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An analysis has been made of the linear response of polarization to a uniform change in
temperature, in its gradient (thermal polarization effect), in macroscopic deformation and in its
gradient (flexoelectric effect). It has been shown how the use of some definitions of polarization
widespread in the literature can lead to essentially incorrect results in the analysis of piezo- and
flexoelectric effects in the field of elastic deformations of an acoustic wave. It has also been shown
that in calculating the above responses in the case of a spatially uniform disturbance in a sample of
finite size two classes of contributions arise: 1) contributions depending on the microscopic
properties of the lattice, and 2) contributions depending only on changes in the distortion tensor
accompanying the response, and on multipole moments of the charge distribution of the whole
unperturbed crystal. In this connection it was established that the former contributions are bulk
effects while the latter ones are surface or false contributions (which are not manifested in the
generally accepted experimental arrangements for measurements). The special features of the
manifestation of the flexoelectric and thermal polarization effects are discussed in detail.
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1. INTRODUCTION

The present paper provides a theoretical description of
the pyroelectric, piezoelectric, flexoelectric and thermal po-
larization effects. The first two have been investigated thor-
oughly both experimentally and theoretically. The other two
are relatively new and have been studied much less. They
represent a linear response of the polarization to strain and
temperature gradients and are primarily of interest because
they describe the appearance of a polarization in a nonpie-
zoelectric crystal under the action of a “‘nonelectric” distur-
bance.

To the best knowledge of the author, the possibility of
appearance of a polarization under the influence of a strain
(deformation) gradient was first pointed out by Mashkevich
and Tolpygo."? They derived a microscopic expression for
the relationship between the amplitudes of the polarization
and of the strain gradient in an acoustic wave for structures
of the diamond type. The first step in the development of a
phenomenological description of this effect was made by
Kogan.? Some symmetry aspects of the description proposed
by Kogan® were discussed by Indenbom, Loginov, and Osi-
pov.* They also provided a microscopic description of the
flexoelectric effect in the case of a static strain gradient. The
effect was investigated experimentally by Zheludev and Lik-
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hacheva.>® The experimentally determined coefficient of
proportionality between the polarization and the strain gra-
dient was found to be four orders of magnitude greater than
the rough theoretical estimate obtained in Ref. 4.

The thermal polarization effect was predicted from
phenomenological considerations by Marvan.” A phenome-
nological description was refined by Gurevich and Tagant-
sev,*® who also developed a theory of the phonon mecha-
nism of the effect. Experimental confirmation of the effect
was obtained by Kholkin, Trepakov, and Smolenskii'® for
centrosymmetric crystals of lead magnoniobate, which is a
ferroelectric with a broad phase transition. This effect has
not yet been investigated very thoroughly, but the values of
the coefficient of proportionality!! between the temperature
gradient and the polarization are in reasonable agreement
with the theoretical estimates.'? There is as yet no micro-
scopic theory of the thermal polarization effect for ferroelec-
trics exhibiting order—disorder phase transitions, although
the experimental data for crystals of this type (triglycine
sulfate) have already been obtained by Strukov et al.'?

A theoretical description of the flexoelectric and ther-
mal polarization effects has certain special features. How-
ever, at the present level of development of theoretical phys-
ics there should be no fundamental difficulties. It is therefore
surprising that in the process of microscopic calculations
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FIG. 1. Planar square diatomic lattice. Two types of unit cells of maxi-
mum symmetry are shown: 1) with a positive ion at the center; 2) with a
negative ion.

these effects have foundered on a “‘reef.”” This is manifested
in the simplest analysis of, for example, the flexoelectric ef-
fect. We shall illustrate it by considering an example.

We shall discuss the appearance of a polarization in the
flexoelectric effect in a planar square lattice of the NaCl type
shown in Fig. 1. We shall analyze qualitatively the process of
appearance of a polarization in such a lattice under the influ-
ence of constant longitudinal strain gradients dU, /dy > 0.
We shall do this by considering changes in the dipole mo-
ment of a unit cell as a result of inhomogeneous deformation.
We shall select the unit cell to be electrically neutral with the
maximum symmetry and the minimum volume (area). Such
a cell contains a whole ion of one sign at the center of the
square and four quarters of ions of the opposite sign at the
corners of the square. We can see from Fig. 1 that there are
two kinds of such cells: with a positive ion at the center and
with a negative one. We shall first consider a unit cell of the
first type. In an undeformed crystal the centers of gravity of
positive and negative charges of the cell coincide, so that its
dipole moment is zero. If the deformation is homogeneous,
the centers of gravity of the charges continue to coincide and
there is no dipole moment. However, in the case of inhomo-
geneous deformation the distances from the “upper” and
“lower” quarters of ions (Fig. 2) to the central ion become
different so that the centers of gravity of the positive and
negative charges no longer coincide. Consequently, the cell
becomes polar and the polarization is (as can be seen from

,.
:
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FIG. 2. Displacement of quarters of negative ions relative to a positive ion
in the case of inhomogeneous deformation. The dashed lines are the posi-
tions of the upper and lower quarters in an undeformed cell. The horizon-
tal arrow indicates the position of the center of gravity of a negative charge
of the cell after deformation.
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Fig. 2) opposite to the strain gradient. However, if we select
a cell with a negative ion at the center (which is labeled 2 in
Fig. 1) and repeat the above discussion, we find that the
direction of the resultant polarization coincides with the di-
rection of the strain gradient. This means that in this ap-
proach the flexoelectric coefficient (which is the coefficient
of proportionality between the strain gradient and the polar-
ization) changes its sign depending on the selection of the
unit cell. We can thus see that our simple clear analysis
yields a result which is absurd from the point of view of
formulation of a problem.

The absurdity of this result is a consequence of a “colli-
sion with an underwater reef ”” mentioned above. The only
paper known to the present author in which a direct calcula-
tion is made of the polarization response to a constant strain
gradient is that of Indenbom, Osipov, and Loginov* and it
does not avoid this difficulty: The microscopic expression
obtained by these authors for the flexoelectric coefficient de-
pends on the way that the unit cell is selected. It has been
found that the “underwater reef,” the influence of which we
have just demonstrated, appears not only in the description
of such exotic phenomena as the flexoelectric and thermal
polarization effects, but also when the old and thoroughly
studied pyroelectric and piezoelectric effects are considered.
In the latter case the “‘reef ”” is more hidden, but a “collision”
with it gives the same paradoxical answers. Born and
Huang'* analyzed the pyroelectric effect and considered not
only the intrinsic contribution, but also fictitious contribu-
tions which do not appear in the experiments carried out in
accordance with the crystallophysical definition of the ef-
fect. This vanishing of the fictitious contributions becomes
obvious after the paradox mentioned above is resolved.

An analysis of the piezoelectric effect in pyroelectrics
given in the book of Born and Huang'* and in the paper of
Martin'® suffers from a similar shortcoming.

We shall now define the aim of the present paper and
the way we shall pursue this aim. In Sec. 2 we shall use the
example of pyroelectricity and piezoelectricity in the sim-
plest model situation to show how to resolve a paradox simi-
lar to that described above. In Sec. 3 we shall discuss the
piezoelectric effect in the field of strains created by an acous-
tic wave, and also carry out a critical analysis of various
definitions of the polarization. We shall use the approach
developed in the study of the pyroelectric and piezoelectric
effects to analyze the flexoelectric and thermal polarization
effects in Secs. 3-5. In Sec. 6 we shall formulate phenomeno-
logical descriptions of the bulk contributions to these effects.
In Sec. 7 we shall summarize briefly the results and identify
the reasons why our results differ from those given in Refs. 4,
14, and 15.

We shall be interested in these effects in insulators char-
acterized by a strong localization of the valence electrons so
that we shall consider only the ionic contribution to the po-
larization and ignore the electronic contribution. One of the
problems considered below (specifically the pyroelectric
and piezoelectric effects in a sample of finite dimensions)
has been discussed in the literature'®" in a situation charac-
terized by a high degree of delocalization of the valence elec-
trons. We shall not join this discussion, but simply point out
that the results summarizing this discussion and given by
Kallin and Halperin®' are not in conflict with our conclu-
sions.
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2. PYROELECTRIC AND PIEZOELECTRIC EFFECTS IN
SPATIALLY HOMOGENEOUS MATERIALS

We shall consider three crystal structures consisting of
point ions with lattices of the NaCl, sphalerite, and GeTe
types in the ferroelectric phase. In all these structures the
same ions form fcc lattices. In a structure of the NaCl type
the sublattices of ions with different signs are shifted along a
threefold axis by half the body diagonal of the cube. The
symmetry group of the resultant lattice is then O,. In the
second structure the sublattices are shifted in the same direc-
tion, but by a quarter of the body diagonal (point symmetry
group T,). In the paraelectric phase the compound GeTe
has the NaCl structure. In the ferroelectric phase the lattice
of GeTe differs from the high-temperature structure by a
slight shift along the threefold axis (point group C,,)." In
each of these structures we shall mentally select thin plates
perpendicular to the ¢, axis. It is shown in Fig. 3 that in all
three structures such plates consist of parallel layers of ions
of the same sign, but shifted by different amounts relative to
one another. We shall assume that the sample is electrically
neutral, so that negative ions appear on one face and positive
ions on another. We shall consider pyroelectric and piezo-
electric properties of plates prepared in this way. In accor-
dance with the symmetry of the lattices from which they are
cut, the first plate (O, ) should not have pyroelectric or pie-
zoelectric properties, the second (T,;) should exhibit piezo-
electric but not pyroelectric properties, and the third (C,,)
should exhibit both pyroelectric and piezoelectric proper-
ties. We shall now consider how the properties of plates
match the point symmetry of the original lattices and the
experimentally observed effects.

