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The review, which is methodological in nature, discusses the most common mechanisms of
stimulated radiation of electron beams such as single-particle and collective Cherenkov effects,
undulator and synchrotron radiation, the anomalous Doppler effect, and Thomson and Raman
scattering and radiation. The relation between the mechanisms of spontaneous radiation of an
individual electron and stimulated radiation in electron beams is made clear, the basic
principles of linear electrodynamics of radiative beam instabilities are stated, and the principal
mechanisms of their nonlinear stabilization are investigated. The discussion of widely different
stimulated processes in electron beams is carried out from a unified point of view with use of a
simple mathematical apparatus and such generally accepted physical laws as the conservation
laws and Newton's laws. Therefore the review, which is intended for specialists in the fields of
plasma electrodynamics and high-frequency electronics, is written also for persons familiar
with only the fundamentals of physics taught in a general university course.
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1. SPONTANEOUS RADIATION AND THE CONDITIONS OF ITS
EXISTENCE

The basis of the transformation of the energy of directed
motion of electron beams into electromagnetic radiation is
the phenomenon of resonance interaction of an individual
electron with the field of a monochromatic wave. In the first
approximation in analysis of this interaction usually the fol-
lowing two equivalent approaches are used: either one calcu-
lates the work done by the electromagnetic field on an elec-
tron executing a specified motion unperturbed by this
field,1'3 or one considers the excitation by an unperturbed
electron of a field oscillator.2 The effect known as spontane-
ous radiation is described in just this way in classical electro-
dynamics. Let us see what are the conditions under which
spontaneous radiation occurs, using here the first of the ap-
proaches mentioned above.

We shall calculate the work of the field of a monochro-
matic wave on an electron moving uniformly in a straight
line, assuming that the direction of propagation of the wave
and the direction of motion of the electron coincide. Repre-
senting the field of the wave in the form E(z,0 = E
sm(cot — &||Z + cp), we obtain for the amount of work the
following expression:
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here u y is the velocity of the electron, which is directed along
the Oz axis, E\\ is the component of the electric field of the
wave in the direction of motion, Tis the time of interaction of
the electron with the wave, which is assumed large in com-
parison with \/co, and (p is the initial phase of the wave.

From Eq. (1.1) it follows that, first, the sign of the work
is determined by the phase of the field <p; second, the work is
nonzero only if the component of the electric field of the
wave in the direction of motion is nonzero; third, A „ ^ 0
only under the conditions of Cherenkov resonance, i.e.,

(-) ( / , -u)- / , • , .« , , (1.2)

Here we have taken into account that the wave has a com-
pletely definite dispersion law co(k ^) (or &>(k) if the direc-
tion of the radiation does not coincide with the direction of
motion of the electron). The spontaneous radiation which
occurs under the conditions (1.2) is called the Cherenkov
effect.2"5 This spontaneous effect must not be confused with
the stimulated Cherenkov radiation effect which will be dis-
cussed below.

If the electron, under the action of some external forces,
executes in addition to its longitudinal motion also some os-
cillatory motion, then new conditions of radiation arise. For
example, suppose that the electron is moving in a longitudi-
nal constant magnetic field with a nonzero transverse (with
respect to the magnetic field) velocity. Here z = unt, vx

+ iVy = uLex.p(ict>at/y), where UL is the transverse veloc-
ity, COH is the electron cyclotron frequency, and
y=[l- (wjj/c2) - (wj/c2)]""2. Therefore the electron
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in addition to its uniform longitudinal motion executes a
rotational transverse motion with a rotation frequency OJH/
y. Calculation of the work of the field of a transverse circu-
larly polarized electro-magnetic wave (Ex + iEy = iEL

Xexp [ + i(o)t — k ||z + <p) ] on such an electron gives a re-
sult analogous to (1.1):

-•loo — neu • E \ sin cj 6 I co—k\\u\\ ± —^- \ . (1.3)

However, the condition of radiation in this case turns out to
be substantially different:

/; i 7 _L_ MJJ (\ A\''' \"\\) " l l ^ l l — v • v l.^1/

In the more general case with arbitrary polarization and di-
rection of wave propagation, the conditions of radiation are
written in the form

/ /. \ _ /, - <0jj , 1 9 3 \ ( 1 5 V

The spontaneous radiation which arises when the conditions
(1.5) are satisfied is called magnetic bremsstrahlung or cy-
clotron radiation6 (synchrotron radiation for large n; Ref.
2). It must not be confused with the stimulated cyclotron
radiation to be discussed below.

In general, if the frequency of oscillation of an electron
in external fields is &>0, then one has the following conditions
of spontaneous radiation:

co (A-,,) = A:,, un ± n«0, n = 1. 2. 3, . . ., (1.6)

which is called undulator radiation.2'7 Undulator radiation
is most frequently dipole in nature (magnetic bremsstrah-
lung can be considered to be one of the various forms of
dipole radiation). Spontaneous undulator radiation must
not be confused with the stimulated radiation which arises in
motion of a beam of electrons in an undulator.

Let us return now to an electron moving uniformly and
in a straight line but in a system which is periodically nonun-
iform in the direction of its motion. It is well known that the
fields in such systems can be represented in the form of a sum
of Brillouin harmonics8:

+ 00

E (z. *) = E exp (—i<at + ik, z + icp) 2 anc*p(in7.z)i
"(1.7)

where Itr/x is the spatial period of nonuniformity of the
system. Here if A is a small parameter which determines the
depth of modulation of the periodic system, then an~h".
Calculation of the work of the field (1.7) on a rectilinearly
moving electron gives the following result:

+ 00

^00 = n e u E sin q Y| n,,6(w —/c ; u , | — n j i i ). (1.8)
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From this we obtain the condition of spontaneous radiation
of an electron in periodically nonuniform systems9:

co (Ay) = A-, , it,, ± nyun, n = 1, 2, 3, . . . . (1.9)

This radiation also must not be confused with the corre-
sponding stimulated radiation of a beam of electrons.

The expressions for the work done (1.1), (1.3), and
(1.8) are linear in the amplitude of the field of the electro-
magnetic wave, since in calculating them the field was taken
at points on a specified unperturbed trajectory of the elec-
tron, that is, on the trajectory of the zero-order approxima-
tion. We can say that these expressions characterize stimu-
lated radiation of first order. However, it is possible to have
spontaneous radiation also of a higher order in the field, for
example, second order.

Suppose that an electron is moving in a straight line in

the field of two waves with a longitudinal component of
the form E\\ = E\\i sin(«,J — k ^z + <pt) + E \\2

Xsm(co2t — k ||2z + 0>2) and let ft1>2=<a,2 — k\\}i2u^Q,
i.e., there is no spontaneous (Cherenkov) radiation of first
order. We shall calculate the work of such a field on the
electron. In the first-order approximation the averaged work
calculated along the zero-order approximation trajectory is
zero. In the same first-order approximation the electron sim-
ply oscillates in the field of two waves with frequencies ft I i2.
We shall take into account these oscillations under the inte-
gral in Eq. ( 1.1 ) (that is, we shall make in that equation the
substitution z = u^ t + z, where z is the first-order approxi-
mation correction; after simple calculations we find that

+ ( f c . : i ; - / , : „ ; > ) s i n (<pt + cp2) 6 (0,-i-A)]. (1.10)

Therefore the work is nonzero if one of the conditions of
combination (Raman) resonance is satisfied:

| | l =F I co., (/,-||.,) — ki}M{,\ =0. (1.11)

This process should be regarded as spontaneous radiation of
a wave with frequency a)l by an electron executing a speci-
fied motion in the field of a wave with frequency <y2, or vice
versa. Spontaneous radiation of second order occurring un-
der the conditions ( 1 . 1 1 ) is ordinary Thomson scattering by
a moving electron (Ref. 6).u It must not be confused with
the stimulated scattering which is discussed below.

Spontaneous effects of higher than second order appear
relatively rarely, and therefore we shall not dwell on them.
We mention only that they are all contained in the condi-
tions (1.6) if by <y0 we understand the frequency of oscilla-
tions of an electron ( or the sum of such frequencies ) in cor-
responding fields.

Therefore the conditions of spontaneous radiation re-
duce to coincidence of the frequency of the radiation field in
the coordinate system moving with velocity u\\ with the fre-
quency of oscillations of the electron or one of its harmonics.
If there are many electrons, then the radiation of one of them
can stimulate the same radiation of other electrons, acting
on their motion. In this way we have stimulated (induced)
radiation which is stimulated by spontaneous radiation. It
occurs practically under the same resonance conditions as
spontaneous radiation, that is, on coincidence of the fre-
quency co — k || U|| with the electron's own frequency. There-
fore the importance of the conditions of spontaneous radi-
ation lies in the fact that they determine the radiation spectra
both of individual electrons and of electron beams as a
whole.

2. SINGLE-PARTICLE STIMULATED PROCESSES. THE
CHERENKOV EFFECT, UNDULATOR RADIATION, THOMSON
SCATTERING, AND THOMSON RADIATION

Turning to presentation of the theory of stimulated ra-
diation of electron beams, we shall attempt initially to pro-
ceed in the same way as in Section 1 in discussion of sponta-
neous radiation. Namely, in calculation of the work of the
field of a wave of radiation on a beam we shall calculate the
work of this field on each unperturbed electron, and then
sum the results. In the case of a monochromatic field it is
sufficient to carry out the summation only over the electrons
which are present in a wavelength of the radiation. In this
way, using Eq. (1.1), we obtain for the amount of work
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Ax — neu. ;; E ;1 8 (w — k :\ u \: ) sin (2.1)

where ̂  is the phase of the field relative to the jth electron.
However, if the beam is not modulated, the phases <PJ are
uniformly distributed in the interval (0,277-). Therefore the
sum in (2. 1 ) vanishes.

Therefore the summation over the unperturbed individ-
ual electrons gives no radiation. This also is understandable
since the coherent waves from each electron cancel each oth-
er as the result of interference. In order to obtain non vanish-
ing coherent radiation it is necessary to give up the assump-
tion that the motions of the individual electrons are
independent (unperturbed), i.e., it is necessary to take into
account the reaction of the field of the radiation wave on
each electron of the beam and in this way to consider the
phases tpj as changing under the action of this field. In just
this self-consistent approach we have a phasing (bunching)
of the electrons in the field of the wave and stimulated coher-
ent radiation appears. As far as spontaneous radiation is
concerned, it is not present in unmodulated beams.

We shall start with a discussion of stimulated radiation
in the case of a rectilinear beam of electrons executing one-
dimensional motion along a very strong external magnetic
field. The frequency of the field of the radiated wave
E } ] ( z , t ) = (1/2)[£|, exp( -i<ot + ikftZ) + c.c.] we shall
assume to be close to one of the eigenfrequencies of the sys-
tem in which the beam is propagating, that is, cozz(i)(k^ ).
Strictly speaking, the frequency <a contains an imaginary
correction iSca ( increment ) due to the exponential rise of the
field in the linear stage of the radiation process, i.e., we shall
understand a> to mean a> + /<5o>.2) Under the conditions con-
sidered, the perturbation of the electron trajectories is deter-
mined by the equations of motion

where & is a parameter which characterizes the efficiency of
coupling of the beam with the radiation field. This param-
eter can have various natures. As an illustration we have
shown in Fig. 1 a picture of the interaction of a beam which is
"thin" in its transverse cross section with the retarded sur-
face wave of a dielectric. In this case/?~ ̂  (x0) , where *P (x)
is the normalized transverse distribution of the field compo-
nent £•„ ( z , t ) .

