
FIG. 2. Series of photographs of the surface of a vanadium target heated
by a continuous 152 W YAG laser. The radiation beam is 24 mm in diame-
ter, and the plate is 0.9 mm thick. The rotational frequency of the struc-
ture =0.25 Hz.

lowed by a ring of slave elements, which is followed by free-
oscillatory elements, etc. The interaction of these elements
via heat conduction leads to new types of self-organization of
the system as a whole. The following phenomena were dis-
covered in the numerical solution of some variants of this
problem8: spatially localized free-oscillatory structures,
noisy limit cycles, nontrivial laws governing the develop-
ment of chaos (not described on the basis of Feigenbaum's
ideas about the characteristics of one-dimensional images),

spatial division of the frequency of free oscillations, etc.
These calculations show that diverse dynamic regimes of the
behavior of the system and diverse types of structures can be
realized by forming with the help of laser radiation diverse
spatial configurations of free-oscillatory, trigger, and other
active zones.

c) Hydrodynamic structures on the surface of liquid oxides

Some oxides (for example, V2O5) melt at a lower tem-
perature than the metal itself. Under laser heating hydrody-
namic flows arise in the liquid oxide: volume (owing to con-
vection in a nonuniformly heated liquid) and surface (owing
to a change in the surface tension of the oxide). The competi-
tion between these flows in regions where they flow in differ-
ent directions gives rise to the appearance of new types of
structures (steady-state and non-steady-state), which differ
from structures of the Benard or Marangoni cell type. Such
structures were observed with laser heating of solutions of
electrolytes9 and liquid oxides.10

Figure 2 shows the structures observed in the case of
oxidation of vanadium."

As the thickness of the oxide layer increases with time a
cascade of bifurcations of the change in the number of arms
of the spiral wave rotating around the axis of the laser beam
is observed. The process terminates with the completion of a
stationary cellular structure, formed with the "closing" of
the arms of the spiral wave.
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laev.
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G. M. Zaslavskii, R. Z. Sagdeev, O. A. Usikov, and A.
A. Chernikov. Stochastic web and structure generation. In
Hamiltonian systems arbitrarily small perturbations destroy
singular trajectories (separatrices), passing through saddle
points. For periodic perturbations the destruction is of a sto-
chastic character, generating in the vicinity of a separatrix a
region of stochastic dynamics—a stochastic layer.1 In phase
space narrow stochastic layers can intersect, forming a com-
plicated network of channels (stochastic web) along which
the particle can wander. The existence of such a web in the

general case of Hamiltonian systems with ./V>3 degrees of
freedom (six-dimensional phase space) was predicted by
ArnoPd2 (Arnol'ddiffusion).

The boundary of existence of a stochastic web with
N = 3 can be lowered to the minimum N = 3/2 (i.e., the
phase-space is three-dimensional), if some additional reso-
nance conditions leading to strong degeneracy of the system
are satisfied.3 An example of such a system is a linear oscilla-
tor, perturbed by a periodic sequence of 8 pulses. Its Hamil-
tonian has the form
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FIG. 1. Example of a stochastic web with a symmetry of fifth order. Inner
"window"—an example of the well-known fractal tree. The "window"
appears owing to the existence of cantorotors and is also filled by elements
of the web after a sufficiently long time.

FIG. 2. Example of nonperiodic covering of the plane with a symmetry of
seventh order with the help of two elements—thick and thin rhombi.

&(t-nT), (1)

where A" is a dimensionless perturbation parameter and T is
the period of the perturbation. The variable t appears as a
third component of the phase space, in addition to x and x.
The problem of the motion of a particle in a constant mag-
netic field and in the field of a wide wave packet, propagating
perpendicularly to a magnetic field, leads to the same expres-
sion (1). Here COH is the Larmor frequency.

The Hamiltonian (1 ) has the special property that the
interaction of the rotational symmetry of the trajectories of
the motion in a magnetic field and the translational symme-
try along the x axis, determined by the wave packet owing to
the term with cos x, has a quite simple form. The interaction
of these symmetries is strongest under resonance conditions:

a q (P 1)'

where/> and q are integers (in what follows/; = 1 can be used
everywhere).

The equations of motion for (1) can be reduced exactly
to "a mapping with twisting"

— 1" ff ~]
u=\u-\ -- sin § cos a + v sin a,

L ™ J

- r K ~\v= — \ u -\ -- sin d sin a + v cos a,L a J

(3)

where u = X/COH , v = — x, and the pitch of the mapping
equals T. The mapping (3) under the condition (2) gener-
ates in the (u,v ) plane a stochastic web with arbitrarily small
values of AT with a thickness ~exp( — const/A"). The web
exhibits approximate rotational symmetry of order q and is
fractal. As the interaction parameter K increases the thick-
ness of the web increases, and for large AT the phase plane is
covered by a stochastic sea, in which separate small islands
remain at the locations of the cells of the web.