We shall find the response of the polarization to a
change in temperature. Using the definition that the polar-
ization is the specific dipole moment** and Fig. 3, we can
write down the heating-induced change in the polarization
8P in the form

N 1+(baja)
8P“‘V_' V_POI: 1+&V/V) 1]' 2.D
where
p=29 = sy_y v, Sa=a —g

V 1

P, V,and aq, and P', V', and a’ are, respectively, the dipole
moments, volumes of the plates, and lattice parameters (Fig.
3) before and after heating; Q is the charge of a positive ion;
N is the number of pairs of ions in a plate. Using Eq. (2.1),
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FIG. 3. Three model crystal structures (shown schematically at right
angles to the ¢, axis): a = & for NaCl, 3a = b for ZnS, and a = Ab for
GeTe.
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we can readily find the “pyroelectric” response of such a
plate. We are using quotes for the word *“‘pyroelectric” be-
cause such a response is exhibited by all three plates, includ-
ing those made of nonpyroelectric structures. In fact, in the
case of the first two structures we find from the law of ther-
mal expansion that, in the linear approximation, the change
in the polarization is

8P == — P°.2adT, (2.2)

where a is the thermal expansion coefficient. For the struc-
ture of the GeTe type, we obtain

ab  OA

== h=2

a+b A ? b’

8P = — Po-20, 8T ¢ (2.3)
where ¢, is the thermal expansion coefficient at right-angles
to the ¢, axis.

The physical meaning of these formulas is simple.
When the first two structures expand, the ratio of the two
distances in a unit cell remains constant, so that the param-
eter a varies strictly in accordance with the thermal expan-
sion law and the relative change in the dipole moment of the
investigated crystal is @87T. The relative change in the vol-
ume is 3a67T. Consequently, the polarization changes by an
amount 8P described by Eq. (2.2). In the last structure the
parameter a and the change in the dipole moment of the
whole crystal with @ do not obey the law of thermal expan-
sion. Only the quantities a + b obey this law. The ratio
a/b = A is no longer determined (in contrast to the first two
cases) by the crystal symmetry and, therefore, it depends on
temperature. In this situation Eq. (2.2) contains not only a
term due to pure thermal expansion, but also a term which
appears because of the temperature dependence of A.

Therefore, all three plates formally exhibit pyroelectric
properties, and this applies to a plate formed from the cen-
trosymmetric structure of the NaCl type. The result is para-
doxical. Larmor?® was the first to draw attention to this par-
adox. However, this paradox does not apply to the quantity
usually determined experimentally, which is the pyroelec-
tric charge. This could be demonstrated by carrying out a
pyroelectric measurement in a thought experiment. We shall
assume that electrically neutral electrodes are deposited on
the large faces of the plates and that the circuit is closed by a
galvanometer. It is then obvious that before closing of the
circuit there is a homogeneous depolarizing electric field
47F° in the plates. After closure of the circuit the macro-
scopic field in the capacitor vanishes because of the field of
charges on the electrodes. We can readily show that compen-
sation of the depolarizing field requires transfer of a charge
@Ma/(a + b) (where M is the number of atoms in a mona-
tomic layer perpendicular to the ¢, axis), i.e, a charge
Qa/(a + b) per each atom reaching an electrode.

We shall now vary the temperature of a sample and
determine the change in the polarization from the pyroelec-
tric current. In the first plate there is no such current to
within a/L (where L is the thickness of the plate). In fact,
since the macroscopic field in the plate is zero, the whole
crystal can be divided into dipole-free cells (with the possi-
ble exception of the surface layers of thickness of the order of
a, which are electrically neutral when we bear in mind the
charges on the electrodes). During heating the nonpolar
middle part of the sample remains unaffected, so that the
dipole moment does not appear in this region. There may be

A. K. Tagantsev 590



FIG. 4. Schematic form of dipole-free unit cells in the case of three model
structures: NaCl (a), ZnS (b), and GeTe (c). The magnitudes of the
outer charges are selected bearing in mind the relationship between a
and b.

a change in the dipole moment in the surface layer, but this
contribution is extremely small, of the order of P°a8T /L
when converted to the average density.

In the case of the second plate there is no pyroelectric
signal within the same limits as in the first case. Once again
we shall demonstrate this by the division described above,
but a dipole-free cell is now obtained in a different way. In
the first case in our projection this is the cell consisting of an
ion of one sign in the middle and half the ions of the other
signs at the edges (Fig. 4a). Now the central ion is located
asymmetrically and the charges of the outerions are Q /4 and
3Q /4 (Fig. 4b). However, it is important that the relation-
ship 3a = bis maintained by the symmetry and, consequent-
ly, the cell remains dipole-free when temperature is varied.
We can now repeat the discussions used in the first case and
obtain the same answer.

We shall try to apply the above discussion to a plate cut
from a ‘“‘true” pyroelectric structure of the GeTe type. The
initial division into nonpolar (dipole-free) cells is still possi-
ble, but the charges at the edges should be selected as
bQ /(a+ b) and aQ /(a + b) (Fig. 4c). The fundamental
difference from the preceding cases is that division is now
temperature-dependent. Therefore, the initially dipole-free
middle of a crystal acquires a dipole moment as temperature
is varied. The corresponding change in the polarization is
described by the second term in Eq. (2.3) and can be written
in the form

sp o NO _ab_ 0 g on

v a—b o

(2.4)

This is the true pyroelectric effect. We shall now draw atten-
tion to the formal attribute which distinguishes the true py-
roelectric effect from the apparent one. If Eqgs. (2.2) and
(2.3) are derived for a plate cut in a different way (from the
point of view of the signs of the ions emerging on the sur-
face), the formulas become modified as in the case of the
substitutionsa=b and @ - — Q, and then the apparent con-
tributions change their sign, whereas the true pyroelectric
effect is not affected.”

We shall now consider piezoelectric properties of our
plate. We shall apply mentally a uniaxial stress along the c,
axis. A slight modification of the reasoning which yielded
Eqgs. (2.2) and (2.3) above allows us to show that the piezo-
electric response is finite and of the same order for all three
plates. As in the case of the pyroelectric effect, this response
contains the contributions of the apparent and true effects.
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We can separate them by a thought experiment involving
piezoelectric measurements using a circuit of the kind as-
sumed above in pyroelectric measurements. We can calcu-
late the response using the old division into dipole-free cells
and an electrically neutral layer. The presence of the true
piezoelectric effect depends on whether the dipole-free na-
ture of a cell is retained under the action of uniaxial stresses.
The application of a uniaxial stress to the first plate does not
affect the symmetry elements ensuring that @ = b and the
cell remains dipole-free. Therefore, we can expect a very
small piezoelectric signal associated with the surface. In the
second plate the application of a uniaxial stress destroys the
symmetry elements that ensure the equality 3¢ = b and
makes the cell dipolar. The response of the polarization to
the change in the strain tensor 6U,,; can in this case be de-
scribed, by analogy with Eq. (2.4), in the form®

8P -— NQ  ab 7

In = .8U .

ety M (2.5)

In the case of the third plate the ratio a/b = A is not fixed by
the symmetry and, consequently, it depends on the strain
tensor. The piezoelectric effect which is thus generated is
also described by Eq. (2.5).

We have thus obtained two different answers for the
pyroelectric and piezoelectric responses by employing two
different methods. At first sight the definitions of the polar-
ization used to obtain the two answers are the same, so that
we are faced with the natural question: why is the first set of
answers incorrect? This is due to the fact that in the first
discussion we used incorrect definitions of the pyroelectric
and piezoelectric effects. We shall discuss this in greater de-
tail in the case of the pyroelectric effect (and similar argu-
ments apply when the piezoelectric effect is considered). Ac-
cording to the classical textbook of Nye,** pyroelectricity is
the appearance of a dipole moment in crystals as a result of
change in temperature, whereas Eqs. (2.2) and (2.3) are
derived by calculating the change in the polarization, i.e., the
investigated quantity is the change in the dipole moment.
Our thought experiment involves measurements of the pyro-
electric response using the current circuit {as assumed in the
derivation of Eq. (2.4)], which corresponds exactly to the
definition proposed by Nye: The dipole moment of a crystal
directly before a change in the pyroelectric charge is zero.
Such an apparently slight deviation from the correct defini-
tion produces a very large difference between the answers.

One further comment should be made about a phenom-
enological definition of pyroelectricity. When Nye says in
Ref. 24 that the pyroelectric effect is manifested by the ap-
pearance of a dipole moment of crystals as a result of heat-
ing, the crystal is implied to be free (of electrodes) and its
dipole moment is compensated (if it ever existed) to zero by
the surface charges, i.e., the dipole moment of a crystal is
understood to include the surface charges. Hence, it is clear
that in the case of a crystal with electrodes the dipole mo-
ment should be calculated allowing for the induced charges
(for details see Ref. 38).

It is in this sense that the definition of pyroelectricity
given by Nye* can be based on the measurements in a cur-
rent circuit.

We shall finish the discussion of model structures by
drawing attention to the need of an exact crystallochemical
definition of a pyroelectric. It follows from an analysis pre-
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ceding Eq. (2.4) that we can select a unit cell with the maxi-
mum symmetry of the nonpolar phase when dealing with
pyroelectricity. It is then found that the definition of a pyro-
electric as a crystal with a polar unit cell is insufficient. It is
therefore necessary to refine these definitions: a pyroelectric
is a crystal in which it is possible to select a unit cell with the
maximum symmetry of the polar nature. In our opinion the
definition of a pyroelectric which represents best the essence
of the effect can be formulated as follows: A pyroelectric is a
crystal in which nonpolar unit cells must be selected in dif-
ferent ways for different (even only slightly) temperatures.