However, writing the equations of motion (2.2) taking
into account the radiation field only on the right-hand side is
not in general sufficient. The point is that the beam itself is
an oscillatory system which contains an entire set of collec-

tive eigenfrequencies—plasma oscillations. If these oscilla-
tions are excited in radiation, then in the right-hand side of
the second equation of (2.2) it will be necessary to add the
corresponding beam fields. Processes in which collective
modes of the beam are not excited are called single-particle
processes. In the present section only such processes are con-
sidered; therefore the equations of motion are written just in
the form (2.2). Collective processes and the criteria for their
appearance will be investigated below.

Linearizing the equation of motion (2.2), we obtain in
first order in the field a correction z},(t) to the unperturbed
trajectory of they th electron 2) = u\\(t — t0) +z0j, emerging
at time t0 from a point zoj. In finding this correction it is
convenient to assume that at t = /0-> — oo there is no radi-
ation, which corresponds to the assumption of adiabatic
turning on of the radiation field in the past. Then substitut-
ing Zj into the second equation (2.2), we obtain after averag-
ing over all electrons per wavelength of the radiation field
the law of variation of the average density of the beam mo-
mentum Pe:

:i ' b * ^ I! II ' uw
 nn f f* -i \_

d« [((0 —

in which y = [ 1 — (u\/c2) ] ~ l/2 is the relativistic factor of
the energy of the beam electrons, eab = (47re2/zb/m)1/2isthe
Langmuir frequency of the electrons, and nb is their density.
We note that the averaging in derivation of ( 2. 3 ) was carried
out in the usual way, namely,

.v

<*> = -~x 2 xi>.»•=•• i
where N is the number of electrons in a wavelength and X is
the electron characteristic being averaged. For example,
Pe = nbm < i>n [ 1 — (vjj/c2) ] ~ l / 2 > . It is obvious also that
small variations of Pt and of the average density of the beam
energy We are connected by the relation

= /V (2.4)

In what follows we shall need the conservation of ener-
gy and momentum in the radiation process:

•j-(W'-MVe) 0. ~- (l>-\-]>e) --- 0, (2.5)

in which Wand Pare the densities of the energy and momen-
tum of the wave, and also the expression for P in terms of the
square of the amplitude of the radiation field,

/'--a- (2.6)

Here a is a parameter determined by the specific nature of
the wave excited by the beam. It will be defined more com-
pletely below.

In using Eqs. (2.4)-(2.6), we shall transform (2.3) to
an equation for the densities of the energy and momentum
(W,P) of the radiation:

(2-7)

FIG. 1. Clarification of the meaning of the coupling parameter between
the beam and the radiation.

From (2.7) we can draw a conclusion of a general nature: if
the energy of the wave increases with time, that is, if Sa> > 0,
then « — & || « || < 0, and the radiating beam necessarily over-
takes the wave. We shall maximize the right-hand side in
(2.7) by adjustment of a> — k\\ utl , that is, we shall find the
optimal condition of radiation. We obtain
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(2.8)

Let us now determine the increment Sco. If we take into
account that W' = 28a>W [the density of the energy W is
quadratic in the field, and therefore it rises as e\p(28<ot) ],
we find from Eqs. (2.7) and (2.8)

6(0 (2.9)

In addition, it can be seen from Eqs. (2.8) and (2.9) that in
the case of low-density beams in which Sea -> 0 (more precise-
ly, 8(1)^0)), the optimal condition of stimulated radiation
(2.8) practically coincides with the condition of spontane-
ous Cherenkov radiation (1.2). Incidentally, from Eqs.
(1.2), (2.4), and (2.5) we obtain the well known relation
between the energy and momentum of a wave of any nature3'

n __ . W. (2.10)

Equations (2.7)-(2.9) are extremely general, since the
individual features of a system in which the beam radiates
are contained only in the factor a (for an unbounded elec-
tron plasma a = 1/2, and from (2.9) we obtain for/9 = V2#
= -j3/2((ol(o/2y*)1>3, which is the known increment of

beam-plasma instability10'11). The processes described by
Eqs. (2.7)-(2.9) are called single-particle stimulated Cher-
enkov effects. These processes are characterized by a com-
mon feature—longitudinal grouping of the electrons in the
wave field and formation in it of retarding phases of the radi-
ating electron bunches. This feature is also responsible for
the overtaking of the radiated wave by the beam as reflected
in (2.8).1<M4

If the beam radiates in a periodically nonuniform sys-
tem, then the wave field is given by the real part of the
expression (1.7) with a complex frequency. Substituting this
field into the right-hand side of the second equation (2.2)
and essentially repeating the derivation of relation (2.7), we
obtain the following equation for the radiation energy den-
sity:

1 f vi ^" I an I 2 k>:|,'V~'t (w — / C | | U | j ) 6 o >

~1T\ ^ W ; : / > ' n R ^ T ^ r ~ ~ W'

(2.11)

where kn = k y — nx- It follows from this that in radiation in
a periodic system Eqs. (2.8) and (2.9) are preserved with
replacement of k\\ by kn and of 6>l by \an \

20l respectively,
and the optimal condition of radiation reduces to one of the
conditions (1.9). In addition, in the sum which enters into
(2.12) we need retain only the single term corresponding to
that n value for which (1.9) is satisfied. Equation (2.11)
determines the single-particle stimulated Cherenkov effect
in a periodically nonuniform system.14'15

Now let each beam electron, in addition to uniform mo-
tion, execute in the external fields also a specified oscillatory
motion with a fixed amplitude. For example,
z = M y t + z0 + z, where z ( t ) — (2ir/co0) is a periodic func-
tion which does not have a constant component. In this case
instead of (2.11) we obtain

— k : , u . ) Sco_
df

where<yn = a — na)0andAn ~ [max,

W.

(2.12)

)" ]. The process

defined by Eq. (2.12) we shall call single-particle stimulated
undulator radiation.16'17 For stimulated undulator radi-
ation, Eqs. (2.8) and (2.9) are valid with replacement of a>
by a>n and of a>\ by \An \

2col respectively, and the condition
of radiation reduces to (1.6). In addition, as in the case of a
periodic system, in Eq. (2.12) it is sufficient to retain only a
single term in the infinite sum.

The wave radiated in an undulator undergoes a Doppler
shift of the frequency. For example, from the condition
to = A: || w || +a)0 for the very simple spectrum
a = < u ( & n ) = sign(&n )k\\ ewe have

, U .. \ —1

(o = MO M — sign A - ; • —^— j . (2.13)

A similar shift of frequency occurs also in radiation in a
periodic system.

Equation (2.12) is valid if the amplitude of the electron
oscillations with frequency <a0 is maintained at a constant
level. In just this case one speaks of undulator radiation.
However, if the oscillation amplitude is variable, a separate
treatment is necessary. We shall carry out this treatment,
using the conservation laws. Suppose that the oscillations of
an electron are due to the action on it of an electromagnetic
wave with frequency co2 and wave number fcp. Thomson
scattering of this wave by the beam electrons occurs. Obvi-
ously in this case <u0 = co2 — k y2 u\\. Denoting the frequency
and wave number of the scattered wave by <a, and A^, re-
spectively and taking into account that in Thomson scatter-
ing the radiation condition has the form (1.11), we obtain
for the frequencies a> 12 and the wave numbers & p 2 the rela-
tions of combination (Raman) resonance. We shall write
them in the form

((0, — — (0)2 — = 0, (2.14)

assuming that cu, >0 and that the sign of &>2 is arbitrary.4'
Equation ( 2. 1 4 ) must now be considered as the condition of
stimulated Thomson scattering or radiation, while (1.11)
gives the conditions of spontaneous radiation of second
order.

We shall express the energies and momenta of the inci-
dent and scattered waves in terms of the numbers of quanta
JV, and N2:

Wl=<a1Nl,
J\ = fciuA7!,

(2.15)
P2 = sign

Then, writing the conservation laws for small variations of
the energy and momentum in the form

57V 2 ~ = 0,
&H, 6Nl -j- sign to.2-A-||2 67V2 -f 6/J

e = 0
(2.16)

(2.17)

and taking into account Eqs. (2.14) and (2.4), we obtain
from (2.16) the well known Manley-Rowe relations18:

6jVj -r sign (t>2-8N.2 = 0,
(wj — co2) 6A', -;- 6VFe = 0.

Let co, > (O2 > 0. Then Nl -\- N2 — const, that is, the to-
tal number of quanta is conserved. If in addition 8 W,. < 0
(the beam gives up energy to the scattered wave), then
&V, > 0 and 8N2 < 0. Consequently stimulated scattering oc-
curs with an increase of the frequency. The opposite process
is also possible—scattering with decrease of the frequency,
and it is accompanied by an increase of the average energy of
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the electron beam, that is, by acceleration of the electrons.
Now let <y2 < 0. In this case SNt > 0 and SN2 > 0, that is,

the total number of quanta increases. Consequently stimu-
lated radiation of two waves occurs. The inverse process is
also possible—absorption of two waves, and here the beam is
accelerated.

It should be mentioned that the requirement co2 < 0 in
itself has no physical meaning, just as the sign of the frequen-
cy has in itself no meaning. Simply by setting co2 < 0 we turn
on in (2.14) also the condition (1.11), taken with the lower
sign (plus).5'

It is obvious that if in the processes of Thomson scatter-
ing and radiation the amplitude of the wave with frequency
co2 is assumed to be constant (the case of high-power pump-
ing), then for the energy density of the wave with frequency
tol it is easy to obtain an equation of the type (2.12) with
o)Q = co2 — k || 21/||, that is, it is easy to go over to the undula-
tor case. Nevertheless, undulator radiation must be distin-
guished from Thomon processes since the pumping in an
undulator is created and maintained by external sources and
is not an eigenwave of the system in which the beam is propa-
gated. For this same reason it is necessary to distinguish the
spontaneous processes (1.6) and (1.10).

