first, because of applications, not
only in microelectronics, but also in physical chemistry, etc.,
and, second, for studying the fundamental aspects of the
physics of the two-dimensional world. Here liquid crystals
are especially promising, since freely suspended films with a
thickness ranging from one to several molecular layers can
be prepared by fairly simple methods.'® Such films are actu-
ally a new object in physics, since they are truly two-dimen-
sional systems, exhibiting in a number of cases some degrees
of freedom in three-dimensional space.'®

Up to now no reviews devoted to the physics of surface
phenomena in liquid crystals have been published. The re-
views published'"'*!” deal primarily with the technology
for preparing oriented layers of nematics and with some
questions regarding the physical chemistry of surfaces. Be-
cause of this we made an attempt to generalize, from a uni-
fied viewpoint, a large number of experimental and theoreti-
cal results, concerning the interface between a liquid crystal
and other phases.

We shall start with a discussion of the general question
of taking into account the contribution of the surface energy
to the total free energy of a liquid crystal, and we shall study
the effect of surface forces on the thermodynamics and
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structure of the surface layer. We shall then discuss the role
of the surface in the formation of macroscopic structure de-
fects, after which we shall discuss the important question of
the effect of long-range van der Waals forces on the orienta-
tion of the director in the volume of the sample. In conclud-
ing the review we shall list some unsolved problems, which
are now on the agenda in the study of the effects of the inter-
action of liquid crystals with bounding surfaces.

2. SURFACE FORCES AND SURFACE ENERGY
2.1. General concepts and basic parameters

Owing to the existence of orientational ordering of mol-
ecules it is convenient to describe all liquid-crystalline
phases with the help of a unit vector n—the director. In ne-
matic and smectic liquid crystals the director characterizes
the mean orientation of the molecular axes in a macroscopic,
but small compared with the dimensions of the sample, vol-
ume. The position of the director can be fixed by two polar
angles 6 and @ (see Fig. 1). In cholesterics the director is
determined for a macroscopic region which is small com-
pared with the pitch of the spiral. Let the boundary of the
NLC (for definiteness we assume that the nematic is in con-
tact with a solid substrate) lie in the x, y plane and the angle
between the director and the normal to the surface be

8, = 0 |i—o.
It is then possible to distinguish three types of surface orien-
tation of NLC: homeotropic (6, =0), planar (8, = 7/2),
and tilted, or conical (0 < 8, < 7/2). The planar orientation
in its turn can be homogeneous, when all molecules are ori-
ented in the plane of the substrate in the same direction, and
heterogeneous, when there exist several directions of orien-
tation of the director in the plane. The same thing also ap-
plies to the projection of the director with tilted orientation.

The orientation of the director of a liquid crystal on the
surface or, as it is customarily said, the direction of easy
orientation of the director is usually fixed with the help of an
appropriate treatment of the bounding solid surfaces. On the
free surface of a liquid crystal, however, the direction of easy
orientation arises spontaneously depending on the proper-
ties of the interface. Along the direction of easy orientation
the free surface energy F,,(6, @), which, generally speaking,
depends on the angles 6 and @, is minimum. The existence of
anisotropy of the free surface energy F,, associated with the
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FIG. 2. Examples of the surface potential: 1) Rapini’s potential,?® 2)
potential in the form of an elliptic sine (k = 1-1077),”2 3) potential in the
form W, sin> 6 + W,sin* 0, W~ — W,/4 (W, = W /2).>"

Blinov et al. 605



tilting of the director along & and ¢ from thedirection of easy
orientation, is a characteristic precisely of the liquid-crystal-
line state. In an isotropic liquid only the isotropic compo-
nent F, exists.

The question of the specific form of the anisotropic
component of the function F;(8, ¢) is one of the key ques-
tions in the physics of the surfaces of liquid crystals. The
simplest form was proposed by Rapini*® (curve 1 in Fig. 2):

Fo=Fyi+ Foy= Fo; -+ Wsin2a, (1)

where a = 6 or ¢, while W is called the adhesion energy.
In order of magnitude the experimental values of W
range from 10~ erg/cm? up to 1 erg/cm”. These low values
of the adhesion energy for liquid crystals are very puzzling.
Indeed, for a liquid crystal, as for any condensed medium,
there is a natural estimate of the surface energy given by

Foi ~ pcla, (2)

where p is the density, c is the velocity of sound, and a is the
molecular size. Actually pc’a is the only quantity with the
dimensions erg/cm®. Setting p~ 1 g/cm?, ¢ ~ 10° cm/s, and
a~107%-10"7cm, we obtain F,; ~ 107 erg/cm?. The experi-
mentally determined isotropic part of the surface tension in
liquid crystals (and, by the way, in any other organic lig-
uids) is in fact of this order of magnitude. The adhesion
energy W is the anisotropic part of the surface tension. Prac-
tically all bulk properties of liquid crystals have an aniso-
tropic part which is of the order of 0.1 (or even larger) of the
isotropic part. The anisotropic surface energy W, however,
is several orders of magnitude lower than the isotropic sur-
face tension. This fact most likely indicates that there exists a
special surface layer (probably, with a large number of de-
fects). To solve this problem further experiments are very
desirable.

To study any specific effects in bounded samples of lig-
uid crystals one must solve a problem with boundary condi-
tions which take into account the contribution of the surface
energy. The solution of this problem is constructed by the
standard methods of variational calculus and does not pres-
ent any special difficulties. Such an analysis is especially sim-
ple in the case when the surface energy depends only on the
orientation of the director at the boundary (on the angles &

and @).
We shall study a layer of nematic of thickness d lying
between two flat surfaces z= —d/2andz= +d /2. We

shall assume for simplicity (the generalization to the three-
dimensional case is trivial) that the director can vary only in
the x, z plane, where the x axis is parallel to the planes
bounding the liquid crystal. We shall assume that the order-
ing along the x axis is uniform, and therefore the director n
(or the angle & between the director and the z axis) depends
only on z. The total free energy of the system per unit area
can be written in the following form:

+d/2
F®O = [ [0 0u)dzsFot Fop, (3)

-di2

where fis the volume density of the free energy, F,,, and F,,
are the surface energies on both boundaries, and 8, = 36 /
dz.

The equilibrium orientation of the director is deter-
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mined by minimizing the functional (3), i.e., by solving the
Euler-Lagrange equation:
aj d [ af \
50— 1 (0,7) =0 4
with the boundary conditions

—( o )1+ =0,

991, 80,
af Feu .
(aelz )2+ 30, =0 (5

here the indices 1 and 2 refer to the angles of orientation and
the surface energies at both boundaries. We note that the
first term in Egs. (5) corresponds to the bulk contribution to
the surface energy. We call attention to the fact that in (4)
and (5) we did not employ the specific form (1) for the
surface energy. It is important only that it depend only on
the angle 6 (and is independent of the derivative of the
angle).

Of course, to solve this system of equations one must
know the explicit angular dependence of the functions F,
and Fy,. The simplest form of (1), proposed by Rapini, can
be employed only for obtaining quite rough estimates. Mod-
ern data’' ="’ indicate that F, is a function with a quite sharp
minimum near the direction of easy orientation and relative-
ly wide ““plateau” for other orientations. Such a function can
be approximated,”” for example, by an elliptic sine (curve 2
in Fig. 2):

Fo= Fol--}—%Wsnz(a, k), (6)

where 0<k<1is the modulus of the elliptic function (actual-
ly an additional adjustable parameter).

In some cases®®?*?® F, is expanded in a series in even
Legendre polynomials with the argument cos a (or sin a)
(curve 3 in Fig. 2):

F,=F,, —}—2 W, cos? a, (7
J

where W, are the expansion coefficients. The term W, for
example, corresponds to the Rapini potential.

In any case, for some form of F,(a) the problem of
orientation in a layer of finite thickness is correctly posed on
a macroscopic level and reduces to the solution of Eq. (4)
with the boundary conditions (5).

