
chain of one-photon transitions appear in the distribution.2

If the matrix element of such a transition6 eznn. — 0.4 eca ~5 / 3

(nn')-3/2=:0.4 £<u-5/3«-Jcl/2«2- l/2«'2 = & > > « ~ 3 is
much less than the distance between neighboring levels « ~3,
then its probability is low ~ («o~5 / 3)2and is independent of
n. In this case the chain of one-photon peaks is localized,
while the rate of ionization equals F, ~ (eca~sl3)2k F,,,,
where k = «0/2<y0 is the number of peaks while
F0 — (e<y~5/3)2«3/2 is the transition rate from the last peak
into the continuum. For<y5 / 3<£ <£c there is no ionization in
the classical system, while in the quantum system ionization
proceeds owing to tunneling through the invariant curves:
F7 ~(«/r7)exp[ — C«0(ec — £0 )/£„], where C is a numeri-
cal constant.

In the region of chaos with /—«„ delocalization occurs
in the system because of the growth of D as n increases. In
this regime the quantum process of excitation agrees satis-
factorily with the classical process.1"3 Local instability nev-
ertheless does not occur in the quantum system even in the
region of delocalization. This leads to the fact that in the
numerical simulation when at the time T = rg time is re-
versed (i/>^ifi*) the total probability (even from the contin-
uum) returns to the initial level n0 at the moment T = 2rg

(with an accuracy of 10™1 6).3 In the classical system such
reversibility does not occur because of the exponential insta-
bility of the trajectories.

At the present time only two laboratory experiments
have actually been performed,'2''3 in which the electron was

located in the region of classical chaos («0 ~ 60, a>0 — 0.5, en*0

— 0.06). The results of these experiments agree satisfactorily
with the data from numerical simulation of the classical dy-
namics12'14 and in this case confirm the classical picture of
diffusion ionization. The reason for this lies in the fact that
the experiments were performed in the region of delocaliza-
tion ci)0<a>,. To observe quantum localization of chaos the
experiments must be performed at a higher frequency:
<y0>&>; . In this region quantum effects play a significant
role'"3 and the classical picture of the ionization pro-
cess7,13.14 is not valid.
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G. P. Herman. Some properties of quantum chaos. In the
study of stochasticity in classical Hamiltonian systems
"nonlinear resonance" and "parameter of overlapping" of
nonlinear resonances are effective and convenient concepts.'
The transition from regular motion to chaotic motion is al-
ready possible in a system of two nonlinear resonances and
arises when the interaction (overlapping) is strong enough.
The report investigates the characteristic dynamics and
spectral properties of systems of two interacting quantum
nonlinear resonances, whose abbreviated Hamiltonian has
the form

! cos (ftjO — Q,i) + F2 cos (/c29 — Q2i)

with periodic boundary conditions for the wave function
i[>(0 + 277,0 = i/>(6,t)- The Hamiltonian^ describes the in-
teraction of radiation containing two frequencies with a non-
linear quantum system in the region of the quasiclassical
population.2"4 The parameters y, F, 2 and fl, 2 are the re-
normalized anharmonicity constant and the amplitudes and
frequencies ofthe external field, and k 1>2 are integers. The
Hamiltonian H was constructed in the so-called approxima-
tion of moderate nonlinearity2 and is identical to the Hamil-
tonian of a quantum rotator in the field of two waves. In the
classical limit ( — ifid/dd—I is the action) H transforms
into H(I,6), and for the parameter of overlapping AT<ATC

there exist two primary resonances centered in action at the
points/1 2 = nt 2/27& 1 2 . These primary resonances lead in
the classical case to the appearance of resonances of a higher

order. As a result the classical phase space exhibits renor-
malization properties.5 In the quantum case^a method of
renormalization of the starting Hamiltonian H can also be
developed.6'7 This procedure is well defined, if the number of
levels included in the primary quantum resonances is large,
81= (4/for) (2F/y)1 / 2>l (F1 > 2 = V, &1|2 = 1) which is
the condition that the primary resonances are quasiclassical
in nature. As a result, the renormalized Hamiltonian de-
scribing the behavior of the system between the nearest sec-
ondary resonances has the same form as the starting Hamil-
tonian. Such renormalization in the quantum case (unlike
the classical case) is repeated a finite number of times until
the width of the higher order resonances in the action is no
longer equal to ft. The structure ofthe quasienergy functions
and the spectrum of the quasienergies in the transitional re-
gion K~\ (F 1 2 = V, — ft, = fl2 = v , fc l i 2 = 1) were stud-
ied numerically. For such values ofthe parameter AT a transi-
tion occurs in the classical case to global chaos
(K > Kc ~ 0.71), and there arises the question of the charac-
ter of the restructuring of the quasienergy functions in this
region. Figure 1 shows a diagram ofthe antisymmetric qua-
sienergy functions, obtained by numerical diagonalization of
the evolution operator as a function of the parameter K:
# = 0.625 (a), A" = 0.8 ( b ) , A T = 1 (c),K= 1.176 (d ) , / i s
the rms width ofthe quasienergy function and n is its "center
of gravity" in the unperturbed basis ( Vl>2 =0). Each point
in the figure corresponds to a quasienergy function, the
points on the horizontal line correspond to quasienergy
states lying in the potential wells of the primary resonances
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FIG. 1. Destruction of the lower branch of quasien-
ergy functions in the (n,l) diagram as the parameter
of overlapping AT increases (<5/=51, ^=20; y=2.5
•10~2; h= 1).
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(the points lying above the horizontal lines are not shown).
As the parameter K increases the secondary resonances are
destroyed, which corresponds in the figure to a destruction
of the lower branch—the quasienergy functions of the lower
branch are restructured (delocalized, / increases) and are
displaced into the region of the separatrices of the primary
resonances, where they are distributed in an irregular fash-
ion. The irregular character of the delocalization of the qua-
sienergy functions is a quantum manifestation of classical
chaos. The behavior of statistical distributions of the Fourier
amplitudes of the quasienergy functions and the distances
between the nearest quasienergy levels indicate the existence
of substantial correlations even in the case of delocalized
quasienergy functions. To clarify the degree to which the
motion approaches the stochastic motion of the correspond-
ing classical system the time-dependent correlation func-
tions pnm ( f ) were calculated numerically for different ele-
ments of the density matrix. For K~ 1 the residual
correlations decrease as 81 increases to some finite level.

The dynamics of the system depends substantially on
two parameters K and 81. When the resonances overlap
(K~ 1) an increase in 81 leads to a characteristic (for a ran-
dom process) rapid (at the initial stage) decay of the corre-
lation functions for the components of the density matrix,

and this enables the study of the motion at finite times on the
basis of the statistical approach taking into account system-
atically the residual correlations (in the report the classical
and quantum diffusion in energy are compared). The isolat-
ed quantum nonlinear resonance and the interaction of
quantum nonlinear resonances can be observed, for exam-
ple, in the case of interaction of coherent laser radiation with
multilevel molecules. For 5/> 1 and K~ 1 the role of the
stochastic component increases substantially, and this can
be employed as one possible mechanism for exciting the sys-
tem into the region of high-lying levels.
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