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The magnetism of most celestial bodies, i.e., planets, stars, and galaxies, is of hydromagnetic
origin. The turbulent hydromagnetic dynamo is the principal mechanism whereby the magnetic
field is amplified and maintained, and the theory of this phenomenon has advanced significantly
in recent years. This review discusses applications of the theory of the turbulent dynamo to real
objects, taking the Sun, the Earth, and the Galaxy as examples. Most of the discussion is
concentrated on the large-scale magnetic field averaged over turbulent fluctuations. The average
field is amplified and maintained by the average helicity of turbulent motion and large-scale shear
flows such as differential rotation. The dynamo theory explains striking phenomena such as
geomagnetic field reversal, the solar cycle, and the ring and bisymmetric structure of spiral
galaxies.
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1. INTRODUCTION

The phrase hydrodynamic dynamo refers to the process
whereby the magnetic field is amplified and maintained by
the motion of a conducting fluid. The ability of hydrody-
namic motion to simulate the action of the dynamo machine,
but without wires and coils, was first noted at the physical
level by J. Larmor1 in an attempt to explain the origin of
terrestrial and solar magnetism.

However, following the critical paper by Cowling,2 at-
tention shifted toward mathematical aspects, and attempts
were made to establish the existence of the dynamo by con-
structing idealized examples and proving theorems. This
culminated in considerable success, mostly in the kinematic
formulation in which the reaction of the generated magnetic
field on the motion producing it was not taken into account.
Many examples of the dynamo have now been constructed
for laminar flows.3"5 Flows with stochastic current lines6"8

are particularly interesting. Methods have been developed
for deriving and solving the equations for the average mag-
netic field in turbulent flows,4'9'10 and studies of the higher
moments have revealed the nonuniform, intermittent char-
acter of the generated field, which is concentrated in individ-
ual braids and layers.Ial'

Kinematic dynamos have been classified into fast and
slow,10'12'13 depending on the rate of growth of the field at
high magnetic Reynolds numbers. A clear illustration of the
slow dynamo is provided by the Alfven model,10'14 in which
an initial closed tube of magnetic lines of force stretches to
twice its size and divides into two tubes after a close ap-
proach along one of the diameters and action of ohmic mag-

netic diffusion at the point of approach. The two tubes then
combine into one, without rotation, and the resultant tube
has twice the magnetic flux. The increase in the field in this
model depends critically on magnetic diffusion, and stops
when diffusion becomes negligible. The fast dynamo, in
which the rate of growth does not depend on the low rate of
magnetic diffusion, can be modeled by the well-known fig-
ure-of-eight, proposed by one of the present authors (see
Refs. 10, 13, and 15).

It may therefore be concluded that, from the mathemat-
ical point of view, the existence of the hydromagnetic dyna-
mo has been proved. However, the original question, relat-
ing to physical applications of the dynamo, still stands.

A moving conducting fluid (plasma) is a natural com-
ponent of most celestial bodies. It is also used in large mod-
ern technological installations, such as MHD generators,
breeder reactors with liquid-metal coolants, and metallurgi-
cal installations. It is common to characterize the relative
contributions of motion capable of generating the field and
magnetic diffusion vm by the dimensionless magnetic Reyn-
olds number Rem = lv/vm, where / and v are the spatial and
amplitude scales of the velocity field. The Reynolds number
is equal to the ratio of the rate at which magnetic energy is
generated to Joule dissipation (intermediate scales are as-
sumed absent). Table I lists some very approximate values of
Rem for a number of technological and cosmic objects. The
magnetic Reynolds number is greater than unity for practi-
cally all cosmic plasmas, i.e., motion predominates over
magnetic diffusion. This enables us to identify regions in
which the magnetic energy exceeds kinetic and thermal en-
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TABLE I. Estimated parameters of some moving conducting fluids.

MHD installation
Breeder reactor
Earth's core
Solar convective shell

Galactic disk

/, m

102

2 5-102

108

2-in10

Id"

v, cm/s

6-10*
5-102
4-10-2

105

106

vm,cm2/s

1.5-10"
1.6-103
2.6-10*

10'
10"

Rem

4-10-3
80

160
2-108

10"

ergies and regions in which the magnetic energy is less than
the critical value, so that the field can be amplified by the
hydromagnetic dynamo.

The condition Rem > 1 is not sufficient for the dynamo
to work. In general, topological complexity of the velocity
field is also necessary. In laminar flows producing the dyna-
mo effect, the velocity field is not trivial, e.g., the flow cannot
be plane.16 Turbulent flows are so tortuous that the condi-
tion of topological complexity is automatically satisfied.
Usually, the sufficient condition for the generation of an
average magnetic field is that the mean helicity (vcurl v) is
not zero. Fields with zero average value are generated when
the average helicity is zero.17'18 When Rem > 1, a nonstation-
ary random flow of a general form leads to an increase in the
magnetic field.10

Thus, to determine whether the dynamo appears in a
given plasma region, it is sufficient to estimate the magnetic
Reynolds number and establish the nature of motion, e.g., to
show whether it is turbulent. Although turbulence is typical,
uncertainty about the parameters of a particular object often
means that one cannot reliably demonstrate that its motion
is turbulent. This is the situation in the case of the interior of
the Earth, for which the estimated kinematic viscosity un-
fortunately "varies" between wide limits, amounting to nine
orders of magnitude. Nor is there complete certainty about
our knowledge of large-scale flows, e.g., differential rotation
and meridional circulation in the core of the Earth. The tur-
bulent nature of convective motion on the Sun is revealed by
direct observations of granules and supergranules. Helio-
seismology has recently demonstrated that the angular ve-
locity of the Sun depends on depth.19 The determination of
the velocity field in stars observed as point objects is a subtle
problem but, in principle, it can be solved both observation-
ally and theoretically.

The observational determination of the velocity field is
complicated by the fact that the regions that are of interest
for the dynamo are located in the interior of celestial bodies,
most of which are remote from the observer. The only excep-
tion is the gaseous disk of the Galaxy. Here, we are in the
interior of the dynamo region and have direct data on the
distribution of rotational velocity along the radius of the disk
and, at least in principle, on the random component of small-
scale motion.

For the theory of the hydrodynamic dynamo, it is best
to have theoretically calculated velocity fields. However, the
solution of hydrodynamic problems that require the inclu-
sion of gravitation, stratification, Coriolis forces, and other
factors that are specific for celestial bodies is not as yet in a
satisfactory state. Advances in hydrodynamics in this area
are exceedingly important for the theory of the dynamo. We

note the papers of Oilman84 and Glatzmaier in this connec-
tion.85

The uncertainty about the velocity field is the main dif-
ficulty faced by applications of dynamo theory. Neverthe-
less, by using certain empirical, theoretical, and hypotheti-
cal flow parameters, it has been possible to obtain many
results that are relevant for applications. The present review
is concerned with the principal advances and remaining
problems relating to applications of the hydrodynamic
dynamo.