The situation changes radically if the dependence of the
surface energy on the derivative of the angle is also impor-
tant: F, = F,(8, 6,,). This dependence is described by the
so-called moduli of elasticity of the second order,?”?* intro-
duced by Saupe and Nehring. In this case the orientation is
analyzed in a manner analogous to the preceding case (see,
for example, Refs. 29 and 30), but a number of difficulties of
a fundamental physical character appear. For example, the
boundary conditions are nonlocal, in the sense that the con-
dition for the surface with the coordinate z = — d /2 con-
tains a contribution from the surface z = + d /2 (of course
as d — oo or for infinite adhesion at one surface this nonloca-
lity vanishes).

In addition, when the surface energy depends on the
derivatives of the orientation a sharp distortion occurs in the
configuration of the director in the near-surface layer whose
thickness depends on the range of the interaction forces.
Such terms can therefore be introduced correctly only on the
basis of a microscopic theory.

The question of the role of the second-order coefficients
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of elasticity at present has not been solved, either theoretical-
ly or experimentally, since reliable methods for measuring
them do not exist, and the microscopic problem of their deri-
vation has not been solved rigorously.

2.2. Experimental results on determination of adhesion
energy

There exist tens of studies in which the magnitude of the
adhesion energy W was measured by some method. The cal-
culation of the value of W on the basis of the dependence of
the threshold field for Fredericks transitions on the thick-
ness of the liquid-crystalline layer may be regarded as the
classical method.'® Here the question is one of the threshold
effect of the reorientation of the liquid crystal under the ac-
tion of a magnetic or electric field applied perpendicularly to
the initial direction of the director (Fig. 3a). In the case of
infinitely high adhesion energy the angle 6, at the boundary
of the liquid crystal with the wall does not change as the
critical value A, of the magnetic field is exceeded, although
the deformation in the bulk of the sample has already begun
(curve 1 in Fig. 3b). For a finite adhesion energy the defor-
mation of the director in the bulk owing to elastic forces will
force the director to tilt near the walls also (forz = 4+ d /2).
The curve 6(z) can then be continued beyond the wall, while
the extrapolated length b = K /W will serve as a measure of
the adhesion energy. The quantity b can be determined both
from the critical (threshold) magnetic field strength'*

T K 172

to=giw (%) (8)
where y, is the magnetic anisotropy of the NLC and K is the
Frank modulus of elasticity, and under above-threshold
conditions from the calculation of the profile 8(z) from mea-
surements of the phase delay of monochromatic light pass-
ing through the sample.

In different experiments the geometry of the experi-
ment (planar, homeotropic orientation by means of differ-
ent factors), the type of field (electric or magnetic*'*?), and
the technique used for the optical measurements (phase de-
lay,? total internal reflection, excitation of surface plas-
mons,*** etc.) were varied. Aside from the Fredericks
transition the flexoelectric effect has also been investigat-
ed.}&}‘)

Without discussing in detail these numerous investiga-
tions, we mention only that, as a rule, the values of W for
homeotropically oriented samples lie in the range 107°~
1072 erg/cm?, though the most probable values lie in the
range 107°-107? erg/cm?. The adhesion energies of NLC
oriented in a planar manner are significantly higher and fall

FIG. 3. Geometry of the Fredericks transition (a) and the coordinate
dependence of the tilt angle of the director for H < H. (b), Curves 1 and 2
correspond to infinite (W = «, b = 0) and finite adhesion energies.
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in the range 10~ ?~1 erg/cm? and even higher. We must point
out that the spread in the experimental values of W, obtained
for physically identical surfaces by different methods, is
quite large. This especially concerns measurements of W
from the threshold of Fredericks transition in an electric
field. Thus measurements on thin layers of NLC in a geome-
try such that the field is applied across the layer gives values
of W which are much too high. It is possible that the effects
of surface polarization (especially ionic; see Sec. 2.3) play a
serious role in these experiments, stabilizing in some manner
the starting orientation.

As an example, Fig. 4 shows the temperature depen-

dence of W for a homeotropically oriented layer of a classical
NLC MBBA, measured by comparing very carefully the
threshold magnetic field for the Fredericks effect in thick
and thin cells.*” This curve is interesting in two respects.
First, this is the only case of a reliable measurement of the
temperature dependence W(T), and here one sees clearly
how the anisotropic part of the surface energy approaches
zero as the temperature of the transition of the NLC into the
isotropic liquid is approached. Second, the scale of the varia-
tions of W (10~*-10""' erg/cm?), exceeding by one to two
orders of magnitude the typical values obtained using
thicker cells, is significant, and indicates the possible role of
some specific surface effects.

There have appeared recently studies in which an at-
tempt was made to determine the dependence of the energy
W () in a wide range of values of the tilt angles of the direc-
tor from the direction of easy orientation. For this the opti-
cal properties of the NLC samples were studied under condi-
tions of strong deformation of the director in the bulk of the
sample. This was achieved either by selecting different
boundary conditions on two different surfaces® or by im-
posing on the sample a strong magnetic® or electric*’ field,
substantially exceeding the threshold for the Fredericks
transition. In the latter case a second critical field can be
reached when the director is oriented along the field in the
entire sample, including the surface layer. An example of an
experimentally determined dependence W(0) is presented
in Fig. 5. This curve can be described theoretically by a poly-
nomial of the form F,, = W,sin> 8 + W,sin* # with
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FIG. 4. The adhesion energy of a homeotropic NLC layer versus the tem-
perature.®” T, is the temperature of the N-I phase transition.
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FIG. 5. Experimental dependence of the adhesion energy W on the tilt
angle of the director @ near the surface.?*

W,~= — W,/4. Asimilar dependence W (&) (with a negative
correction owing to the higher than quadratic power of
sin 8) was obtained in Refs. 23 and 26. On the whole the
experiment shows that the function W (8) can be described
by an expansion in even powers of sin §. However, curves in
the form of elliptic sines with different values of k also give
the same possibilities for making comparisons with experi-
ment (see Fig. 2).72

2.3. Surface polarization

The structure of a thin layer of liquid crystal adjacent to
a solid bounding surface can differ appreciably from the
structure of the matter in the bulk. In particular, near a sur-
face there can arise a polar layer, carrying an uncompensat-
ed total moment per unit volume P with the dimensions
charge (CGS)/cm?®. The existence of a polarized layer
makes a contribution P-E to the free energy of a liquid crys-
talin a field E.

There are two fundamentally different reasons for the
appearance of a polarized layer. One is ionic polarization
and the other is dipolar polarization. The mechanism of ion-
ic polarization is well known in the theory of electrolytes. A
monolayer of ions with the same sign, for example, positive,
can be adsorbed on a solid surface (Fig. 6a). This is the so-
called Helmholtz layer. A diffusion layer of negative ions
(Debye layer) lies adjacent to this dense layer from the side

yars P2(z)
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FIG. 6. Ionic (a) and dipolar (b) mechanisms for the appearance of sur-
face polarization.
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of the bulk, so that on the average the medium in the sample
is neutral. A nonuniform distribution of the charge density
p(2) along the normal to the surface indicates the existence
of a surface-polarized layer,

, T2
P(g)=+ S zp (z) dz.

-df2

This mechanism is not specific to liquid crystals. It also oc-
curs in an isotropic liquid. In a liquid crystal, however, the
electric field of the surface layer can in principle cause defor-
mation of the distribution of the director,*' which, in its
turn, is reflected in the distribution p(z), since the liquid
crystal is electrically anisotropic.

The existence of an ionic polarized layer in nematics
was established experimentally from the observation of the
electrokinetic effect, i.e., the appearance of a potential differ-
ence accompanying the flow of a liquid crystal along a solid
surface.*** The effect is formed by the drift of a diffuse layer
relative to a dense layer. In the case of a homeotropically
oriented NLC the magnitude and sign of the signal are ex-
tremely senstive to small ( ~ 10~°) relative amounts of im-
purity in the liquid crystal.