We shall make an additional important remark on the
behavior of Eq. (2.7) (and equations similar to it). In deri-
vation of this equation it was assumed that all electrons at
t = t0 have an identical velocity u v, and therefore under the
resonance conditions (2.8) they all interact strongly with
the radiated wave. However, in real beams the electrons have
a spread in velocity which can be taken into account by intro-
ducing att = t0 an unperturbed electron distribution func-
tion /0(U||) normalized to unity. The generalization of Eq.
(2.7) to the case of a beam with a spread in velocities is
obvious and has the form

(2.18)

V l i =W//i

a IW ,» P'"*
d( ("•'>- a

+ DO

. / " = • = I f . f t i

b J -<W P\J ( VY , t ) ,

6(0 (co — k i;,,)(ii-||

,^,)'- r&<»T'

In the case of a single-velocity beam in which
/ O ( V H ) =<5(v,| -M| | ) , f rom (2.18) we obtain (2.7) and the
results (2.8) and (2.9). The same results are obtained if/0

( i > i l ) has a finite but small width, namely,

-^U<-^L. (2.19)K , tu

where Ai>n is the half-width of the distribution function and
Sco is the increment (2.9). Actually, if (2.19) is satisfied, the
function x (x2 + Sco2) ~2, where x = co — k y V||, can be taken
outside the integral sign in the expression for / also. The
condition (2.19) in this case means that all beam electrons
interact strongly with the radiated wave, or, as one can say,
the interaction has a hydrodynamical nature (it is integrated
over the distribution function).

Let us consider now the opposite limit, i.e., the inverse
of (2.19). In this case we can take out from under the inte-
gral sign in the formula for J the quantity f0 (v\\); however,
the subsequent integration here gives zero. To make the re-
sult more accurate we shall expand/0 (v\\) in the vicinity of
the phase velocity of the wave co/k \\ with accuracy to terms
of first order:

Following this, carrying out the elementary integration, we
obtain the following result:

(W. P). (2.20)

From this we find the expression which determines the di-
rection and rate of change of the energy density of the radi-
ation:

(2.21)
2 a.k\ f)vl{

which differs substantially from (2.9).
From (2.21) it can be seen that for df0/dv\\ < 0, when

the number of electrons lagging the wave is greater than the
number of electrons leading it, Sco <0, i.e., the intensity of
the radiation decreases. This is the well known Landau
damping effect.1J8 However, if <9/0/<?vy > 0, then the intensi-
ty of the radiation increases. In this case one speaks of the
inverse Landau damping effect.45'47

The Landau effects are due to resonance interaction
with the wave of a small part of the electron beam—only
those electrons for which the Cherenkov resonance condi-
tion (1.2) is satisfied. The quantity (2.21) is determined by
the detailed structure of the distribution function, and there-
fore the Landau effects are kinetic. The strictly resonance
nature of kinetic effects, and also the proportionality of the
increment Sco to the density of radiators to the first power,
makes them similar to spontaneous-radiation effects. In
what follows we shall not discuss kinetic effects. We mention
them here only for completeness of the presentation.

3. COLLECTIVE STIMULATED PROCESSES. THE
COLLECTIVE CHERENKOV EFFECT OR THE RAMAN
EFFECT. RAMAN SCATTERING AND RAMAN RADIATION

In derivation of Eq. (2.7), we made use of Eq. (2.2), in
the right-hand side of which there is only the field of the
radiated wave. However, this is not always valid. Indeed, the
radiation modulates the electron flux in density, and addi-
tional beam fields arise in it, which is schematically shown in
Fig. 2. The beam fields result in the existence of a whole
group of collective stimulated processes.

Beam fields in the electron equation of motion are rath-
er simple to take into account qualitatively. Indeed, on dis-
placement of an electron from its equilibrium position, it is
acted on by a restoring force which is proportional to the
displacement. The proportionality coefficient is the square
of the frequency of plasma oscillations of the beam,19 which
we shall designate as H2, .5I Taking this into account, we can
write the equations of motion of the electron in the form [cf.
Eq. (2.2)]

;; _ Beam,..

FIG. 2. Modulation of a beam and the appearance of beam fields.
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where zn =z0 + u\\ (t — t0) is the unperturbed trajectory
emerging from the point z0.

From Eq. (3.1), proceeding exactly in the same way as
in derivation of Eq. (2.3), we can easily obtain the following
law of variation of the average density of the beam momen-
tum P.:

I £,; |2 PHV"'' (<•'- '•' » i j ) 5 [ "

" •' 8-T [((i)— A - . , U . )" — Qf, — 620)|2-|- '» (0) — / C i | U , , ) a 6 = ( B '

(3.2)

The further manipulation of Eq. (3.2) involves use of the
conservation of energy and momentum. In writing down
these conservation laws it is necessary to take into account
the electromagnetic energy and momentum of the plasma
oscillations of the beam. In regard to the electromagnetic
momentum, in the case of potential plasma oscillations it is
equal to zero. Limiting the discussion to just this case,7' we
shall write the momentum-conservation law in the form
(2.5). However, the energy-conservation law must be writ-
ten as follows:

including in the total balance in addition to the densities of
the radiation energy and of the average kinetic energy of the
electrons also the density of the electrostatic energy of the
plasma oscillations W\\.

Using the momentum conservation law and Eq. (2.10),
we transform Eq. (3.2) to the form

a [(co— k . « , | ) - — Q\ — 5(o-]2+'i (M~ -k u )-81,1- v

(3.4)
As fib -»0 Eq. (3.4) goes over into Eq. (2.7). However, this
is also understandable—in a rectilinear completely magne-
tized beam with a vanishingly small density of electrons,
radiation can be due only to the single-particle spontaneous
Cherenkov effect.

Let us discuss now the case of high densities of elec-
trons, in which

Qb»S«2, (3-5)

and Eq. (3.4) is written in the following form:

A (W. P)

«_ Pa(o|y-3((fl-A-;.n ; )6 (o
~^ a [((o-A- u, )2 — Uf,P + 4 ( G > — f c u )\62co ^ ''

(3.6)

It follows from (3.6) that, as in the case of (2.7), the radi-
ation energy density W increases with time, provided that
(o — k || U|, < 0. The maximum of the increment is realized for
the condition

which is different from (2.8). The increment itself also has a
form different from (2.9):

6(11 lKi~ikr~) ' " • (18)

Using now the latter expression, we shall give an explicit
form to the inequality (3.5):

(3.5')

thereby expressing explicitly the criterion of high density of
the beam electrons.

Radiation under the conditions (3.7) and (3.5) is
called stimulated Raman effect.20 This is a collective effect,
into which the single-particle Cherenkov effect is trans-
formed with increase of the density of electrons in the beam.
The meaning of the name "Raman effect" will be made clear
below. We note here that the term "collective Cherenkov
effect" would probably be more appropriate in the present
case, and we shall use this terminology in what follows.

To make clear the physical essence of the collective
Cherenkov effect we recall that the spectra of beam plasma
waves are determined by the expressions

co = A- j fW, , ± Qb. (3.9)

The spectrum with the minus sign corresponds to the so-
called slow wave with negative energy. In excitation of this
wave, energy is removed from the beam.21 However, as can
be seen from Eq. (3.9), the condition of resonance (3.7) is
the condition of excitation of just the slow wave. The energy
liberated here goes into radiation.8'

It is possible, by means of the equations of "cold" hy-
drodynamics and the Poisson equation, to show indepen-
dently that the electrostatic energy of the plasma oscillations
of a beam is given by the formulas

W
k . I u i (3.10)

The upper sign here refers to the fast wave, and the lower—
to the slow wave. Since electrostatic energy is always posi-
tive, then from Eq. (3.10) it is again evident that on excita-
tion in the beam of a slow wave it slows down, i.e., SWe < 0.

Taking Eq. (3.10) into account, we rewrite the conser-
vation law (3.3) in the form

where

(3.11)

(3.12)

is the total energy of the slow wave. Now using (3.7) and
(2.4) and the general relation (2.10), we obtain from (3.12)
an expression for the momentum of the slow beam wave:

/>{,-> ̂ i.vn-'-fi/'e, (3.13)
which in the potential (electrostatic) case considered is ob-
vious.

The process just discussed, like all stimulated processes
investigated in the previous section, leads to instability cor-
responding to an exponential rise of the field with time. In-
deed, both (2.7) and (3.6) forw - k \\u\\ <0, and also (2.11)
and (2.12), reduce to the form

<o — Qb, (3.7)
AW

"dT: (3.14)
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with positive So). Therefore the energy density of the radi-
ation in the linear approximation grows without limit at the
expense of the beam energy with arbitrarily small initial per-
turbations in the system.9'

We shall now give an example of a completely different
process. We shall set in (3.6) co — k \\u\\ = fib, which, as can
be seen from (3.9), is the condition of resonance interaction
of the radiation with the fast beam wave. Here Eq. (3.6)
reduces to a form different from (3.14):

^f-==i-28o).W, (3.15)

where 8co coincides with (3.8). This is one of the examples of
interaction of two waves with positive energy. In such an
interaction, energy from the fast beam wave is periodically
pumped over into radiation and vice versa.

The energy and momentum of the fast beam wave are
given by the expressions

(3.16)

in which, as can be seen from (3.10), 8We (and 8Pe) are
greater than zero.10' However, the conservation law (3.3)
reduces to the form

At
(3.17)

Since the signs of Wand W £ coincide, an increase of one of
them is accompanied by a decrease of the other. Consequent-
ly, for development of a process involving a fast wave it is
necessary to have in the system a finite initial perturbation,
which also is a source of energy. The characteristic behavior
of the energy densities in the processes (3.14) and (3.15) is
shown in Fig. 4. A radiation process of the type (3.15) is not
an instability; it is a simple decay of the initial perturbation.
Note that if the inequality (3.5) is not satisfied, such decay is
impossible: it is suppressed by the instability based on the
stimulated single-particle Cherenkov effect.

The stimulated collective Cherenkov effect is realized
also in periodic structures. Here the resonance condition is
written in the form

nyu\\ ± (3.18)

and Eqs. (3.8) and (3.5) are retained with replacement of
^by f lJX-

With increase of the beam density, there is also a change
in form of the stimulated undulator radiation defined by Eq.
(2.12). For example, the resonance condition is written in
the form

FIG. 3. Dispersion and signs of the energy and momentum of beam waves.
AC— fast wave (FW); CD—slow wave (SW); AB: 8WC >0, />„ >0, Wk

> 0; BC: SW, > 0, />„ <0, Wb > 0; CD: SWf <0, Ph <0, Wb <0.

W

_< w

FIG. 4. Change of the energies of waves in a radiative instability and with
simple decay of the initial perturbation.

co (fen) = wco0 ± Qb, (3.19)

and Eqs. (3.8) and (3.5) are retained with the substitution
a)\ -> An\

2cob. Radiation occurring under the conditions
(3.19) we shall call collective undulator radiation.

In conclusion we shall discuss the interaction of two
waves under conditions in which the amplitude of the scat-
tered wave is not fixed. The resonance condition (3.19) in
this case we shall write in the form

— (co2 — (3.20)

having generalized the condition of Thomson scattering and
radiation (2.14) to the case of dense beams. If we use the
notation

(0 = C0a (3.21)

then Eq. (3.20) coincides with the conditions (3.9) of reso-
nance excitation of beam waves. On the other hand, the rela-
tions (3.21) are the conditions of nonlinear interaction of
the waves.18'31 The processes (3.20) are just such interac-
tions of two electromagnetic waves and one beam wave, and
they must be assigned to processes of the Raman scattering
and radiation type.