The properties of pyroelectrics and piezoelectrics dis-
cussed above in the case of specific examples can be de-
scribed using the framework of a more general scheme. We
shall consider a solid as a set of charges Q(R) located at
points determined by the selection of the radius vectors {R}.
Let us assume that homogeneous stresses created by a tensor
0, are induced in the investigated body and that the tem-
perature of this body changes by §7. Then, writing down the
distance traveled by each charge r = R’ — R and selecting
only the part corresponding to the contribution of the mac-
roscopic deformation, we find that

ro = &qp (0, 8T) Ry + uy, (2.6)

where €,5 is the distortion tensor describing macroscopic
deformations due to thermoelastic and mechanical stresses.
The first term in Eq. (2.6) describes displacements consid-
ered in the elasticity theory approximation and the second
represents deviations from the theory of elasticity due to the
discrete structure of the lattice. In the terminology adopted
by Born and Huang, '* the first and second terms in Eq. (2.6)
represent external and internal deformations, respectively.
We shall therefore call the displacements describing the de-
viation from the theory of elasticity the internal displace-
ments. The change in the polarization due to the displace-
ments described by Eq. (2.6) is

8P, =2 Q(R)) Ry (V')'—2 Q (R) R,V

=easP8—EssP3+§ Q (R) u v, 2.7)

Py =2 QR) RV, (2.8)
a

where the summation is carried out over all the charges. We
can easily see that P° is the polarization of an undeformed
crystal calculated allowing for all the charges, including
those on the surface and on the electrodes. We have seen
above that, by definition of the pyroelectric and piezoelectric
effects, this quantity should be zero. The first two terms in
Eq. (2.7) vanish and they represent the apparent pyroelec-
tric and piezoelectric contributions. The term remaining in
Eq. (2.7) describes the true pyroelectric and piezoelectric
effects.

We can use Eq. (2.7) to write down readily explicit
expressions for the pyroelectric and piezoelectric responses
via microscopic characteristics of the crystal lattice. We
shall be interested in those responses when a macroscopic
electric field E in a sample is zero. This condition is satisfied
automatically when measurements are carried out using the
current circuit described above. Clearly, if a change in the
strain or temperature makes the field E different from zero,
the polarization response will be different than for E = 0.
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However, the corresponding renormalization of the re-
sponse allowing for the shape of the sample and for electrical
boundary conditions on its surfaces can be carried out using
the framework of macroscopic electrostatics of insulators.
In the case of homogeneous deformations the internal dis-
placements can be written in the form

(2.9)

1
ug, )p Hl;v pEByr

where p is the number of an atom in a unit cell. In the case
under discussion when the macroscopic electric field is zero,
the tensor H%, ”7 is symmetric in respect of the upper pair of
indices, so that the real internal displacements depend only
on the symmetric part of the distortion tensor, i.e., on the
strain tensor.'*"’ The internal displacements responsible for
the pyroelectric response in an acoustically clamped lattice
can be written in the form

oT. (2.10)

(pyr) __
ua?p - Ba. P

Both H% and B, , are generally different in the bulk of a
crystal and near its surface. However, in an analysis of the
kind made here we can ignore the inhomogeneity of the dis-
tribution of these quantities in the interior of a crystal, since
the contribution made to the,l\ast of E\he sums in Eq. (2.7) by
the surface regions (where H and B are different from the
bulk values) is negligible due to the smallness of the ratio of
the volume of these regions to the volume of the whole crys-
tal. Using Egs. (2.7), (2.9), and (2.10), we finally obtain the
following expressions for the piezoelectric and pyroelectric

Iesponses:
5P P — (2.11)

)aT, (2.12)

U_iopHg? rEBY

? a
52 = v7Q, (Ba, ,+ HY 7

P 8T

@y P

where @, is the charge of the pth ion in a unit cell; v is the
volume of this cell; H and B are the bulk values. We can
easily see that Eqs. (2.11) and (2.12) are not affected by the
selection of the unit cell.

The first term in Eq. (2.12) describes the contribution
of what is known as the primary pyroelectric effect.?* In the
case of a mechanically free crystal the second term of Eq.
(2.12) describes the contribution of the secondary pyroelec-
tric effect,?® when the derivative of the distortion tensor with
respect to temperature can be replaced by the thermal ex-
pansion tensor. In the case of partial mechanical clamping
this derivative with respect to temperature can be calculated
allowing for the boundary conditions and then the last term
in Eq. (2.12) will also describe the contribution of the terti-
ary pyroelectric effect.?

The bulk values of the quantities B and H which occur
in Egs. (2.11) and (2.12) can be found by the standard cal-
culation of the equilibrium properties of the crystal lattice
(see, for example, Refs. 14 and 26). In our discussions their
actual form is unimportant.

We shall conclude this section by noting that the discus-
sion of the pyroelectric and piezoelectric effects given above
for spatially homogeneous materials differs fundamentally
from the discussions known to the authors and given in Refs.
14 and 15. The difference is the main result obtained above,
which is the separation of the apparent pyroelectric and pie-
zoelectric contributions. We shall consider the reasons for
this difference in the final section of the present paper.
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3. PIEZOELECTRIC AND FLEXOELECTRIC EFFECTS IN THE
FIELD OF AN ACOUSTIC WAVE

In the preceding section we analyzed the response of the
volume-average polarization to a homogeneous change in
the temperature and to homogeneous deformation. In such
cases we need not use the “primary’’ definition of the polar-
ization*

divP = —p (3.1)

(p is the average density of the bound charges), but can
employ an obvious consequence of Eq. (3.1):

S Pdr — S xpd'z + & x(dS-P). (3.2)

Since we are interested in the volume-average polarization,
the integration indicated in Eq. (3.2) can be carried out over
the volume surrounding the body in question, so that the
surface integral vanishes. Therefore, in the preceding section
the polarization was defined as the dipole moment per unit
volume of an insulator. This was in agreement with the de-
finition of the polarization adopted by Landau and
Lifshitz.”

However, we must bear in mind that if we are interested
in the polarization averaged over some internal volume of an
insulator, the surface integral of Eq. (3.2) does not vanish.
Therefore, the conclusion reached in Ref. 22 on the basis of
Eq. (3.2) that the polarization is the density of the dipole
moment is incorrect. Other definitions of the polarization
are used in the literature***” and some of them are also incor-
rect. However, it is found that if we confine our attention to
the phenomena which occur in the zeroth order with respect
to the spatial dispersion, such as the polarization of an insu-
lator in an electric field, then all the definitions of the polar-
ization give the same answer (to a high degree of accuracy).
In an analysis of the piezoelectric and flexoelectric effects in
the field of an acoustic wave it is found that various ‘‘second-
ary” definitions of the polarization generally give very dif-
ferent answers.

The purpose of the present section is to analyze the pie-
zoelectric and flexoelectric effects in the field of an acoustic
wave starting from the primary definition of the polarization
given by Eq. (3.1) and then to demonstrate how the widely
used but not fully correct definitions of the polarization can
give rise to qualitative errors in the description of these phe-
nomena. Therefore, we shall divide the present section into
three subsections: a) internal displacements in the field of an
acoustic wave; b) description utilizing the “‘primary”’ defini-
tion; ¢) descriptions utilizing other definitions of the polar-
ization.

3.1. internal displacements in the field of an acoustic wave

We shall consider an acoustic wave of wavelength 27/K
much greater than the characteristic interatomic distance a,
but much smaller than the size of a crystal L. In general, the
displacements of the lattice sites in such a wave can be writ-
ten in the form

r, =exp (ikR}—iot) u, (k, ©), R)=n-lx,, (3.3)

where nis the lattice vector and x,, is the radius vector of the
pth atom in a cell. It is known that in the limit K -0 and
@ —0 the amplitude u, is independent of p so that to a high
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degree of accuracy we can assume that in the case of our
wave the amplitude u, is equal to the vector w which is inde-
pendent of p. The wave characterized by u, = w represents
an acoustic wave in the theory of elasticity approximation in
the sense that the displacements in such a wave are deter-
mined entirely by the value of the phase factor in Eq. (3.3),
1.e., exactly as in the definition of the displacements in a wave
traveling in an elastic continuum. In the case of a real wave
in a crystal we find that u, differs from w. A wave with the
amplitude u,-w will be called a wave of internal displace-
ments, because it describes the difference of real displace-
ments of the lattice sites from those obtained for an acoustic
wave considered in the theory of elasticity approximation
(for definitions of internal displacements, see Sec. 2). A
wave of internal displacements appears because of manifes-
tations of spatial and temporal dispersions. Its amplitude is
proportional to w because of the linearity of the problem.
The spatial dispersion is manifested in the form of correc-
tions to the approximation of the theory of elasticity in pow-
ers of the parameter Ka. The temporal dispersion is mani-
fested (because we are considering a nondissipative
situation) only in the form of corrections in even powers of
the parameter w/w, (w, is the characteristic frequency of an
optical phonon). When lower corrections are allowed for,
the amplitude u, can be written in the form

ua.pzwa—{—ng?pwﬁKv N prK Ko—GE Loy (3.4)

Since w and K for an acoustic wave satisfy the relationship

D00 = Cupys WyKpKs, (3.5)

or

where p is the density and & is the tensor of the elastic moduli,
the term in Eq. (3.4) associated with the temporal disper-
sion can be excluded formally by the substitution

. Byo ) -
N—»NE,Y,J:NEW,;)—}—p Gg, pCvvBs-

The general method which allows us to calculate Hand
N using the matrix of the force constants of a crystal,® was
formulated in the book of Born and Huang.'* A microscopic
expression for H used in the description of the piezoelectric
effect was also obtained by Born and Huang. Moreover, it
was assumed in Ref. 14 that the tensor H can also be used to
describe the response of internal displacements to static de-
formation, i.e., that H in Egs. (2.9) and (3.4) is the same
quantity. The validity of this conclusion can be demonstrat-
ed rigorously.”® The microscopic expressions for the tensors
N and G were obtained by the present author®®and the tensor
N was defined so that the response of internal displacements
uS>’ to a static strain gradient is described by the same tensor,
ie.,

65(}1;
Bvo
uam )p Na P A 3 .

(3.6)

Clearly, this selection of N corresponds to a correct separa-
tion of the contribution of the spatial dispersion to internal
displacements of the second order in Ka.