Some of the consequences of the theory of the dynamo
in its modern form have been the subject of criticism. It is
important to distinguish between difficulties that can be
overcome (problems relating to the evolution of the theory)
and the fundamental impossibility of explaining the origin of
the magnetic field of certain objects in terms of the dynamo.
We are persuaded that the principal problems of terrestrial,
solar, and galactic magnetism can be solved only with the aid
of dynamo theory. On the other hand, the magnetism of stars
with chemical anomalies and, possibly, the magnetism of
certain other objects, may be of different origin, e.g., chemi-
cal or thermal. The generation of magnetic fields by means
other than the dynamo, e.g., by the battery mechanism, has
been discussed in detail by A. Z. Dolginov in a review paper
that we have already mentioned.89 These mechanisms can
operate in parallel with the dynamo. The important point is
that the dynamo gives rise to an exponential increase in the
field [H~exp(yf) ], whereas, in the battery effect, the mag-
netic field increases only as a certain power of the time. We
note that the final field depends both on the dynamo and on
the initial conditions. However, when y f^ l , the field no
longer depends on the initial state and, as a rule, begins to
have a nonlinear effect on motion.

It is possible to combine the dynamo and battery mech-
anisms. This approach, referred to as the "semidynamo,"
was proposed and developed by E. M. Drobyshevski.20

Moreover, the dynamo mechanism relies on the nucleating
initial magnetic field, which must be produced by some oth-
er mechanism.

The hydromagnetic dynamo is not, therefore, an isolat-
ed mechanism for the generation of the magnetic field and,
in the sense indicated above, cannot be regarded as univer-
sal. It is simply a physical process that is effective in the
moving conducting medium that is a major component of
celestial bodies.

The amplification of the magnetic field necessarily
leads to a nonlinear situation in which the field itself affects
motion. This is also indicated by observations of magnetic
fields which usually reach a quasistationary (often oscilla-
tory ) state and evolve together with motion. The hydromag-
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netic dynamo must therefore operate in the nonlinear re-
gime. Fortunately, the situation is not equivalent to the
complete magnetohydrodynamic problem. The average
magnetic energy is usually small in comparison with the ki-
netic energy, and the nonlinearity can be tackled in a simpli-
fied manner. For example, it is often possible to take into
account the effect of the field on the flow helicity, to neglect
its effect on rotation and turbulent diffusion, to take into
account the suppression of Re y at constant periodicity (de-
termined by Im^), and so on.

We shall consider applications of the theory of the hy-
dromagnetic dynamo in three basic areas, namely, the na-
ture of terrestrial magnetism, the solar cycle, and the ampli-
fication of the magnetic field in the Galaxy. Each topic has
attracted many review papers and monographs (see, for ex-
ample, Refs. 4, 9, 13, 21 and 36). However, since we are in
the midst of considerable advances in cosmic magnetism
and, especially, the alternative mechanisms discussed in
Dolginov's review,89 it is opportune to provide a brief quali-
tative discussion of the dynamo approach and note recent
new results. Our decision to be brief has meant that we have
had to confine our attention to the analysis of the average
magnetic field, and leave on one side questions such as fluc-
tuation fields and intermittency, even though they are of
considerable interest for applications. Figure 1 shows sche-
matically sections through the Earth, the Sun, and the gase-
ous disk of the Galaxy.

2. THE ORIGIN OF TERRESTRIAL MAGNETISM

The compass was invented in China in the second cen-
tury and reached Europe in the thirteenth century. How-
ever, the turning of its needle was ascribed to a "force origi-
nating in the Polar star" and not to the geomagnetic field.22

The psychological difficulty associated with the transition
from an ordinary magnet to a large magnet such as the Earth
was first overcome by Gilbert in 1600. In 1838, Gauss sug-
gested that the Earth's magnetic field could be described by
an expansion in terms of spherical harmonics, whose coeffi-
cients could be determined by direct measurement of the
field on the surface (and now by satellite measurements, as
well).

In the first approximation, the terrestrial magnet is a
dipole inclined at 11° to the rotational axis, and produces a
magnetic field of 0.3 G at the magnetic equator. The ampli-

tudes of more than ten harmonics after the dipole have now
been determined and have been found to decrease in accor-
dance with a power-type law with a break at the eighth har-
monic.

Are we justified in continuing with Gauss' formal ex-
pansion? The point is that the field distribution over the
Earth's surface is, in fact, spotty. The residual field (total
minus dipole) has a finite number of anomalies that occupy
regions of size ranging from a few hundred to two thousand
kilometers (we are ignoring local magnetic anomalies, e.g.,
the Kursk anomaly, which have a totally different origin).
Empirically, this field is sometimes described by fifteen di-
poles complementing the main dipole and distributed in the
core or on the boundary between the core and the mantle.

The geomagnetic field is not static. The characteristic
times of its variation range from about 10 years (more rapid
variations are screened by the skin effect in the lower man-
tle) to the age of the Earth (4.6 billion years).

These variations are important in estimates of charac-
teristic velocities in the Earth's core. For example, the west-
erly latitude drift of 0.18° per annum in the residual field
corresponds to a velocity of 0.04 cm/s in the upper part of
the core. However, additional information is necessary to
enable us to identify this velocity with convection or differ-
ential rotation, or the velocity of some waves. Observations
reveal the presence of random fluctuations in the direction of
the dipole moment with characteristic times of 103-104

years. When the mean terrestrial dipole is averaged over
these fluctuations, its direction is found to lie along the rota-
tional axis. Consequently, rotation has a considerble effect
on the evolution of the magnetic field. Inversion of the mag-
netic dipole occurs in a characteristic time of the order of 105

years. The process is random.32 This is one of the most in-
triguing mysteries in the nonlinear magnetodynamics of the
Earth. It would be too naive to view the inversion process as
the rotation of the dipole magnetic moment vector, with its
poles running over all the latitudes. A more likely scenario is
that, during the inversion process, the magnetic field be-
comes more complicated, departs from the dipole configura-
tion, and other harmonics assume comparable magnitudes.
This is indicated by the fact that the amplitude of the resul-
tant field decreases to 10% or less, whereas, in the normal
state, the dipole mode accounts for about 90% of the field
intensity.

0,35K

10kpc

Galactic disk

Sun
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The principal source of motion in the Earth's core is
probably the reduction in gravitational energy, due to the
growth of the inner coTer<OA9R=Rl, which occurs as the
heavy fraction descends and the light fraction floats up.23"25

Seismic data show that these fractions are iron and, prob-
ably, sulfur and oxygen ( S 10% by mass). Convective sta-
bility is largely determined by variations in density with
depth. Density is a function of three variables, namely, pres-
sure, temperature, and mass concentration of the light frac-
tion : p = p(P, T, J"). It has been shown25 that variations in
composition are more significant than temperature varia-
tions, and compositional rather than thermal convection is
produced in the outer core.

