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The present state of the general theory of response functions of material media, describing the
universal properties of these functions that characterize all types of medium, is surveyed. Topics
covered include recent results on the range of admissible values of static permeability, the form of
the Landau functional for the electrodynamic ordering of a medium, and the electrodynamics of a
medium interacting with a magnetic monopole. Applications to high-temperature
superconductivity, anomalous diamagnetism, and monopole detection are discussed.

CONTENTS

1. Introduction 575
2. Maxwell equations and constitutive relations 576
3. Electromagnetic response functions 577
4. Causality and dispersion relations 578
5. Imaginary part of response functions 580
6. Limits of admissible values of the static permeabilities of a medium 581
7. Properties of generalized susceptibilities 582
8. Stability of a medium and Landau functional 583
9. Stability of a medium and Landau functional (thermodynamic approach) ...584

10. Electrodynamics of the magnetic monopole 585
References 587

1. INTRODUCTION

Response functions describing the reaction of a materi-
al medium to an external electromagnetic field play a funda-
mental part in the formalism of macroscopic electrodynam-
ics. They are intimately related to the basic electrodynamic
parameters of a medium, namely, its permittivity and mag-
netic permeability (see Refs. 1 and 2), and serve as a concen-
trated source of information on the effect of interactions
with the medium and on the structure and properties of the
medium itself. It is precisely in the character of the response
functions (above all, their dependence on frequency &> and
wave vector k of the external field") that the individual
properties of the medium are found to manifest themselves.

On the other hand, response functions have a number of
general properties, common to all media. They follow from
universal relationships (dispersion relations, sum rules, and
several inequalities) that are derived directly from the gen-
eral requirements of causality, stability of the medium, its
symmetry properties, and so on, without the use of specific
models of the medium. Such relationships are important if
only because they are among the relatively small number of
exact results of many-body theory. Their importance has
increased particularly in the last few years since it has be-
come clear that the solution of many problems that are of
current interest relies precisely on these general properties of
response functions. At the same time, there is now little
doubt that many of the propositions referring to these prop-
erties, that are widely scattered throughout the literature,
are actually inexact or definitely incorrect.

The examples given below should illustrate the prob-
lems themselves as well as their connection with the general

properties of response functions and the inconsistencies and
contradictions that ensue from statements made in the liter-
ature.

(1) The problem of high-temperature superconductivi-
ty is how to produce a radical increase in the critical tem-
perature of superconductors. The essential point here is that
the effective static interaction between charges of the same
sign in a medium must be attractive and not repulsive, as it is
in vacuum. The terms of the longitudinal permittivity £(eo,
k), this means that subject to certain restrictions, we must
havec(0,k) <0 (for large &).7~9 However, this inequality is
not consistent with the widely held view that £(0, k) > 1 for
media in equilibrium. Were the latter condition found to be
true, it would mean that the threshold for the longitudinal
instability of the medium, £(0, k) =0, could not be reached,
i.e., the medium would not crystallize, and so on.

(2) The question of anomalous diamagnetism has to do
with the existence of nonsuperconducting media with an
anomalously high negative magnetic susceptibility (a possi-
ble example is an ordered medium with a spontaneous cur-
rent in the ground state; see Refs. 10 and 11 in this connec-
tion). However, standard analysis, based on the Landau
theory12 of phase transitions, obviates this possibility: the
corresponding energy functional

S = M2 [2 (u. (0, k) - I)]-1 + |W4 - M-H
leads to a response that is paramagnetic in character [M is
the magnetization, related directly to the spontaneous cur-
rent, H is the external magnetic field, and fi(co, k) is the
magnetic permeability of the medium ]. Moreover, the func-
tional itself must describe not only the ordering process, but
also small magnetization fluctuations in the unordered me-
dium, which is in clear conflict with the actual existence of
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diamagnetic media, e.g., diamagnetic atomic gases, because
the condition for the stability of a medium against the
growth of such fluctuations is/z(0, k) > 1.

(3) The detection of the magnetic monopole is attract-
ing considerable attention because the discovery of this par-
ticle, with the required properties, would confirm the valid-
ity of the strategy adopted in the unified theory of
fundamental interactions. The detection of the jump in the
magnetic flux that occurs as a result of the Meissner effect
when the monopole crosses a superconducting ring is par-
ticularly relevant in this context. Direct dynamic analysis
leads to the conclusion that this jump should occur. How-
ever, the Meissner effect does not appear within the frame-
work of the generally accepted scheme for the macroscopic
electrodynamics of the monopole. The point is that, accord-
ing to the equation div B = 477/5, where B is the magnetic
induction and p the magnetic charge density, the longitudi-
nal field of the monopole does not "feel" the medium
(whereas the transverse field vanishes, as in ordinary elec-
trodynamics, together with the source velocity).

The above three examples (to be examined in greater
detail in Sections 6, 8, and 10, respectively) already illustrate
the necessity for a systematic and consistent analysis of the
general properties of response functions that would answer
questions relating to the range of admissible values of the
static permeability of the medium, the form of the functional
of the Landau theory in the language of response functions,
and the response functions in monopole electrodynamics.
This analysis is given below.21 In relation to the above prob-
lems, it removes all the above contradictions and answers the
associated questions.

In the analysis given below, we shall confine our atten-
tion to the important special case of unordered, homogen-
eous, isotropic, and nongyrotropic equilibrium media,
whose properties are invariant under translations and reflec-
tions of space and time, and also under rotations (in the rest
frame of the medium as a whole3'). Perturbations of the me-
dium are assumed small (linear electrodynamics). The me-
dium is taken to be nonrelativistic to the extent to which this
is consistent with the existence of magnetism.

The above restrictions are particularly convenient be-
cause they enable us to transform to the Fourier components
of physical quantities. For a real quantity A(t, x),

A* (co, k) = A (-co, -k). (1.1)

We now introduce the longitudinal and transverse compo-
nents (subscripts / and t, respectively) of the vector quantity
V:

V, =k(k 'V)Jfc V4 = V - V,. (1.2)

The longitudinal and transverse components of physical
quantities, and the equations considered below, will often be
described as "electric" or "magnetic" with all their obvious
imprecision. Operators corresponding to physical quantities
will be taken in the Heisenberg representation. Accordingly,
the expectation value of an operator A will be

(A > = Sp (RA), (1.3)

where R is the density matrix of the medium with the inter-
action turned off. The expectation value (1.3) is the result of
statistical and quantum-mechanical averaging without

smoothing over a small volume (see footnote 1).
Since we shall not mention the laws of Coulomb and

Ampere, we shall use Heaviside units, which means that the
factor 4-ir will disappear from the Maxwell equations (to
transfer back to the usual units, the square of the charge in
the expressions for observed quantities must be multiplied
by this factor). The velocity of light, the Boltzmann and
Planck constants, and the normalizing volume are all as-
sumed equal to unity. The symbol d3k means dk/(2?r)3.

2. MAXWELL EQUATIONS AND CONSTITUTIVE RELATIONS

The electromagnetic field in a medium is described by
the electric field E and magnetic induction B, i.e., by the
average values of the microscopic electric and magnetic
fields. The vectors E and B have a direct physical meaning:
they appear in the Lorentz force e(E + v X B ) acting on a
classical test particle. They also satisfy the Maxwell equa-
tions

curl B - E = j = j* + Ji (a),

div E = p = p' + pi (b),

curl E + B = 0 (c),

d ivB = 0 (d), (2.1)

where p, j are the total charge and current densities (the
indices e and / label external quantities and those induced in
the medium by the external fields, respectively). They are all
related by the continuity equations p + div j = 0, ..., which
enable us to ignore the longitudinal current components [ see
(1.2)].