Let us consider the conservation laws in the interaction
of waves. For this purpose we shall express the energy and
momentum of the plasma oscillations of the beam in terms of
the corresponding number of quanta (plasmons) Nb:

= ± (3.22)

We shall take first in condition (3.20) the minus sign,
i.e., we shall consider the interaction of electromagnetic
waves with a slow beam wave. In this case the conservation
of energy and momentum are written in the form

(O^ + | <D2 | 6A2 - (oSJVt = 0,

A-||16A''1 + sign a>2-knf>Ns — ksdNb = 0.
(3.23)

From this, with inclusion of (3.21), we obtain the Manley-
Rowe relations18

6AT, - 6<Vb = 0, 6JV2 + sign <o2-6Ar
b = 0,

6AT! -f- sign (o2-6Ar
2 = 0, (3.24)

which are analyzed below on the assumption that in the ini-
tial state the beam is not perturbed, that is, SNb > 0.

If w, > «2 > 0, then SN, > 0, and SN2 < 0. This is Raman
scattering with increase of the frequency, that is, the process
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into which Thomson scattering with increase of the frequen-
cy is transformed on increase of the beam density. If a^ > 0
and a>2 < 0, then, as can be seen from (3.24), we have 8N{ >0
and SN2 > 0, that is, the amplitudes of the two electromag-
netic waves grow simultaneously. In this case Raman radi-
ation of two waves is realized. The Thomson radiation of two
waves discussed previously goes over at once into Raman
radiation of two waves with increase of the beam density.

In interaction of electromagnetic waves with the fast
beam wave [the plus sign in (3.20) and (3.22) ] the conser-
vation laws and the Manley-Rowe relations have the form

w^A1! -f I coj | 6A'2 + w6jVb = 0,
*!,«#, + sign <t>t-kh-6Nt + A'i,6iVb = 0, (3.25)

&N! + 6A"b = 0, dNt — sign co2-6A'b = 0,

6 A^ -f sign (02'6A"2 = 0.

If (ol > co2 > 0 and the beam in its initial state is not perturbed
(SNb > 0), then SN{ < 0 and SN2 > 0, that is, there is scatter-
ing with reduction of the frequency with simultaneous exci-
tation of the fast wave of the beam. The source of energy is
the energy of the high-frequency electromagnetic wave. In
the beam system the frequency of the scattered wave is less
than the frequency of the incident wave,

Q2 = Q, - Qb. (3.26)

However, this relation is satisfied in the Raman scattering of
light (the Raman-Mandel'shtam-Landsberg effect22' and
corresponds to the normal Stokes line in the scattering spec-
trum. For this reason all processes which take into account
the correction flb in the conditions for radiation and scatter-
ing are called Raman. However, this terminology does not
take into account singularities associated with motion of the
beam and with the negative energy of the slow beam wave.
Therefore its application to all these processes, in our opin-
ion, is not completely justified.1"

If SNb <0 (the beam is initially excited) and <y2>0,
then §Ni > 0 and 8N2 < 0. This is scattering with increase of
the frequency, not at the expense of the energy of directed
motion of the electrons, but rather at the expense of the ener-
gy of the low-frequency wave and the fast beam wave. This
case completely corresponds to classical Raman scattering
with an anti-Stokes spectrum.

If SNb < 0 and co2 < 0, then SNt > 0 and SN2 > 0. This
means that the two waves radiate at the expense of the energy
of the plasma oscillations of the electrons of the beam.

All processes with participation of the fast wave are not
properly assigned to radiative beam instabilities, since for
them the presence in the beam of energy of directed motion is
not fundamental. They are based on the simple decay of the
initial wave perturbation into wave perturbations of another
type. On decrease of the beam density, all processes involv-
ing the fast wave (like processes involving the slow wave)
are modified into the stimulated Cherenkov and Thomson
effects, that is, into single-particle radiative instabilities.

4. ANOMALOUS AND NORMAL DOPPLER EFFECTS

In all the single-particle processes discussed in Section
2, the average energy of the electron flux was determined by
the energy of its rectilinear quasiuniform motion (quasiuni-
form because during radiation this energy slowly decreases).

A completely different case is that of an electron oscillator,
that is, an electron in the field of gyroscopic or conservative
external forces. Let us consider how a beam of such oscilla-
tors radiates. Here it is necessary to take into account that, in
addition to the density of the "longitudinal" momentum fe

and the density of the "longitudinal" energy We, in the beam
there is a density of "transverse" energy of the oscillator
motion W± .12) Writing down the laws of conservation of en-
ergy and momentum for the radiation

JJL(W + Wt+W±) = Q, jL(p+Pe)=,o. (4.1)

we obtain for the variations of the energy of the electromag-
netic field and We the following relations:

<o — k i co —A: u.. (4.2)

In obtaining Eq. (4.2) we have taken into account the rela-
tions (2.10) and (2.4). It is evident from this that in the
Cherenkov effect (co = k^u^ ) the energy of oscillatory mo-
tion of the electron does not change (8Wt =0). Different
situations are realized for a> / k^ u ^ .

We shall assume for the moment that w > 0 and the
beam is radiating, that is, S W> 0. If o) — k\\ u ^ < 0 ( here au-
tomatically & n > 0 ) , then SWL>0 and 8We <0. Conse-
quently, in radiation the transverse energy of the oscillatory
motion of the electrons increases. Energy of the longitudinal
motion is expended on this, and it also goes into radiation.
This radiation is called the anomalous Doppler effect.2'12'23

Therefore in the anomalous Doppler effect even a beam elec-
tron moving initially in a straight line, on radiating, begins to
oscillate.

lfo)-k^ >0and/t, >0, ihenSW, <Oand<SJFe <0.
Consequently, an electron beam radiates both as the result of
its own transverse oscillatory energy, and as the result of the
energy of longitudinal translational motion. However, if at
the beginning of the process WL = 0, then there is no radi-
ation. Thus, for radiation an initial reserve of oscillatory
energy is necessary. This radiation is called the normal
Doppler effect.2'12'23

Finally, for ca — k\\ u\\ > 0 and k\\ < 0 we have 8 W± < 0
and 8 We > 0. That is, in radiating, the beam is accelerated in
the longitudinal direction. Again the energy of the trans-
verse oscillatory motion is expended in this process. This
process in the literature is also called the normal Doppler
effect.

Let us mention one additional circumstance which fol-
lows from the equations (4.2). For example, suppose that
the radiation spectrum (a(k^) has the very simple form
a = fc|| c0 , where c0 is the phase velocity of the electromag-
netic waves. Then, if c0 — u\\ <t/||, in the normal effect we
have

(4.3)

That is, an electron beam radiates at the expense of the ener-
gy of longitudinal motion, while the oscillatory (transverse)
energy changes very little, being, as it were, a seed. A similar
situation exists in the anomalous Doppler effect, in which c0

< U|| and U|| — C O < M U . Therefore at c0 ~u^ the Doppler ef-
fects are energetically equivalent to the stimulated Cheren-
kov effect.

In Fig. 5 we have shown the regions of frequencies and
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FIG. 5. The regions of the anomalous and normal Doppler effects.

wave numbers in which the various effects are possible. The
figure generalizes the discussion carried out above for a > 0
to negative frequencies (co <0).

We shall consider as an illustration of the anomalous
effect the radiation of an electron initially traveling in a
straight line in a constant magnetic field.24 We shall obtain a
formula of the type (2.7) for the intensity of radiation. For
this purpose we shall write down the equations of motion
of the electrons for the velocity components v\, and

(4.4)

where AL =AX+ iAy is the vector potential. We shall take
the direction of rotation of the plane of polarization of the
field of radiation in accordance with the formula
AL =A0 e\p(ia)t — fc||Z), where a) is a complex frequency
(here (o-xa — i8a>). Taking VL from the linearized first
equation of (4.4) and substituting it into the second equa-
tion, we obtain with inclusion of (4. 1 ) and (2. 10) the follow-
ing equation for the intensity of radiation:

. (W, P), (4.5)=

where a is a parameter determined by the nature of the wave
in accordance with the formula

(4.6)

Incidentally, in derivation of Eq. (4.5) it can be shown that
the right-hand side of the second equation of (4.4) does not
depend on the coordinate z. Consequently, in this case there
is no bunching of the electrons in the wave field, that is, all
electrons are slowed down identically, regardless of their
phase. This distinguishes the considered process substantial-
ly from the stimulated Cherenkov effect.

From Eq. (4.5) we determine in an obvious way the
condition of optimal radiation in the anomalous Doppler
effect:

to k) = — COH, (4.7)

which coincides exactly with one of the conditions of sponta-
neous radiation (1.4) (for y = 1, since u}] <e), and the in-
crement13' is

i/2

It is easy to show also that the electron energy densities Wf
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and Wi and the radiation density If are connected with each
other by relations of the type (4.2).

It is appropriate to mention also the following circum-
stances. Equations (4.5), (4.7), and (4.8) differ substantial-
ly from those obtained in discussion of stimulated Cheren-
kov effects (in a uniform or periodic system), since they
qualitatively define a different effect. Here radiation arises
even in an initially rectilinear beam (UL =0), since in the
anomalous Doppler effect the electron "untwists" and ac-
quires a transverse velocity. In regard to spontaneous radi-
ation, as can be seen from (1.3), for UL = 0 it is impossible.
Finally, the effect considered is a single-particle effect since
in the right-hand sides of the equations (4.4) there is no
contribution from collective beam fields; there is no contri-
bution from the energy and momentum of such fields also in
the conservation laws (4.1).

We shall make one further important remark. The con-
ditions of stimulated undulator and Cherenkov radiation
(1.6) and (1.9) fall in the regions of the anomalous and
normal Doppler effects. However, it is erroneous to identify
them for this reason with the latter. We can speak of Doppler
effects if the oscillatory properties of the electrons are due to
gyroscopic or conservative external forces, that is, if we can
introduce a conserved quantity WL.

There is a deep analogy25 between the collective Cher-
enkov effect and the anomalous Doppler effect. In the first
place, the condition (3.7),since<y — k \\u\\ <0, falls just into
the region of the anomalous effect. Second, in the anomalous
Doppler effect internal degrees of freedom of the beam are
excited, which are determined by the individual properties
of the electron oscillators. Internal degrees of freedom—
plasma oscillations—are excited also in the collective Cher-
enkov effect, but they are determined already not by the indi-
vidual properties of the electrons, but by the collective be-
havior of the beam as a whole. This analogy can be seen also
from the similarity of the equations (3.6) and (4.5), espe-
cially, under the conditions (3.5), in the simplified form of
writing of Eq. (3.6);

rs^r <w' p)- (4'9)
At v ' ' a. 4Qg (a—ft , , &

The analogy can be carried still further if with inclusion of
(4.7) we rewrite the second relation of (4.2) in the form

W, =—, (4.10)

and compare it with the second expression of (3.10). For-
mally this reduces to the replacement COH -»flb. From the
physical point of view it is much more important that the
electrostatic energy of plasma oscillations W\\ in the collec-
tive Cherenkov effect is equivalent to the energy WL in the
anomalous Doppler effect. It can also be said that the rela-
tion (4.7) determines the spectrum of the wave with nega-
tive energy, but in the absence of a slow beam wave, the wave
of (4.7) is single-particle.