3.2. Description utilizing “primary” definition of polarization

In the preceding subsection we used an expansion of the
displacements of the lattice sites in an elastic wave employ-
ing lower orders in respect of the spatial and temporal dis-
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persions. Now, in a microscopic description of the piezoelec-
tric and flexoelectric effects we have to define the response of
the polarization to such displacements. We shall use the pri-
mary definition of the polarization given by Eq. (3.1). How-
ever, it is more convenient to transpose the commuting oper-
ations of averaging and differentiation, i.e., it is more
convenient to define the change in the polarization 5P
caused by an acoustic wave as a solution of the equation

div 8Py = —0p. 3.7)

averaged over a scale which is large compared with the lat-
tice constant; 8p is the change in the density of the bound
charge induced by the elastic wave. When using this defini-
tion to describe the piezoelectric response to displacements
in an acoustic wave, we shall follow the work of Martin'* and
then generalize his results to the case of the flexoelectric
response.

Let us assume that displacements in an acoustic wave
are described by Eq. (3.3). Then a linear response of the
density of the bound charge to such displacements is

Sp(x) = 2, Q, (u,V,) 8 (x—R)eikR; (3.8)
(R}

here, {R} denotes summation over all the vectors R. Substi-

tuting Eq. (3.8) into Eq. (3.7), we obtain the solution of the

latter in the form®

8P yc (X) ={2m Q,u,8 (x—R) KR, (3.9)
After summation over the lattice vectors the Fourier compo-
nent 5P ;. becomes

mic

_ _ . _ ib
Ppic=y-t 5 d3ze~iKx§P_ .. (x) =v! 2 Qpu,e *PAk b, k-
b

(3.10)

(b is the reciprocal lattice vector and A - is the Kronecker
delta). We shall now carry out the averaging. In the summa-
tion over bin Eq. (3.10) we need to retain only the term with
b = 0, because the other values of b correspond to contribu-
tions oscillating with wavelengths smaller than or of the or-
der of the lattice constant. Consequently, the amplitude of a
macroscopic polarization wave Py which accompanies
sound is given by

Pk = v'lqup.

(3.1D)

Now, using the results of Sec. 2, we can obtain the con-
tributions made to the polarization that accompanies an
acoustic wave and we can do this in the zeroth, first, and
second orders in respect of the spatial dispersion. Substitut-
ing w instead of u,, in Eq. (3.11), we can demonstrate that in
the elasticity theory approximation the contribution to the
polarization which accompanies sound is absent for crystals
of any symmetry. This is ensured by the electrical neutrality
of a unit cell and corresponds to the result of Sec. 2 where
only apparent contributions are obtained in the elasticity
approximation.

Using Egs. (3.4), (3.5), and (3.11), we find that the
amplitudes of the polarization which accompany sound are
given by the following expressions which are valid in the first
and second orders in Ka:

(Py) P = 1Q HE JiwsKy, (3.12)
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(Px)™ = — 1710, (071GY, peyyps + V&) wpK K. (3.13)

Clearly, iK, W, and — KK W, are the Fourier com-
ponents of the distortion tensor and of its gradient in an
acoustic wave, so that Eq. (3.12) is in agreement with Eq.
(2.11) and describes the piezoelectric effect in the elastic
field of this wave. However, Eq. (3.13) describes the re-
sponse of the polarization to a strain gradient in an acoustic
wave, i.e., it describes the flexoelectric effect.

We have thus obtained a relationship between the po-
larization and the strain as well as its gradient in an elastic
wave. This was done using the “primary”” definition of the
polarization given by Eq. (3.1). We shall now see what de-
scription of these effects can be obtained employing other
definitions of the polarization found frequently in the litera-
ture.

3.3. Descriptions utilizing other definitions of polarization

The following definition of the polarization corre-
sponding to the macroscopic electric field of zero intensity is
used in the book by Vaks?®:

P =2, (3.14)
where d(x) is the dipole moment of a unit cell and v is the
unperturbed volume of this cell. Since Vaks did not give a
microscopic description of the effects which appear when
higher.orders of the spatial dispersion are considered, the use
of Eq. (3.14) gave no paradoxical or incorrect results.

We shall show that in the description of the piezoelec-
tric and flexoelectric effects this definition generally gives
incorrect results. We shall assume that displacements in an
acoustic wave are given in the form of Eq. (3.3) and then,
using Eq. (3.14), we shall show that the amplitude of the
polarization wave which accompanies sound is described
not by Eq. (3.11) but by

Pg = v1Q u e’ . (3.15)

Equations (3.15) and (3.11) differ only by the presence of
an additional phase factor, but the responses described by
them are qualitatively different: Accordingto Eq. (3.11) the
displacements corresponding to the zeroth order in respect
of the spatial dispersion do not create a polarization wave,
whereas according to Eq. (3.15), such displacements do cre-
atea wave. In fact, substituting w instead of u,, in Eq. (3.15)
and expanding the exponential function in a series, we obtain
the piezoelectric contribution in the first order in Ka and the
flexoelectric contribution in the second order in terms of the
same quantity:

v (Pg), = tM{PKpgw, — MEDK K wo + .. o (3.16)

MP=Quzq, M =4 Quta,p2p, o -+ (3.17)

It should be noted that the contribution to the polariza-
tion described by Eq. (3.16) is physically meaningless. For
example, it is well known that the selection of a unit cell to
ensure that it is as symmetric as possible simplifies calcula-
tion of any bulk property of a solid, but the same results
should be obtained irrespective of the selected unit cell.
However, the piezoelectric and flexoelectric coefficients ob-
tained with the aid of Eq. (3.16) clearly depend on such
selection because the sums M‘® and M in terms of which
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these coefficients are expressed depend on the selected unit
cell. It should be noted that such apparent piezoelectric ef-
fects should not generally be compensated by inclusion of
higher terms of the expansion in Eq. (3.4), because the ap-
parent effect is independent of the properties of the matrix of
the force constants of the crystal, whereas the terms in ques-
tion do depend on these properties. We have encountered a
similar paradox earlier in an analysis of the piezoelectric
effect when considering a spatially homogeneous material.
We can readily show that the expression describing the ap-
parent piezoelectric effect in Eq. (3.16) is identical with the
Fourier transform of the first term in Eq. (2.7), if P°is un-
derstood to be the average density of the dipole moment in a
unit cell.

As pointed out above, the correct answers are obtained
from Eq. (3.13) in the zeroth order in respect of the spatial
dispersion. We can therefore expect Eq. (3.14) to represent
only the first term of the expansion. We shall write down the
whole series and show how the terms corresponding to the
apparent effects of the (3.16) type are compensated. It is
shown in Ref. 27 that the expression for the microscopic
value of the polarization can be written in the form

Phie (x) = 2} (8 (x—n) MLP — 8 (x—n) Mg’

4 Oy (x— 1) Mghy— .., (3.18)

where MMV and the other tensors M"Y etc. are defined in
the same way as M and MV in Eq. (3.17). It should be
pointed out that the tensors M®, M, etc. correspond to
the definition of multipole moments of a unit cell adopted in
Ref. 27. The required expansion will be obtained in the Four-
ier representation. This can be done by attributing all the
displacements of the lattice sites in an acoustic wave, de-
scribed by Eq. (3.3), to a change in p, (and not a change in
the lattice vector n) and then substituting Eq. (3.3)into Eq.
(3.17) aswell as Eq. (3.17) into Eq. (3.18), linearizing with
respect to u,,, using the Fourier transform, and averaging in
the same way as was done in the derivation of Eq. (3.11). We
then obtain

v (Py)y =MD (K)—iXgMG (K) — KoK ,Myg) (K)+. . .,
(3.19)
where

oMb o
My (K) =L u,, ™, etc

@ p
Ta, p ' F

(3.20)

are the amplitudes of waves of multipole moments of unit
cells defined in accordance with Eq. (3.17).

We can readily see that the first term in Eq. (3.19) does
indeed correspond to Eq. (3.15) and, consequently, agrees
with the definition of Eq. (3.14). Since in contrast to Eq.
(3.15), the formula given by Eq. (3.19) is obtained from
first principles, it naturally gives the same longitudinal com-
ponent of the polarization as Eq. (3.11). Direct calculation
can show that a series obtained for (K.Pg) from Eq. (3.19)
sums to a form which can be obtained from Eq. (3.11). The
difference between the values of the transverse component of
the polarization given by Eqgs. (3.11) and (3.19) is to be
expected, because there is some indeterminacy in the deter-
mination of these components in the course of derivation of
these formulas. However, since macroscopic electrostatics
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deals only with the longitudinal components of P, this differ-
ence does not give rise to any contradictions.

Substituting w instead of u, in Eq. (3.20) and then sub-
stituting Eq. (3.20) into Eq. (3.19), we can see how the
apparent piezoelectric and flexoelectric contributions origi-
nating from the first term in Eq. (3.19) cancel out or, which
is equivalent, when this happens in the case of the contribu-
tions obtained from the expansion of Eq. (3.16): The appar-
ent piezoelectric contribution cancels the contribution due
to the second term of Eq. (3.19), and the apparent flexoelec-
tric contribution cancels out two contributions arising from
the second and third terms. Therefore, if we wish to use the
expansion of Eq. (3.19) for the description of piezoelectri-
city, we must take account not only of a wave of dipole mo-
ments of unit cells, but also of a wave of their quadrupole
moments. Similarly in the description of flexoelectricity we
need to allow for a wave of octupole moments.