The other mechanism of surface polarization is deter-
mined by the polar character of the interaction of the molec-
ular dipoles of the liquid crystal with the solid surface (Fig.
6b). It is believed that molecules, which have, for example, a
longitudinal dipole moment g, form under conditions of ho-
meotropic orientation of the liquid crystal a surface mono-
layer with the macroscopic polarization P = un, where n is
the surface density of the dipoles. This model was first pro-
posed in Ref. 44. The polar layer can extend into the bulk of
the liquid crystal to a distance determined by the diffusion of
the molecules of the liquid crystal, / = (2D 7, )'/?, where
D, is the coefficient of diffusion in the direction of the direc-
tor and 7, is the relaxation time of the molecules for their
rotation around the short axes.*> This depth equals several
molecular lengths, while P is of the order of ~ 1073 charges
(CGS)/cm2.

The existence of a dipole-polarized layer is manifested,
for example, in experiments on the electroreflection of light
from the boundary of a semiconductor with a liquid crys-
tal,*® as well as the generation of a second harmonic in the
near-surface layer of liquid crystals.*” It should be noted,
however, that it is quite difficult to separate the contribu-
tions of the ionic and dipolar components to the surface po-
larization.

A polar layer can also appear on the free surface of a
liquid crystal. Owing to the flexoelectric effect'? the electric
polarization in the surface region should give rise to a trans-
verse bending deformation in the distribution of the director.
In the nematic phase this does not lead to any peculiarities.
On the other hand, in the case of the layered structure of a
smectic C phase this deformation leads to the appearance of
defects—disclination lines, perpendicular to the boundary
of a drop of liquid crystal. Such disclinations have been ob-
served experimentally.*® The surface polarization must also
have an appreciable effect on the flexoelectric effect in nema-
tics.*°

For ferroelectric liquid crystals, which exhibit a bulk
spontaneous polarization P, the mechanism of polar inter-
action of P, with the wall is also possible. This causes the
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vector P, to be oriented perpendicular to the wall. Since P, is
oppositely oriented at the top and bottom boundaries of the
layer, the director of the smectic C phase, being related with
P,_.5 is oriented differently near these two surfaces, and a
deformed structure appears in the bulk of the layer. The be-
havior of this structure in an external field is of practical
interest.”'

2.4. Orientation methods

We shall not describe in detail the numerous methods
for preparing a uniform orientation of liquid crystals (see,
for example, Ref. 17); instead, we shall examine for specific
examples the basic principles on which they are based.

All methods of orientation can be roughly separated
into two large groups: methods for mechanical working of
the substrates and methods for depositing surfactants on the
substrate. Combined methods also exist.'’

The most common method for preparing a uniform
planar orientation of the director of an NLC is mechanical
grinding of glass substrates in one direction.**~*¢ In so doing
the surface layer of the glass becomes deformed® and there
forms a very shallow (tens of angstroms) periodic relief,
which to a first approximation can be regarded as sinusoi-
dal,®>? and the direction of easy orientation of the molecules
of the NLC in the plane of the substrate is identical to the
direction of grinding. When the molecules of the nematic
become aligned along the indicated direction, no distortions
of the director field are formed (Fig.7a). If the director is
oriented perpendicularly to the direction of easy orientation
(a = 7/2), then surface distortions (Fig. 7b) penetrating
into the volume of the NLC to a depth of the order of the
period of the sinusoidal relief of the substrate T~107% ¢cm
are observed.®

A surface relief of different geometric form can be fixed
by the photolithographic method.*’->®* When the NLC is in
contact with a rectangular surface relief or a relief in the
form of a trapezoid a planar orientation is obtained—the
molecules become distributed along the grooves. At the
same time the adhesion energy increases as the period de-
creases and the depth of the relief increases.’” When nema-
tics are in contact with substrates which have a saw-tooth
relief, for angles 3 between the teeth less than some critical
value 3. a homeotropic orientation in formed in the volume
of the NLC, and for 8 > 3. a planar orientation is formed.>®

Among the mechanical methods of orientation we can
also include the oblique deposition of thin films of different
oxides (SiO, GeO, etc.) on the substrate.’® In this case
oblique steps of the deposited material, which fix a planar or
conical orientation of the director, are formed on the sub-
strate.'’
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Homeotropic orientation is most often achieved by de-
positing on the substrate different surfactants, which can
orient the NLC, either by forming chemical bonds with the
molecules of the crystal or by means of the steric effects of
the intermolecular interaction.'” The typical surfactant is
lecithin, which orients the molecules of nematics with its
long hydrocarbon tails.®'~** The quality of the homeotropic
orientation depends on the packing density and the length of
the lecithin molecules.®*%* For low densities, when the dis-
tance between the centers of gravity of the tails of the lecithin
molecules (#) is much larger than the dimensions of the
NLC molecules (a), free penetration of the molecules of the
nematic between the tails can occur, and at the same time a
homeotropic orientation forms; for a ~ r penetration is hin-
dered and a weakly ordered surface layer of NLC is ob-
tained.

The orientation of NLC, in contact with substrates
treated with lecithin, also depends substantially on the tem-
perature. Thus for some critical temperature T * a second-
order orientational transition occurs from the homeotropic
orientation (T'> T *) into the tilted orientation (T < T *); in
addition, T * depends strongly on the packing density of the
tails of the molecules in the lecithin layer. This orientational
transition is obviously linked with phase transitions within
the lecithin layer itself.®4%5

With the help of substrates on which inorganic sub-
stances are deposited obliquely and by adding lecithin to the
nematic it is possible to obtain layers of NLC with a bending
deformation, in which the angle 8 changes from 6,, ~0 near
the first substrate to 6,, = — 8,, near the second sub-
strate.®®®’

Langmuir films, which are molecular multilayers re-
moved from the surface of water onto a solid substrate, give
good possibilities for obtaining uniformly oriented samples
of NLC.%®-" They are prepared using so-called amphiphilic
substances, whose molecules have a polar head and a long
hydrocarbon tail. Three types of Langmuir films are distin-
guished, depending on the arrangement of molecules in the
individual monolayers: polar X and Z (with polarization
P~10? CGSE/cm?7') and nonpolar Y, in which the dipole
moments of the monolayers are oriented opposite to one an-
other and therefore compensate one another.”' The polar
Langmuir films, as a rule, give a stable homeotropic orienta-
tion of the NLC with a positive dielectric anisotropy
(g, >0) and, conversely, an unstable orientation for nema-
tics with £, <0, which is explained by the effect of the sur-
face electric field of the Langmuir film on the NLC. Nonpo-
lar Y films, analogously to lecithin, orient a nematic
homeotropically.”

A special type of planar orientation of NLC is obtained
on chips of solid crystals with a definite symmetry, on which

FIG. 7. Surface NLC layers near the relief of a ground
glass substrate.'” a, b) Planar orientation; c) homeo-
tropic orientation.
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there are available several directions of easy orientation, as-
sociated with the symmetry elements of the chip”"%; at the
same time the behavior of the NLC on chips of crystals exhi-
biting electric polarization is of greatest interest.””~’° Thus
the orientation of a nematic on the surface of a triglycine
sulfate, which contains 180° domains with oppositely orient-
ed polarization, depends on the sign of its dielectric anisotro-
Py €, and is different for positive and negative domains. For
example, for NLC with £, <0 positive domains orient the
director homeotropically, while negative domains orient it
in a planar fashion, and in this manner the domain pattern of
the chip can be visualized. This effect could be linked with
the different character of the adsorption of water mono-
layers on domains of different sign.” Of course, a fixed uni-
form orientation of the director can be obtained on monodo-
main crystalline substrates.