Since in the collective Cherenkov effect under the con-
ditions (3.7), as in the anomalous Doppler effect, a faster-
than-light beam is radiating (i.e., the phase velocity of the
wave of radiation is less than the velocity of the beam), col-
lective Cherenkov radiation under the conditions (3.7) is
frequently called anomalous Doppler radiation.

In the case of the normal Doppler effect the velocity of
the electrons is less than the phase velocity of the wave, that
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is, a slower-than-light beam is radiating. Here an initial re-
serve of energy of the transverse motion W^ is necessary for
radiation. However, the same thing occurs in interaction of a
beam and radiation under the conditions at — k\\u\\ = flb.
Therefore the normal Doppler effect is not assigned to radia-
tive instabilities, i.e., under the conditions <o — k \\u\\ = COH

> 0 an electron beam is stable against excitation of electro-
magnetic waves. However, in the case of relativistic beams
the latter statement can become invalid since there is an ad-
ditional mechanism of stimulated radiation which we shall
consider in the next section.

5. STIMULATED CYCLOTRON RADIATION

Spontaneous radiation, which we were discussing in
Section 1, is due to an actual displacement of electric charges
in space—an accelerated displacement in dipole radiation
and a uniform displacement in Cherenkov radiation in a re-
tarding medium or in a periodic structure. In unperturbed
spatially homogeneous beams there is no actual displace-
ment of charges, since at any moment of time at any point of
space the charge density isp = const. Therefore there is also
no spontaneous radiation.14' One can say, however, that
spontaneous radiation initiates stimulated radiation. For ex-
ample, any initial regular modulation of a beam, even one
which arises at random, creates spatially coherent spontane-
ous radiation, which in turn produces further modulation of
the beam. As a result the beam is broken up into a sequence
of radiating electron bunches or, in other words, it is
bunched by the radiation field. This bunching is the princi-
pal factor in the transition of spontaneous (bare) radiation
into stimulated radiation. The seed itself, in the form of an
initial modulation of the beam, can be arbitrarily small. In
addition, it is understandable that the principal cause pro-
ducing radiation in the case of bunched electrons is the po-
larization current of the beam.

What we have said applies to all systems considered in
Sections 2 and 3. For example, the spontaneous Cherenkov
effect initiates the following things: in the case of beams of
low density—single-particle stimulated Cherenkov radi-
ation, and in beams of high density in faster-than light mo-
tion—collective Cherenkov radiation. Spontaneous undula-
tor or dipole radiation initiates stimulated undulator
radiation—single-particle and collective. The spontaneous
effect of second order (Thomson scattering) initiates in
beams of low density the effects of Thomson scattering and
radiation, and in dense beams—it initiates stimulated Ra-
man scattering or radiation. In all these cases only the uni-
form motion of the electron flux has been considered, and
consequently only polarization currents have been taken
into account, which is quite adequate.

There is another, opposite case in which the charge den-
sity of the beam is not perturbed (p = const) and a rota-
tional variable current (div j = 0) induced in the beam radi-
ates. This radiation is initiated by other spontaneous effects
and can be analogous to the radiation from a current-carry-
ing frame.26 A corresponding example was discussed in Sec-
tion 4 in derivation of Eq. (4.5), in which the radiation of an
initially rectilinear beam in a constant magnetic field was
investigated. Stimulated radiation of such a beam arises in
the following way. A bare circularly polarized current pro-
duces a spontaneous field of the same polarization. In the
general case jE = 0, and there is no radiation. However, if

the condition (4.7) is satisfied, the situation changes consid-
erably: the vectors E and j become parallel, and therefore the
transverse velocity of the electrons begins to increase and the
longitudinal component of the Lorentz force slows down the
entire flux as a whole without modulating it. Of course, in
the most general case the sources of the radiation from
beams are both rotational currents and polarization cur-
rents.

There is an additional spontaneous effect which initi-
ates stimulated radiation, namely, stimulated cyclotron ra-
diation (or magnetic bremsstrahlung). Here also jE^O, but
j is now not the current of an individual electron but the
current of an electron bunch formed as the result of bunch-
ing in a Larmor orbit. Stimulated cyclotron radiation is a
purely relativistic effect. It is initiated by spontaneous mag-
netic bremsstrahlung. Let us turn to a more detailed discus-
sion of it.

Let the electrons be uniformly distributed on the Lar-
mor circle and let their velocities be directed as shown in Fig.
6. The frequency of rotation of such electrons in an external
magnetic field BQ is COH /y, that is, it depends on their energy.
Also let the electric-field-strength vector of a circularly po-
larized wave rotate at each point of space with a frequency u>
close to oH/y. If azzoiff/y, then in the portion of the orbit
ABC the electrons receive energy from the field; therefore
the value of y increases and the rotation frequency of the
electrons drops. As a result the electrons from the portion
ABC attempt to shift toward the point A. It is easy to see that
the electrons from the portion ADC also shift toward the
same point. As the result an electron bunch arises near point
A on the Larmor orbit. However, at a> = a>H /y, as a result of
the symmetry of the picture with respect to the direction of
E, the combined work of the field on the electrons is equal to
zero. There is no symmetry for co=£(aH/y, when the work is
nonzero and stimulated cyclotron radiation can arise, that
is, radiation of rotating electron bunches produced by the
radiation.27 It is clear that the key aspect here is the depen-
dence of the electron rotation frequency on y, that is, relativ-
istic behavior.

For a quantitative investigation of the effect we shall
write the equation for the longitudinal momentum of a beam
electron:

(5.1)

and represent the longitudinal coordinate of the electron and
the components of the velocity and the radiation field in the
form

Z = U|; (t — t0)+Zoj-\-Zj. V]i=U'i+V-{,

VL = (M± + v±) exp [ - i-^j-(t— t0) — i<pai — ztp] , (5.2)

co—
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FIG. 6. Magnetic-cyclotron bunching of electrons in the Larmor orbit.
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where the quantities with a tilde (~) are small perturbations
proportional to A0 , and z0j and q>0j are the initial coordinate
and initial phase of rotation of the yth electron. We shall
average Eq. (5.1), taking into account in it terms up to qua-
dratic in the perturbations. As a result we obtain the relation

(5.3)

in which A = « — &: || w || + (coH/y),0oj = <p0j — k\\zoj,and
9 = <p — k || z is the perturbation of the helical phase. As be-
fore, the averaging in (5.3) is understood in the same sense
as in the derivation of Eq. (2.3).

Let us discuss the meaning of Eq. ( 5.3 ) . The term pro-
portional to uLA0 determines the action of the field on an
unperturbed electron, that is, it is responsible for the sponta-
neous radiation. In the averaging it disappears. The term
~VI_AO determines the stimulated anomalous Doppler radi-
ation studied previously in the example of (4.5). The new
element is the term ~ui6A0 which describes the phase
bunching of the particles. It is specifically this term that is
responsible for stimulated magnetic bremsstrahlung.

The further manipulation of Eq. ( 5.3 ) reduces to calcu-
lation in the linear approximation of the perturbations VL

and 6 and to application of momentum conservation and of
Eq. ( 2. 10) . Omitting the simple intermediate steps, we shall
give the final equation for the density of energy and momen-
tum of the radiation:

P);

here

(5.4)

(5.5)

Asz/J/c2 — 0, whenS2-»0, Eq. (5.4) goes over into (4.5), or
more precisely into its relativistic analog. In the opposite
case for

S2 ]> I S, (5.7)

Eq. (5.4) turns out to be substantially different and in its
structure reminds us of Eq. (2.7). This also is to be expected,
since the effect of stimulated cyclotron radiation, like the
single-particle stimulated Cherenkov effect, is due to bunch-
ing of electrons, in the present case with a perturbation of the
helical phase 6. Note that the perturbation 6 leads to polar-
ization of the flux: a rotating dipole moment arises, which is
specifically the source of radiation.

Taking into account that in the case (5.7) Eq. (5.4) is
similar to Eq. (2.8), we shall write down without difficulty
the increment of the instability in stimulated cyclotron radi-
ation:

In addition the condition of radiation is written in the form

w — A; H u u + "H — 6co. (5.9)V -^ V3
In the latter expression the + sign is taken only for radi-

ation of waves with a phase velocity greater than u^ , but less
than the velocity of light c. In the opposite case the sign — is
chosen.

Using Eqs. (5.5), (5.6), and (5.8), we shall give an
explicit form to the inequality (5.7), namely

On increase of the density of the flux, the inequality (5. 10) is
violated and stimulated cyclotron radiation becomes impos-
sible. It goes over either into the anomalous Doppler effect
or into the normal Doppler effect. The latter process, as was
shown previously, is not an instability.

We note in addition that in obtaining the formulas ( 4.2 )
we made important use of the relation 8We =u\\ 8Pe and of
the possibility of separating the mechanical energy of the
electron into longitudinal and transverse parts. In the case of
an electron in a magnetic field this can be done with accuracy
to u\/c2. However, stimulated cyclotron radiation is an ef-
fect of the same order. Therefore the formulas (4.2) are not
applicable, and it is difficult to say how the longitudinal and
transverse energies of the electrons change (even if this sepa-
ration can be approximately carried out) in stimulated cy-
clotron radiation without a special analysis.

6. THE MECHANISMS OF NONLINEAR STABILIZATION OF
RADIATIVE BEAM INSTABILITIES

The results of Sections 2-5 permit us to determine the
principal mechanisms of nonlinear stabilization of radiative
beam instabilities and to estimate the maximum energy den-
sity of stimulated radiation of electron beams. We shall carry
out an appropriate qualitative discussion, beginning with the
single-particle stimulated Cherenkov effect.

Making use of energy conservation (2.5) and express-
ing the change of the density of the average energy of the
beam electrons WK in terms of their average velocity v\\ , we
obtain the following expression for the energy density of the
radiation:

Therefore in evaluating the energy density of the radiation it
is necessary to estimate the change of the average velocity of
the electrons U y — v\\, which is easily done by means of Eq.
(2.7). Indeed, if we substitute into Eq. (2.7) instead of u\\
the running value of the average velocity U N , then it will be
seen that the increase of the energy density of the radiation is
cut short at &) = A: || V y , that is, on decrease of the average
velocity of the beam down to the phase velocity of the wave
o)/k ||. Consequently U||min = co/k ^ . Now taking into account
Eq. (2.8), we can write

"II ^ 1 6(0
Tpmax

=7T~' (6'2)

From this and Eq. (6.1) we obtain the desired estimate for
the maximum energy density of the radiation:

•72j^-^, (6-3)Sn

where Sco is the increment defined by Eq. (2.9).
The estimate (6.3) can be obtained also by another

means. In accordance with Eq. (2.8) the beam overtakes the
wave and thereby transfers to it its energy. For each beam
electron the wave is equivalent to a sequence of potential
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barriers, over which it passes with a velocity ~8a>/k \\. If in
the rest system of the wave the height of the potential bar-
riers exceeds the kinetic energy of the electron, then capture
of the electrons by the field of the wave will occur. The cap-
tured electrons on the average are stationary with respect to
the wave and therefore on the average energy is not ex-
changed with them. The condition of capture is easily ob-
tained from the equations of motion (2.2). It reduces to the
following (Refs. 28 and 29)15):

eE, .
P •(IT—«>•) •v * I . ' / (6.4)

From this and Eq. (2.8) the estimate (6.3) also follows.
Therefore the stabilization of the instability due to the sin-
gle-particle stimulated Cherenkov effect involves capture of
electrons of the beam by the field of the radiation.