We can now see the results of the use of the definition of
the polarization as the average density of the dipole mo-
ment.?> We must point out that Eq. (3.14) does not follow
strictly this definition, because it does not allow for the
change in the unit cell volume. A rigorous correspondence
with the definition of Ref. 22 can be obtained by rewriting
Eq. (3.14) in the form

d (x)
P =

, (3.21)

where v’ (x) is the volume of the cell deformed by the acous-
tic wave. In the approximation which is linear in respect of
the elastic displacement in a wave w, this volume can be
written in the following complex form:

Vo(x) = o (1 4+ i (Kw)etsy), (3.22)

Using Eqgs. (3.21) and (3.22), we find that the amplitude of
a polarization wave which accompanies a displacement
wave of Eq. (3.3), is described by the following expression
obtained in the linear approximation

(3.23)

Py —07Q, [ue ™ —ix,, (Kw)).

We can readily show that Eq. (3.23) is “‘better” than
Eq. (3.15) in the sense that the additional term in the former
cancels out the apparent piezoelectric contribution to the
longitudinal component of the polarization. Therefore, Eq.
(3.23), and, consequently, Eq. (3.21) can be used to de-
scribe the piezoelectric effect. However, the apparent flexo-
electric contribution remains so that in describing the effects
of the second or higher orders in respect of the spatial disper-
sion, we still find that Eq. (3.23) is unsuitable.

We shall now consider qualitatively the reasons for
such a difference between the consequences of Eqgs. (3.21)
and (3.14). We shall consider a crystal which can be divided
into unit cells with a dipole moment M ‘" and assume that a
longitudinal acoustic wave is propagating in the crystal par-
allel to M"., Clearly, the dipole moment decreases in the
case of those cells which experience compression, whereas it
increases for the cells which become elongated. In the elasti-
city theory approximation the relative change in the length
of a dipole is equal to the corresponding component of the
strain tensor. Consequently, an acoustic wave considered in
the elasticity approximation is accompanied by a wave of
dipole moments of unit cells and the amplitude of this wave
isM® (r,/3x,).
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According to Eq. (3.14), this wave of dipole moments
creates a polarization wave which is the source of the appar-
ent piezoelectric effect. This approach reveals the origin of
the surprising properties of the apparent piezoelectric effect:
1) its occurrence in the case of centrosymmetric structures;
2) the dependence of its magnitude on the selection of a unit
cell. In fact, any structure can be divided into polar units
cells and hence the first property follows, whereas the dipole
moment of a unit cell depends on the way the cell is selected,
giving rise to the second property.

According to (3.21) a wave of dipole moments of unit
cells is insufficient for the creation of a polarization wave,
because we must have a wave of the density of dipole mo-
ments of unit cells. However, in the case of the wave under
consideration we find that in the elasticity theory approxi-
mation the relative changes in the dipole moment of a unit
cell and of its volume are the same and, consequently, waves
of the density of dipole moments do not appear. Therefore,
we find no apparent piezoelectric effect if we use Eq. (3.21).

The fact that the relationship (3.21) can correctly de-
scribe the piezoelectric effect but not the flexoelectric effect,
suggests that Eq. (3.21) and consequently Eq. (3.23) are the
first terms of some expansion based on the spatial dispersion
parameter. In contrast to Eq. (3.19), such an expansion
should not contain contributions of the amplitudes of waves
of multipole moments of unit cells, but contributions made
by amplitudes of the waves of multipole densities of mo-
ments. This expansion can readily be obtained from Eq.
(3.18). The derivation is similar to the derivation of Eq
(3.19) except that now some of the displacements of the
lattice sites [described by Eq. (3.3)] equal to 5n = we’*"
should be attributed to the change innand notin x,,. Conse-
quently, in the Fourier representation this gives rise to a
series which differs from Eq. (3.19) by the replacement

M®™ L (K) > MY .. (K)
_ oMy Kx . (N)
_T( w, p€  P—wy)—1i (Kw) M .

We can see from the above formula that the series now ob-
tained is in terms of the spatial derivatives of multipole den-
sities and its first term corresponds to Eq. (3.23) and, conse-
quently, to Eq. (3.21). In contrast to the series (3.19), a
correct description of the piezoelectric effect can be pro-
vided if we include only the first term, whereas the first two
terms are needed for the correct description of the flexoelec-
tric effect.

4. FLEXOELECTRIC EFFECT IN SPATIALLY HOMOGENEOUS
MATERIALS

In this section we shall consider the response of the po-
larization averaged over a sample to a homogeneous strain
gradient which is independent of time. We shall do this in a
manner similar to that used above to deal with the piezoelec-
tric effect.

We shall find the linear response of the average polar-
ization of a crystal to an inhomogeneous strain distribution
described by the following distortion tensor:

660,[3
€ap (X) = eqp (0) + 5= 2y,

2ap (0) =Vt [ ey (x) 4.
Vv

4.1
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In the vector describing the displacements due to the field of
elastic strains of Eq. (4.1) we can distinguish the contribu-
tion corresponding to strains considered in the elasticity the-
ory approximation from internal displacements u‘"’ and u‘®’
which appear in the first and second orders in respect of the
spatial dispersion and represent the response to a strain and
its gradient'

Fo=tqs(0) Rg+5 a““ RgRy+u@ 4 uP + ... (4.2)
Since the volume-average polarization is equal to the vol-
ume-average density of the dipole moment, we can find the
change in the former from the change in the latter. Conse-
quently, using Egs. (4.2) and (2.7), we obtain: 1) three
terms corresponding to the apparent and true piezoelectric
effects {they are given in Eq. (2.7)]; 2) the terms of interest
to us and associated with the flexoelectric effect:

deqp I Oeqp

F v T e AV QR g, (43)
Qs = V- 2 Q(R)BR, Ry — b,5R?), (4.4)
I = V130 (R) R, (4.5)

Summation in all three formulas is carried out over all the
charges in a crystal, including the surface charges.

In the relationship (4.3), as in the case of the piezoelec-
tric effect, two terms out of three appear in the elasticity
theory approximation {compare with Eq. (2.7)]. However,
in contrast to Eq. (2.7) only the first term from Eq. (4.3)
corresponds to the apparent contribution, whereas the sec-
ond corresponds to the real contribution and is generally not
small. We shall now demonstrate this.

We can separate the apparent (not experimentally ob-
servable)contributions from the true piezoelectric effect if
we compare our theoretical relationships with the crystallo-
physical definitions of the piezoelectric effect. In the case of
the flexoelectric effect the corresponding concept has not yet
been formulated clearly, since the effect has not yet been
studied experimentally. Therefore, we shall first give the de-
finition of the flexoelectric effect based on the same princi-
ples as that on which the definition of the piezoelectric effect
is based. We recall that, according to Nye,** the piezoelectric
effect is the appearance of a polarization in a homogeneously
deformed solid, i.e., it is the appearance of the dipole mo-
ment in a deformed crystal and this moment is zero in the
undeformed state. We shall define the flexoelectric effect as
the appearance of a polarization under the influence of a
strain gradient in a solid whose quadrupole moment is zero
in the undeformed state.®’ We shall show why precisely this
definition of the flexoelectric effect corresponds to the
adopted definition of the piezoelectric effect. We shall do
this by first elucidating why the dipole moement of an unde-
formed crystal is assumed to be zero in the definition of the
piezoelectric effect. This is due to the fact that the macro-
scopic field around and inside such a crystal is zero if it is
under constant external conditions for a sufficiently long
time. A nonzero dipole moment of all the charges in a crys-
tal, including the surface charges (captured by the surface
from air and those on the electrodes, if the latter exist),
would have been in conflict with zero value of the macro-
scopic field. In the definition of the piezoelectric effect it is
important only that the dipole moment should be zero, so
that higher moments are not mentioned. However, it is clear
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that not only the dipole moment of a crystal, but all the
higher multipole moments should be zero. Therefore, the
expression (4.3) for the flexoelectric contribution to the po-
larization includes the average density of the quadrupole
moment of a crystal and the vanishing of the quadrupole
moment of a crystal in its initial state should be reflected in
the definition of the flexoelectric effect.

Now, using the adopted definition and the relationship
(4.3), we shall obtain the final expression for the flexoelec-
tric response. The quantity ¥Q,, is the quadrupole moment
of all the charges in a crystal and, in accordance with the
adopted definition, it should be equated to zero. Therefore,
the first term in Eq. (4.3) vanishes. By analogy with the
piezoelectric effect, we can say that such a term corresponds
to the apparent contribution. The second term in Eq. (4.3)
depends on I [see Eq. (4.5)] and does not vanish, because
the macroscopic field around and inside a crystal is indepen-
dent of I (see, for example, Ref. 29). In the last term in Eq.
(4.3) the summation over all the charges in a crystal can be
replaced (which is accurate to within the order of the ratio of
the volume of the distorted surface region to the total volume
of a crystal) with summation over the part of the crystal
unperturbed by the influence of the surface, exactly in the
same way as was done in the derivation of Eq. (2.11). Using
Eqgs. (4.3) and (3.6) for the flexoelectric response in the
presence of a static strain gradient in a bounded crystal, we
finally obtain
I Bap

2 adryg

)\rﬁ"/é OEBV
ey ars

P = +v1Q, (4.6)

The nature of the contribution corresponding to the
second term in Eq. (4.6) is quite obvious: It is governed by
internal displacements caused by a strain gradient, by analo-
gy with the situation when the piezoelectric effect is gov-
erned by internal displacements caused by the strain itself.
The nature of the contribution corresponding to the first of
Eq. (4.6) is not so obvious. We shall now try to give a quali-
tative interpretation of this term.