Instead of p', j', it is common to introduce the electric
induction D and magnetic field H, so that (2. la) and (2.lb)
can be rewritten in the form

curl H - D = j« (a), div D = pe (b). (2.2)

In contrast to E and B, the quantities D and H do not have
direct physical meaning (this does not apply to D, and the
static H) because the transformation D-^D + curlN,
H->H + N with arbitrary N does not alter the form of
(2.2).l3

The Maxwell equations contain a number of redundant
unknowns and must be complemented with the constitutive
relations that contain information about individual proper-
ties of the medium. The latter usually relate/?1, j' (or D, H)
and the fields E, B. The structure of these constitutive rela-
tions is determined by the symmetry properties of the medi-
um (see Section 1). In linear electrodynamics,

p« = (l —e)divE, ji = (e-l)E,+ (l-^-) curl B
v u '

(2.3)

or

D^eE,, Dt = BE,, H = 4rB. (2.4)
(i

The quantities e, e, and fi that parametrize these equa-
tions are, in general, integral operators acting in space and
time (in the Fourier components, they are functions of co and
k). Only two of them are independent. They correspond to
the two types of field in the medium, i.e., the longitudinal
field E, and one [because of the strict relation (2. Ic) ] trans-
verse field E, or B. The quantities e and/a have no indepen-
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dent meaning and can be varied arbitrarily provided the fol-
lowing quantity (normalized to unity in the absence of the
medium) remains constant:

'_co2)-i. (2.5)

This follows from the fact that it is possible to regroup the
terms in the second relation in (2.3) [see (2.1c)], or from
the above-mentioned abiguity of H and D.

Accordingly, there is a number of equivalent forms of
constitutive relations. The two most widely used correspond
to the choice

and

(2.6)

(2.7)

where e is the usual (longitudinal) permittivity, e, is the
transverse permittivity, and /u the magnetic permeability.
All such constitutive relations contain the single longitudi-
nal parameter of the medium e and differ by the form of the
transverse parameter [for (2.6), this is/z and, for (2.1),et ].

The most natural and convenient transverse parameter
of the medium is the quantity given by (2.5). It is related to/*
and e, by

—co2e = &2—co2e(, (2.8)

and is equal to l//uforca — Oandto£, for6>-> oo. In contrast
to e,, the quantity r/ does not have a nonphysical singularity
at co = 0 (see Ref. 5) and, in contrast to //, it does have a
direct physical meaning at all frequencies.14

The parameters e and t] of the medium have associated
with them a particular form of constitutive equations, relat-
ing/?' , j' not to the fields E, B, as before, but to the external
sources:

/ A \ • I \ \ _

> • (2.9)

From the point of view of subsequent applications, it is con-
venient to reduce these equations to a different form by in-
troducing the potential cp, A, denned by

E — Vtp — A, B = curl A,

which ensure that (2.1c) and (2. Id) become identities. If we
adopt the gauge div A = 0, we can replace (2. la) and (2.1b)
with the following equations for the potentials:

A(f = —p, DA =; j(.

The analogous equations

(2.10)

= j* (2.10')

determine the external potentials q?, Ae, produced by the
same external sources in vacuum. The constitutive relations
can be expressed in terms of these potentials [see (2.9) ]

e(co. k) '
(fe2 —oi 2 )A e

1 (w, k)
(2.11)

which are distinguished by simplicity, lack of ambiguity, and
clear physical meaning. Another important advantage of
these expressions is discussed in Section 3.4)

3. ELECTROMAGNETIC RESPONSE FUNCTIONS

The constitutive relations were introduced above as
equations complementing the Maxwell equations, so that to-
gether they form a closed system. Their physical meaning,
on the other hand, is that they describe the reaction of the
medium to an external electromagnetic field. This fact en-
ables us to expose many general properties of the quantities
that appear in the constitutive relations.

Suppose that the medium has been subjected to a weak
external influence 8$(t, x) with the result that a parameter
21 of the medium acquires the increment

621 (t, x) = \dt' dx' 3}(£ — t', x — x') 63(f, x'), (3.1)

or, in terms of the Fourier components,

621 (co, k) = 9J (co, k) 63(co, k). (3.2)

In words:
(result of influence) = (response function) X (in-

fluence)
The constitutive relations introduced above have the same
form (for a weak influence, they can be written as relation-
ships between variations51).

For reasons that will become clear later, we subject the
quantities in (3.1) and (3.2) to the following conditions:

A. The influence 3 must be completely arbitrary; it
must be capable of assuming any predetermined value, and
its source must not experience the reaction of the medium.

B. The interaction between the external influence and
the medium must be described by

(3.3)

where 21 is an operator that depends on the dynamic vari-
ables of the medium [the quantity 91 in (3.1) and (3.2) is
equal to (21) ], and 3 is a given quantity.

Condition A does not predetermine the dynamic mean-
ing of the quantities 21 and 3>> but the stronger condition B
gives them the meaning of generalized coordinate and force,
respectively. From now on, we shall use the phrase "re-
sponse function" to describe the quantity 9t in (3.1) and
(3.2) that satisfies at least condition A. A response function
satisfying condition B can be referred to as the generalized
susceptibility, in the absence of a better name (usually, the
word "susceptibility" is used for the part of the response
function that vanishes as co — oo ).

Let us now explain which particular parameters of the
medium that appear in the constitutive relations can be re-
garded as the response functions and generalized susceptibi-
lities. In any case, condition A is satisfied by influences due
to external sources p f , j°, whose magnitudes are quite arbi-
trary. This enables us to identify the constitutive relations
(2.9) and (2.11) with (3.1) and (3.2).6) If, on the other
hand, (3.3) is taken to be the well-known Hamiltonian for
the interaction between the medium and external fields

e- j , -<5Ae) (3.4)

(p and j are, respectively, the total charge and total current
density operators), the quantities that appear in the consti-
tutive relation (2.11) must also satisfy condition B. This
enables us to write

3=-V, (3.5)
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where the quantities ft may be looked upon as the response
functions and generalized susceptibilities.

It is significant that, in contrast to the external sources,
the total current and charge densities/0, j cannot be regarded
as arbitrary and given in advance because they contain a
contribution due to the medium itself. This prevents us from
inverting the constitutive relations (2.11), reading them
from right to left, or considering e and 77 themselves as the
response functions. However, it is important to note that this
conclusion is not valid in the special case of a spatially homo-
geneous influence with k = 0 (or, more precisely, with
k~ l/L, where L is a macroscopically large dimension of a
specimen of the medium).

Let us then turn to the question of the physical imple-
mentation of the influences acting on the medium. The in-
fluences denned by (3.5) can be readily produced by placing
a point charge, or a circuit carrying a given current, in the
interior of the medium, and selecting Fourier components
with arbitrary k (Fig. 1). On the other hand, when k = 0, we
can insert the specimen of the medium into a capacitor with
given charge on the plates, or inside a solenoid with given
current flowing through it (Fig. 2). The same devices can be
used to produce influences due to total charge or current.
The first of these influences is produced when the capacitor
is connected across a battery that maintains a given potential
difference or, according to (2.10), a given total charge den-
sity. The second requires the use of a superconducting sole-
noid (more precisely, a superconducting cylinder with azi-
muthal currents) that produces a quantized magnetic flux,
equal to the line integral of the potential A over the perimeter
of the aperture in the superconductor. In this device, the
potential A has a given value or, according to (2.10), the
total current density has a given value. External charges
flowing into the plates or away from them, or external cur-
rents flowing around the aperture in the semiconductor
(Fig. 3) then play the part of 21 (the result of the influence).