An important characteristic of a radiative instability is
the electron efficiency 17, which is defined as the ratio of the
change of the kinetic energy density of the beam to the initial
energy density. Using Eqs. (6.1) and (6.3), we find that in
the induced Cherenkov effect

6(0 (6.5)

It should be mentioned that in obtaining (6.1) we as-
sumed fulfillment of the inequalities

1- V2 1 — (6.6)

the first of which, as can be seen from (6.2), is uncondition-
ally satisfied. The second inequality of (6.6) reduces to
smallness of the efficiency (6.5). In Fig. 7 we have shown the
maximum efficiency in the single-particle Cherenkov effect
(without taking into account the factor (l/2)(«j|/c2)j'/
(y — 1) as a function of the parameter/z, = 2y28e0/a), ob-
tained in numerical solution of the nonlinear problem. 30The
drop of the efficiency at large /z, is due to the difficulty of
bunching relativistic electrons in the retarding phases of the
field.

The estimates (6.3) and (6.5) and the dependence of
the efficiency on/z, are valid also for the stimulated Cheren-
kov effect in a periodic structure and for stimulated undula-
tor radiation. It is necessary only to interpret as 8(0 and co in
(6.3), (6.5),andju, in terms of appropriate quantities. Simi-
lar results hold also for Thomson scattering and radiation if
the amplitude of one of the electromagnetic waves changes
slightly (for example, in the case of an intense pumping
wave).

Let us turn now to discussion of collective processes
which occur in dense beams when the condition (3.5) or

1
0.2

O.I

1.0 2.0

FIG. 7. Electron efficiencies in stimulated radiation. 1—Dependence of
the efficiency on /i, in the single-particle Cherenkov effect, 2—depen-
dence of the efficiency on/^2 in the collective Cherenkov effect.

v = -^-«l (6.7)

holds. We recall that single-particle processes occur under
conditions opposite to (6.7). We shall begin with the collec-
tive Cherenkov effect.

Taking into account that in the collective Cherenkov
effect instead of (2.7) we have (3.6), we obtain the following
estimate for the maximum slowing down of the beam:

(6.8)

From this and from (6.1) we obtain
!£•„ I

8n
Qb

FTT-2?2 fib
k „ u „

(6.9)

(6.10)

and the inequalities (6.6) reduce to the condition Ob < k \\ u y
and to the smallness of the efficiency ( 6. 1 1 ) . 16)

The estimates (6.8)-(6.10),like (6.4), are estimates of
the capture of electrons, not by the field of the radiation, but
by the field of the slow beam wave (self-capture17). (This is
natural, since under the conditions (6.7) the field of the
beam wave is considerably greater than the field of the radi-
ation. )

In Fig. 7 we have shown the efficiency as a function of
the parameter fi2 — 2y2flb/k ^ un , obtained in numerical so-
lution of the nonlinear problem (for v = 0.3 ) .

It turns out, however, that the values of the energy den-
sity (6.9) and of the efficiency (6.10) are not always
achieved, and that the dependence of the efficiency on /z2

shown in Fig. 7 is not always realized. A detailed numerical
analysis shows that the estimates ( 6. 1 0 ) and ( 6. 1 1 ) are valid
if the coefficient v is not very small (from 0. 1 up to 1 ). For
smaller v other nonlinear processes not related to capture set
in. We shall discuss them.

Let us return to Eq. (4.9), which is valid if the inequali-
ty ( 3.5 ) is very strong. It can be seen that the right-hand side
of (4.9) has a well expressed resonance nature and is large if

It is obvious that on violation of the inequality (6.11) the
instability is stabilized. This inequality is violated either as
the result of change of the beam velocity or as the result of a
dependence of the frequency of the plasma oscillations of the
beam on their amplitude. These factors can be combined
under the general designation "nonlinear shift of frequen-
cy".31

If the nonlinear shift of frequency is due only to slowing
down of the beam, then from ( 6. 1 1 ) we obtain the estimate

( i— HL
^ "

i— =v
'max

(6.12)

in which the increment 8<v is defined in ( 3.8 ) . From this and
from ( 6. 1 ) we obtain

(6.13)

(6.14)« ~1_1!L_SL
'Imax ~ 2 c* v 1

We note that in the case of stabilization of an instability by a
nonlinear shift of the frequencies, the dynamics of the stabi-
lization can be investigated analytically.32 For example, it is
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possible to obtain an exact expression for the maximum effi-
ciency33:

(6.15)

Equation ( 6. 1 5 ) takes into account both the nonlinear slow-
ing down of the beam and the relativistic nonlinear change of
the frequency of the plasma oscillations of the beam. For
fi2^ 1, when relativistic effects are unimportant, Eq. (6.15)
reduces (with accuracy to 1/2) to the estimate (6.14).

Let us consider the fact that for v~\ the estimates
(6.13) and (6.14) go over into (6.9) and (6.10) respective-
ly. However, from the point of view of nonlinear processes
these estimates correspond to completely different cases.
For example, at not very small v( £ 0. 1 ) the stabilization of
the instability is due to capture of beam electrons by the field
of slow waves and subsequent development of strong turbu-
lence. At very small v turbulence does not arise and there is
no capture, since as the result of the nonlinear frequency
shift the amplitude of the beam wave does not manage to rise
up to the capture value.33

The results (6.8)-(6.15) are valid also for the collective
Cherenkov effect in a periodic structure and for collective
undulator radiation. It is necessary only to interpret 8a> in
the formulas obtained as the corresponding increment. Simi-
lar results exist also for Raman scattering and radiation pro-
vided that the amplitude of one of the electromagnetic waves
changes only slightly ( the case of an intense pumping wave ) .

Let us now consider the anomalous Doppler effect in
the case of an initially rectilinear nonrelativistic beam of
electrons moving in a constant external magnetic field. Us-
ing Eqs. (4. 1 ) and (4. 10), we express the energy density of
the radiation in terms of the average longitudinal velocity of
the beam electrons

_Ji. (6.16)

For estimation of the difference (u\\ — vy ) we shall consider
Eq. (4.5), which in its structure is equivalent to Eq. (4.9).
Utilizing the resonance nature of the right-hand side of Eq.
(4.5), we obtain in analogy with (6.11) and (6.12) the fol-
lowing estimate:

(6.17)

where Sco is the increment determined by the formula (4.8).
From (6.17) and (6.16) we obtain the desired estimates for
the maximum energy density of the radiation and the maxi-
mum electron efficiency34:

6(o

'Ima o ""^ 6"Ja i \z -

(6.18)

(6.19)
, l" l l^ <OH

From the derivation of the estimates (6.19) and (6.18) it is
clear that the stabilization of the instability is due to viola-
tion of the resonance condition (4.7), that is, to the nonlin-
ear frequency shift. In turn the nonlinear frequency shift is
due to the slowing down of the electron beam.

In conclusion we shall consider stimulated magnetic
bremsstrahlung and shall give the corresponding nonlinear
estimates. For this purpose we shall use Eq. (5.4), in which
when the inequality (5.10) is satisfied it is possible to neglect
the term which contains S}. Without the term proportional
to S[, Eq. (5.4) coincides in structure with Eq. (2.7), and

the condition of stimulated cyclotron radiation (5.8) is simi-
lar to the condition (2.8). Therefore it is clear that in the
case of magnetic bremsstrahlung stabilization of an instabil-
ity sets in at w — A: || v\\ + (coH/y) = 0, where u^ and y are
the running average values of the longitudinal velocity and
relativistic factor of the electrons. Then, using (5.9), we ob-
tain the relation

--^)+jHi-4)L**>' (6-2o)
where Sa> is the increment (5.8). From the conservation of
energy and momentum we have

P — " W* may — ~ ' " TV

'max v V

(6.21)
From this and from (6.20) we obtain the desired estimate

/ a2 A\ \
a —z- -j^- =

V c2 4.T /max

6(0

*,!« (<"/// Y)

(6.22)
and expressions for the maximum electron efficiency

6w to
1lmax — (6.23)

The expressions (6.22) and (6.23) have an interesting prop-
erty. If a>2 — k ijc2| >&y, then, as we can easily see,

'Imax
6(0

(0
1

However, if the phase velocity of the radiated wave is equal
to the velocity of light c, then with inclusion of (5.8) we find
that 77max ~ 1. This is so-called autoresonance: at co = k ^ c
the changes of v\\ and y are such that the resonance condi-
tions (5.8) are kept unchanged during the entire process.
Here it is necessary to mention that in the autoresonance
regime, or, more precisely, near it, the increment (5.7) is
extremely small, and the density of the beam, in view of the
inequality (5.9), must be small. We can state that the autore-
sonance regime of stimulated magnetic bremsstrahlung can
be realized only in beams of very low density.

7. THE LINEAR DISPERSION EQUATION

The dispersion-equation method is an effective means
of investigation of the initial stage of radiative beam instabi-
lities. The dispersion equation is a condition of solubility of
field equations with a beam current linear in the field on the
right-hand side. This current is expressed in terms of the
beam-conductivity'tensor a,-, by the formula

h = (i, J = x, y, z). (7.1)

For calculation of the conductivity tensor it is possible, for
example, to resort to integration of the linearized equations
of motion of the individual electrons, which in essence was
done previously in derivation of formulas of the type (2.7).
Here we shall set forth the basis of the dispersion-equation
method, which permits not only illustration of the preceding
results but also obtaining of new results.

In the linear approximation the conditions of spontane-
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ous radiation are manifested as poles in the components of
the beam-conductivity tensor. In the general case it is diffi-
cult to say anything about the structure of these compo-
nents, and each specific beam requires individual discussion.
However, it is possible to learn a great deal in the example of
beams moving along a very strong external magnetic field
(completely magnetized beams) . We shall begin with them.