The orientation of smectic A liquid crystals has certain
peculiarities. A ground surface, like any other relief, gives
rise to wave-like deformation of the layers of smectic A,
whose molecules are held in some manner perpendicularly
to the substrate. This deformation is transferred from layer
to layer into the bulk of the volume with a decay length®

z:—q‘Tk*, (8)

where ¢ is the modulus of the wave vector of the sinusoidal
relief of the substrate, A * = (K,,/B)"/? is the characteristic
length for smectic A (K, is the transverse bending elastic
constant and B is the compression modulus of the layers).
The quantity A * is of the order of the thickness of one smec-
tic layer (2:107°cm), ¢ ~1073 cm™!, and therefore /~ 10
cm, i.e., the distortions will extend into the volume over a
very large distance. This feature explains the difficulty of
obtaining homeotropically oriented smectic samples, even
on relatively defect-free substrates.

In general, the molecular mechanisms for orienting
smectic (nonpolar) mesophases are virtually identical to the
orientation mechanisms for nematics. The difference lies in
the fact that because of the specific elastic properties of
layered structures the orientation of the director in the bulk
of the layer cannot change easily and cannot “adjust” to the
orientation of the surface layers. Therefore, in order to ob-
tain uniform samples of smectics A, B, C, and others surface
treatment methods must be combined with methods for pre-
paring a uniform molecular orientation in the bulk, and in
addition the direction of orientation of the director in the
bulk of the sample must match the orientation near the sur-
face. A magnetic or electric field or a temperature gradient
or gradient of the flow velocity of the liquid crystal are usual-
ly employed for volume orientation.

3. SURFACE ENERGY AND THERMODYNAMICS OF A LIQUID
CRYSTAL

3.1. Theory

The presence of a free surface or interface has a strong
effect on the phase diagram and thermodynamic properties
of any system. Its effect can be especially strong in the case
when the volume phase transition is a first-order phase tran-
sition, i.e., the order parameter and the physical quantities
related to it have a jump at the transition point. Even in this
case (see below), however, under certain conditions there
exists for the surface quantities a critical point, near which
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they vary continuously and the corresponding susceptibili-
ties diverge. Such a surface-ordered phase (with a second-
order transition) can coexist with a volume disordered
phase, which introduces a new length scale, describing the
change in the order parameter in the ordered surface layer,
new critical indices, etc. The phase transition in bounded
systems turns out to be much richer than in the case of infi-
nite systems in all directions of the samples. Liquid crystals
are not an exception in this respect, and in addition they have
the additional advantage that all this richness of phase trans-
formations can be studied relatively easily directly by optical
methods.

As is well known,® the orientational ordering of liquid
crystals is fixed by the order parameter—a symmetric tensor
of rank two with zero trace. In uniaxial nematics this tensor
is fixed by a unit vector—the director n and the modulus of
the order parameter Q:

QiiZQ(nini—"g—aii) | (10)

where §,; is the Kronecker tensor. The anisotropic interac-
tion of the molecules of a nematic with a solid wall bounding
it (for example, van der Waals interaction) necessarily pro-
duces some surface ordering. This order is then transferred
into the volume of the liquid crystal by elastic forces.

Following Ref. 80 we shall study a film of a nematic
liquid crystal, which has an interface with a solid at z =0
and a free surface (interface with air) at z = 24. (Unlike the
geometry of the preceding section, we displace the origin
along the z axis.) The properties of the film are assumed to be
uniform in its plane. We shall choose the potential of the
substrate in accordance with the well-known Maier-Saupe
theory®" in the following form:

v (8, 2) = —Gb (z) P, (cos B); (11)

here @ is the angle between the long axis of the molecule and
the direction of predominant orientation at the surface, and
P, is a Legendre polynomial of degree two. If this potential is
averaged over many molecules (it is precisely the averaged
potential that appears in the Landau~de Gennes theory), we
obtain

V=(v (0, 2)) = —Gb (2) (Pp) = —Gb (2) . (12)
The Landau-de Gennes free energy density is given by
‘ do \2
I=1@+L (L) 680, (13)

where (@) = a(T — T*)Q* 4+ bQ > + cQ* is the uniform
part of the free energy; a, b, ¢, and T * are the coefficients in
Landau’s expansion; and, L is the modulus of elasticity.
The total free energy per unit area is given by
2d
do \2
F={[fo@-+L () ) dz—60, (14)
il
where O, = Q(z = 0). The functional (14) must be mini-
mized in two stages. First we minimize with respect to the
function @(z), and then we minimize with respect to the
boundary value Q. At the first stage we obtain the equation

L (%) =10(0)+const. (15)

The constant is determined from the boundary condition at
z = 2d. The case of a semiinfinite sample (d— « ) is easiest
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to study. The natural boundary condition on the free surface
is
do

dz

=0, (16)

since on a free surface only the volume energy density (13)
contributes. From here we obtain

g (42) =9 @ —0 @), (17

whereé, = (L /aT*)"?, ¢ (Q) = f,(Q)/aT *,and Q, is the
bulk value of the order parameter. Substituting this integral
into the expression (14) for F we obtain

Qo
=00 d+&{2 | [0 (0)—9(0)1¥2d0— 20},
% (18)

whered /€,— o0 and g = G /£,aT * is the dimensionless po-
tential of the substrate. The first term, proportional to d, is a
volume energy, while the second term is the energy of the
boundary layer F,,

Fbl Q(? 2 .
— o =2 | FQ)—F Q)17 dQ— g0
gt 2 QU0 @ ' (19)

The equilibrium value of Q, is determined from the condi-
tion JF,,/dQ, = 0. This equation has many solutions, but
the concrete value of Q, is the value which minimizes F,.
Once Q, has been determined, the distribution of the order
parameter Q(z) can be calculated from (17):

Q
z 5"_*(10___
£ o ¢ (@—q ()12~ (20)

This equation can be solved numerically.*® The following
results (Fig. 8) are obtained for Q, as a function of 7-T,
where T, is the temperature of the volume phase transizon,
with the following values of the parameters of a typical ne-
matic (5CB):a = 0.065-107 erg/cm* K, b = 0.53-10" erg/
em?®, ¢ =0.98-10" erg/cm®, T* = 307.14K, L =4.5x 10~
erg/cm. For g <g, = 0.0056, Q, has a jump at 7= T,. For
go<g<g. = 0.012 the jump in @, (i.e., the surface phase
transition) occurs at a temperature above 7, . For g > g_ the
surface transition vanishes and Q, becomes a continuous
function of the temperature.

For afinite sample the situation is even more complicat-
ed. We shall employ the same boundary condition as in the
semiinfinite case.

dQ B

dz |z=24 0.

For finite d, however, in (18) we cannot separate the volume
and surface contributions (we cannot determine @, and @,
separately). Therefore we must solve the system of equa-
tions .

¢ (Qo)— ¢ (Qv) =+ &%

Qo

’ 1 b (40 V_
¢ (Q“){l d<§ lcp(o‘w(p((n.»l‘/'-‘}_o (21)
b

and select a pair Q,, and Q, which minimizes F. Once again
the solution can only be found numerically. For g, <g < g,
thetemperature of the transition Q, increasesasd decreases.
The transition which is associated with the jump in Q, and
0, can be called a volume transition (by analogy to the limit
d /&,— o). Thereexistsathicknessd /£, = 160 (g = 0.008)
below which the transition in the boundary layer vanishes
completely and is reduced to a volume transition. As d de-
creases further the first-order transition in Q, and @, be-
comes continuous. For g > g. (in contrast to the semiinfinite
case, where Q, did not undergo a sharp change, wheng > g, )
here Q, always undergoes a jump with a volume first-order
transition. We also note that in a finite sample there always
exists some degree of orientational order at all temperatures.
Therefore in this case it is more correct to call the high-
temperature phase not isotropic, but rather paranematic.