We emphasize that it is only for k = 0 that the devices
stabilizing the values ofp, j (battery or superconductor) can
be taken outside the medium without distorting its structure
and properties. However, when k/0, such devices must be
introduced into the medium, and the necessary number of
them increases with increasing k, so that the new medium is
rather different from the original. However, the properties
of the medium will be distorted even if we use a specimen
with small linear dimensions and large enough fc~- l/L (the
distortion being due to surface effects whose contribution
increases with k).

Of course, the influences due to p, j that we have dis-
cussed must satisfy only condition A: external sources
playing the part of 21 cannot be described by an operator [see
(3.3) ] and their dependence on the state of the medium ap-
pears only at the level of expectation values due to boundary

FIG. 2.

conditions on the surface of the specimen. It follows that, for
the purposes of identification with (3.1) and (3.2), we can
use the constitutive relations (2.9) in the form pe =ep,
£ = Wt • This yields

= e(<o, 0), 0). (3.6)

Here, the quantities ft have the meaning of only the response
functions, but not of the generalized susceptibilities.

The response functions in macroscopic electrodynam-
ics are exhausted by the quantities ft in ( 3 . 5 ) and ( 3 . 6 ) . The
quantities e and i/ (for arbitrary k),n, and £, are not found
among the response functions and, even less so, among the
generalized susceptibilities. To conclude this Section, we
note that the questions we have examined here are taken up
in the book by Pines and Nozieres16 and are developed in
Refs. Hand 17-20.

4. CAUSALITY AND DISPERSION RELATIONS

Response functions must satisfy the condition of cau-
sality, which specifies their dependence on frequency. In its
simplest formulation, this condition states: "Cause always
precedes in time its consequence" or, more concisely: "The
future has no effect on the past." The condition is in agree-
ment with general human experience as well as with the re-
sults of experiments and observations involving scales rang-
ing from subnuclear to cosmic.71

Let us now apply the causality condition to (3.1), tak-
ing 3 as the cause and its result 21 as the consequence. In
accordance with condition A, the quantity 8$ is arbitrary
and can assume any predetermined value. Suppose that it is
equal to zero for t < t0 ( t0 is an arbitrary instant of time ), but
is otherwise arbitrary. The causality condition then de-
mands that 62( must vanish for t < t0 and, since 8% is arbi-
trary, this is possible only provided

9?(t, x) = 0, i<0 , (4.1)

which can serve as a quantitative expression of the causality
principle.

When (4.1) is satisfied, the Fourier component of the
response function

3} (co, k) = At Ax ft(t, x) exp [— i (k-\-o>t)]

FIG. 1.
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is given by an integral with respect to time that converges in
the upper half-plane of the frequency co, regarded as a com-
plex variable. By virtue of the well-known theorem on con-
verging Fourier integrals, this means that ft (CD, k) is analytic
in this region. Next, (1.1) leads to the following relations for
an isotropic medium:

Re 5R (co, k) = Re 9t (-co, k),

Im ft (co, k) = -Im 9? (-co, k). (4.2)

D. A. Kirzhnits 578



FIG. 3.

The Kramers-Kronig-type dispersion relations follow
from this in the usual way (see Refs. 16 and 23):

5 K ( £ , k) [£2-(

(4.3)

where 3i( oo, k) is the limit of 3U&>, k) as&>-> oo and is a real
number81 by virtue of (4.2).

The fact that condition A is necessary for the derivation
of the analyticity of the response function can be illustrated
by the following simple example. Suppose that the quantity
8% (a, k) is not arbitrary and has a zero in the upper half-
plane of co. It is then clear from (3.2) that the response func-
tion can have a pole at the same point, which does not pre-
vent the vanishing of <5S[(?, x) for t < t0.

We emphasize that the derivation of the dispersion rela-
tions relies not only on the causality condition, but also on
the condition that the medium is stable. The latter was impli-
citly assumed above and forbids an exponential increase in
<52I and 3t with time, which enables us to transform to the
Fourier component. On the other hand, these conditions
alone do not lead to restrictions on the analytic properties of
the response function. For example, if it has a pole at <u = (T,
F > 0, integration with respect to &> in the Fourier integral
for 'iR(t, x) gives a stable but noncausal behavior of
0( — r)exp(F?) when the contour is taken along the zero
axis of <y. On the other hand, it produces an unstable but
causal behavior of — (9(?)exp(rr) when contour C of Fig. 4
is chosen. :l'25 Here, 6 ( t ) is respectively equal to zero and
unity for t smaller and greater than zero.

We now turn to the formulation of dispersion relations
for the electrodynamic response functions (3.5) and (3.6),
and begin with the term 3t(oo, k) in (4.3). As <y^oo, we
have the following asymptotic expressions [see Refs. 2, 16
and (2 .5)] :

i — T 3 - + - - - . H- • 1 -

(4.4)

where (Up is the square of the plasma frequency (see below).
The significance of (4.4) is that the medium does not suc-
ceed in reacting to rapid external influences.

When (4.4) is taken into account, the dispersion rela-
tions have the following form in the electric case:

FIG. 4.
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(4.5)

S 2 I m e ( C , 0) [£2— (<a+ f6)2]-».

In the static limit,
oo

E-' (0, k) = 1 + —• \ -^ Im e-' (t, k),

8(0, 0) =

oo

j--f ] ^ I m e ( C , 0).
o

(4.6)

(4.6')

In accordance with (4.2), the static values of the response
functions are real. The quantity £-(0, 0) must be understood
as the limit corresponding to a -> 0, k -»0, co/k — 0 (the well-
known Drude singularity e~i/a> of a conducting medium
corresponds to the opposite limit /c /<u->0).

On the other hand, for k / 0, the permittivity itself need
not satisfy the dispersion relations. It can have a simple pole
on the positive imaginary frequency semi-axis:

e (co, k) = 1 -[- —

00

xf d £ 2 I m e ( £ , k) [|2 — ( Q > + i6)2]-' — a (k)

(4.7)

with the residue

[this inequality means that £(0, k)<0] . Singularities of a
wider class are not possible in (4.7) because they would lead
to the appearance of zeros in £(&>, k) that are forbidden by
(4.5).26 The expression given by (4.7) corresponds to the
violation of condition A (see Section 3) for an influence due
to the total charge: the quantity 8p = 8pe /£ has a zero at
co = /F, and the ineffectiveness of the causality condition in
this case has already been mentioned above.

In the magnetic case, it is more convenient to deal not
with the response function (k ~ — co2)/r) [see (3.5) ] itself,
which grows on a large circle in the complex plane, but with
the quantity \/(k - — a>2)r/, which has the same analytic
properties and is also found among response function:
SA = S j 1 / [ ( k 2 -co2)-rj] (see Section 2) . This leads to the
dispersion relation [see (4.4)]

(4.8)

In the static limit,
x -

As far as the response function (3.6) is concerned, the fact
that rj(ci), 0) =£(<y,0) [see (2 .5 ) ] means that the corre-
sponding dispersion relation is identical with (4.5).
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5. IMAGINARY PART OF RESPONSE FUNCTIONS

The dispersion relations can be derived using condition
A alone. When condition B is satisfied as well, it is possible to
perform a dynamic analysis of the interaction with the medi-
um, which yields additional information about the proper-
ties of response functions. In this Section, we shall examine
dynamic questions relating to the dissipative characteristics
of the medium, i.e., the imaginary parts of its response func-
tions. Dynamic aspects of the theory of response functions
will be examined further in Section 7.