We shall begin by considering the physical meaning of
the quantity /. Although a macroscopic field £ created by a
system of charges in a crystal is independent of /, the poten-
tial of this field may depend on /. In fact, according to Eq.
(4.5),1/2is thetrace of a tensor of the average density of the
quadrupole moment which is subtracted from this tensor on
transition from the definition used in Ref. 27, M (' /v [see
Eq. (3.17)], to the traceless definition adopted in Eq. (29),
Q. [see Eq. (4.4)]. If we assume that / corresponds to the
constant density of the trace within a solid, we can readily
show that the potential created by this density is
¢ (x) - !z

= ,—Aﬁ d347 = —2n] g 8 (x—x') dx’.
- "Y Yo AT (3

¢
Hence it follows that the jump of the potential on the surface
of a solid is 27 1. Strictly speaking, we can apply this result to
a crystal only after further justification. However, it is
known that the distribution of the potential obtained for a
continuous distribution of the density, which corresponds to
the tensor @4, is in reasonable agreement with the experi-
mental results.*® We can therefore hope that the proportion-
ality between [ and a discontinuity of the potential on the
surface will remain true also in the case of a discrete distribu-
tion of the charge. Clearly, for a real crystal, such a jump
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occurs at a double electric layer on the atomic scale.”’ This
layer naturally forms as a result of compensation of multi-
pole moments of the original crystal by surface charges.
Since the jump across this double layer is governed primarily
by the structure of the surface, the contribution correspond-
ing to the first term in Eq. (4.6) is of surface origin. The
mechanism responsible for its appearance can be described
as follows. In the case of the original crystal the average
dipole moment of a double layer on the surface is zero. In the
case of an inhomogeneous strain, the layer is displaced to-
gether with the surface and this gives rise to a finite dipole
moment.

We shall conclude this section by comparing the prop-
erties of the piezoelectric and flexoelectric effects. The “gen-
eral” properties of the piezoelectric effects are based on two
observations: the absence of a significant surface charge and
the identity of the relationship between internal displace-
ments and the macroscopic strain in the case of an acoustic
wave and static deformation [compare Egs. (2.9) and
(3.4)]. They can be formulated as follows: 1) the effect ap-
pears in the same way under conditions of homogeneous
static deformation and in the presence of a traveling acoustic
wave; 2) the effect is essentially a bulk phenomenon, i.e.,
when the change in the total polarization of a sample of finite
dimensions is measured, the contribution of the surface is
small because of the relative smallness of the volume of the
distorted surface layer. The flexoelectric effect has none of
these “‘general” properties. In fact, if we compare the expres-
sions for the flexoelectric response under the conditions of
static inhomogeneous deformation of Eq. (4.6) and in the
presence of a traveling acoustic wave of Eq. (3.13), we can
see that there is a correspondence only in the last terms of
these equations. The contribution represented by these
terms will be called the bulk static flexoelectric effect. The
first term in Eq. (3.13) appears only under transient condi-
tions and we shall call it the bulk dynamic flexoelectric ef-
Sect. As pointed out already, the first term in Eq. (4.6) is of
surface origin and, therefore, it is natural to call it the surface
flexoelectric effect. The simplest estimates for the usual insu-
lator indicate that all three contributions are generally of the
same order of magnitude and the coefficient of proportional-
ity between a strain gradient and the polarization is of the
order of e/a for all the contributions (e is the electron
charge). This corresponds to an estimate of the effect ob-
tained in Refs. 1-4.

To complete the picture of the response of the polariza-
tion to a strain gradient we must point out a further effect
that can simulate the flexoelectric response and which is the
surface piezoelectric effect, i.e., the effect which occurs in
the surface layer of a crystal where the lattice is distorted by
the influence of the surface®' and the tensor H of Eq. (2.9) is
not equal to the bulk value. We shall consider how this can
occur in a plane parallel plate cut from a centrosymmetric
crystal with opposite faces which are identical in the crystal-
lophysical sense. It follows from symmetry considerations
(for a detailed discussion of such situations see Ref. 31) that
the components of the surface piezoelectric modulus for the
opposite faces, associated with the normal component of the
polarization, differ in sign. In this situation a change in the
corresponding components of the total dipole moment of a
crystal is proportional to the difference between the strains
of its opposite faces and is independent of its thickness.
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Clearly, such a change in the polarization simulates the flex-
oelectric response and in the case of an ordinary insulator
the coeflicient of proportionality between the change in the
average polarization and the average strain gradient is of the
same order of magnitude as in the case of the true effect.

The piezoelectric effect exhibits an anomaly at a phase
transition in a ferroelectric and this anomaly is proportional
to the lattice susceptibility y. A similar anomaly may be ex-
hibited also by the bulk flexoelectric contributions.?® This
can again be shown by employing the phenomenological de-
scription given in Sec. 6. The surface flexoelectric contribu-
tion does not have an anomaly because the value of I which
describes this anomaly is completely insensitive to the dy-
namic properties of the lattice. The surface piezoelectric ef-
fect may have an anomaly in the case of bulk or surface phase
transitions.®' The temperature dependences of the contribu-
tion of this effect to the response of the polarization of a
ferroelectric crystal to a strain gradient has not been ana-
lyzed in detail. There are simply indications® that this con-
tribution exhibits an anomaly, but in some cases it may be
weaker than the bulk flexoelectric contributions.

5. THERMAL POLARIZATION EFFECT

As pointed out before, the thermal polarization effect
represents a linear response of the polarization to a tempera-
ture gradient. A general description must be made more pre-
cise in order to give an unambiguous definition of the effect.
Firstly, we must exclude trivial nonlocal contributions to the
polarization of an inhomogeneously heated body associated
with the long-range macroscopic electrostatic and elastic
forces, i.e., this response will be considered for zero values of
the macroscopic field E and elastic stresses. Secondly, since
there is a contribution to the effect associated with the in-
homogeneity of elastic deformation,® we shall match the de-
finition of the thermal polarization effect to that of the flex-
oelectric effect, i.e., we shall require that in the case when the
polarization is deduced from the change in the average den-
sity of the dipole moment of a sample, the dipole and quadru-
pole moments of the original crystal are zero.

Asin the case of the effects analyzed earlier, our discus-
sion will be split into two stages: the definition of displace-
ments of lattice sites in the case of inhomogeneous heating
and calculation of the change in the polarization from such
displacements.

Among the displacements defined in the first stage we
can distinguish components of different origin:

(5.1)

rzu(el) +u11)+u12)+u(pyr) +u(t)+u(k)_

The first four contributions can appear in bodies other than
those inhomogeneously heated. They are as follows:

u‘" is the displacement considered in the elasticity the-
ory approximation and generally described by an integral of
the distortion tensor,*? and in the case of a constant gradient
it corresponds to the first two terms of Eq. (2.4) where the
distortion tensor should be found by solving the correspond-
ing problem in the theory of elasticity;

u‘” and u® are the internal displacements responsible
for the piezoelectric and bulk flexoelectric responses, which
are described by Eqs. (2.9) and (3.6);

u‘®" is the internal displacement responsible for the
primary pyroelectric effect and described by Eq. (2.10).

The last two terms in Eq. (5.1) represent the contribu-
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tions made to displacements of the lattice sites solely because
of the spatial inhomogeneity of the temperature distribution.
They are as follows:

u‘® due to a temperature gradient considered in terms
of quasiequilibrium thermodynamics, but after subtraction
of the contribution already included in u‘®;

u® is the internal displacement known as Kinetic and is
due to nonequilibrium of the phonon system.

Determination of the last two contributions is the main
task of a microscopic theory of the thermal polarization ef-
fect. In the case of an ideal weakly anharmonic insulator this
was done by Gurevich and the present author.****

We shall not be interested in details of the description of
the individual contributions to the effect, but we shall simply
classify them,

We shall consider the simplest situation when all the
changein the polarization of an insulator in the presence of a
temperature gradient is due to the thermal polarization ef-
fect, in accordance with the adopted definition: we shall dis-
cuss a mechanically free nonpyroelectric crystal in which a
homogeneous (over the whole sample) temperature gradi-
ent is established® and the macroscopic field E is controlled.

When the problem is formulated in this way, we can
distinguish the surface contributions to the thermal polar-
ization effect (representing the displacements u‘”, u‘" and
u'®") and the bulk contributions (u‘®, u', and u®). We
shall begin with the surface contributions. The elastic displa-
cements u‘” make a contribution to the polarization which
is proportional to the temperature gradient and this contri-
bution is due to the surface flexoelectric effect [first term in
Eq. (4.6)]. In the case of a nonpyroelectric crystal neither
u‘® nor u'™” make a bulk contribution to the polarization.
However, the surface piezoelectric effect still simulates the
flexoelectric response, which ensures a corresponding sur-
face contribution to the thermal polarization effect. The sur-
face pyroelectric effect can also simulate the response of the
polarization to a temperature gradient iri the same way as the
surface piezoelectric effect simulates the flexoelectric effect
(as discussed at the end of Sec. 4).

One of the bulk contributions corresponding to u‘® re-
duces, like the surface contributions, to the effects already
considered: It is the contribution of the bulk flexoelectric
effect due to inhomogeneous strains created by a tempera-
ture gradient. The bulk contributions to the thermal polar-
ization effects which cannot be reduced to other effects ap-
pear because of the displacements u'” and u®, The
contribution due to the displacement u'*’ is known as kinet-
ic because it appears only if an allowance is made for non-
equilibrium in a crystal. The combination of the contribu-
tions due to displacements u' and u™ is known as the
thermodynamic contribution, because it can be deduced
within the framework of quasiequilibrium thermodynamics.

We can gain an idea of the relationship between the
contributions by obtaining order-of-magnitude estimates
and considering the problem of feasibility of their separation
in experiments. We shall confine our attention to high tem-
peratures (which are higher than or of the order of the De-
bye temperatures) when the thermal polarization effect is
large.

From the experimental point of view the least favorable
situation is that in an ordinary centrosymmetric insulator.
The simplest estimates indicate that in this case all the con-
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tributions to the effect are generally of the same order of
magnitude and the effect is very small (the coefficient of
proportionality between the polarization and the tempera-
ture gradient, known as the thermal polarization coefficient,
isof theorder of k /e, where k 5 is the Boltzmann constant ).