The behavior studied above physically is determined by
the competition between the elastic (coupling the interface
with the bulk) and surface forces. When the substrate poten-
tial is weak (g <g,), everything is determined by the bulk
and Q, varies synchronously with Q, . Forg> g, (butg <g.)
the increase in the elastic energy cannot overcome the sur-
face potential for 7T < T, . This is still possible, however, at
some temperature 7> T . Finally, for g > g. such a tempera-
ture no longer exists.

Thus far we have studied only the situation when the
surface acted on the liquid crystal like some ordering field,
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FIG. 8. Computed temperature dependences of the surface
order parameter Q, for different values of the energies of ad-
hesion of a semiinfinite NLC layer to the substrate.*”
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but did not give rise to any new physical property or new
order parameter. This does not necessarily always occur.
There exist, for example, numerous data®*~%° showing that
for a homeotropic orientation the surface (including a free
surface) imposes some smectic ordering on a liquid crystal.
The existence of a surface layer with smectic order must be
taken into account in the analysis of experimental data on
the adhesion energy of liquid crystals. On the basis of Lan-
dau’s theory the smectic order parameter 3 decays exponen-
tially away from the boundary®®

(@) =voexp (—5) . (22)

where the “correlation” length & depends onthe closeness to
the point of the volume transition into the smectic phase (as
T—-Tya £— o ),and ¢, is the surface-induced smectic order
parameter. This ordering leads to an additional contribution
to the elastic energy, arising as the director tilts away from
the normal to the smectic layers (which coincides with the
normal to the surface). For small tilt angles € this contribu-
tion can be written in the following form:

d

1
Fsm:

> | w202 dz.
0

(23)
This ‘energy competes with the magnetic energy, which in
this geometry has the form
d
Fry= o all? S 02 dz.
1)

(24)

Thus surface-induced smectic ordering can lead to an

effective increase in the adhesion energy, as determined by
the Fredericks effect.

The possibility for the surface to induce some polar or-
der parameter is discussed in Ref. 87. The polar order pa-
rameter makes a contribution to the surface energy, which in
the simplest approximation has the following form:

Fop = —¥p (nv), (25)

where v is the normal to the surface and n is the director. We
note that F,, does not obey the symmetry n = — n, which
occurs only for a quadrupole (nematic) order parameter.
The minus sign in (25) corresponds to the obvious supposi-
tion that at equilibrium in the presence of a surface polar
order parameter the molecules must be oriented perpendicu-
larly to the boundary.

In the same notation Rapini’s potential (1), corre-
sponding to the quadrupole potential, i.e., the usual nematic
ordering at the surface, can be written in the form

Fo = W (nv)2. (26)

One can see that the quadrupole order strives to orient mole-
cules parallel to the surface, which gives rise to competition
with the polar order (25). In accordance with Ref. 87 for
W =y, astructural surface transition occurs as the average
tilt angle of the molecules from the normal to the surface
changes.

3.2. Experiments

Most experimental data concerning the effect of a
boundary on the ordering and the temperature of phase tran-
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sitions in liquid crystals can be divided into three groups.

The first group includes work in which the ordering of
the isotropic liquid phase near a solid wall is studied.®*~**
The main result of this series of investigations consists of the
fact that the solid wall imposes some orientational order on
an isotropic phase. The order parameter @, has a maximum
value near the surface (characteristic values are Q~0.2-
0.3,%%? for solid surfaces worked by grinding) and de-
creases into the bulk of the isotropic liquid. The correspond-
ing correlation lengths increase as the temperature of the
transition into the nematic phase is approached and in order
of magnitude equal 10 Afor T— T, = 1 K.

The existence of an orientationally ordered nematic lay-
er can be observed from measurements of the birefrin-
gence®®°? or dichroism.® As an example Fig.9 shows the
temperature behavior of the phase delay for light transmit-
ted through a cell with the isotropic phase of SCB, confined
between two glasses ground in the same direction, The low
values of the phase delay, to measure which a special experi-
mental technique must be employed (compensation with a
Pockels cell,®*-%° interferometry,®®®' rotating analyzer,®?
etc.), are interesting. The values of the orientational order
parameter at the surface and the correlation lengths for sev-
eral liquid crystals for different methods of working the sur-
face were determined from these experiments. On the whole
the experimental results are described quite well by the theo-
retical curves, shown in Fig. 8.

We note that the solid wall imposes orientational order-
ing even in nonmesogenic liquids, for example, in acetone
and benzene,”® which, though they do not have a nematic
phase, have a quite distinct molecular asymmetry.

The second group of experimental investigations in-
cludes the study of smectogenesis in a nematic phase in con-
tact with a solid wall. It was found that in homeotropic lay-
ers of strongly polar substances (such as cyanobiphenyls
with a longitudinal component of the molecular dipole mo-
ment of the order of 4 debye) a smectic film with a thickness
of the order of 100 A forms near a solid wall. This is indicat-
ed by direct measurement of the forces acting between mica
substrates separated by a layer of a nematic substance.®” The
magnitude of the force between the plates oscillates as the
thickness of the gap changes (Fig. 10), and in addition the

FIG. 9. Temperature dependence of the phase delay A for a cell with an
isotropic phase.*®
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FIG. 10. Oscillations of the force acting between two mica cylinders sepa-
rated by a homeotropic nematic layer (the radius of curvature of the cylin-
ders R = 1 cm).*?

period of the oscillations corresponds to the maximum size
of the molecule. This effect can be explained if it is assumed
that only the smectic layer is displaced from the gap as the
plates are brought closer together (inset in Fig. 10).

Smectogenesis is also observed in the measurement of
the threshold field for the Fredericks transition.®® As al-
ready mentioned, the finite adhesion energy between the
molecules of the nematic and a solid wall increases the effec-
tive thickness of the NLC layer by the amount of the extra-
polation length b. The appearance of a smectic near-surface
layer, however, of thickness £, on the other hand, eliminates
this layer from the analysis, since the Fredericks transition
in smectics A is not observed owing to the specific nature of
their elastic properties. As a result the magnetic threshold of
the Fredericks transition H, increases. The quantity £ can be
found by comparing H.d for thin and thick samples. The
result is shown in Fig. 11, where the experimental values of
the parameter

(Hcd)lhin _

(Hcd)thick
are compared with & /d ,,,, calculated in the mean-field ap-
proximation. One can see that the correlation length £ in-
creases critically as the point of the transition into the smec-
tic A phase is approached.

The third group of studies includes studies concerned
with the free surface of a liquid crystal. It has been observed
that in nematics with large longitudinal molecular dipoles
(cyanobiphenyls) the dipoles have a tendency to become
oriented perpendicularly to the free surface, and in sub-
stances with weakly polar and nonpolar molecules (MBBA,
n-azoxyanisole) parallel orientation or tilted orientation is
predominantly observed. For MBBA, for example, the angle
between the director and the free surface depends strongly
on the temperature.®® As the isotropic phase is approached
an orientational phase transition with a change in the angle
6, occurs at the surface. At the transition point (it is dis-
placed from 7, by only 0.9 K)) the director acquires an orien-
tation perpendicular to the surface. This structural transi-
tion can be explained starting from a model in which the
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competition between the nonpolar and polar interactions of
molecules at the surface is taken into account.?’

In the case of strongly polar nematics a smectic layer
whose thickness is determined by the proximity to the transi-
tion into the smectic A phase forms on the free surface. The
existence of such a Jayér was established by direct x-ray
structural studies.®*® The possibility that interactions of
the polar type can serve as a seed for formation of this layer
precisely at the surface has not been excluded. In any case,
for molecules with a large longitudinal dipole moment it is
energetically more favorable not simply to become oriented
perpendicular to the surface, but for the entire dipole to be
oriented toward the medium with the larger dielectric per-
mittivity, i.e., into the bulk of the liquid crystal. It must be
acknowledged, however, that there are not enough facts in-
dicating an interaction between the polar and smectic order
parameters.