When an external influence is applied to a medium
(which, because of its large volume, absorbs all the radiation
that can penetrate it during the interaction), the energy
transferred to the medium is eventually converted into heat.
The energy Q dissipated in the medium per unit time is deter-
mined by the Hamiltonian (3.3), and is equal to JdxSl^.
Transforming to Fourier components, and using (1.1),
(3.2), and (4.2), we obtain the following expression for the
total dissipated energy:9'

or Im e > fc2 Im u.-1, Im et (co, k) > 0. (5.8)

oo

-!- f dcoco f d3fcImSK(co, k)|3(co, k)[2.
(5.1)

In an equilibrium medium (2>0 and, because 3 is arbitrary,
we have

Im D? (co, k) > 0 (5.2)

for co > 0 [and the reverse inequality for co < 0; see (4.2) ].
In particular, (5.1) describes the energy lost by a

charged particle traveling through the medium. Bearing in
mind subsequent applications (see Section 10, below), we
now give another derivation of the formula, based not on the
Hamiltonian (3.3) but directly on Maxwell equations. The
energy lost by a particle producing fields E and B in the
medium consists of the change in the field energy and the
work done on particles of the medium. This work is deter-
mined by the current j' induced by the particle itself. The
result is

= dx j ' -E4~- (5.3)

Using (2. la) and omitting integrals over the surface of the
medium, we can readily obtain the well-known expression

= - jdxf -E , (5.4)

which agrees with the energy balance Q = W that follows
from (2.1) and ( 2 . 2 ) , where the change in the total energy of
the medium per unit time is

W = dx (E-D + H-B). (5.5)

We can readily verify, using (2.1) and (3.5), that (5.1) and
(5.4) lead to identical expressions for the longitudinal and
transverse losses.101

We now return to inequality (5.2) and apply it to the
generalized susceptibilities (3.5). In the electric case, this
gives

Im e (co, k) > 0, (5.6)

and, in the magnetic case,

(A:2 - co2) Im r\~l (co, k) > 0. (5 ?)

We can now use (2.8) to write the last inequality in the form

All these inequalities apply to positive frequencies.
We shall use them in the next Section to find the range

of admissible values of dielectric and magnetic permeabili-
ties. In the remainder of the present Section, however, we
shall use these inequalities to derive the dispersion relations
for a number of quantities that are not found among the
response functions. The analyticity of these quantities in the
upper half-plane of frequency follows not from the physical
causality condition, but from the mathematical fact that
some of the response functions are not only free from singu-
larities (poles, cuts, and essential singular points), but also
have no zeros in this region. It follows that the reciprocal of
this kind of response function is also analytic and satisfies
the dispersion relations.17'27

The fact that a function satisfying the dispersion rela-
tion such as (4.3) and having an imaginary part that does
not change sign has no zeros necessarily means that the sign
of this imaginary part and of the term outside the integral in
the dispersion relations must be the same when the terms on
the right-hand side of (4.3) cannot cancel out. In point of
fact, the integral in the dispersion relations is real only on the
imaginary frequency axis where its sign is the same as the
sign of the imaginary part of the function under investiga-
tion.

In the electric case, the sign of the imaginary part and
the term outside the integral in (4.5) are different, and the
quantity \/e can have a zero and the dielectric permeability
a pole in the upper frequency half-plane. On the other hand,
in (4.5'), these signs are the same, and the fact that £(a>, 0)
cannot have a zero follows from (4.5). In the magnetic case,
the term outside the integral is generally absent from (4.8),
so that the quantity (k2 — co2)ri and, at the same time, rj(a>,
k) are analytic in the upper frequency half-plane. If we recall
the asymptotic expressions given by (4.4), we see that this
leads to a new dispersion relation, namely,

( k 2 — co2)T)(co, k) = &2 — c

(5.9)

, k).

(5.10)

According to (2.8), this also leads to the analyticity of £,
and to the dispersion relation

with the static limit

, k) [£2-

(5.11)

It is also readily seen that the quantity I/// has a pole at the
same point as e, with a residue consistent with the quantity a
[see (2.8) and (4.7)]. Since the sign of the term containing
the integral and of the imaginary part in (5.11) is the same
[see (5.8)] , the quantity l/£, , for which we can also write
down the corresponding dispersion relation, is analytic."1
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There is particular interest in the question of the valid-
ity of the dispersion relation for the complex refractive index
of the medium (the Kramers-Kronig relations)

n (co) = [e (co, k)n(to, k)]'/2=e]/2 (co, k), fc = co«(co)

[ the propagation of a photon in the medium means that
(2.8) must be equal to zero]. Since e, is analytic and has no
zeros in the upper frequency half-plane (see above), the re-
fractive index would be an analytic function, despite the
presence of the square root in its definition, were it not for
the fact that the actual situation gives rise to a considerable
complication of the analytic properties of «(«). This means
that a weak-enough spatial dispersion of the medium is nec-
essary for the validity of the Kramers-Kronig relations.

Summarizing, we give a list of the parameters of the
medium that are analytic in the upper frequency half-plane
and satisfy the dispersion relations:

e-'(co, k), e(co, O),T)-'(O), k), i i(G>, k), e, (to, k) ,er j (co, k).

Correspondingly, the following quantities can have a pole in
the same region:

e (co, k) (k ̂  0), n"1 (co, k), p (co, k).

6. LIMITS OF ADMISSIBLE VALUES OF THE STATIC
PERMEABILITIES OF A MEDIUM

By combining the static dispersion relations with the
inequalities for the imaginary parts of the response func-
tions, we can obtain inequalities for the static values of these
functions, and hence determine the range of their admissible
values. In the electric case, combining (4.6) and (5.6), we
obtain the following inequalities for arbitrary values of k:

-1 (0, 1, (6.1)

i.e., either £(0, k )> l or £(0, k)<0 [the second possibility
occurs only when the dispersion relation for £ (co, k) is violat-
ed; see Section 4 ]. When k = 0, the relation given by (4.6') is
more restricted and yields

e (0, 0) (6.2)

[ the meaning of E (0,0) is discussed in Section 4 ]. Condition
(6.2) is identical with the condition that the compressibility
of the medium be positive.16

Figure 5 shows the range of admissible values of £(0, k)
(shaded). The boundaries of this region have the following
meaning (see also the discussion given below): the point
k = 0, E-> oo is the limit of stability against ferroelectric or-
dering (spontaneous appearance of D for E = 0); the inter-
val 0<&< oo, e = 0 represents the same situation for the
transition to the state with a charge density wave (spontane-
ous appearance of E for D = 0); and the segment 0<£ < oo,

£ = 1 corresponds to the limiting case of total vacuum. In
view of the foregoing, we cannot have ferroelectrics with
k7^0, or media with spontaneous uniform electric field (the
external charge or a pair created by it would then be acceler-
ated and take energy away from the medium, thus contra-
dicting the condition of initial equilibrium of the medium28),
or media withO<£(0, k ) < l , i.e., the "diaelectrics." I 2 )

Several examples of real media with negative £(0, k)
[ and the simultaneous violation of the dispersion relations
foT£((u, k) ] are now known. They include nonideal plasmas,
strong electrolytes, certain simple metals, and so on.10'29

They are all characterized by a strong coupling between the
constituent particles (strong local-field effects). Figure 6
shows schematically the form of the function e(0, k) for a
classical nonideal single-component plasma for different
values of the interaction parameter a = e2«1/3/7", which is
equal to the ratio of the Coulomb to thermal (kinetic) ener-
gies.30 When a S 1, the dielectric permittivity is greater than
one. For 1 S a S 170, it is negative, reaching the limits of the
admissible region £ = 0 for a ~ 170, at which point a charge-
density wave is produced (crystallization of plasma) with
lattice parameter \/k0. The negative sign of £ in the precrys-
tallization state of the medium follows simply from the im-
possibility of reaching the crystallization point £ = 0 other
than from the admissible region £ <Q.