If a completely magnetized beam is moving along an
axis Oz along which the external magnetic field is also direct-
ed, then the only nonzero component of the beam-conduc-
tivity tensor will have the form19

(7.2)

We shall assume for the moment that in solution of the
field equations the electron beam can be considered as a
small perturbation. This means that the polarization (struc-
ture) of the wave radiated by the beam can be considered the
same as if there were no beam. Taking into account the cur-
rent (7.1) and (7.2) in the field equations on the basis of
perturbation theory leads to a dispersion equation of the fol-
lowing form14:

where D(co,k y ) is a function whose zeros determine the dis-
persion of the waves radiated by the beam <y = <y ( & n ) , and /8
is a coupling parameter introduced previously [see Eq.
(2.2)]. On fulfillment of the resonance condition a>
(A: || ) = A: || #|| we obtain from (7.3) the following expression
for the complex frequency:

co = k jj u || -1 1./3
(7.4)

The imaginary part of (7.4) is the increment of the instabil-
ity due to the single-particle stimulated Cherenkov effect. It
is easy to see that the result (7.4) coincides with (2.8) and
(2.9) for

4 dot
(7.5)

The latter expression and Eq. (2.6) agree with the determin-
ation of the momentum and energy of the waves in terms of
the dispersion function D(co,k \\ ).46

With increase of the beam density, the dispersion equa-
tion (7.3) becomes invalid. Actually a dense beam, being
modulated, appreciably distorts the polarization of the field.
It is possible to take into account the distortion of the field
polarization by generalizing the concept of beam conductiv-
ity (7.2). We shall define the conductivity not as the re-
sponse of the beam to the total electromagnetic field, but
only as the response to the radiation field. Here instead of
(7.2) we obtain the following expression:

. co ÎT3 ,-, f^
O,,= l—, ; : T3 TTS- . ( / . O lzz 4it (co — ft,, u u )a—QJ

It is easy to see that the generalized conductivity actually has
the form (7.6) if we proceed from the electron equations of
motion written in the form (3.1).

Using (7.6), we obtain instead of (7.3) a dispersion
equation which determines the radiative instabilities of
dense beams35:

(7.7)

— flb we obtain from (7.7) an equation for the complex
frequency:

1/2

do) (7.8)

The imaginary part of (7.8) is the increment of the instabil-
ity due to the collective Cherenkov effect. It is easy to see
that the result (7.8) coincides with (3.6) and (3.7). In addi-
tion, the condition of its applicability reduces to the inequali-
ty (3.8).

The structure of the dispersion equations for radiative
instabilities of beams in periodic structures and undulators
turns out to be the same as (7.3) and (7.7). The main differ-
ence reduces to the replacement of (a> — k\\u\\) by
(o-A:||tt|| -;r«||) or by ( ( o - k ] } u ] } -co0).

Let us discuss a number of examples.
In the case of an unbounded beam and an unbounded

plasma the dispersion equation has the form (7.7) with the
parameter12 /? = 1 (for <y ~&>p)

(7'9)

where cap is the Langmuir frequency of the electrons of the
plasma and Hb = a>ly~3. It is easy to show that for ftb <^o>p

Eq. (7.9) has a solution only of the type (7.4), since the
inequality (3.8) cannot be satisfied. Therefore Eq. (7.9) ac-
tually reduces to the form (7.3). Thus the only mechanism
of radiative instability of an unbounded beam of low density
in an unbounded plasma is the single-particle stimulated
Cherenkov effect. Here purely longitudinal plasma waves
are radiated.

In the case of a transversely inhomogeneous beam and
plasma the dispersion equation retains the structure of
(7.9):

(7.10)

where ftp,ftb and ft are rather complicated functions of the
geometry.32 It is most important that /? < 1 . Furthermore, if
the beam and plasma are spread out in space, then this pa-
rameter is extremely small. Therefore both the single-parti-
cle and the collective Cherenkov effects can be realized.

Now let the electron beam be propagated in a wave-
guide filled with a periodically modulated dielectric with a
permittivity £ = 1 +e cos xz- The dispersion equation
which describes the eigenoscillations of such a system has
the form

1 '**! I e|z(o|v- (7.11)

where kL is the transverse eigennumber of the waveguide.
Equation (7.11) does not differ in structure from (7.7). The
dispersion equation has the same form also in the case of a
beam radiating in an electrostatic undulator17:

k\ | f c | , Z E l 2 o ) | v - s
1 (7.12)

On fulfillment of the resonance condition co(k n ) = k «u»

where a>0 =%u\\, and ZE is the amplitude of the oscillations
of a beam electron in the pumping field. For
a)0 = a>2 — &||2«|| Eq. (7.12) describes the beam instability
in the field of the electromagnetic pumping wave (scatter-
ing) (Ref. 36).17)

It is easy to see that as ilb —0, that is, for a vanishingly
small beam density, Eq. (7.7) goes over into (7.3). In other
words, Eq. (7.7) is valid for any beam density. This very
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simple situation is realized if the radiation field and the field
of the plasma oscillations of the beam have different space-
time scales, that is, if these fields are easy to distinguish from
each other. For example, in radiation of a beam in a periodic
structure the wavelength of the radiation is 2-rr/k \\, while the
length of the beam wave is 2ir/(k \\ + ^); in the case of the
example (7.10) for/?<^ 1 the radiation field (plasma oscilla-
tions) and the beam fields are separated in space (for f}~ 1
the oscillations of the plasma and the beam are indistinguish-
able but, as was mentioned in analysis of (7.9), the fields of
the beam for (3 ~ 1 are negligibly small), and so forth. How-
ever, there are also more complicated systems, two of which
we shall now discuss.

If an electron is propagated in a waveguide with an iso-
tropic dielectric filling, then the dispersion equation has the
form

Cn = - (7.13)

where £0 is the permittivity of the dielectric. It would appear
that, dividing (7.13) by k\ - (ea2/^), it is possible to ob-
tain an equation of the type (7.3). However, it turns out that
(7.13) has solutions also which are completely different
from the single-particle solutions (7.4). By means of the
substitution

+ 6co = A-||it|| + 6(0, (7.14)

= [ ( k l + £2)c2,]1/2,wereduceEq.(7.13)to
the following form:

,.9 *.*Slr.-,

(7.15)

From this in the case of beams of low density when

we find the increment

(7.16)

(7.17)
2; " V 2 E00> / '

which is obviously due to the single-particle Cherenkov ef-
fect. If the inequality inverse to (7.16) is satisfied, then all
roots of Eq. (7.15) turn out to be real, which means that the
instability at the point of the single-particle Cherenkov reso-
nance disappears. One can show that in the case inverse to
(7.16) Eq. (7.13) has the following solution (forw^/qc,,):

(7.18)

where ft2, = (l/£0)(»ly~3. The solution (7.18) is realized if
the resonance condition ta(k\\ ) = k\\ W y — flb is satisfied.
The regime (7.18) obviously corresponds to the collective
Cherenkov effect. Therefore the disappearance of the insta-
bility at the point of the single-particle Cherenkov resonance
is due to the fact that on increase of the beam density the
instability becomes collective.

In order to discover how collective beam fields arise in a
dielectric waveguide, we shall express the electric field com-
ponents in terms of the Hertz electric potential37 *:

E, I = I A - , E l!
_ / A - 5 — — }*¥ (719)

V " cl I '

If in (7.19) we substitute to = (o(k^) without taking into
account 8<a (and restrict the discussion to this case), then we

find that EL /E y is the same for any beam density. In this way
it is possible to arrive at once at the solutions (7.17). How-
ever, in dense beams in calculation of E \\ it is necessary to
take into account the correction to the frequency 80). Here
the ratio E± /E \\ becomes a function of the beam density, that
is, on increase of the density the polarization of the wave-
guide field is distorted. This distortion is due to the appear-
ance of beam fields, which are shown schematically in Fig. 2.
Taking into account these fields in the case of dense beams
also leads to the solutions (7.18). 18>

As a further example we shall discuss the nonpotential
instability of a uniform electron beam penetrating a uniform
magnetized plasma waveguide. The dispersion equation in
such a system has the form14

1.1 , /« "M/-, WP "gT"3 iA i+^n — - j - j ^ i -— _ — (M_fc||U||)1 j=0. (7.20)

Using the substitution (7. 14), in which co(k \\ ) is the disper-
sion dependence of the plasma waveguide without a beam,
we obtain from (7.20) the following relation35 (for «N ~c):

6(0 r / 6(a
a L\ o

(7.21)

From this in the case of beams of low density in which

we find an increment

(-J--
1/3

(7.22)

(7.23)

which is obviously due to the single-particle Cherenkov ef-
fect. On the other hand, if the inequality inverse to (7.22) is
satisfied, then the increment turns out to be

» / 2
(7.24)

The instability with the increment (7.24) is realized at the
same point of the single-particle Cherenkov resonance as
(7.23). Since Sea in (7.24) is pure imaginary, there is no
relative motion between the beam and the field (in the sin-
gle-particle and collective Cherenkov effects such motion is
essential), and therefore the instability with the increment
(7.24) is aperiodic, or an instability of the negative-mass
type. This is not a radiative instability but is due to the self-
modulation of the beam in a medium with negative permit-
tivity, that is, with excitation of beam fields which cannot be
radiated.38'39 We note also that in this instability there is a
significant rearrangement of the structure of the waveguide
field. Instabilities of the negative-mass type naturally cannot
be discussed by the methods of Sections 2-6.

Up to this time we have considered the electron beam to
be completely magnetized, which in fact is not very impor-
tant. Actually, if the beam current which excites the radi-
ation is related primarily to modulation, then the dispersion
equations have the structure (7.13), (7.7), or of the type
(7.13), (7.20). This can be seen from the following consid-
erations. The modulation of the beam is determined by the
perturbation of the electron trajectories. In order to find
these perturbations, it is necessary to integrate the equations
of motion twice. As a result of this integration, in the de-
nominators of the components of the beam-conductivity ten-
sor the quantities (&> — A: y UK )2 or (co — k y «y — &>0)2 ap-
pear, that is, the structure (7.2) or (7.6) is preserved.

However, if the beam current involves only velocity
modulation, then in the conductivity tensor there will be
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poles not of second order, but of first order. Actually this
modulation is determined by perturbations of the electron
velocity, and in calculating them the equations of motion
need to be integrated only once. As an illustration we shall
discuss the instability of a rectilinear electron beam moving
along a finite magnetic field in an isotropic dielectric with
permittivity e0 . For radiation strictly along the direction of
motion of the beam, the dispersion equation has the form24

From this it is easy to obtain the results given in Section 4 in
discussion of the anomalous Doppler effect. From Eq.
(7.25) it also can be seen that in the region of the normal
Doppler effect [co = — AjC0 = k \\u\\ — (a>H/y}\ the fre-
quency turns out to be real, that is, the beam is stable.

In the case of the magnetic-bremsstrahlung mechanism
of radiation from an electron beam there is a bunching of the
electrons in the Larmor orbits, that is, a polarization of the
beam arises. As a result in Eq. (7.25) a beam term with a
second-order pole appears:

(o — A' , u
- k , it

|(0— k « , , +((0;;/7)]2 (7.26)

From Eq. (7.26) it is easy to obtain the increment of the
instability based on stimulated magnetic bremsstrahlung,
which was given in Section 5.