The rate of laminar compositional convection has been
estimated by Golitsyn26 on the basis of similarity theory,
taking into account the rapid rotation of the Earth:

/ Mg \ 1 / 2

(-W1 '
where M=(p'v'T) is the flux of density deficiency,
11 = 7 X W~5 s~ ' is the angular velocity of the Earth, and C
is a constant of the order of unity. The dependence on angu-
lar velocity is different in the case of turbulent convection.
According to Stevenson,27 y~f i~ 1 / 4 . However, numerical
estimates of the rate of convection obtained for the param-
eters of the Earth's core are very similar and turn out to be of
the order of 0.1-0.2 cm/s.

The nonuniform rotation of the Earth produces the in-
ertial force — yo(iixr). The most interesting is the preces-
sion of the axis of rotation, for which fl ~2 X 10~ 16 s~2 (the
complete rotation of the axis over a cone of angle 23.5°X2
occurs in 25 800 years). The angular velocity of this preces-
sion depends on the dynamic compression e of the body
which is different for the core and for the mantle. This differ-
ence between the angular velocities of precession brings into
motion the liquid outer core filling the spherical cavity be-
tween the mantle and the solid inner core. The incompress-
ible liquid in the cavity has a natural frequency fl(l + e).
Hence, the effect of the induced force F = — p ft0 X ( ft X r )
of frequency fl is to produce high velocities of almost rigid-
body rotation, vp ~ cm/s,28 at the same fre-
quency fi. Velocity deformations that are important for the
generation of the magnetic field are produced by the trans-
formation of precession energy into kinetic energy in the
viscous boundary layer between the mantle and core. The
efficiency of this transformation is low, which has given rise
to scepticism in relation to the role of precession.29'30

Further difficulties are noted in Ref. 27. However, the diffi-
culty has not been resolved and precession continues to be
discussed as a possible source of motion (dynamo) in the
Earth and the planets.31

There is no doubt that nonthermal compositional con-
vection is a flow capable of generating a magnetic field in the
Earth's core. However, it is not clear whether the corre-
sponding velocity field is laminar or turbulent. The difficulty
relates to the uncertainty in kinematic viscosity4:
10~' < v < 109 cnr/s. It is usually assumed that v = 10~2

cmVs, which is close to the lower limit. The Reynolds num-
ber Re = Iv/v for / = 10" cm and v = 4 X 10~2 m/s is in ex-
cess of 10ft, and convection should be turbulent. Neverthe-
less, many investigators of the geomagnetic dynamo prefer
stationary laminar flows. A detailed analysis of the numer-

ous dynamo solutions for stationary velocity fields has been
carried out by Yu. A. Brodsky33 (see also Refs. 3-5). Be-
cause the velocity field is three-dimensional and asymme-
tric, the theory of the laminar dynamo is a relatively compli-
cated mathematical construction.

Not surprisingly, the turbulent dynamo is simpler and
easier to understand than the laminar dynamo. In the limit
of high magnetic Reynolds numbers, there are now not only
effective methods of obtaining and solving the equations for
the mean field and the correlation function,4'9'10'21 but it is
even possible to deduce certain conclusions about the behav-
ior of the true random magnetic field in turbulent flows.10

In applications to the geodynamo, it is usual to consider
only the magnetic field averaged over fluctuations in the tur-
bulent case and over the azimuth or time in the laminar case.
It is striking that, in both cases, the sources of the dynamo
are physically identical characteristics of the velocity field,
namely, nonuniform (differential) rotation Cl(r,9) and
mean helicity (vcurl v).

Differential rotation creates the toroidal magnetic field
Bv from the poloidal field Bp = (BT ,Bg ). The mechanism of
this can be readily elucidated in terms of frozen-in magnetic
lines of force, i.e., by neglecting dissipation. When
VflBp ^0, different segments of the lines offeree of the field
Bp rotate with different velocities, so that the magnetic line
is pulled out in the azimuthal direction (Fig. 2).

The mean helicity is a measure of the departure from
mirror symmetry of the flux or, in other words, of preferen-
tial sense of twist. It is due to Coriolis forces in the stratified
medium. The particular mechanism responsible for helicity
is indicated in the next Section. The helicity (vcurl v) is a
quadratic function of velocity. It appears in the averaged
equations of electrodynamics, which are linear in the mag-
netic field because of the presence of the electric field v X H
in Ohm's law for a moving medium. The electric field aver-
aged over fluctuations is (vXH) = aB, where B = (H) is
the mean magnetic field, a= — (r/3) {vcurl v), and
T = I /v is the characteristic time of turbulent motion).

Approximating the generation region by a layer of
thickness 2h, which is much less than the radius of the outer
core R2 =0.55R, we find that the equation for the generation
of an axially symmetric magnetic field can be written in the
form

dA
(1)

Mean helicity

I 0 /

Differential
rotation

FIG. 2.
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~ ----- «BVL>. Bv -<- Ra rot, (txJSp) + A5. (2)

where B=Br is the azimuthal component of the field, ,4 is
the azimuthal component of the vector potential of the poloi-
dal field, and Bp = curl Aev. The equations are written in
the dimensionless form in which the relative strength of the
sources on the right-hand side is represented by the numbers

D /*2 I am;i\- I D /'''j^max (3)n_ == ^ . no- ^ . ^J'

where R2 is the radius of the outer core. Depending on the
strength of the sources of helicity and differential rotation, it
is possible to identify two limiting generation regimes in (2):
in the first, we neglect the term containing the differential
rotation (a2-dynamo) and, in the second, the term Rf curl
aBp (a-H-dynamo). The criterion for a pure helicity
dynamo is

R*a > RQ

(see, for example, Ref. 13) and not the naive condition
Ra^>RH. The reason for this is that the scale of the genera-
ted field is also a function of Ra. The amplitudes of the field
components of the a2-dynamo are of the same order:36

, !~!5 p i .
Equations ( I )-(2) have often been integrated numeri-

cally in the or-approximation (see, for example, Refs. 4 and
9) forspherical geometry and helicity of theforma(r)cos 6.
The angular dependence then represents the antisymmetry
of the Coriolis force under reflection in the plane of the equa-
tor. The critical value Ra, after which self-excitation of the
field takes place, is of the order of 10. Early researchers be-
lieved that the solutions were monotonic and the leading
harmonic was the dipole term. However, more detailed anal-
ysis performed by the asymptotic WKB method, using the
small parameter R ~ ', showed that the growth rate had an
imaginary component,34 such that Im //Re y~Q.lRa~3.
Assuming that, for low Rossby numbers, the helicity is of the
order of the rate of convection, a~v = 4X 10~2 cm/s, we
find that the period of the oscillations is T~ 10s years, which
is in agreement with the characteristic inversion time of the
terrestrial dipole. It is interesting to consider how this result
is affected when the nonlinear influence of the field on heli-
city is taken into account. Another interesting result of the
analytic solution is its form. In this type of dynamo, the nat-
ural functions are not the dipole, quadrupole, and so on, but
configurations approaching forceless helical structures.35

Nonlinear MHD a2-dynamos (cf. the Soward and
Bus.se models,) have been constructed for cellular laminar
convection and are described in detail in Ref. 4.