In the violated dispersion relations (4.7), the quantity
F2(k) can be qualitatively simulated by the expression
(k2 — k } ) ( k 2

2 — k2), which corresponds to negative£(0,
k) in the range fc, < k < k2. In nonconducting media, k } has a
finite value, determined by the parameter of the medium,
and, as this value is passed, the quantity l/£ changes sign
and vanishes at k = k,. However, for conductors (in partic-
ular, plasmas; see Fig. 6), the quantity k\ is zero, which
corresponds to the Debye pole \/k2 in e(0, k) with an "in-
correct" sign of the residue. Correspondingly, the positive
sign of £(0, k) is then restored only at the point k = 0 itself.29

The above analysis completely removes the contradic-
tions mentioned in example (1) of Section 1 and, in princi-
ple, offers the possibility of a radical increase in the critical
temperature for superconductivity.

Turning now to the magnetic case, we shall consider a
combination of static dispersion relations (4.9), (5.10) and
the inequality (5.7), which will lead us to the inequality13)

l . (6.3)

Negative values of magnetic permeability are forbidden, and
the fact that the right-hand side of (6.3) differs from unity
means that diamagnetism is possible. Figure 7 shows the
range of admissible values of ju(0, k) (shown shaded). The

C(o.fc)

FIG. 5.
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FIG. 7.

meaning of these limits is as follows. The point k = 0, /z -> oo
is the limit of stability against ferromagnetic ordering (spon-
taneous appearance of B for H = 0); the interval 0 < k < oo,
H -» oo describes the same case for antiferromagnetic order-
ing; and the boundary /j, = [I + ( c t ) 2 / k 2 ) ] ~ l represents
the limiting state of the ideal diamagnetic substance that can
be realized in a London superconductor at zero temperature.

In the system of units in which the velocity of light is c,
the formula given by (6.3) contains the grouping co2

p/k
 2c2.

Hence, in a nonrelativistic medium, although anomalous
diamagnetism (low values of^; see example 2 of Section 1) is
actually possible in principle, it is confined to the relatively
narrow region k<a>v/c (see also Section 8, below141). On
the other hand, when k is not small, the right-hand side of
(6.3) is indistinguishable from unity.

The quantity co2 in (6.3) is the square of the plasma
frequency (see Section 4), i.e., it is equal to the sum ofe2n/m
over all the charged-particle species (e is the particle charge,
m its mass, and n the concentration). Charged particles are
understood here to include bound complexes if, under the
conditions under investigation (temperature, pressure, and
so on), they participate in the response as a whole. Actually,
in the nonrelativistic situation, we should be concerned with
electrons and nuclei and, in some cases, valence electrons
and ions. By referring the quantity co^ to much smaller struc-
tural components of the medium (for example, protons in
nuclei), we simply introduce a more or less stringent limita-
tion on the magnetic permeability because of the higher val-
ue of ea2.

Returning now to the derivation of (6.3) [see (4.4),
(4.9), and (5.10) ], we note that the nonsinglevaluedness of
o)2 that we have been discussing corresponds to the existence
of permittivities with intermediate asymptotic behavior
(4.4) and different values of a)2 reached successively as the
frequency increases. This corresponds to the structure of
Im e~', which takes the form of a set of peaks representing
the successive excitation of increasingly finer structural
components of the medium. At low pressures and tempera-
tures, and relatively low values of cu and k, the contribution
of the higher peaks is negligible.

The questions examined above are discussed in Refs. 14,
17-20, 29, and 30.

7. PROPERTIES OF GENERALIZED SUSCEPTIBILITIES

The inequalities given by (6.1) and (6.3) were obtained
above from the dispersion relations for the generalized sus-
ceptibilities (3.5), but they can also be derived in a purely
dynamic manner, starting with general expressions, such as
the Kubo formula. The generalized susceptibility is given by
the variational derivative

63 ~\63

for Q = 0 [ see (3.1) and (3.3)], where the operator is taken
in the Heisenberg representation for the total interaction
that includes (3.3), and the differentiation can be carried
out under the symbol representing averaging [see (1.3)].
This operator depends on 3 in two ways: explicitly and
through the dynamic variables of the medium, whose'evolu-
tion is determined by the total Hamiltonian H for the medi-
um, which includes (3.3). Hence, 5f = 3t() + Sft where the
first term

33((>, X')

describes the direct response of the medium (d/d$ is the
symbol representing partial variational differentiation ) . On
the other hand, the second term (Kubo formula)

*. x), (7.2)

corresponds to the part of the response that is related to the
change in the dynamic variables under the external influ-
ence.

The above formulas follow from the general expression
for the derivative of the Heisenberg operator O(t) with re-
spect tog (see Ref. 33)

_ A O ( t ) _ d O ( t ) , .. f Jt,\-dH(t') A,K~] (7.3)

the validity of which can be readily verified by checking that
theequationrf 2O /dtdg — d2O /dgdt holds.usingtheHeisen-
berg equation

AO (t)/At = dO (t)/dt -f i [H (t), 0 (t)\ (7.4)

and the Jacobi identity for the commutators. In deriving
(7.2), we have also used the expression dH/d% = — $1 that
follows from (3.3).

The quantity SR can be written as the derivative with
respect to 3 of the part of the operator cf!4A that does not
explicitly depend on 3 (this part is denoted below by 21). In
the linear theory considered here, we can have

21 = 21 — (7.5)

In expressions that do not contain derivatives^with respect to
3, which is set equal to zero, we can replace 81, 21 with 21, 81.

Transforming in (7.2) to the Fourier components, and
introducing the intermediate set of eigenfunctions of the
Hamiltonian H, we obtain

where comn = Em — En, 2lmn is the Fourier component of
the matrix element of the operator 21 in the Schrodinger rep-
resentation. The quantity amn — (wn — wm )a>mn , where wn

is the probability that the level of energy En is filled, is posi-
tive for the equilibrium medium ( the probability of filling
the level decreases with its energy). Hence, it follows that
the quantity M (like 3i) satisfies the dispersion relation and
has an imaginary part whose sign is the same as that of the
frequency. The above representation for SR leads to the fol-
lowing important inequality:

& (0, k)>0, (7.6)

which, in turn, eventually leads to (6.1) and (6.3). There is
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one further relation that expresses the fluctuation-dissipa-
tion theorem for an equilibrium medium at temperature T:

({&i (co, k), 63 (co', k')})

= 2(277-)4 coth -JJT Im 5R (co, k) 6 (co + co') 6 (k + k'),

(7.7)

where <59I = 31 - 91 is the fluctuation in 91, {a, b} = ab + ba.
The derivation of this can be found, for example, in Refs. 4
and 12.