Under the resonance condition ( 2 ) it is possible to sepa-

rate from the Hamiltonian ( 1 ) the part which creates the
"bare" separatrices, and the part which dresses them in a
stochastic layer.4 The first part has the following form:

+ ! ; s i n i , ( 4 )

which brings us immediately to the assertion that we are
dealing with structures of the "quasicrystal" type with q=£ 2,
3, 4, and 6. The corresponding structures in the ( u , v ) plane
are formed by lines of constant energy E = Hq . In particu-
lar, for q = 5 Penrose's mosaic can be placed with the help of
a simple algorithm on the contour lines Hq — E.4 An impor-
tant relationship is thereby established between the Penrose
covering and the properties of the "covering generator" (til-
er mapping )Ma = 2jr/? with q = 5 (Fig. 1 ).

The existence of a^Hamiltonian Hq in an explicit form
and the tiler mapping Ma = lv/q (q is an integer) enables the
study of many important properties of similar structures
with a symmetry of the "quasicrystal" type. They are deter-
mined as structures with the symmetry of the contour lines
of Hq (q is an integer) . The properties of the density of states
for <7> 7 are similar to those of the density of states of a liquid.
Structures with ̂  = 5, 7, ... can appear as intermediate struc-
tures at the order-chaos transition (Fig. 2).

The family of contour lines for Hq are states from a
large number of singly-coupled regions with different areas
and geometries. This family is also fractal and exhibits scal-
ing properties. The distribution of elliptical and hyperbolic
points is concentrated primarily in some energy bands and
apparently likewise retains a symmetry of the "quasicrystal"
type.5
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D. L. Shepelyanskil Quantum chaos: diffusion photoef-
fect in hydrogen. The process of ionization of a highly excited
hydrogen atom in a monochromatic electromagnetic field is
an example of an unusual photoeffect in which ionization at
a frequency much lower than the ionization energy (&></)
proceeds much more rapidly than one-photon ionization
(&)>/) . ' Such rapid ionization is linked with the appearance
of dynamic chaos4 in the classical system at a field intensity
higher than the critical value: E>EC = &>0~1/3«~4 (atomic
units are employed, <u0 = ««3S;l), when nonlinear reso-
nances overlap." Here there arises the question of the influ-
ence of quantum effects on the chaotic motion ( quantum
chaos ) , which is also of general physical interest in itself.

In the region of chaos the excitation of the electron is
described by the diffusion equation with the diffusion veloc-
ity6'7 D= ( (An)2) /Ar = 2£V«-7/3 (for definiteness we
confine our attention to the case of a linearly polarized field
and initial states with parabolic and magnetic quantum
numbers «, >«2~ 1 and m = 0, in which the dynamics can
be described by the one-dimensional Schrodinger equation8;
r = cat /2ir) . Because of the rapid growth ofD with the level
number n the diffusion ionization proceeds over a character-
istic time T, ~n2/D, while its rate rfl ~CO/T, for co~n~
many times higher than the rate of one-photon ionization

s

for co=I= ~n4/3/8.'
Figure 1 shows the dependence of the ionization prob-

ability (total probability on levels with «>100 and in the

continuum in %) at the time / = 80 Trn^ ~2-10 9 s on the
frequency of the field obtained by numerical simulation of
the classical (1) and quantum (2) equations of motion.' The
initial level number «„ = 66, the intensity of the field is fixed
e = 0.05n0"4~14 V/cm. For«>&>0~/ the numerical data
are in excellent agreement with the theoretical rate of one
photon ionization (curve). In the interval ruc 5<o0Sw; the
quantum probability agrees satisfactorily with the classical
probability, indicating that diffusion excitation also occurs
in the quantum system, the lower limit of the diffusion pho-
toeffect a)c ~ 1 is determined by the fact that at frequencies
less than the Kepler frequency there are no primary reson-
ances in the system, and therefore the motion of the electron
is stable.6

The upper limit co, ~ (6e2«o )3/7 arises because of the
fact that quantum effects localize the chaos,2'8 which was
first observed for a simple model of a quantum rotator.9'lo

As a result of this a stationary distribution over levels of the
type fn ocexp( — 2 n — n0\/l) with a localization length
IzzD is established in the system.2-10'11 An example of local-
ization in hydrogen is presented in Fig, 2 for the parameters
«„ = 66, co0 = 2.5, £«Q = 0.04, the distribution/„ was aver-
aged in the interval 80 < r< 120. One can see from it that the
quantum distribution (solid line) is localized, while the clas-
sical distribution (the fine dashed curve shows the numeri-
cal data) is described satisfactorily by the analytical solution
of the diffusion equation (dashed curve).3

We note that at high levels peaks corresponding to a
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