However, the a-H-approximation36'37 is more suitable
for the geodynamo. It is assumed that the dynamo is main-
tained by the Archimedes force that produces strong differ-
ential rotation and weak meridional circulation. The rotat-
ing system has a nonuniform density distribution and an
axially symmetric field Bv, and is unstable against excitation
of waves propagating in the longitudinal direction. The mag-
netic, Archimedes, and Coriolis forces are of the same order,
and the corresponding waves are therefore referred to as the
MAC waves. MAC waves have helicity, so that the problem
is, to some extent, self-consistent. However, because of
mathematical difficulties, the discussion has so far been con-
fined to the intermediate model, in which the helicity is not
found, but is specified in advance in the form of a simple

function. The next step forward as compared with the kine-
matic approximation is to take into account the magnetic
forces in a self-consistent manner, and to determine the
mean velocity, i.e., the differential rotation. The westerly
drift of the nondipolar field and secular variations observed
on the Earth's surface are related to the MAC waves. There
is particular interest in the analysis of the spatial and tempo-
ral structure of the 20- and 60-year variations38'39 that have
been determined by direct measurements of the geomagnetic
field.

Studies of the solar system by space probes are promis-
ing for the understanding of the nature of the magnetism of
other planets. At present, great hopes are invested in theo-
retical advances. Attempts to construct a simple similarity
(scaling) law relating the amplitude of the observed magnet-
ic field to the characteristic parameters of a planet (radius,
angular velocity, and so on) have not been adequately justi-
fied. The most successful of them (predicting correctly the
field of Saturn) is the Dolginov similarity law, based on the
precessional dynamo model.31 The problem lies in the clear
physical dissimilarity between, say, Mars and Jupiter.

The origin of the magnetism of planets in the Earth
group is examined with allowance for their thermal history
in Ref. 40. Planetary bodies smaller than the Moon were
never in the molten state. The residual magnetization of
their rocks is a direct memory of the primordial field of the
solar nebula. The magnetism of larger planets (Mercury,
Mars, and Venus) is due to the residual magnetism pro-
duced during solidification in a magnetic field, which could
have been the initial field or the field produced by the dyna-
mo process during the evolutionary stage, say, prior to the
solidification of the core (in the case of Mercury). It is only
in the Earth that the dynamo continues to act, although the
core is likely to solidify completely in the future. These ideas
are not generally accepted in their entirety. For example, it
has been suggested27 that the dynamo is still operating in a
thin layer in the core of Mercury, where it is maintained by
chemical convection. In all cases, the dynamo is considered
as the most probable source of magnetism at certain stages in
the evolution of planets belonging to the Earth group.

In giant planets (Jupiter and Saturn), the dynamo is
produced by effective thermal convection.41 The energy
source is provided by the gradual cooling of the planets from
their initial hot state. Compositional convection due to the
phase separation of helium from hydrogen and the descent of
helium into the metal core is also possible on Saturn, which
is cooler. Detailed analysis of convection can be found in the
review article of Ref. 27 together with estimates of generated
magnetic fields.

Thus that the hydromagnetic dynamo apparently oper-
ates in all planets with conducting liquid cores. The main
task now is to obtain more detailed information on the na-
ture of the motion and to construct specific models of the
dynamo.

3. SOLAR CYCLE

The equilibrium of the Sun as a star is determined by the
balance between the force of gravity and the pressure gradi-
ent. Solar activity is dominated by motion and magnetic
fields. The magnetic field can be observed directly in active
phenomena (spots, flares, and prominences) or is related to
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them (heating of the corona, coronal holes). Observations
confirm the magnetic origin of solar activity.

However, this cannot be explained by the theory of the
magnetism of a medium at rest. In actual fact, the conductiv-
ity of solar plasma in the uppermost layer is close to that of
poor metals, and the characteristic dimensions of magnetic
structures are relatively large. Hence, the effective time for a
change in the magnetic field, which is proportional to the
product of conductivity and the square of the dimensions, is
significantly greater than the time observed for changing
magnetic phenomena. The only natural cause of field vari-
ability is the hydrodynamic motion of plasma, especially ro-
tation and convection. Hence, the principal mechanism of
solar (and stellar) activity can be assumed to be the hydro-
magnetic dynamo.

The flow of the solar plasma is a combination of large-
scale motion (differential rotation and meridional circula-
tion) and stochastic motion (turbulent convection). The
magnetic field in a medium of this type is a random quantity
that can be found only by solving complicated stochastic
equations. A more natural and simple approach is to find the
smoothed, average parameters such as mean field, the mean
square field, and other moments. The evolution of these
quantities is described by simpler equations that can be
solved. The principal advances in this theory of the solar
dynamo are associated with the derivation and investigation
of the equation for the mean magnetic field.

From the mathematical point of view, "mean" must be
understood in the statistical sense. In practice, one deals
with the magnetic field averaged over scales and times ex-
ceeding the scale and characteristic time of the main energy-
bearing cells of turbulent motion, i.e., the supergranules.
The transport of the mean magnetic field is determined by
the mean flow parameters (Refs. 4, 9, 20, 21). The most
important of these is differential rotation, whose effect on
the poloidal field gives rise to the azimuthal component.
Turbulent diffusion equalizes the mean field gradients. Ran-
dom solar motion has a mean helicity whose effect on the
azimuthal field results in the raising and rotation of the ome-
ga-shaped loops, and hence to the generation of the poloidal
field. The mean helicity is a measure of the preferential
handedness (left or right) of convective motion in the inho-
mogeneous rotating fluid. There is considerable interest in
the observational confirmation of this mechanism on the
Sun. This could be done, for example, by studying the mo-
tion of sunspots, taking all three velocity components into
account. From the physical point of view, the existence of an
average helicity is clear and natural: it is a consequence of
the effect of Coriolis forces on convective elements that rise
and descend in the inhomogeneous medium.

The three average characteristics of solar motion that
we have mentioned (differential rotation, mean helicity, and
turbulent diffusion) largely control the transport of the
mean field, as was first demonstrated in Refs. 42-44. The
effect of turbulent diffusion, the nonlinear influence of the
field on helicity, and certain other effects were subsequently
also noted.45'46

Of course, when we consider the average field, we can
say nothing about small-scale or rapidly-varying fields. On
the other hand, we are then in a position to explain large-
scale and global variations of the magnetic field. The princi-
pal variation of this kind is the solar activity cycle (Fig. 3).

The word "cycle" usually means repeating activity, e.g., the
1 1-year repetition of the sunspot pattern, or the 22-year re-
petition of the magnetic field configuration. On the other
hand, this can also be related to the concept of the "Poincare
limit cycle" of the nonlinear solar magnetohydrodynamic
system.