To derive the inequalities (6.1) and (6.3) from (7.6),
we start with (3.5), then introduce the corresponding opera-
tors 91, and finally use (2.10'). In the electric case,

where/3' = J.en and h is the particle number-density opera-
tor. Here and below, the sum is evaluated over all types of
charged particles. From (7.1) and (7.3), we have

(7.8)

from which (6.1) follows.
In the magnetic case, in which

the situation is more complicated: the explicit dependence of
j on Ae = ' f , / ( k z — w2) is determined not only by je, but
also by the diamagnetic component of the current j ', which
is linear in the total potential (including Ae). When the
structural components of the medium are chosen in accor-
dance with the discussion of Section 6, this component is
2(e2n//H)A. This complication manifests itself in the ap-
pearance of the factor x (a, k), which is not equal to unity, in
the expressions

In the static case in which we are interested here, the
operator A = — A ~ 'j, can be replaced with its average val-
ue },/k2, which provides the dominant contribution to the
significant range of low values of A: that do not exceed cop/c
by a large factor (see Section 6): the contribution of the
fluctuating part of A is determined by the replacement of k2

in the denominator with / ~2, where / is the correlation length
(small in comparison with c/cop ). Simple calculation shows
that

-i
(7.10)

and hence, using (7.6) and (7.9), we obtain the inequality
given by (6.3).

The difference between the magnetic and electric cases
in the present context is due to the existence of diamagnetism
(current depending on potential) in the absence of diaelec-
tricity (see Section 6). However, the more fundamental rea-
son for this difference is that Faraday's induction law, which
is responsible for the diamagnetic current, has no electric
analog. It is therefore not surprising that relativistic media,
described by the Dirac equation with a potential-indepen-
dent current, can also be diamagnetic. The diamagnetism

arises formally in the latter case because of the violation of
the inequality given by (7.6) [although ;* in (7.9) is actually
equal to unity ]. In the single-particle theory, this violation is
due to negative energy levels (virtual transitions to which
are responsible for diamagnetism) and in field theory with
renormalizations.

8. STABILITY OF A MEDIUM AND LANDAU FUNCTIONAL

The dispersion relations that lead to the inequalities
given by (6.1)-(6.3) are based, as emphasized in Section 4,
not only on the principle of causality, but also on the require-
ment that the medium be stable. It is therefore not surprising
that these inequalities are also the criteria for the stability of
the medium against spontaneous rearrangement (ordering)
with the appearance of nonzero 9r (order parameter). More
precisely, spontaneous ordering that is unrelated to the ex-
ternal influence corresponds to the order parameter 91,
which is the part of 31 that does not explicitly depend on the
external influence [see (7 .5) ] .

The case 9T^O corresponds to a set of nonequilibrium
states that differ by the magnitude of other, i.e., different
from 91, dynamic variables J" of the medium. The energy
8? (91, J") of these states is reckoned from the energy of the
original unordered state with 91 = 0.'" From among these
states, we select that corresponding to minimum $ as a func-
tion of £ for given 91, i.e.,

6£ + X6g = 0 (8.1)

where A is the Lagrange multiplier. This minimum is de-
noted 8f (91) and is called the Landau functional. It lies at the
basis of the Landau theory of phase transitions (see Section
1), which starts with the assumption that the relaxation of
the order parameter is significantly slower than that of the
variable £ (incomplete equilibrium), while the medium is
considered to be stable against variations in these vari-
ables.12'34 On the other hand, the stability of the medium
with respect to the order parameter itself is determined by
the functional if (91). In particular, the above-mentioned
criterion for the stability of the unordered state is identical
with the condition that & (9T) be a minimum for 91 = 0.

Since the relaxation of the order parameter is slow, the
quantity 8f (91) can be looked upon as the energy of the equi-
librium state of the medium whose Hamiltonian differs from
the true Hamiltonian // by the additional term H' that de-
pends on the magnitude of the order parameter, assumed
sufficiently small. The form of// ' can be found from (8.1),
for which we need to have at our disposal the expression for
the change SO in the expectation value of an operator O
under the influence of H' itself. This change corresponds to
the rearrangement of the medium, i.e., to a change in its
dynamic variables in the absence of any external influences,
and is therefore described by a Kubo-type formula (see Sec-
tion 7), but without the term containing the partial deriva-
tive16' S0= - (0,5H'), where

(A, dt'([A(t), B (?)}).

Hence, by considering an individual Fourier component of
the static order parameter, we obtain the expression for the

change in this parameter (O = (91)
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82 = —{«, 65"), (8-2)

and for the change in the energy (0 = H ) , using (7.4),

6g = 6 (H) = — &H' = <#', 6#'>. (8'3)

Substitution of these expressions in (8.1) yields H' = A2L
Using (8.2) and the equation (21, 21) = 3t that follows from
(7.2), we find that <M = -521/9* and, if we use (8.3), we
obtain the expression & =A 2$l/2. Assuming that the order
parameter is small, we find that the effective Hamiltonian is

H' =
(8.4)

§f(0, k)

and the first (quadratic) term in the Landau functional is

g = (6a (k))' (8.5)
29t(0, k) '

The condition for the stability of the medium against small
fluctuations in 21 is actually the same as (7.6) and this leads
to inequalities (6.1) and (6.3) [see the next Section in con-
nection with (6.2)].

When the medium is subjected to forced ordering by an
external influence, we find from (7.1), (7.2), and (7.5) that

621 (0, k) = SR (0, k) 83 (0, k). (8.6)

Comparing this with (8.4) and transforming to the coordi-
nate representation, we have

H' = - j dx 2163. (8-7)

If we close our eyes to the difference between the quantities 21
and 2t, we see that the expression given by (8.7) is identical
with the Hamiltonian for the external influence on the medi-
um, given by (3.3). This corresponds to the well-known
proposition that the ordered state of a medium can be looked
upon as an equilibrium state in a certain specially chosen
external field whose strength is determined by (8.6). How-
ever, it is also clear that this proposition is not literally valid
although, as it turns out, it can be used in a somewhat modi-
fied form in the thermodynamic analysis of ordered media
(see below, Section 9).

We now proceed to the derivation of the specific form of
the Landau functional in the electrodynamics of material
media, omitting the symbol <5 in the order parameter for the
sake of brevity. In the absence of the external field, we need
not distinguish between 21 and 21 and take the latter as the
order parameter, i.e., p and j (or E and B). Using (8.5),
(7.8), and (7.9), we find that, in the electric and magnetic
cases,

f = E* ¥ - B*
2(1 —e-1) ' 2(|i —x) '

respectively, with e, fj,, and x given in terms of the arguments
a = 0 and k [see (7.10)]. These expressions must not be
confused with the quantities eE 2/2 and B 2/2fi that deter-
mine the energy of the medium in the external field. It is
precisely this kind of confusion that has led, in the past, to
the incorrect conclusion that e must be positive.

When an external field is present, the Landau func-
tional consists of (8.5) plus the energy of interaction
between the order parameter and the external field and the
energy of the external field itself. According to (3.3), this

additional term is equal to — 21̂  — (21 — 21)^/2, so that,
using (7.5), we finally obtain the Landau functional in the
form

^ (8.8)
2SR

Taking the variation of this with respect to 21 at fixed 3i, we
obtain the correct equilibrium relation (8.6) and, at the
equilibrium point itself, the correct result for the energy of
the medium in the external field, D 2/2e and — juH 2/2, due
to external charges and currents (the expression B 2/2/u, giv-
en above, on the other hand, corresponds to the effect of the
total current in the superconducting solenoid2).