Thus the experimental facts as a whole indicate that, as
arule, an interface stabilizes the phase with lower symmetry.
A surface nematic order is imposed on an isotropic medium,
and a surface smectic-A order is imposed on a nematic
phase. The same tendency is also preserved for the smectic-
A-smectic-C phase transition.”® For example, in thin freely
suspended films the smectic-C phase is all the more stable
the thinner is the film. This"can be seen clearly in Fig. 12,
where the tilt angle of the molecules to the normal of the
smectic layer @ (the order parameter of the smectic C) is
shown as a function of the temperature for films formed by a
different number N of molecular layers.

It has not been excluded that crystalline solid surfaces
can impose new types of ordering on a liquid crystal (smec-
tic B, G, H, etc.). This phenomenon is on the whole appar-
ently related to molecular epitaxy effects.

4. EFFECT OF A BOUNDARY ON THE FORMATION AND
STRUCTURE OF DEFECTS

All defects observed in liquid crystals can be divided
into three groups: point, linear, and two-dimensional. Point
defects are associated with the distortion of the structure of a
liquid crystal near a singular point. Linear defects are char-
acterized by the appearance of a singular line; two-dimen-
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FIG. 12. Temperature dependences of the tilt angles of the molecules ¢ to
the normal of the smectic layer for smectic C films.”® The number of
smectic layers N=2 (1) and N = w» (2).

sional defects are characterized by a singular surface. Two-
dimensional defects also include different polygonal
formations (for example, confocal domains).***’

The boundary of a liquid crystal is important for the
formation and structure of defects in two respects. First, the
surface fixes the boundary orientation of the director and
thereby alters the degeneracy space of the order parameter
and the possible topologically stable types of defects. Sec-
ond, specific purely surface (and not arriving from the vol-
ume) features (defects) can exist at the surface. For exam-
ple, in a nematic liquid crystal the degeneracy space of the
order parameter is a sphere with identified opposite points
{owing to the symmetry n = — n). This space is denoted by
§%/2% (the two-dimensional sphere s, factorized according
to the group of integers z°, consisting of two elements: 1 and
a, wherea® = 1). The degeneracy space, however, at the sur-
face depends on the boundary conditions. For tangential
conditions this is a circle with identified opposite points (s'/
z%), while for normal boundary conditions it is only one
point.

Both nonspecific and specific point singularities can ex-
ist at the surface. The former consist of hedgehogs, which are
uniquely stable in the bulk of the nematic and emerge onto
the surface and are manifested for any initial conditions. The
latter are boojums, which are possible only under tangential
boundary conditions.®® We shall not discuss these problems
in greater detail, since this would take us too far away from
the problems addressed in this review.

Surface disclinations, whose lines are located on the in-
terface of the liquid crystal and the solid wall, are of great
interest.>?-'°! The study of these disclinations enables deter-
mining the adhesion energy W. Let the substrate liein the (x,
y) coordinate plane, and let the disclination line be parallel
to the y axis. In this case the equation of equilibrium is the
Laplace equation, while the boundary condition has the
form

sin 0, cos 6, 86,

5 = =0, 2z=0.

(27)

where b is the extrapolation length (see Sec. 2.1).
The solution of the equation of equilibrium, taking (27)
into account, is given by
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tg - 1> (28)

By measuring accurately the angle 8, near the substrate, W
can be evaluated from Eq. (28).

Point singularities, which deform the interface, can ap-
pear on the free surface of an NLC or on the interface
between anematic and an anisotropic liquid under conical or
tangential boundary conditions.'°>'*® Point singularities
near solid substrates are associated with the presence of mi-
croscopic protuberances or indentations. '

Two-dimensional defects—180° walls, analogous to
Bloch walls in ferromagnetic substances, can be observed in
nematic liquid crystals in a magnetic field.'® The walls also
arise above the critical field of the Fredericks transi-
tion. '%5~'%" The walls interact with solid substrates. Thus, for
example, if the axis of easy orientation on the substrate is
parallel to the field, while the Bloch wall is parallel to the
surface, there is a repulsion with the force!®®

f=8yaHexp  — 2; ).

where y, is the anisotropy of the diamagnetic susceptibility
of the NLC, H is the magnetic field strength, and
& = H ~'(K,,/E,)""? is the coherence length of the mag-
netic field.

In thin samples of an NLC (d <) walls can also be
observed when there is no field.'® The study of such walls
also makes it possible to evaluate the adhesion energy.

Defects arising in the spherical volumes of liquid crys-
tals are extremely diverse. This situation can be realized ex-
perimentally in drops of a liquid crystal suspended in an
isotropic liquid. The boundary conditions are regulated by
changing the composition of the liquid from tangential
(MBBA in pure glycerine) to conical and normal (MBBA
in a mixture of glycerine with lecithin)."'®"!" The most typi-
cal defects in drops of nematics and cholesterics are hedge-
hogs, which can exist both in the bulk and at the surface of
drops and in cholesterics are the analog of a magnetic mono-
pole (Fig. 13a),°%!12113 a5 well as purely surface defects—
boojums (Fig. 13b).°*'"* As the boundary conditions
change mutual transformations of boojums and hedgehogs
with the formation (or vanishing) of a pair of surface dis-
clinations s possible. Thus, for example, as the orientation at
the surface of a drop of NLC changes from normal to tangen-
tial the hedgehog transforms into a boojum (see Fig. 13).''

(29)

5. VAN DER WAALS FORCES
5.1. Effect of van der Waals forces on equilibrium properties

The van der Waals (dispersion) interaction, which, as
first shown by F. London,''® is of an electromagnetic fluctu-

a b

FIG. 13. Defects in drops of a nematic suspended in an isotropic liquid.' '
a) Hedgehog; b) boojum.
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ation origin, is universal, and is characteristic of all micro
and macroobjects. The characteristic features of the van der
Waals forces include a power law decay with distance r and
the existence of two limiting regimes, differing by the expo-
nents of r, namely, the normal regime and the retardation
regime.!'7-'?° Thus, for example, the force of interaction
between two flat dielectrics separated by a vacuum or a di-
electric medium in the normal state (for » €A, where A, is
the characteristic wavelength of the absorption spectrum),
decays as r— 7, while in the retardation regime (r>A4,) it
decays as r~*.''” In terms of the macroscopic theory the
dispersion forces are determined by the dielectric permittivi-
ties £, of the interacting bodies.''”'**"'?* Depending on the
ratio of the dielectric permittivities the van der Waals forces
can be attractive or repulsive, but they are usually attractive.

The anisotropic dispersion interaction in liquid crystals
strongly affects the properties of a mesophase, since the
short-range forces between the molecules of liquid crystals
are relatively weak. For example, the van der Waals interac-
tion can give rise to the formation of cholesteric'>*~'*¢ and
smectic phases.'?® The dispersion forces can also renormal-
ize the elastic moduli of a nematic, striving to reduce K,, and
increase K |, and K;.'?® The dispersion interaction makes a
flat disclination in an NLC unstable in the region lying out-
side a sphere of finite radius, drawn around a disclination
nucleus.'?’

When a nematic is in contact with isotropic substrates
the van der Waals interaction makes a contribution to the
surface energy which is comparable to the short-range adhe-
sion forces (of the order of several erg/cm?),'”*'*® and in
addition, depending on the ratio of the dielectric permittivi-
ties, some orientation of the director is stabilized near the

substrate. The van der Waals forces can fix a uniform orien-
tation of the director in liquid-crystalline layers up to 10>
cm thick.'*°

The anisotropy of a liquid crystal confined between iso-
tropic substrates gives rise to a number of new interesting
effects. Thus, for example, for two substrates separated by a
cholesteric layer there arises a strongly temperature-depen-
dent quasiperiodic correction to the dispersion interaction
force.'3!

