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D. L. Shepelyanskii Quantum chaos: diffusion photoef-
fect in hydrogen. The process of ionization of a highly excited
hydrogen atom in a monochromatic electromagnetic field is
an example of an unusual photoeffect in which ionization at
a frequency much lower than the ionization energy (&></)
proceeds much more rapidly than one-photon ionization
(&)>/) . ' Such rapid ionization is linked with the appearance
of dynamic chaos4 in the classical system at a field intensity
higher than the critical value: E>EC = &>0~1/3«~4 (atomic
units are employed, <u0 = ««3S;l), when nonlinear reso-
nances overlap." Here there arises the question of the influ-
ence of quantum effects on the chaotic motion ( quantum
chaos ) , which is also of general physical interest in itself.

In the region of chaos the excitation of the electron is
described by the diffusion equation with the diffusion veloc-
ity6'7 D= ( (An)2) /Ar = 2£V«-7/3 (for definiteness we
confine our attention to the case of a linearly polarized field
and initial states with parabolic and magnetic quantum
numbers «, >«2~ 1 and m = 0, in which the dynamics can
be described by the one-dimensional Schrodinger equation8;
r = cat /2ir) . Because of the rapid growth ofD with the level
number n the diffusion ionization proceeds over a character-
istic time T, ~n2/D, while its rate rfl ~CO/T, for co~n~
many times higher than the rate of one-photon ionization

s

for co=I= ~n4/3/8.'
Figure 1 shows the dependence of the ionization prob-

ability (total probability on levels with «>100 and in the

continuum in %) at the time / = 80 Trn^ ~2-10 9 s on the
frequency of the field obtained by numerical simulation of
the classical (1) and quantum (2) equations of motion.' The
initial level number «„ = 66, the intensity of the field is fixed
e = 0.05n0"4~14 V/cm. For«>&>0~/ the numerical data
are in excellent agreement with the theoretical rate of one
photon ionization (curve). In the interval ruc 5<o0Sw; the
quantum probability agrees satisfactorily with the classical
probability, indicating that diffusion excitation also occurs
in the quantum system, the lower limit of the diffusion pho-
toeffect a)c ~ 1 is determined by the fact that at frequencies
less than the Kepler frequency there are no primary reson-
ances in the system, and therefore the motion of the electron
is stable.6

The upper limit co, ~ (6e2«o )3/7 arises because of the
fact that quantum effects localize the chaos,2'8 which was
first observed for a simple model of a quantum rotator.9'lo

As a result of this a stationary distribution over levels of the
type fn ocexp( — 2 n — n0\/l) with a localization length
IzzD is established in the system.2-10'11 An example of local-
ization in hydrogen is presented in Fig, 2 for the parameters
«„ = 66, co0 = 2.5, £«Q = 0.04, the distribution/„ was aver-
aged in the interval 80 < r< 120. One can see from it that the
quantum distribution (solid line) is localized, while the clas-
sical distribution (the fine dashed curve shows the numeri-
cal data) is described satisfactorily by the analytical solution
of the diffusion equation (dashed curve).3

We note that at high levels peaks corresponding to a
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chain of one-photon transitions appear in the distribution.2

If the matrix element of such a transition6 eznn. — 0.4 eca ~5 / 3

(nn')-3/2=:0.4 £<u-5/3«-Jcl/2«2- l/2«'2 = & > > « ~ 3 is
much less than the distance between neighboring levels « ~3,
then its probability is low ~ («o~5 / 3)2and is independent of
n. In this case the chain of one-photon peaks is localized,
while the rate of ionization equals F, ~ (eca~sl3)2k F,,,,
where k = «0/2<y0 is the number of peaks while
F0 — (e<y~5/3)2«3/2 is the transition rate from the last peak
into the continuum. For<y5 / 3<£ <£c there is no ionization in
the classical system, while in the quantum system ionization
proceeds owing to tunneling through the invariant curves:
F7 ~(«/r7)exp[ — C«0(ec — £0 )/£„], where C is a numeri-
cal constant.