In reality, the phase portrait of the solar MHD system is
even richer than this. It has been reported 48'49 that it is sub-
ject to secular modulation that may be associated with a two-
frequency limit cycle. Specialists and amateurs have been
shaken by the discovery of irregular global minima of solar
activity that occurred in the past.50 This is a direct indication
of global stochasticity and of the existence of a "strange at-
tactor" on the phase portrait of the solar MHD SyS-

Recent years have seen the emergence of studies of the
behavior of the magnetic field over long intervals of time,
based on observations of prominences extending over more
than 100 years." The prominences "hang" on lines of sepa-
ration between different magnetic-field polarities. They can
therefore be used to construct lines of zero radial (poloidal)
magnetic field. This method has been used to investigate the
distribution of the poloidal field over the surface and the
times of polarity reversal. Such studies can be complemented
by investigations of the evolution of the magnetic flux asso-
ciated with the azimuthal field, using data on sunspot areas
that have been continuing over many years.86

3.1. Motion of the solar plasma

The transport of magnetic field in a moving medium is
determined by magnetic diffusion (inversely proportional to
the conductivity) and by deformations of the velocity field.
Ohmic magnetic diffusion in the solar interior is so small
that magnetic fields extending over scales exceeding the
characteristic size of the granules ( ~ 108 cm ) can be regard-
ed as frozen into the medium over long periods of time. The
evolution of such fields is controlled by motion.

Magnetic lines of force are stretched by differential ro-
tation. The latitude gradient of the solar angular velocity
was established long ago by direct observations of the mo-
tion of sunspots and of the Doppler shift of spectral lines in
surface layers.53 Roughly speaking, the angular velocity dif-
ference between the equator and a pole is about 20%. Solar
seismology is capable of determining the radial angular ve-
locity gradient from the frequency splitting of oscillations
localized at different depths. Analysis of early observations
has shown that the radial angular velocity gradient is nega-
tive and several times greater than the latitude gradient.54

Subsequent analysis of more extensive data on the splitting
of the spectrum shows that the interior of the Sun
( S0.2/J0 ) rotates faster than the surface by a factor of not
more than two.'9 However, the angular velocity at first de-
creases with depth (in the convective shell), 'tut then in-
creases again. Confirmation of this result on the radial angu-
lar velocity gradient in the convective shell after removal of
observational uncertainties and contradictions would be of
major importance for the theory of the solar dynamo. The
sign of the product of the angular velocity gradient and the
helicity defines the direction of propagation of the magnetic
field wave (see below).

Standard models of internal structure show that the so-
lar shell, which extends over about 0.3/J , is in a state of inten-
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sive turbulent convection, in which the Rayleigh number is
of the order of 10'2 and the scale is determined by the height
scale; the Prandtl number is very small ( ~ 10"9) because
the transfer of heat is radiative. The turbulent nature of mo-
tion is usually determined by the Reynolds number. In the
convective zone, Re = 5.5 X 103 at a depth of d, = \0~2RQ

and Re = 4X 10'2 at d2 = 0.3RQ. Against the background
of such intensive turbulence, the observed cellular picture,
consisting of granulation and supergranulation, seems to be
a surprising, synergetic phenomenon. We know that the
typical scale of the granules is not very different from that of
density variations. Simon and Weiss55 have drawn attention
to the fact that the density-stratified convective shell should
naturally exhibit two further characteristic scales, one of
which can be identified with supergranulation and the other
with the giant cells that have not yet been directly observed.

At first sight, the existence of convective cells with di-
mensions exceeding the height scale is inconvenient because,
by virtue of the continuity of flux, slight motion in the dense
lower part of a cell creates enormous velocities in its upper
part. However, cells extending over many height scales are
more effective in transporting heat as compared with cells
extending over one height scale, because they have a smaller
superadiabatic gradient for the same temperature difference.
There is a characteristic cell size for which the second effect
is more important, and the emergence of such cells is energe-
tically convenient. These interesting and important esti-
mates have not yet received quantitative justification. Of
course, the Boussinesq approximation must be abandoned in
numerical analyses. Although the Mach number is low, the
fluid cannot be regarded as incompressible, so that the influ-

ence of the density gradient must be taken into account and,
in particular, div v = 0 must be replaced with div p\ = 0.
The situation is not at all similar to laboratory turbulence,
which is usually characterized by the two dimensionless
numbers Re and Ma.

The effect of turbulent convection on the mean magnet-
ic field is similar to that of magnetic diffusion or magnetic
viscosity. Roughly speaking, turbulent diffusion is given by
VT = r(v2)/3, where risa correlation time, say, the lifetime
of supergranules, and (v2} is the mean square of velocity
fluctuations. A more subtle point, first pointed out by Lebe-
dinskii56 and Biermann,57 is that this is the anisotropy of
turbulent transport in the solar convective zone, due to the
fact that the radial direction is special. The different trans-
port of turbulent momentum in radial and cross-radial di-
rections is an essential element of the mechanism maintain-
ing the differential solar rotation.58"60

The average magnetic field must diffuse anisotrop-
ically, but this effect is usually ignored in models of the solar
dynamo for simplicity.

Another feature of solar turbulence is associated with
rotation. The Rossby number falls from Ro = 60 at rf, to
0.04 at d2, so that rotation affects the shape of the convective
cells directly only near the bottom of the conductive zone.61

However, the shape of the cells is not the only point. An
average helicity appears because of the rotation of the strati-
fied turbulent convection.

We must now provide a qualitative explanation of the
mechanism responsible for the average helicity. Let us sup-
pose that a convective element rises (descends) in the radial
direction. Because of the presence of the density gradient, it
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expands (contracts), i.e., acquires additional components
ve,vv. The associated moment of Coriolis forces gives the
element additional rotation. Roughly speaking,

-T— rotr v « — 2Q cos 9 • (4)

The radial velocity is determined by the continuity equation:
vr/r~vVr p/p~v/H, where H is the density scale. In the
upper part of the convective zone, the correlation time r ~ / /
v is small in comparison with the rotational period, Ro = v/
/f t>l. Integration of (4) yields curl, v~ HIT cos 0/H. In
the lower part of the zone, Ro-^ 1, i.e., the convective ele-
ment can turn over several times in the time T. We must
therefore take the average value of curlr v over the rotation
period. The helicity is defined as the product of the velocity
vr and the additional curlr v. The equation for the generation
of the mean magnetic field includes the quantity
a = — r(vcurl v)/3, given by the following estimates:

, R o > l ,

, Ro-Cl .
(5)

The angular dependence is such that a vanishes on the equa-
tor and has different signs in the northern and southern
hemispheres. According to existing models of the convective
shell, / 2fl/H increases in the inward direction and Iv/H to-
ward the surface. The function a(r,d) must therefore have a
maximum at the point where / f i~u(5X 109 cm). The ap-
pearance of helicity signifies a departure from mirror sym-
metry. The pseudoscalar a is determined by the product of
the pseudovector fi and the vector Vp. Hence, it is clear that
rotation alone is not enough! We also need the vector Vp or
V(ir). We note that the inhomogeneity of velocity fluctu-
ations leads to a further interesting effect, namely, diamag-
netic transport of the mean magnetic field.9'13-16

The hydromagnetic dynamo is possible whenever mo-
tion overcomes the destructive effect of magnetic diffusion.
This relationship is most simply characterized by the mag-
netic Reynolds number Rem = lv/vm. This number is very
large in the convective shell of the Sun, i.e., Rem = 2 x 107 at
d, and Rem = 5 X 109 at d2. The solar velocity field therefore
operates similarly to a fast dynamo. The dynamo generates
the average large-scale magnetic field and the intermittent
structure at small scales.