For an NLC in contact with substrates cut out of uniax-
ial crystals, because of the anisotropy of the dispersion inter-
action there arises a torsional van der Waals moment, which
strives to orient the molecules of the nematic along this
axis.'?>'3 If the plane of the crystalline substrate contains
several symmetry elements, as for example, for 11 symmetry
classes of crystalline substrates, cleaved along the cleavage
planes (C, — C,, C,, C,, — C,, ), it becomes possible to ob-
tain a complicated, combined orientation of the director.
Thus in drops of nematics on chips belonging to different
surface symmetry classes, patterns of the director distribu-
tion whose symmetry corresponds to the symmetry of the
chip are obtained.”*”*"® Figure 14 shows drops of NLC on
chips of NaCl(C,,) and C(NH,),;A1(SO,), 6H,O(C,,)
crystals, consisting of four- and six-segment planar hetero-
geneous patterns, respectively.! Low-symmetry chips (C,,
C,) orient nematics, as a rule, homeotropically.”™®

A simple approach to the description of the van der
Waals interaction in a system consisting of an anisotropic
uniaxial substrate and an amorphous screening film of a ne-
matic was proposed in Ref. 135. It was shown that under the
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condition 4 /K «€5<A, where 4 is Hamaker’s constant
(4 ~10"3erg) and X is the modulus of elasticity of the NLC
in the one-constant approximation, there exists a normal re-
gime and the dispersion free energy of the NLC can be writ-
ten as

Fd:ji?U(z)dz.

| (30)

Here U(z) = A /2* is the dispersion potential and z is the
coordinate perpendicular to the substrate. In what follows,
we shall employ a potential of the form (30) to describe local
Fredericks transitions.

The van der Waals forces determine not only the orien-
tation of a liquid-crystalline film, but also its equilibrium
thickness on the surface of a solid. As is well known, if the
liquid is located on the interface with a solid, then its equilib-
rium shape, thickness, etc., are determined by the condition
of equilibrium

Vv — Ys1 = 73, COS 8, (31)

where 7,,, 7, and y,, are the surface tensions at the solid-
vapor, solid-liquid, and liquid-vapor interfaces, respective-
ly, and @ is the contact angle.” Wetting (cos 8 > 0), no wet-
ting (cos #<0), and complete wetting (cosé=0)
phenomena can occur depending on the ratios of 7, , 74, and
%1 - In the latter case the edge of the liquid transforms con-
tinuously into the film forming on the solid wall. The thick-
ness of this film is of the order of 107°~107° cm, and is
determined by the range of the van der Waals forces. If
Yev > ¥ + Vv, then equilibrium is impossible for any form
of the drop and the drop spreads along the surface of the
solid. This case is usually called spreading.'*® It is conven-
ient to introduce the spreading coefficient

IRz'ysv —(ysl+ylv)" (32)

Usually, if we are concerned with a volatile liquid, so that
I" > 0 for the liquid, solid, and vapor separately, then the
adsorption of vapor on the surface of the solid changes all
surface tensions so as to ensure equilibrium (I" =0 and
cos 6 = 1). This is the case of complete wetting, If, however,
the liquid is nonvolatile and T > 0, then this mechanism of
equilibrium is no longer possible and the liquid spreads out.
Both cases (volatile liquid with I' = 0 and nonvolatile with
I" > 0) are distinguished according to the equilibrium thick-
ness of the film. For complete wetting the equilibrium thick-
ness of the film is determined by the van der Waals forces
and equals'?*

e ()" (33)

FIG. 14. Orientation of nematic drops on chips of solid crystals.” a)
NaCl(C.,, ) chip; b) C(NH,),Al(S0,), 6H,0(C3, ) chip.
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where A is Hamaker’s constant, p is the density of the liquid,
andgis the acceleration of gravity. For a spreading nonvola-
tile liquid the equilibrium thickness now depends on the
spreading coefficient I':

= (5r) " (39

The formulas (33) and (34), as already pointed out
above, are equally valid for films of isotropic liquids and
nematics. In the latter case, however, it is assumed that the
orientation of the director on the free surface of the nematic
is identical to the orientation at the interface with a solid. If
these orientations are not the same, for example, they form
an angle @, then as the thickness of the film decreases the
Frank energy E increases. In a rough approximation (all
Frank moduli are equal, and the thickness of the film / is so
small that (Vg)>~g@ */1?) we have

E-A¢ (35)

The total free energy of the film, including the contribu-
tions of the van der Waals forces, Frank forces, surface ten-
sion forces, and gravity, has the following form:

Fe{[~T+5n (£)+U@+6 @ +E@]ds,

(36)

where z(x) is the equation of the surface of the film (for
simplicity we neglect the dependence on the second coordi-
nate y), U(z) =A /1272% is the van der Waals energy,
E(z) =Kgp?/22° is the Frank energy, G(z) = (1/
2)pgz* + pgzh is the gravitational energy, and the parameter
h plays the role of a Lagrangian multiplier, which is deter-
mined, for example, from the condition that the volume of
the spreading drop is fixed. Minimization of (36) yields the
first integral

o (— LV =U@+E@+6@H-T. (37)
The equilibrium thickness of the drop / is determined from
the following two conditions. First, at the center of the drop
dz/dx = 0, whence, from (37)

UD+EB+GU=T. (38)

The second condition fixes the volume of the drop. It is sim-
plest to employ the following mechanical analogy. Equation
(37) corresponds to the law of conservation of energy of the
particle: the coordinate is z, the time is x, the mass is ,,, the
potential energy is U + E + G, and the total energy is I'. The
spreading of the drop, in this case, corresponds to the period
of oscillations of the particle becoming infinite. For this I’
must equal the maximum of the potential, i.e.,

21U () + £ (@) + G (2)],= =0. (39)

The Lagrange multiplier 4 can be eliminated from (38) and
(39), and an explicit expression can be derived for /.

In the case of an isotropic liquid or a film of a nematic
with a uniform orientation, we obtain from here the expres-
sion (34) for the equilibrium thickness of the film. For a
nematic with unsymmetric boundary conditions E(/)
> U(l) + G(I), and the equilibrium thickness is

5= (40)

2
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5.2. Local Fredericks transitions

Changes in the volume orientation of the director, oc-
curring owing to the competition between the orienting ef-
fect of different surface forces, are called local Fredericks
transitions. The van der Waals interaction forces between a
liquid crystal and a solid substrate often appear as such
forces. The name “local Fredericks transition” was pro-
posed by de Gennes and Dubois-Violette!*” by analogy to
Fredericks transitions in external fields. The term local ap-
pears because the counteraction of the orienting forces is
realized in a relatively small near-surface region. We shall
examine several examples.

a) A local Fredericks transition can occur in a nematic
in contact with a thin amorphous film (thickness § ~107°
cm), screening the dispersison field of the crystalline sub-
strate, under the condition that the short-range NLC-film
adhesion forces and the van der Waals field of the substrate
stabilize a different orientation of the director, for example,
planar and homeotropic, respectively (Fig. 15). The critical
energy of adhesion of the NLC to the screening film W,, for
which a first-order orientational transition from the initial
homeotropic orientation to the planar orientation occurs,
can be determined from the condition that the free energies
F(8=0) and F(8 = 7/2) are equal’*":

F(6:%)=W0—SU(z)dz:F(G:O):O. (41)

8

If the condition (41) does not hold, then depending on the
thickness of the film one or two orientational second-order
phase-transition points can occur as W changes. Thus for
8 < 8, where & is some critical thickness of the screening film,
there occurs one second-order transition from the homeo-
tropic orientation into the tilted orientation at
W=W'(W, > W'),and thetransition from the tilted orien-
tation into the planar orientation is, in principle, not achiev-
able. For §>6 two second-order transitions occur at
W=W ' and W=W" (W, <W") from the homeotropic
into the tilted and from the tilted into the planar orientation,
respectively.'*” We note that the values of W' and W " can be
affected by the contribution of the second-order elastic mod-
uli,"** The local Fredericks transition described above was
first observed in an NLC layer screened from a glass sub-
strate by a thin carbon film with a definite thickness, with W
varying as a function of the temperature.'® In Ref. 139 a
local Fredericks transition was achieved in nematics in con-
tact with Langmuir films screening the dispersion field of the