In the case of a noncentrosymmetric nonferroelectric
crystal the ability to separate the contributions depends on
the intensity of the phonon—impurity scattering.® If this scat-
tering can be ignored, then all the contributions are of the
same order of magnitude exactly as in the preceding case. It
was shown by Gurevich® that enhancement of the phonon—
impurity scattering increases the kinetic contribution, which
reaches its maximum at an approximately 1% concentration
of defects, and then decreases on further increase in this con-
centration. The other contributions are generally dependent
on the concentration of defects. Therefore, for the optimal
concentration of defects, the kinetic contribution may ex-
ceed all the others by one or two orders of magnitude.® This
situation is convenient for the determination of the effect
(which is then large) and also from the point of view of
selection of the most interesting of the contributions which is
the kinetic one. However, there is a difficulty involving
maintenance of a homogeneous temperature gradient with a
high degree of precision so as to avoid the influence of a
strong background signal due to the tertiary pyroelectric ef-
fect.”’

Convenient materials for the investigation of the ther-
mal polarization effect are ferroelectrics firstly because of
the large magnitude of the effect and, secondly, because it is
possible to separate effectively the surface and bulk contri-
butions. This is demonstrated by the following consider-
ations. The bulk contributions to the effect have an anomaly
at a phase transition”*'! and are approximately a factor of y
(y is the lattice susceptibility ) higher than for ordinary insu-
lators. The contribution associated with the surface flexo-
electric effect is unimportant in ferroelectrics since, as point-
ed out above, the surface flexoelectric effect has no anoma-
lies in the case of ferroelectrics. The question of the anomaly
of the contributions to the thermal polarization effect, which
is due to the surface pyroelectric and piezoelectric effects,
has not been studied systematically, but as shown by Strukov
et al.*® these contributions are approximately y'? times
greater than the bulk contributions in the case of a uniaxial
ferroelectric.

6. PHENOMENOLOGICAL DESCRIPTION OF BULK
CONTRIBUTIONS TO FLEXOELECTRIC AND THERMAL
POLARIZATION EFFECTS

The bulk static flexoelectric effect can be described by
analogy with the piezoelectric effect using a term in the
expression for the free energy density first proposed by
Kogan’:

0‘~’r3
faprsPa Frrret

(6.1)

The bulk dynamic flexoelectric effect (representing the dif-
ference between the bulk contributions to the effect in the
case of a propagating acoustic wave and a static inhomogen-
eous strain) cannot obviously be described by introducing
new terms in the expansion of the free energy. However,

such a description can be provided if we include the term
Hopars (6.2)
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in the phenomenological expression for the kinetic energy
density. In fact, using the standard macroscopic density of a
Lagrangian, to which the terms (6.1) and (6.2) are added,
we obtain the equation of motion for the polarization
ik d .
% Pp=Eq— fapys T;Iﬁ“—uaﬁrﬁv (6.3)
which corresponds to the above microscopic description of
the bulk flexoelectric effect [compare Eq. (3.13) and
(4.6)]. A comparison of Egs. (6.3) and (3.13) and an
allowance for Eq. (3.5) gives, in the approximation of rigid
ions, the relationship between the phenomenological tensors
fand /i and the quantities describing the microscopic proper-
ties of the lattice:

- Bvd
Xavaﬂ?é = —V iopNa. s

KapMpy = — v“Q],GZ, p*

As shown in Ref. 28, the tensor u becomes particularly sim-
ple in the case of a diatomic crystal with masses and charges
of the ions m,, Q, and m,, — Q, respectively:

Sop (my— my)

Pap = 20

In the case of this phenomenological description we
may encounter the problem how to relate the phenomeno-
logical off-diagonal kinetic energy density to the diagonal
form of the kinetic energy usually employed in microscopic
calculations. We shall explain this contradiction as follows.
The Jacobi coordinates are usually employed in microscopic
calculations (see, for example, Ref. 26) and then the coordi-
nate of the center of gravity of a unit cell considered in the
long-wavelength limit is identified with the acoustic dis-
placement vector r. When this definition is used, the micro-
scopic density of the potential energy of a crystal, considered
as a function of the normal phonon coordinates P and of the
spatial derivatives of P and r, depends on the distribution of
the masses of atoms in a unit cell. Clearly, the definition of
the potential energy dependent on the distribution of these
masses is incorrect. However, this problem is not encoun-
tered in lower orders in respect of the spatial dispersion: the
elastic constants and piezoelectric moduli exhibited in the
classical approximation using this potential energy are inde-
pendent of the distribution of masses. However, if we calcu-
late the flexoelectric response, this incorrectness is manifest-
ed because the static flexoelectric coefficient is found to
depend on the distribution of masses in a unit cell. Therefore,
in describing the flexoelectric effect we can no longer identi-
fy r with the position of the center of gravity of a unit cell and
we have to redefine r so that the physically meaningless de-
pendence of the static coefficient on the distribution of
masses disappears. Clearly, such a redefinition generally
makes the kinetic energy off-diagonal. In this situation we
can quite justifiably accept off-diagonal terms in the phe-
nomenological expression for the kinetic energy density.

In the phenomenological description of the bulk ther-
mal polarization effect we shall, for the sake of simplicity,
consider only a static temperature gradient.

Historically the first to predict a kinetic contribution to
the thermal polarization effect was Marvan’ and he used a
phenomenological approach. Marvan’ obtained the rate of
increase of the entropy density S in the form
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where J is the heat flux. Then, he used the Onsager formal-
ism to write down the phenomenological relationships satis-
fying the principle of symmetry of the transport coefficients:

oT

—Ja: _MC(B 615 + Tbaﬁl.)ﬂi (65)
1 oT hd
E,—yapPp=—bg, a—xﬂ-{‘ vapPg. (6.6)

We can readily see that the relationship (6.6) does indeed
describe the thermal polarization effect, i.e., the appearance
of a polarization proportional to a temperature gradient
when the macroscopic field is zero. The relationship (6.5)
describes an effect conjugate (in accordance with Onsager)
to the thermal polarization, i.e., the existence of a heat flux
proportional to the rate of change of the polarization.

The thermodynamic contribution to the thermal polar-
ization effect could naturally be described in terms of a qua-
siequilibrium free energy density, i.e., the density of that free
energy which admits the possibility of a coordinate depen-
dence of the temperature of a sample. Thus, the flexoelectric
contribution to the effect can be described'! by introducing a
term of the (6.1) type into the expansion for the free energy
density. The “nonflexoelectric part of the thermodynamic
contribution, corresponding to terms u‘” in Eq. (5.1), can
be described only if we include in this expansion a term of the
type35
Py

org *

8ap (T)

We must draw attention to the fact that this term contributes
to the equation of motion of the polarization only in the case
of an inhomogeneous temperature distribution in a sample,
because otherwise it transforms into a surface integral. On
the whole, the thermodynamic contribution to the effect can
be written in the form

. 9gap 7 oT
xaﬂpﬂ:[(faﬂvb*zfab‘.‘ﬁ) a\‘6+ 6; :] drg ’

(6.7)
where & is the thermal expansion tensor. In writing down the
first term in Eq. (6.7) we used the familiar relationship*
between the gradients of the distortion and strain tensors.

We shall conclude this section by drawing attention to
the special role of the kinetic contribution to the effect: It
corresponds to an inverse effect (in the sense of the Onsager
relationships), because a nondissipative heat flux propor-
tional to the rate of change of the polarization appears,
whereas the other contributions have no inverse effects. One
of the manifestations of the inverse thermal polarization ef-
fect is the appearance of an oscillatory (on the time scale)
difference between the temperatures at the opposite faces of
a crystal when it is subjected to an alternating homogeneous
electric field. Near a phase transition in a ferroelectric this
effect may be quite easily noticeable. For example, if an elec-
tric field of amplitude 1 kV/cm and of 1 MHz frequency is
applied to a crystal with a permittivity of the order of 10%, the
simplest estimates indicate that we can expect an amplitude
of a temperature gradient of the order of 0.1 K/cm.

7. CONCLUSIONS

We analyzed the pyroelectric, piezoelectric, and ther-
mal polarization effects by considering first a spatially ho-
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mogeneous material and a sample of finite dimensions, and
also the piezoelectric and flexoelectric effects in the field of
an acoustic wave (using the method of long wavelengths).

The following are the most interesting features from the
methodological point of view.

In Sec. 3 itis shown how the use of the widely employed
definitions of the polarization described by Egs. (3.14) and
(3.21) may give seriously wrong results in an analysis of the
piezoelectric and flexoelectric effects by the method of long
wavelengths.

It is shown that in calculating the response of the polar-
ization of a crystal of finite dimensions to a homogeneous
change in temperature, a temperature gradient, a homogen-
eous strain, or a strain gradient, we encounter two classes of
terms: 1) the terms dependent on the microscopic character-
istic of the crystal lattice, particularly on the matrix of its
force constants: 2) the terms dependent only on the distor-
tion tensor and various moments of the distribution of the
charge of the whole unperturbed crystal, including the di-
pole moment, the quadrupole moment defined in a trace-free
manner [see Eq. (4.4)], and the quantity 7 [see Eq. (4.5)]
proportional to the trace of the quadrupole moment if it is
defined in a manner which includes a trace. The first class of
terms represents the bulk contributions to the effect and the
second describes the surface or apparent effects which are
not observed in the usual measurements. The influence of
the apparent effects can be avoided by following rigorously
the crystallophysical definitions of the effect. In the case of
the pyroelectric and piezoelectric effects it follows from the
definitions given by Nye®* that we have to ensure that the
dipole moment of a crystal should be zero before the applica-
tion of thermal or mechanical perturbations. In the case of
the flexoelectric and thermal polarization effects it is shown
above that a reasonable definition should include zero values
of the dipole and quadrupole moments of the original crys-
tal.

The conclusions reached on the apparent contributions
to the pyroelectric and piezoelectric effects are fundamental-
ly different from those given by Born and Huang'* and by
Martin.'® The authors of these theories considered contribu-
tions identical with the apparent contributions of Eq. (2.7)
as the normal bulk components. We shall show why in our
opinion these conclusions of Refs. 14 and 15 are incorrect.
The arguments for the cases of the pyroelectric and piezo-
electric effects are similar, so that we shall consider only the
latter.