The main sources of the mean field are differential rota-
tion and average helicity. They operate against a back-
ground of strong turbulent diffusion that equalizes gradients
and is responsible for diffusional transport and decay of the
mean magnetic field. The reaction of the magnetic field on
the helicity and differential rotation leads to a number of
interesting nonlinear effects, including the stabilization and
modulation of oscillations, torsional waves of meridional
circulation, and global minima.

3.2. Main cycle

The magnetic hydrodynamics of the average field pro-
vides an explanation of the main (22-year) periodicity of the
axially symmetric magnetic field. The basic equations for the
mean field (1 )-(2) in the convective solar shell can be writ-
ten in the form

= ([VQ, VA] r sin 6), +PA/?; (7)
where /3 represents magnetic diffusion, including turbulent
and molecular diffusion. To elucidate the nature of the solu-
tions of (6)-(7), it is useful to put/? = 0 initially, and then
examine the role of magnetic diffusion. If we introduce the
variable x = r snl ^> we obtain for it the somewhat unusual
equation62

, VxD,, (8)

which resembles the equation of thermal conduction if we
interchange t and r. The solutions of (8) take the form of
waves of decreasing amplitude, propagating along
fl = const surfaces. The direction of propagation of the dy-
namo waves depends on the sign of the product aVfl. Let us
suppose that H is a function of only the radial coordinate.
The n = const surfaces are then spheres and

^f. _ r> 01
dp ~~ rae'

where D = r sin Qad£l/dr is the local dynamo number. We
shall seek a solution of the form^f~exp(^0- We then have

= 0, i.e.,forX><0,

Turning back to the field, we have a wave propagating from
the pole to the equator:

B ~ «•" cos (cat — fee + -^-) . (9)

The sign of dfl/dr is the same in the northern and southern
hemispheres of the Sun, but a — cos 0 [see (5) ], so that D
changes sign. Hence it follows that, in the southern hemi-
sphere, the dynamo waves propagate from the pole to the
equator. When D > 0, the waves travel toward the poles. The
phase velocity is yph = a>/k = (D /2k)1/2 and the group ve-
locity vg = dco/dk is smaller by a factor of two. The phase
difference bet ween B and A is<5 = Tr/4, so that .8, lags behind
Br by 37T/4.

In another simple case, H = f l ( 6 ) , the dynamo wave
propagates in the radial direction. In contrast to the last
case, this situation is not similar to the behavior of the field
on the solar surface on which it propagates from high lati-
tudes to the equator in the form of the well-known Maunder
butterflies. However, waves propagating along the radial di-
rection can be coupled when turbulent diffusion is taken into
account.62

The inclusion of turbulent magnetic diffusion enables
us, above all, to obtain a solution of constant amplitude be-
cause y—y — /3k2. The dynamo number corresponding to
Y — 13k 2 = 0 is commonly referred to as the critical number
for the generation of the mean field. Moreover, when/? ^0,
it is clear from (6) and (7) that there is a change in the phase
difference between the poloidal and azimuthal components
of the field. Studies of the dynamo equations, including dif-
fusion and other effects, and of the correct geometry of the
problem and the boundary conditions, are being carried out
with the aid of computers. Numerical experiments based on
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the theory of the solar dynamo have been carried out, for
example, in Refs. 44-46.

An asymptotic solution of the equations for the genera-
tion of the solar magnetic field was constructed and analyzed
in Ref. 87. The variation of angular velocity with depth was
assumed to be as indicated by helioseismology data, in which
the radial angular velocity gradient in the conductive zone
changes sign and its maximum value exceeds the latitude
gradient. The mean helicity was taken from calculations
based on the theory of mixing length. It was shown that three
dynamo waves of the magnetic field were generated. The
first wave was generated in the surface layer and had a maxi-
mum at a latitude of about 60°. Its activity took the form of
migration toward the pole of the zone in which polar flares
are formed. The second, less powerful, field wave was gener-
ated at the center of the convective zone and its activity man-
ifested itself in the spot formation cycle. The third wave was
generated at the bottom of the convective zone and was
damped out rapidly as it propagated toward the surface. It
could lead to multiple reversals of the polar magnetic field
within the single main cycle.

In the linear theory, undamped or nonincreasing solu-
tions are obtained only for a particular value of the dynamo
number d = Dcr. When the reaction of the magnetic field on
the turbulence is taken into account, a nonlinear solution
can be constructed in the form of a limit cycle, at least for
D>Dcr (Fig. 4, Ref. 46).

The magnetic force has a stronger effect on the mean
helicity than on the angular velocity. It has been estimated64

that (8Sl/£l)/(&a/a)~(B,/BfWtor4\, where v is the
characteristic amplitude of turbulent fluctuations. When the
nonlinearity is small, it is natural to consider

( I D
1, 1)1, S

aN (10)

where § represents the nonlinear effect.
An undamped solution of the nonlinear problem may

be sought in the form of an expansion in terms of the eigen-
vectors of the linear problem that correspond to complex
eigenvalues qn = ya 4- ia>n •

n=l

Replacing a with aN in (6) and (7), we obtain a system of
ordinary differential equations for F" (t) with cubic nonlin-
earity65:

-0,2 -

FIG. 4.
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where the coefficients K "ms are determined by the eigenfunc-
tions an and bm of the linear problem. In the first approxi-
mation in D — Z>cr , it is sufficient to retain the two complex-
conjugatemodesF ' =F,F 2 = F * in ( 1 1 ) , which corresponds
to the dipole mode for the mean magnetic field. The station-
ary solution can be interpreted as a limit cycle in the form of
a circle:

(Re F)z + (Im F)2 = const • D~D°"

The local limit cycle in terms of the variables B and dB /dt
has an elliptic shape.47 It is important to note that, since the
dynamo is nonconservative, this limit cycle cannot be given
the usual energy significance of the kind assigned to a pendu-
lum clock type dynamic system.

The periodic solution has the interesting symmetry
property F(t + 7Y2) = - F(t), i.e., it repeats at half the
period, with the sign reversed.65 It is clear even from (11)
that its stability demands that dy/dD > 0, i.e., solutions with
a decreasing function y(D) are unstable.

The authors of Refs. 66 and 67 have drawn attention to
an interesting property, namely, the alternation of ampli-
tudes with even and odd numbers (Gnevyshev-Olya rule).
They explain this in terms of the addition to the limit cycle of
a quasiconstant mean-field component (which is added to
the oscillating field for even numbers and subtracted for odd
numbers). The origin of this component is something of a
mystery. It is most naturally related to the stationary field of
the solar core.