In the region of chaos with /—«„ delocalization occurs
in the system because of the growth of D as n increases. In
this regime the quantum process of excitation agrees satis-
factorily with the classical process.1"3 Local instability nev-
ertheless does not occur in the quantum system even in the
region of delocalization. This leads to the fact that in the
numerical simulation when at the time T = rg time is re-
versed (i/>^ifi*) the total probability (even from the contin-
uum) returns to the initial level n0 at the moment T = 2rg

(with an accuracy of 10™1 6).3 In the classical system such
reversibility does not occur because of the exponential insta-
bility of the trajectories.

At the present time only two laboratory experiments
have actually been performed,'2''3 in which the electron was

located in the region of classical chaos («0 ~ 60, a>0 — 0.5, en*0

— 0.06). The results of these experiments agree satisfactorily
with the data from numerical simulation of the classical dy-
namics12'14 and in this case confirm the classical picture of
diffusion ionization. The reason for this lies in the fact that
the experiments were performed in the region of delocaliza-
tion ci)0<a>,. To observe quantum localization of chaos the
experiments must be performed at a higher frequency:
<y0>&>; . In this region quantum effects play a significant
role'"3 and the classical picture of the ionization pro-
cess7,13.14 is not valid.
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G. P. Herman. Some properties of quantum chaos. In the
study of stochasticity in classical Hamiltonian systems
"nonlinear resonance" and "parameter of overlapping" of
nonlinear resonances are effective and convenient concepts.'
The transition from regular motion to chaotic motion is al-
ready possible in a system of two nonlinear resonances and
arises when the interaction (overlapping) is strong enough.
The report investigates the characteristic dynamics and
spectral properties of systems of two interacting quantum
nonlinear resonances, whose abbreviated Hamiltonian has
the form

! cos (ftjO — Q,i) + F2 cos (/c29 — Q2i)

with periodic boundary conditions for the wave function
i[>(0 + 277,0 = i/>(6,t)- The Hamiltonian^ describes the in-
teraction of radiation containing two frequencies with a non-
linear quantum system in the region of the quasiclassical
population.2"4 The parameters y, F, 2 and fl, 2 are the re-
normalized anharmonicity constant and the amplitudes and
frequencies ofthe external field, and k 1>2 are integers. The
Hamiltonian H was constructed in the so-called approxima-
tion of moderate nonlinearity2 and is identical to the Hamil-
tonian of a quantum rotator in the field of two waves. In the
classical limit ( — ifid/dd—I is the action) H transforms
into H(I,6), and for the parameter of overlapping AT<ATC

there exist two primary resonances centered in action at the
points/1 2 = nt 2/27& 1 2 . These primary resonances lead in
the classical case to the appearance of resonances of a higher

order. As a result the classical phase space exhibits renor-
malization properties.5 In the quantum case^a method of
renormalization of the starting Hamiltonian H can also be
developed.6'7 This procedure is well defined, if the number of
levels included in the primary quantum resonances is large,
81= (4/for) (2F/y)1 / 2>l (F1 > 2 = V, &1|2 = 1) which is
the condition that the primary resonances are quasiclassical
in nature. As a result, the renormalized Hamiltonian de-
scribing the behavior of the system between the nearest sec-
ondary resonances has the same form as the starting Hamil-
tonian. Such renormalization in the quantum case (unlike
the classical case) is repeated a finite number of times until
the width of the higher order resonances in the action is no
longer equal to ft. The structure ofthe quasienergy functions
and the spectrum of the quasienergies in the transitional re-
gion K~\ (F 1 2 = V, — ft, = fl2 = v , fc l i 2 = 1) were stud-
ied numerically. For such values ofthe parameter AT a transi-
tion occurs in the classical case to global chaos
(K > Kc ~ 0.71), and there arises the question of the charac-
ter of the restructuring of the quasienergy functions in this
region. Figure 1 shows a diagram ofthe antisymmetric qua-
sienergy functions, obtained by numerical diagonalization of
the evolution operator as a function of the parameter K:
# = 0.625 (a), A" = 0.8 ( b ) , A T = 1 (c),K= 1.176 (d ) , / i s
the rms width ofthe quasienergy function and n is its "center
of gravity" in the unperturbed basis ( Vl>2 =0). Each point
in the figure corresponds to a quasienergy function, the
points on the horizontal line correspond to quasienergy
states lying in the potential wells of the primary resonances
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