To evaluate (8.8), it is convenient to introduce the po-
larization P = D — E and magnetization M = B — H. Ac-
cording to (7.8) and (7.9), we then have

/k-P2I = - = j [ k j M — ( x — (8.9)

The significant point is that, in the magnetic case, the order
parameter does not reduce to the magnetization, but con-
tains the additional diamagnetic term that removes from the
magnetization its rapidly relaxing part due to the precession
of orbits in the external field, but is unrelated to the order
parameter as such. Finally, in the electric case,

f [P —(1 —e-!)Dla , D2

e ~ 2(1 — 8-!) ~r 2e '

and, in the magnetic case,

(8.10)

J/2

-2-. (8.11)
2(n-x)

The last expression gives

g= M* M-Hfc-1)
2(H-x) /Ll_x

which is very different from the expression given in Section
1, but is entirely consistent with the diamagnetism of an un-
ordered system. This removes the contradiction mentioned
in example 2 of Section 1. Moreover, in the ordered state
with spontaneous current, the lower limit of the magnetic
permeability is equal not to unity (as would be expected
from the expression given in Section 1), but to x. It follows
that the widely held belief that the vector nature of the order
parameter presupposes a paramagnetic response is actually
unjustified, so that there can be no doubt about the basic
possibility of the existence of anomalous diamagnetic sub-
stances as media with spontaneous currents in the ground
state (for small nonzero values of A:; see Section 6).

9. STABILITY OF A MEDIUM AND LANDAU FUNCTIONAL
(THERMODYNAMIC APPROACH)

The above dynamic approach, based on the Hamilto-
nian (3.3) and the existence of the operator 21, is inadequate
if only because it does not extend to the Landau functional
for ferroelectric ordering and the inequality given by (6.2):
the response function e is not the generalized susceptibility.
The more general thermodynamic approach, usually adopt-
ed in the derivation of the Landau functional and the stabil-
ity conditions, is free from this defect. However, the stan-
dard thermodynamic scheme leads to difficulties with the
description of diamagnetism. The results of Section 8 show
how the scheme has to be modified to become universal.

Let us first translate the results of Section 8 to the ther-
modynamic language. Suppose that the medium has been
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subjected to an external influence 3> which results in the
appearance of the order parameter 31, whose magnitude is
given by (8.6). The corresponding change in the energy
%> (Q) , which is a functional of 3, is determined by the expec-
tation value(3.3):

6g (3) = - 263 = - 363 - (H - 21) 63. (9.1)

The first term in this expression is the work expended direct-
ly in ordering the medium and the second contains the
change in the energy of the external influence in vacuum and
(in the magnetic case) the work associated with precession
in the external field. The second term is unrelated to order-
ing (the change in the dynamic variables of the medium)
and should be omitted. The transformation to the functional
% (91) in which we are interested, which corresponds to a
change of the argument, is accomplished in thermodynamics
by the Legendre transformation

2(8-1) (9.4)

(SI) = 6g (3) + 6(33) = 3691, (9.2)

where 3(31) is determined by (8.6). It is readily seen that
(9.2) and (8.5) are exactly equivalent, as are their conse-
quences relating to the form of the Landau functional and
the stability conditions.

Physically, the above procedure corresponds (subject
to the reservation relating to the difference between SI and 31;
see Section 8) to the so-called Leontovich principle35: to find
the energy of a nonequilibrium state with a given order pa-
rameter, the state is transformed into an equilibrium state by
introducing the appropriate external field and then subtract-
ing from the energy of the medium in this field the "surplus"
work expended in turning on the field. This subtraction cor-
responds to the Legendre transformation. It is important to
emphasize that, in the electric case, the replacement of 31
with 21 is relatively "innocent" and corresponds to the re-
placement of E with — P, where the first term in (9.1) has
the direct interpretation as the energy of a dipole in an exter-
nal field, — P-SD. However, in the magnetic case, the differ-
ence between the order parameter and the magnetization
[see (8.9) ] means that the simple picture is no longer valid,
in the final analysis, because of the presence of diamagnetic
effects.

Passing now to the case where ordering occurs in a giv-
en total (and not merely external, as above) field, so that the
dynamic approach is inappropriate, we emphasize that
(9.2) is still valid. Here, we must start with (9.1) as the
primary thermodynamic relation and perform the transfor-
mation from 31 to 31 by subtracting terms directly related to
the (constant) total field. In the simplest electric case (or-
dering inside a capacitor with given potential difference
across it, i.e., given field E: see Section 3), the change in the
energy of the medium is given by the well-known expression
— p'Sip, which leads to 3 = <p and 31 = ps =p —p', and

hence to 31 = -p[.ll< We then find that (9.1) assumes the
form — P'SE, which is simply the energy of the dipole in a
given field E.

Accordingly, the Landau functional for ferroelectric
ordering has the following form: for E = 0 (order parameter
D)

% = —¥— f9-nC 2(8—1) ' (.y'J-)

and, for arbitrary E,

The stability condition that follows from this is exactly the
same as (6.2), and it is immediately obvious from (9.3) why
this inequality applies only to the k = 0 case (see Section 3).
The point is that, in a medium that is free from external
influences, and in which there are no external charges, so
that div D = 0 is valid, the order parameter D can appear
only for k = 0.

Comparison of (8.10) and (9.5) in the absence of exter-
nal influences will show that the difference between these
expressions, which correspond, respectively, to ordering in-
side a shorted and uncharged capacitor, is positive (and
equal to P 2/2). This is a further indication of the instability
of the medium with a uniform spontaneous electric field (see
Section 6), which finds it advantageous to convert into uni-
form induction.

The results found in the last two Sections are in agree-
ment with the statement made in Section 6 about the phys-
ical significance of the admissible range of values of the per-
meabilities of the medium. The questions examined in these
Sections were partly discussed in Refs. 14 and 18-20.

10. ELECTRODYNAMICS OF THE MAGNETIC MONOPOLE

In this concluding Section, we consider the electrody-
namics of a medium subjected to the influence of a magnetic
charge (monopole). The medium itself is assumed to be free
from monopoles. Apart from their independent interest, the
questions examined below should result in a better under-
standing of ordinary electrodynamics, providing a "lateral
view" of it.

The Maxwell equations with monopole forces that res-
tore the symmetry between electric and magnetic fields dif-
fer from (2.1c) and (2.1d) as follows:

curlE = -je (c), d ivB=p« (d), (10.1)

where ff , 'f are the external monopole charge and current
densities that are also related by the continuity equation.
These two equations do not include the induced charge and
current of monopoles because the medium itself is free from
monopoles. On the other hand, the induced charge and cur-
rent of ordinary particles that appear in (2. la) and (2.1b)
are given by (2.3), as before.

However, in these formulas, we can no longer perform
the regrouping of terms mentioned in Section 2 that modifies
the quantities e and p.: the fields E, and B, are no longer
related by the stringent relation ( 2. 1 c ) [ see ( 1 0. 1 c ) ] . It fol-
lows that, in monopole electrodynamics, the quantities e and
fi are not arbitrary [within the framework of (2.5) and
(2.8) ] as they are in ordinary electrodynamics, but acquire
independent meaning as quantities describing the response
of the medium to the independent influences E, and B, .18)

The number of independent influences acting on the medium
is now no longer two, as before, but three, namely, E, , E, ,
and B, , and this is represented by the three independent pa-
rameters of the medium e, t}, and one of the quantities £, fi,
which, as before, are related by (2.5). All this is clear from
the following expressions that generalize (2.9) :

' — 1) it + -
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They are the response to ordinary current, determined by rj
alone, whereas the response to the monopole current is de-
termined by a different combination ofe,/}, namely, £ — (I/
A).