An increase in the dynamo number leads to the excita-
tion of several modes. The simplest case of two interacting
modes of dipolar and quadrupolar symmetry65 may be of
interest in connection with the secular modulation of the
solar cycle.

3.3. Torsional waves

One of the striking events of the last few years has been
the discovery of torsional waves that are superimposed on
the overall differential rotation.68 The period of the waves is
close to 1 1 years, and their amplitude is of the order of 3-6
m/s. In each hemisphere, there are four zones of faster and
slower rotation. A new zone appears near the pole and
reaches the equator every 22 years. Studies of the motion of
sunspots suggest that, in addition to torsional waves, there
are apparently periodic meridional flows, as well.69

The good correlation between torsional waves and ac-
tivity suggest that these waves can be explained in terms of
the reaction of the magnetodynamo wave on differential ro-
tation.63'70-72

3.4. Magnetohydrodynamic chaos

In reality, the solar cycle is not simply a limit cycle or a
limit cycle with regular secular modulations imposed upon
it. The discovery of the Maunder minimum and other global
solar-activity minima has revealed the globally stochastic
nature of solar activity. From the modern point of view, this
picture is naturally related to a strange attractor.

In the first attempt to apply the idea of a strange attrac-
tor to the theory of the solar dynamo, the basic equations
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that included the reaction of the magnetic field on the heli-
city were reduced to the Lorentz system73

(12)

where A and B are the azimuthal components of the vector
potential and the mean field, C is the change in helicity due
to the contribution of the magnetic helicity [for simplicity,
the direct eifect on a, such as (10), was ignored], and a~ \
and v^ 1 are constants. One of them characterizes the differ-
ence between the diffusion operators for A and B, and the
other determines the rate of damping of magnetic helicity
due to molecular magnetic diffusion, so that v is very small
in the solar convective zone.

Roughly speaking, activity turns off because (12) has a
zero solution of the form (A, B, C) = (0,0,0), i.e., in princi-
ple, the Sun can survive even without the magnetic field. For
low dynamo numbers D < 1, this zero-order solution is sta-
ble. When D > 1, there are two additional singular points
S± = ± [vCD-1)]"2, {+ [v(D-\)Y'2,D-\}. For
a particular range of parameter values, i.e., in the solar con-
text 0-—1, v<l ,Z>-»4(c r— 1)~ ' , the trajectories of (12) in
(A, B, C) space execute quasiperiodic transitions from the
neighborhood S+ to the neighborhood S_ and back, and in
the course of this process they sometimes (randomly) reach
the neighborhood of the singular point (0, 0, 0). The time
spent by the mapping point in this neighborhood is
TM~v~\D-Dcr)-

112 (Ref. 47), i.e., it is not very long.
An approximate derivation of the equation for C with small
v is given in Ref. 64.

The simplified set of dynamo equations given by (12)
has an important defect: it does not contain the dynamo
waves that are present in the initial MHD equations for the
mean field (see Section 3). (We note that, when (12) is used,
the main 22-year cycle must be understood as a transition
from S+ to S_ and back. The frequency of this transition is
of the order of ( a D ) l / 2 . )

A more realistic simplification of the mean-field equa-
tions (6) and (7), that includes the dynamo waves, leads to
complex equations for A and B. This approach was devel-
oped in Refs. 51 and 74, in which the reaction of the magnet-
ic field, not on the mean helicity but on differential rotation,
was taken into account. The result was a set of equations of
order 6 for the complex variables A(t),B(t),

(13)

Q --- —^-Q — iAB,

which is the complex generalization of the Lorentz equa-
tions given by (12). The parameters v and D are real and
positive. When v< 1, the sequence of bifurcations increases
with increasing D, and eventually leads to the stochastic be-
havior of the system, with episodes of highly suppressed
magnetic activity.

The trivial solution (0, 0, 0) is stable so long as D < 1.
The first bifurcation for D, = 1 leads to the appearance of an
oscillating solution corresponding to the dynamo wave.

Moreover, when D> 1, the set of equations given by (13) has
an exact periodic solution

B ~ I B I e'vi, A—\A\ e'(P'+'>) Q = 1 Q \ e2'1'1

where/>~4Z>/(2 + v),\A \ ~8Z>/(2 + v),\B \ ~ |fl| ~ \6D/
(2 + v)2. This periodic solution is a limit cycle in the 6-
dimensional phase space (A, B, fi). On the (Re A, Re B)
plane, the limit cycle takes the form of two ellipses. Numeri-
cal calculations for v = 0.5 show that this solution becomes
unstable for D2 = 2.07. After this bifurcation, the solution
becomes doubly periodic with two distinct frequencies
(torus in phase space). The doubly periodic solution, in
turn, becomes unstable forZ>3 = 3.47 and the three-frequen-
cy solution appears. After D4 = 4.81, we obtain the Feigen-
baum cascade of solutions with period doubling, which con-
verges to Z>chaos =4.84. For large dynamo numbers, the
solutions become random in time and there are episodes with
highly suppressed amplitude. An example, taken from the
paper by Weiss et al. (1984) for Re B is shown in Fig.
5(Z>=17) .

It is important to note that, in contrast to the parameter
v< l in (12 ) , the parameter v is of the order ofh /H > 1 in the
convective zone, where h is the depth of the zone and H the
height scale for the density variation. This is so because this
parameter is determined by the reciprocal of the angular
velocity damping time due to turbulent viscosity. This em-
phasizes once again the model character of this example. Its
value lies in the indication it provides of the fundamental
possibility of global MHD chaos in the solar dynamo and in
estimates of the orders of magnitude of the various
quantities.

4. GALACTIC MAGNETIC FIELD

The magnetic field of galaxies is weak in comparison
with the solar and terrestrial fields. It is measured in micro-
gauss. However, the galactic field has a record-setting spa-
tial scale (kpc). The creation of a magnetic field of this order
requires an emf (BRh /ct) of the order of 10'° acting over
10'° years, where5 = 2^0, R =* 15 kpc, and h =^400 pc. The
last two quantities are, respectively, the radius and half-
thickness of the galactic gas disk. Hoyle75 was the first to
make this estimate, and was forced to conclude that the ga-
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lactic field was the initial, primordial field.
In reality, the motion of the ionized galactic gas acts as

the hydromagnetic dynamo. The dynamo produces an expo-
nential increase in the very weak initial field, which can be
created by the battery-type effect or is the by-product of ejec-
tion from stars. The characteristic field rise time is of the
order of 5 X 108 years (see later), which is much shorter than
the lifetime of the Galaxy (10'° years). The field then settles
down because of the reaction of motion. The steady field is
maintained by an emf equal to J E,dl ~ c ~' (v X B)A, where v
is the characteristic velocity of the random motion of the gas
(of the order of 10 km/s). Random motion also leads to
turbulent diffusion and dissipation of the field. However, its
component due to helicity is of the order of 0. \v ~ 1 km/s,
which is entirely sufficient to create 10'° V.