Relativistic bunching of electrons in Larmor orbits is
related to still another instability which we shall discuss in
the case of a beam of electron oscillators propagating along
an external magnetic field in an evacuated metallic wave-
guide. In this case to obtain the dispersion equation it is nec-
essary to use the rather cumbersome apparatus of the tensor
operator of the permittivity of the oscillator flux.40 Since we
do not have the possibility of discussing the details of the
derivation here, we shall present the final form of the disper-
sion equation35:

here /? 2< 1 is the coupling parameter determined by the ge-
ometry of the waveguide and the transverse geometry of the
beam, while ex coincides with the right-hand side of Eqs.
(7.26) multiplied by £o/2co2. If the beam density is small and
the inequality

(7.28)

is satisfied, then n the resonance a>(K y )
(caH/Y) from (7.27)

we obtain an increment of the type (5.8) of the radiative
instability based on stimulated magnetic bremsstrahlung.
However, in the limit inverse to(7.28)and again at the point
of resonance the increment turns out to be completely differ-
ent:

(7.29)

This increment is of the same type as (7.24), that is, it de-
scribes an aperiodic nonradiative instability. This instability
is well known in the theory of cyclic accelerators, where it
has been called the negative-mass instability.4I It is very like-
ly that the negative-mass instability affects the efficiency of

operation of gyrotrons42 when dense beams are used in them.
At least there is a theoretical confirmation of this.43

We note that the dispersion-equation method as a result
of its high efficiency is frequently used in various applied
calculations. For example, the dispersion equations given by
us in Section 7 form the basis of the linear theory of various
microwave electronic devices: Eqs. (7.11) and (7.12) are
used in the theory of radiators in periodic structures and in
the theory of undulators; (7.13) and (7.20) are used in the
theory of dielectric and plasma accelerators and high-vol-
tage generators; Eq. (7.26) is used in the theory of gyro-
trons. One of the important problems which can be solved by
the dispersion-equation method is the determination of the
conditions of self-excitation of various radiators in electron
beams. More details regarding this problem and other prob-
lems of microwave electronics can be found, for example, in
the review by Bogdankevich et al.14

In conclusion we shall discuss an additional process
which, at first glance, is not completely justified to mention
together with radiative beam instabilities. However, in rea-
lity this is not the case. We are speaking of the Buneman
instability or of the instability of a plasma with current.47

The well known dispersion equation of this instability

CO" - CO? = • (7.30)

has the form of (7.7). Here a>e is the electron Langmuir
frequency, a>, is the ion Langmuir frequency (tal <£cot), and
Uj | is the velocity of motion of the plasma electrons relative
to the ions. The condition (3.7) of resonance between slow
electron and ion Langmuir waves is written in the form

(»! = &||U|| — <ne. (7.31)

Sinceoj <<ye, the slow wave of the electrons in (7,31) has an
energy close to zero but negative. This is responsible for the
instability. In the resonance (7.31) we determine from
(7.30) the increment (more precisely, the complex
frequency)

(7.32)
~ 2 \ 2

in which, as is easily seen,

(7.33)

The right-hand inequality in (7.33) is equivalent to (3.5),
and therefore the Buneman resonance instability is of the
class of the stimulated collective Cherenkov effect or of the
anomalous Doppler effect. However, the dependence of the
increment (7.32) on tye does not agree in its structure with
the general expression (7.8). The entire question lies in the
left-hand inequality of (7.33). Indeed, if we go over to the
rest system of the electrons, then the source of the instability
must be considered to be the ion flux. Here the left-hand
inequality of (7.33) becomes equivalent to the inequality
inverse to (3.5). Consequently, with respect to the ions the
Buneman instability is the single-particle stimulated Cher-
enkov effect—radiation by an ion flux of electron Langmuir
waves. Therefore the increment (7.32) also recalls in its
form (7.4). Thus the use of this or that terminology is not
always unique, although in any case it correctly reflects the
essence of the matter. For example, adopting the point of
view that the Buneman instability is an anomalous Doppler
effect, we shall apply the estimate (6.8) for determination of
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the minimum velocity of the electrons relative to the ions.
Since Hb in our case is (oe and a)e ^ k \\ u y , we have v\\ min ~ 0,
that is, the current in a plasma in the case of a Buneman
instability is interrupted completely. It is possible to arrive at
the same conclusion also from the point of view that the
Buneman instability is single-particle stimulated radiation
of the ions. This is confirmed also by exact nonlinear calcula-
tions.48

Thus, we have considered the principal radiative beam
instabilities which develop near the radiation line. In the
case of low-density beams all radiative instabilities are sin-
gle-particle, and with increase of the beam density they be-
come collective. There are systems in which an increase of
the beam density leads to the suppression of a radiative insta-
bility by a nonradiative aperiodic process. We note that
beams can be aperiodically unstable also far from the radi-
ation line. These instabilities are due either to relativistic
effects of the negative-mass type44 or to a negative value of
the effective dielectric permittivity of the system in which
the beam is propagated.

1 'The not very accurate name Compton scattering is widely used in the
literature. We shall stay with the more correct terminology Thomson
scattering. Compton scattering (the Compton effect) is a quantum pro-
cess due to the corpuscular properties of light. The Compton shift of
frequency in Compton scattering A<u/<u=;Aw/mc2 must be considered
only in the region of very high frequencies (in scattering by an electron
in the frequency region above 1020 s ~ ' ) . The departure from coincidence
of the frequencies of the scattered and incident waves in (1.11) is due
only to the motion of the electron and is related to the Doppler effect. In
the rest system of the electron we would have &>, = co2, as also should
occur in classical Thomson scattering.

2)To avoid misunderstandings we note that we are not discussing radi-
ation from a "bare" beam. In fact, a beam which is neutral in charge and
rectilinear is stable. It begins to radiate when it is placed in a medium or
system in which there are eigenwaves with dispersion laws o>(k p ) satis-
fying definite resonance conditions; see Eq. (2.8) and the following dis-
cussion. These eigenwaves we shall call radiated waves or radiation.
Therefore only under certain conditions (in motion in a plasma, retard-
ing medium, periodic structure, and the like) will a beam begin to ra-
diate and will the increment Sea appear.

3)The vector relation P = k/a> W applies. However, having in mind that in
applications one deals with waves in waveguide structures with a single
direction of propagation, we do not introduce the vectors P and k here.
In waveguides there is only a longitudinal propagation constant k B , and
in the transverse direction the waves are standing waves. This fact has
already been taken into account by us in writing down the conditions for
spontaneous radiation.

"'Equation (2.14) with <y0 = <u2 — k^u^ follows from the conditions of
undulator radiation (1.6).

5>The actual form of writing the wave perturbation (1/2)
[exp( — KB + ik || z) 4- c.c. ] contains both + co and — <u, and therefore
the sign of only the frequency means nothing; it is necessary to take into
account also the sign of the wave number k ^ . For example, waves with
(<o,k\\) and ( — a, — k\\) are completely indistinguishable, while waves
with (co,kt) and ( — co,k«) are propagated in different directions. Since
we have decided to write the resonance condition in the form (2.14) with
a> | > 0 and since we wish to take into account in this condition waves
with all possible directions of propagation, it is necessary for us not to
impose any restrictions on the sign of <B2- Otherwise the resonance condi-
tion would be written in two forms (1.11) and the unified form of the
presentation would be destroyed.

6'In the general case Jl2, ̂ cal, but always fi2, ~&l ~«b. For example, in a
nonrelativistic magnetized beam ill — <>>lk \/(* i + k \), where k± is
the component of the wave vector transverse to the external magnetic
field.1"

"The assumption that the plasma oscillations of the beam are potential
has been made already in Eq. (3.1).

8>The presence in a system of waves with negative energy means that it is
not in equilibrium, or that there is present in the unperturbed system a
certain reserve of energy (in a beam this is the kinetic energy of motion).

It is clear that such a system can be perturbed in such a way that its total
energy decreases. Such a perturbation is a wave with negative energy.

"More precisely, the condition of instability has the form ia — k y u\\ < 0,
and a > 0 or co—k j ua > 0 and a> < 0. It is obvious that these two forms
are equivalent. Unless specifically stated otherwise, we will assume ever-
ywhere that (a > 0.

IO)The beam waves have singularities for co/k B < 0, as can be seen from the
diagram in Fig. 3. Since the singularities appear in the low-frequency
region \<o <iib, we do not consider them.

'"The Raman-Mandel'shtam-Landsberg effect is the name given to the
scattering of light by an atom (or molecule) accompanied by excitation
of the latter. For excitation of an atom it is necessary to communicate to
it energy, which is removed from the incident light quantum, as a result
of which the frequency of the secondary (scattered) quantum turns out
to be less than that of the incident quantum (the normal Stokes line of
scattering). To remove excitation in an atom, energy must be taken
away—it goes into increase of the frequency of the scattered quantum
(the anti-Stokes line of scattering). In these cases an atomic system is
equivalent to a beam with a wave of positive energy excited in it. The
analog of a beam with a wave of negative energy excited in it would be
an atomic system, for excitation of which it would be necessary to re-
move energy from it, and for removal of the excitation, on the other
hand, it would be necessary to communicate energy to it. If now the
theory of the Raman-Mandel'shtam-Landsberg effect is generalized to
include such atomic systems, its analogy with the theory of scattering of
waves on a beam will be complete.

12)In this section for the sake of clarity we discuss nonrelativistic electron
beams. However, everything that is said remains in force also for the
relativistic case. For a flux of nonrelativistic electrons in a constant
magnetic field Wi = (]/2)mnba>2

ltR;, where nb is the density
of electrons and RL is the Larmor radius. In the general case
Wl = (\/2)mnh(OaA 2

L, where w,, is the frequency and A is the ampli-
tude of the oscillations.

13)In the case of radiation of circular waves in an isotropic dielectric with
permittivity £0, we have a = £0 and Eq. (4.8) reduces to the form
6<a = (ft)ld}H/2£,^}}"2. The latter result is well known.24

14)The static electric and magnetic fields of a beam of electrons are not
considered, since they have no relation to radiation.

l!)If z is the perturbation of the electron trajectory, then Eq. (6.4) is
equivalent to the inequality \k fz\ 2 1, which denotes a strong perturba-
tion of the trajectory. For estimation ofz the linearized equations (2.2)
are sufficient.

"'Strictly speaking, instead of (6.1) in the collective effect, as follows
from (3.10) and (3.11), the following relation exists:
W=nbmc2r^[\ - ( V H / M I I ) ] [ ! - ( S l ^ / k ^ u ^ )}u\/c2. However, for
ftb <&,| u{| it does not differ from (6.1).

I7'ln£qs. (7 .11) and (7.12), as follows from their derivation (seeRefs. 17
and 36), the quantities \e\ and i & h z / , j are small parameters.

""The distortion of the polarization of the radiation field can be taken into
account also in systems of the type (7.11) and (7.12). However, in
these systems as a result of the different spatial scales of the fields of the
beam and of the radiation, taking into account the distortion leads to
small corrections. These corrections, furthermore, have no relation to
the eigenoscillations of the beam.
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