We note that the fourth type of field, namely, the longi-
tudinal field B,, is unrelated to any kind of influence on the
medium, since its sources do not appear in (10.2). Converse-
ly, this field does not "feel" the presence of the medium
whose parameters do not appear in (10.Id).

It is clear from the foregoing that a special dynamic
calculation of E and p, separately is necessary in monopole
electrodynamics. Usually, however, E is simply identified
with e and/i with// [see (2.6) ], for which there is no more
justification than for the choice e = E, , ft = 1 [see (2.7) ]. It
is precisely this choice that is found to be justified for classi-
cal (nonquantum) media. In this case, the distribution func-
tion that determines the induced current satisfies the trans-
port equation with the force term e(E + vXB) Vp /0, where
v is the velocity and p the momentum. In an equilibrium
medium, /„ depends only on energy, the gradient of which
with respect to p is equal to v. Hence,the magnetic field does
not have a direct effect on the medium and, according to
(2.3), this yields/z = 1.

It is precisely this fact that removes the difficulties dis-
cussed in connection with example3' of Section 1. When
co < k </l ^', i.e., in the special case in which we are interested
here (well away from a slow monopole, where A is the Lon-
don penetration depth), the superconductor may be de-
scribed as an ideal classical conducting fluid. Accordingly,
fj, = k2A2 (ideal diamagnetism), e is finite, and
( k 2 - w2)?/ = A ~2, E = - a)2A ~2, p.= l. On the other
hand,

B, 2— o>2) T)]- (10.3)

[cf. (2.1a), (2.1b), and (10.1)]. When£ = £, the quantity
B, vanishes together with to (with the velocity of the mono-
pole) and the Meissner effect is truly absent (see Section 1).
However, when e = e,, the quantity given by (10.3) assumes
the form B0 — B,, where

Bn=-

is a "string" along the trajectory of the monopole. This
means that the total field B, + B, exhibits the Meissner ef-
fect, and the jump in the magnetic flux does actually occur.

It is important to note that, if the usual identification of
E with E and/i with/i were correct for media for which c(0,
k) <0 and the dispersion relations for E were violated (see
Section 6), we would have the extremely unusual phenome-
non of a rapid and, in fact, "explosive" stopping of the mono-
pole with the transfer of its kinetic energy to the energy of the
field in the medium, i.e., in the final analysis, radiation and
heat. This is already signald by the expression given by
(10.3): the pole of e at u> = iF [ cf. (4.7)] must be bypassed
in accordance with the causality condition, which leads to an
exponential increase of the form B, ~ exp (FO (see Section 4
and Fig. 4). The significant point is that this increase does
not indicate at all an instability of the medium as such: by
hypothesis, the medium does not contain monopoles and
therefore its natural fluctuations cannot simulate the influ-

ence of a monopole, as was the case for the influence due to a
charge. It is precisely this result that ensures that the re-
sponse to a monopole current [see the second relation in
(10.2)] need not be analytic in the upper frequency half-
plane, and the function £(«, k) can have a positive region.
All this is a reflection of the simple fact that the particles of
the medium are different in character from the sources of the
external influence acting upon it.

A consistent analysis of the above effect must be based
on a generalization of the theory of energy losses, given in
Section 5, in which the monopole sources are included. As
before, if we start with (5.3), but use the new Maxwell equa-
tions (10.1) andEqs. (2. la) and (2. Ib), we can readily find
the generalization of (5.4):

=— d x ( j e - E + I e - B ) . (10.4)

When E is analytic in the upper frequency half-plane, the
substitution of (10.3) into this expression leads to a formula
that is analogous to (5.1) and gives the monopole energy
loss:
oo oo

\ AtQ = ~ \ dcow j d3A Im {E [(/c2—co2) T)]"1} fj
(10.5)

On the other hand, when E has a pole (see above), it follows
from (10.4) and from the equation of motion Afvv = — Q
(M and v are the mass and velocity of the monopole) that
there is actually a rapid slowing down of the motion even
when M is very large.

It is important to note that the widely discussed expres-
sion for the monopole energy loss (see, for example, Ref. 36)
differs from (10.4) by the replacement of B with H. The
derivation of this unnatural result (the force acting on the
monopole would seem to be given by the mean field B and
not the field in the vacuum H) is based on the energy balance
and the previous expression, given by (5.5), for the change
in the energy of the medium. However, this expression is
itself based on Faraday's law of induction (2.1c) (see Ref.
2), which is not valid in monopole electrodynamics. Equa-
tion (10.1 c), on the other hand, leads to

j dx (E-D + H-B - jc • (B - H ) ) ,

which is in complete agreement with (10.4). We must add
that all this, together with the foregoing discussion of the
longitudinal field B,, is in agreement with the total absence
of longitudinal monopole losses, whereas the expression
containing the field H predicts the existence of such losses.

Turning now to the monopole "explosion effect," we
note that this effect is not possible in classical media with
£ = E, . This is due to the analyticity of e,, mentioned in Sec-
tion 5. The existence of quantum media in which this effect
may occur is still an open question.

We emphasize, in conclusion, that the entire foregoing
discussion is concerned with linear monopole electrodynam-
ics, which deals with relatively weak fields. On the other
hand, the fields produced by the monopole, whose charge is
greater by a factor of at least 137/2 than the charge of the
electron, can hardly be regarded as weak, even in the most
favorable case of a monopole moving slowly relative to the
medium. Accordingly, it will be necessary to take into ac-
count the nonlinearity of the response functions in the field,
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the presence of specific terms of the form B X E (Faraday
effect) in the expression for the induced current (2.3), and
so on. Studies of nonlinear monopole electrodynamics have
only just begun (see, for example, Ref. 36). In any case,
there are real situations for which linear electrodynamics is
valid, e.g., Cherenkov losses by a monopole in a classical
medium are determined by distances from it that exceed the
wavelength of the radiation, where the field of the monopole
is low enough and linear electrodynamics is valid.

Details relating to the questions examined in this Sec-
tion can be found in Ref. 37.
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1 'This dependence (frequency and spatial dispersion) reflects the delay of
the response and its nonlocal character. It is important to emphasize
that inclusion of spatial dispersion makes averaging of physical quanti-
ties over a small volume unnecessary. Effects associated with the un-
smoothed microstructure of the medium then manifest themselves in
the complex and irregular dependence of the response functions on k for
large values of this quantity.1"6

2'An expanded version of this paper will appear as a separate chapter in a
monograph entitled, "Dielectric permittivity of condensed media," due
to be published by the North-Holland Publishing Company.

"See Ref. 3 in connection with anisotropic and gyrotropic media.
4llt is readily seen from (2.11) that \/s and l/rj are the renormalization

factors reflecting the influence of the medium in expressions for the
longitudinal and transverse components of the photon Green function
in the medium.15

5lWe shall use the Gothic fonts 51 (answer), 3i (response), and 3 (influ-
ence) in order to emphasize quantities that are fundamental to our dis-
cussion in this paper.
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