The theory of the hydromagnetic dynamo was first ap-
plied to the explanation of the galactic mechanism in Refs.
76 and 77, which reported simultaneous but independent
work. The main sources of the large-scale mean magnetic
field were again assumed to be differential rotation and mean
helicity. However, in contrast to planets and stars, the azi-
muthal field Bv, which is even relative to the central plane,
and the corresponding quadrupole field (Bp,Bz), are more
readily excited in the relatively thin galactic disk. This, and
some of the subsequent work summarized in Refs. 13 and 21,
have elucidated the conditions for the enhancement of the
magnetic field in the local solar neighborhood. The useful
feature of the galactic dynamo is that we find ourselves in-
side the dynamo region.

A. M. Shukurov and one of the present authors78 have
constructed a dynamo model that takes into account the dis-
tribution of angular velocity and disk thickness along the
radius. The unexpected result of this work is that the large-
scale field of the Galaxy and of the similar Andromeda gal-
axy is generated only at the center and in an annular region
that includes the solar neighborhood. The result was con-
firmed experimentally soon after.79

Recent years have seen the advent of intensive radioas-
tronomical studies of large-scale magnetic fields in the near-
est spiral galaxies. Apart from ring-shaped magnetic struc-
tures (the Galaxy, M31, IC342, and M81), bisymmetric
configurations resembling a double helix have been discov-
ered.80

To determine the radial field distribution and to com-
pare the results with observations, the theory of the dynamo
in a thin rotating layer had to be developed further.81'88

The theory of the generation of the mean magnetic field
can be formulated as an eigenvalue problem for (1) and (2)
with zero conditions on the boundaries. The distribution of
the field in space is described by a linear combination of
eigenfunctions, and the eigenvalues determine the rate of
growth F =d In B /dt of different field modes. Let p, tp, z be
cylindrical coordinates, and let us ignore, for the moment,
the dependence on <p. In terms of dimensionless variables,
the generation equations then assume the form

TB=—DGa-^--

— — d A
ap"p"9p~p '

d-B , „, d 1 d

P P dp

(14)

(15)

h o /P, and G = pd$l/dp is a measure of the differential rota-
tion. The characteristic values G0~ft0~ 10~l5 s~', a0~ 105

cm/s, 0~ 1026 cmVs can serve as estimates of differential
rotation, mean helicity, and turbulent diffusion in the solar
neighborhood of the Galaxy. The quantity D = RaRn

= a0G0ho/j32 is the dimensionless dynamo number and
A 2 = Ag/ /?2~10~3 is a small parameter that appears be-
cause of the considerable difference between the vertical and
horizontal dimensions of the disk. This difference ensures
that the magnetic field diffuses relatively rapidly in the z-
direction, at right-angles to the plane of the disk
(hl/(3~5x 108 years), and slowly along the radius (R 2/
P~5X 10" years). The age of the galaxies does not exceed
1010 years.

The solution of (14)-( 15) will be sought in the form

A =Q((,)a (p, z), B = Q (p) b (p, z),

where a and b satisfy the set of one-dimensional equations

(16)

The radial function is found to satisfy the Schrodinger-type
equation

in which the rate of growth, — y(p), in the problem defined
by (16) for the vertical distribution plays the part of the
potential. This approach is similar to the adiabatic approxi-
mation in quantum theory, which is valid for AF^A^,
where AF is the separation between the corresponding
eigenvalues. For the galactic disk, A^~ 1 and AF<0.4, i.e.,
this condition is satisfied.81

The solution of (16) for a given helicity that is antisym-
metric in z and for G(p) determined from the observed rota-
tion curve, has been carried out numerically for the simplest
vacuum boundary conditions82

Jj- (± h) « 0, b (± k) .-.= 0.

The dynamo number calculated from parameter values typi-
cal for the solar neighborhood (D~ — 10) is such that the
lowest field mode with a symmetric azimuthal field and the
corresponding meridional quadrupole field can be excited
(Fig. 6).

To find the radial field distribution, we must know the
potential — y(p), determined by the radial dependence of
the dynamo number and the disk half-thickness. Observa-
tions show that the thickness of the gas disk increases with
distance from the center of the Galaxy. The following ap-

where z is measured in units of the characteristic half-thick-
ness h0, p in units of the disk radius R, the time in units of

-U) -0,8

FIG. 6.
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p.kpc
FIG. 7.

proximation was used in Ref. 81 for the half-thickness of the
ionized layer: h(p) - 0.37( 1 +p/QA kpc)l /2. The function
y ( p ) , calculated by solving (16), is shown in Fig. 7. The
solution was based on the observed rotational curve and
mean helicity of the form S(z - 0.5) - S(z + 0.5).

The magnetic field is generated in regions with
y(p) > 0. For the Galaxy, this is the central part and the ring
in the solar neighborhood around p — 10 kpc. An analogous
picture is obtained for Andromeda M31. In galaxies with
single-hump or monotonic rotational curves, the large-scale
field can be generated only at a certain distance from the
center.

The growth rate Fn of the radial modes is most simply
found in the WKB approximation:

where the turning points are determined by the conditions
y ( u n ) — y(wn) = !"„. The lowest mode n = 0 grows with
the characteristic time F^' =- 3 X108 years.

Let us now consider the generation of nonaxially-sym-
metric ^-dependent magnetic fields,83 such that the initial
field has a component in the plane of the disk. The differen-

B

FIG. 8.
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tial rotation twists this field into a two-arm spiral (Fig. 8).
The separation between the turns of the spiral in which the
fields have opposite directions decreases rapidly with time,
A/a ~Po/^(/> where fl0 is the characteristic angular velocity
and/o0 is the scale of the variation in this velocity. There is a
corresponding reduction in the characteristic time for the
diffusion of the magnetic field. For the mode B~exp(imtp),

_ \'~frffif
Td p— ,

where Lpm = p0/m Q0t and 13 is the turbulent diffusion coef-
ficient. This time must be compared with the characteristic
time for the generation of the field by the dynamo mecha-
nism:

where Ra = h0a//3 and Rn = hl&o/P are dimensionless
numbers that determine the strength of the generation
sources, RaRn = D, and y0=*QA. The above estimate of rg

refers to the local neighborhood p and is therefore indepen-
dent of m (for small m). The excitation condition rg <rd
yields

2,

where p0 = 3 kpc. It is thus clear that the lowest nonaxially-
symmetric modes with m = 1, 2 can definitely be excited in
spiral galaxies. It is also clear that the m = 0 mode is excited
first, and is followed by the m = 1 mode, which corresponds
to the observed bisymmetric structures. This estimate has
stimulated the development of a numerical model of the non-
axially symmetric dynamo in a thin disk.88

Thus, already the analysis of the mean magnetic field
shows that the theory of the hydrodynamic dynamo leads to
informative applied results. Still greater prospects are
opened up by taking into account higher statistical moments
of the field.
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