The terms which are of the same form as the first two
terms in Eq. (2.7),

eqsPh— Paegg, (7.1)

are written in Refs. 14 and 15 in the form of bulk contribu-
tions to the piezoelectric effect. It is therefore assumed that
P in the above formula is the spontaneous polarization of a
pyroelectric. A clear physical interpretation of these terms is
given in Refs. 14 and 15: the former describes the change in
the dipole moment of a unit cell because of its deformation
within the framework of the elasticity theory, whereas the
latter is due to the change in the unit cell volume.

The contribution given by Eq. (7.1) is obtained in Ref.
15 as a result of a microscopic calculation almost identical
(in our approximation) to the derivation of Eq. (2.7). The
only difference is that an additional modification is made in
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FIG. S. a) Diatomic chain (configuration a); the circle identifies a nega-
tive line. b) Hypothetical state of a diatomic chain with zero density of the
dipole moment (configuration b). ¢), d) Two methods (out of many) of
obtaining the configuration a from the configuration b.

Ref. 15; the average specific moment of the whole crystal,
given by Eq. (2.8), is replaced by the specific dipole moment
of a unit cell. However, this replacement is subject to uncon-
trolled indeterminacy. In fact, after the volume of a crystal is
split into whole unit cells, there remains in general a surface
macroscopically charged layer, whose contribution to the
average moment of a crystal is significant. This additional
modification is the source of an error in Ref. 15: as shown in
Sec. 2, the sum in Eq. (2.8) according to the definition of the
piezoelectric effect should vanish, whereas in Ref. 15 this
sum is replaced by a generally nonzero quantity.

In their book Born and Huang'* postulated the exis-
tence of a constant density of the dipole moment P° in a
pyroelectric when the macroscopic electric field and the me-
chanical stress are zero. Then, the term of Eq. (7.1) was
obtained as the change in the density of the dipole moment of
a unit element of volume in the case of elastic deformation
and was interpreted as the bulk contribution to the piezoe-
lectric effect. However, the postulate adopted in Ref. 14 that
it is possible to introduce a unique constant density of the
dipole moment for an unbounded crystal is not satisfied. We
shall now demonstrate this.

We shall use the simplest example of a linear diatomic
chain to demonstrate indeterminacy of the dipole moment
density P°. Asshown in Fig. 5, a chain of this kind consists of
two “‘subchains” of charges of opposite signs distributed
with a period /: the relative shift of the “subchains” is a. First
of all, we note that this indeterminacy becomes directly self-
evident if we define the density of the dipole moment as the
ratio of the dipole moment of a unit cell to its volume (or
length). It seems to us methodologically interesting to show
how this indeterminacy can be demonstrated also without
using the concept of a unit cell.

A method described below can be employed to show
that such a chain with fixed values of @, /, and Q (configura-
tion a) can have a linear dipole moment density equal to any
real number. For the sake of simplicity, we shall show that P°
can assume the values Q[ — (a//) + n], where n is an arbi-
trary integer. We shall adopt the following program: 1) we
shall vary a and select the state of the chain to which we can
ascribe in a natural manner zero value of P% 2) we shall
determine the variations P° and §P° for an infinitely small
change in a; 3) we shall find the value of P° for any state by
integration of §P° from the state with P° =0 and we shall
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show that the indeterminacy of P° follows from the indeter-
minacy of the integration path.

1) It is natural to select the state of the lattice with P°

= 0 to be a hypothetical state (configuration &) for which
the point charges of the opposite signs coincide (Fig. 5b).

2) The change in the average density of the dipole mo-
ment 5F° obtained for a fixed value of / and an infinitesimally
small change da in a gives

61)0:—@_ (1.2)
The relationship (7.2) is found by calculating the change in
the average density of a dipole moment of any section of a
chain of length>/ (including the case of a crystal which is
not electrically neutral as a whole). Therefore, in the deriva-
tion of Eq. (7.2) there is no need to split a chain into electri-
cally neutral cells.

3) The method for obtaining configuration @ from con-
figuration b is not the only one possible. Two such methods
are shown in Figs. 5c and 5d. Integration of Eq. (7.2) in
accordance with these methods readily shows that the first
method gives ° = — Qa/land thesecond P° = Q(/ — a)/l.
Obviously, there is an infinitely large number of methods of
obtaining the configuration @ from b. It corresponds to the
set of P° mentioned above.

This program can be easily generalized to the three-
dimensional case and the result is still the same: it is not
possible to introduce unambiguously the dipole moment
density for an infinite medium.

In the case of a bounded crystal the average density of
the dipole moment has a unique meaning, but it depends on
how the crystal is cut.?® Therefore, clearly the correct inter-
pretation of the terms in Eq. (7.1) containing the quantity P
indeterminate for an unbounded medium requires a study of
a bounded sample. This was not done in Ref. 14 and in the
opinion of the present author this is the reason for the incor-
rect interpretation of the terms in Eq. (7.1).

It should be noted that the question of existence of the
contributions given by Eq. (7.1) to the piezoelectric effect in
a pyroelectric crystal is not only of methodological interest,
but also because, according to Ref. 15, the contribution of
Eq.(7.1), if it exists, should be manifested only for a spatial-
ly homogeneous material and, therefore, could be deduced
from the difference between the piezoelectric moduli defined
for a homogeneous material and the moduli in the presence
of a traveling acoustic wave.

After illustrating the impossibility of an unambiguous
introduction of the dipole moment density in the case of un-
bounded crystals, we can naturally ask the question what is
the spontaneous polarization of a ferroelectric which,
among the infinite number of the values of the dipole mo-
ment density, should be ascribed to a given structure. The
answer can be obtained by comparing the above discussion
with the description of the process of appearance of sponta-
neous polarization. Its value is determined by the “method”
of transition from a nonpolar state in the paraelectric phase
to a given ferroelectric state. Since this approach for a given
phase transition is always the same, there is no indetermin-
acy and the spontaneous polarization has a quite definite
value. It is important to stress that the spontaneous polariza-
tion is strictly speaking a characteristic not of the structure
but of the process of formation of this structure from a state
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taken as nonpolar. This circumstance is important in theo-
retical calculations of spontaneous polarization. It was
pointed out by Martin®’ that knowledge of the distribution
of the electron density in a unit cell is generally insufficient
for calculation of the spontaneous polarization, because we
need to know also how the process of the redistribution of
the charge takes place.”” The properties of spontaneous po-
larization as a characteristic of the process of formation of a
polar state are manifested also when direct measurements
are made: in the course of pyroelectric measurements a crys-
tal is converted to a nonpolar state, whereas in the case of
measurements involving polarization reversal in a field, a
crystal only passes through a nonpolar state.

Our results on the flexoelectric effect differ greatly from
the results of Ref. 4. We shall not discuss their treatment in
detail, but simply point out the reasons for the discrepancy.
As shown in Sec. 4, a correct analysis of the flexoelectric
effect requires a careful separation of the surface, bulk, and
apparent contributions. Such a separation was not made in
Ref. 4 and, because of the implicit approximations, only the
surface and apparent effects were included, but they were
regarded as bulk contributions. In such situations it would
be natural to expect the results of Ref. 4 to disagree with
those given above. We can show that the bulk contributions
are not analyzed in Ref. 4 by the following simple means.
According to Ref. 4, the flexoelectric tensor is proportional
to a linear combination of the quadrupole moment and of the
quantity

2 = Z Q,xp.
P

We can readily show that these quantities generally depend
on the method of selection of a unit cell. For example, in the
case of the cell shown in Fig. 1, the sign of z changes from the
cell described by 1 to that labeled with 2, whereas the qua-
drupole moment is zero in both cases. Therefore, the flexo-
electric tensor depends on the method used to select the unit
cell. Clearly, this flexoelectric tensor cannot describe the
bulk effect.

The author is grateful to A. F. Andreev, I. V. Abaren-
kov, and 1. I. Tupitsyn for discussing a number of topics
considered above, and to V. L. Gurevich and O. E. Kvyat-
kovskii for reading the manuscript and valuable comments.
The author is also grateful to B.A. Strukov and S.S. Krotov
for an opportunity to read their papers before publication.

DIn reality, there are also additional rhombohedral distortions of the ger-
manium and tellurium sublattices in the ferroelectric phase, but these
distortions are not of fundamental importance for our analysis. There-
fore, for simplicity we assume in what follows that in the ferroelectric
phase the GeTe-type lattice is free of such distortions.

2'We note that such a replacement is equivalent to a change in the method
of selection of the unit cell. This makes it possible to follow the analogy
of the paradox formulated in the introduction and the apparent pyro-
electric contribution.

M'Here and later we shall assume that repeated indices imply summation.

“Since we are interested in the response corresponding to E = 0, we shall
use a matrix of force constants from which the contribution of the mac-
roscopic electric field is excluded.

>)We note that in this solution the transverse components of the polariza-
tion are defined in the usual manner (see, for example, Ref. 27).

©'Here and later we shall define the quadrupole moment as a trace-free
tensor in the normalization corresponding to the definition of Q5 (Ref.
29). This definition differs from that used in the preceding section. How-
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ever, this should not give rise to any misunderstandings, because we
shall use below only one definition and it corresponds to @,,,.

"t should be noted that the constancy of a jump for any part of the surface
follows also from the fact that the macroscopic field is zero around and
inside the original crystal.

® As is known from the theory of elasticity, * a homogeneous temperature
gradient in a free crystal does not give rise to mechanical stresses.

1t should be noted that this property, mentioned by Martin, is associated
not with the discrete indeterminacy demonstrated above, but with the
continuous indeterminacy mentioned earlier. This can be easily demon-
strated. It can be done by allowing for the possibility of transfer of frac-
tional parts of @, for example, 0.2Q by the method ¢ and 0.8Q by the
method d.
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