1
1d z
|
I
|
)
|
= - 1
10

FIG. 15. Possible geometry of alocal Fredericks transition.'*” 1) Crystal-
line substrate, 2) amorphous screening film, 3) NLC layer.
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substrate; in this case the film thickness & rather than W was
varied. The critical thicknesses 8. of the orientational transi-
tion were of the order of 10~ ®cm, and for NLC with e, > Oas
the electric polarization of the Langmuir film increased 8.
and, conversely, for nematics with £, <0it decreased, which
is attributable to the effect of the surface electric field of the
Langmuir films on the orientation of the NLC (see Sec. 2.2).

b) An orientational transition from the planar texture
of NLC into the homeotropic texture can occur as the thick-
ness of the nematic film decreases to values much less than
A, (seeSec. 5.1). In this case the short-range adhesion forces
(the energy W) fix the planar orientation of the director,
while the van der Waals forces of the substrates fix the ho-
meotropic orientation. The thickness of the NLC layer, for
which a local Fredericks transition occurs, is determined by

comparing the free energies for different orientations'*’:

d :(@L)I/Z'
ysl

(42)

where 7, is the surface tension between the solid substrate
and the NLC, w,, is the characteristic frequency correspond-
ing to A,, and # is Planck’s constant. It was established from
the decrease in the order parameter in the planar-oriented
NLC layer, confined in a quartz wedge, that a local Freder-
icks transition occurs at thicknesses d, ~107° cm.'*® The
experimental value of d. agrees with the theoretical value
calculated using the formula (42).

¢) The so-called spontaneous Fredericks transition—
spontaneous breakdown of the uniform homeotropic orien-
tation of the NLC above some critical thickness of the cell—
apparently has an analogous physical nature. In this case the
dispersion field of the substrates fixes a homeotropic orienta-
tion, while the short-range adhesion forces fix the planar
orientation. Unlike the local transition described in the pre-
ceding section, the spontaneous Fredericks effect is a sec-
ond-order orientational transition.'*'~'4*

d) An orientational transition can be observed in NLC
cells with a mixed orientation of the director.?®>%-143:146 For
example, if a planar orientation (rigid anchoring) is fixed on
one substrate and homeotropic (finite W) orientation is
fixed on the other, then a planar orientation will exist in the
entire cell for thicknesses less than some critical value d._.
For d>d, = (K,, + K,;)/W, an orientational transition
will occur.'*’ In the case of finite adhesion energy ( W,) the
situation is more complicated for the planar orientation.
Now there are two critical thicknesses of the NLC layer: d ",
below which the nematic is oriented homeotropically, and
d", below which the planar orientation is stable.'*® For
K, ~K,;and W, > W, below d " the sample is oriented ho-
meotropically, while for W, < W, and d < d " the sample has
a planar orientation. If K, €K,; and W, W,, then the
critical thickness exists only for W, > W,. In this case for
d <d" the homeotropic orientation is stable, while for
W, <« W, the NLC is in a distorted state for any thickness of
the cell. If K,,>K;; and W,# W,, then the liquid crystal
assumes a planar orientation for W, < W, and d, <d?!. In
the opposite case (W, > W,) the nematic is in a distorted
state for any thickness of the cell.

e) The local Fredericks transition in NLC on a glass
substrate ground in one direction and screened by Langmuir
films is interesting. As already pointed out, the relief formed
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by the grinding of the glass orients the NLC in a planar
orientation, while the Langmuir films are oriented homeo-
tropically. In this case the deformation of the substrate is
apparently transferred, growing progressively weaker, along
the layers of the Langmuir film, as happens for smectic A,
and thus as the thickness of the film increases the homeotro-
pic orientation becomes increasingly more favorable energe-
tically.'*® The above-described local transition has been ob-
served experimentally in the form of a smooth change in the
tilting of the director as the thickness of the Langmuir layer
increases from 2.5-10"® up to 2- 1077 cm."** The question of
the critical thickness must in this case be studied at the mo-
lecular level.

6. CONCLUSIONS

We deliberately excluded from this review the very im-
portant question of the role of the surface in diverse electro-
and magnetooptical effects observed in liquid crystals. There
is an extensive literature (see, for example, Refs. 10 and 15)
devoted to this question, in which, in particular, the effect of
the finite energy of adhesion W of the molecules of the liquid
crystal to the wall on the character of the distortions of the
director field under the action of different types of perturba-
tions (electric and magnetic fields, light wave, hydrodynam-
ic flow, etc.) is analyzed in detail.

From the applied viewpoint the effect of the surface on

the Fredericks transition and, in particular, on the so-called
twist effect, employed in most information display systems,
is of greatest interest. It has been shown theoretically that
the slope of the contrast curve increases as W decreases. In
addition, different hysteresis effects on the “‘external
stress—contrast’ curve, enabling realization of bistable
switches, have been predicted. The switching times must in-
crease as W decreases because of the increase in the effective
thickness of the cell (see the role of the extrapolation length
in Fig. 3). Unfortunately, because of the low reproducibility
of the technology for controlling surface properties, reliable
experiments confirming these conclusions still have not been
performed.

A number of interesting problems, which have not yet
been adequately studied and which must be solved in the
near future, were also excluded from the review. Thus the
specific characteristics of the interaction of highly-ordered
smectic phases with a solid surface, not mentioning diskotic
polymer and lyotropic phases, are not yet understood. In
this respect the blue phase of cholesteric liquid crystals is of
special interest. The point is that according to modern ideas
(see the review of Ref. 7 and the literature cited there) the
blue phase is a cubic structure of disclinations. The disclina-
tions have a finite volume density, and therefore the energy
of the disclination boundaries, i.e., the surface energy, is of
the same order of magnitude as the volume energy. It is pre-
cisely the surface energy that makes the blue phase stable
and determines its properties.

The effects of surface polarization as well as the interac-
tion of liquid crystals with active surfaces remain poorly
studied. We are talking about, for example, solid surfaces
undergoing phase transitions, the interface of a liquid crystal
with a photosensitive material, etc.

The question of surface waves also deserves special dis-
cussion. The extensive collection of material parameters and
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types of ordering in liquid crystals makes it possible in prin-
ciple. to observe different types of surface waves ranging
from Langmuir waves (with a dispersion law o ~ g%/, where
w is the frequency and ¢ is the wave vector) characteristic for
ordinary isotropic liquids up to Rayleigh waves (with the
disperion law w ~¢g) characteristic for solids.

Freely suspended films of liquid crystals with a fixed
thickness down to one molecular monolayer are also ex-
tremely interesting. Here we are actually talking about a
completely new object in the physics of the condensed state.
The existence itself of such freely suspended films is a char-
acteristic property precisely of layered liquid crystals. Free-
ly suspended monomolecular films, for example, of an iso-
tropic liquid, are impossible, since here surface tension
energy is lost, which loss in smectics is compensated by a
gain associated with the existence of an order parameter.

As already pointed out in the Introduction, based on
their properties freely suspended films are an intermediate
object falling between ideal two- and three-dimensional sys-
tems.'® On the one hand a monomolecular free film is truly
two-dimensional, but on the other it ““resides’ in a real three-
dimensional space, in which, in particular, flexural (three-
dimensional) oscillations of the film are admissible. The
spectrum of these oscillations also differs from the flexural
waves in solid-state membranes (see Ref. 19 for a detailed
discussion).

Finally, we emphasize that the concept of an interface is
also fully applicable to more complicated heterogeneous lig-
uid-crystalline systems (micellar solutions, sols, mem-
branes, pores, encapsulated systems and emulsions, etc.).
The study of the physics of such systems is only beginning,
and surface effects will play a key role in the determination
of the bulk properties of composite materials.

We thank A. S. Sonin for useful discussions.
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