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Topological solitons that polarize the Dirac vacuum can assume fractional fermion (and

electric) charge. The effect is investigated in detail in low-dimensional [ (1 +

1)-and (2 + 1)-

dimensional space-time] quantum field theory models. A review is given of phenomena
associated with fractional charges found experimentally in quasi-one-dimensional (spin-charge
anomaly in lightly doped polyacetylene) and two-dimensional systems (quantum Hall effect).
Topics covered include: (1) fractional charge in one-dimensional quantum field theory
models, (2) anomalous quantum numbers in the Peierls-Frohlich system, and (3) two-

dimensional models of quantum field theory and the quantum Hall effect.
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1. INTRODUCTION

Advances in quantum field theory were significantly
influenced during the last decade by topological ideas and
methods. In addition to traditional studies of local field dy-
namics, the global characteristics of this theory have attract-
ed particular attention. The topological charge occupies an
important place among the new concepts that have emerged
in this approach to quantum field theory models. The con-
servation of this charge is assured not by the dynamics of the
interaction, but by nontrivial boundary conditions. The to-
pological charge is essentially a global characteristic of the
theory, and is carried by objects with spatial structure, i.e.,
solitons.

In 1976, Jackiw and Rebbi investigated the effect of fer-
mion fields on the quantum dynamics of solitons and discov-
ered a striking fact: in one-dimensional models, a topologi-
cally stable soliton (kink) polarizes the Dirac vacuum so
that it acquires a half-integer fermion charge (electric
charge, if the fermions are electrically charged).'

This result is widely known among specialists in the
quantum theory of solitons, but was far removed from possi-
ble experimental consequences. Indeed, one-dimensional
models cannot claim to be realistic theories in high-energy
physics, and are used only as a testing ground for the theo-
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retical verification of different hypotheses that are subse-
quently transferred to the real three-dimensional world.

But then, in 1979, Su, Schrieffer, and Heeger*® pub-
lished their paper, in which they investigated the linear poly-
mer trans-polyacetylene [trans-(CH), ], an object which at
first sight seemed far removed from any possible application
of quantum field theory. Pure polyacetylene is a good dielec-
tric, but it acquires relatively high conductivity already
when lightly doped. Moreover, the increase in conductivity
(by 10-12 orders of magnitude) is accompanied by a reduc-
tion in magnetic susceptibility, practically down to zero.
This experimetnal fact suggests that free charge carriers in
trans-(CH), have zero spins. On the contrary, in undoped
polyacetylene, there are mobile neutral objects with spin 1/2
(see, for example, the review given in Ref. 39). To explain
the anomalous spin-charge relationship and the unusual op-
tical properties of weaky-doped polyacetylene, Su er al.**
and Rice®’ suggest that the free charge (spin) carriers in
trans-(CH), are topological structure defects, namely, soli-
tons of the order parameter of the Peierls dielectric, whose
existence was first predicted by Brazovskii.*

The work of Brazovskii,* Su er a/.>® and Rice and Ti-
monen®’ stimulated unusual activity in theoretical and ex-
perimental studies of Peierls dielectrics (PD), including po-
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lyacetylene. It was soon recognized that the above anomalies
of polyacetylene were manifestations of the Jackiw-Rebbi
charge fragmentation effect, masked by the spin of the real
electron.®*” It was found that the functional model of Peierls
dielectrics was largely the same as the previously studied
one-dimensional quantum field theory models.**=3%4°

Polyacetylene belongs to a special class of Peierls die-
lectrics (dimerized structures) with real order parameter.
In general, a Peierls structural phase transition is accompa-
nied by the emergence of a complex order parameter whose
phase describes collective subgap motion of electrons in a
filled band (Frohlich charge-density wave). Charge-density
solitons were first discussed within the framework of the
phenomenological approach by Rice, Bishop, and Krum-
hansl®” and can have an arbitrary fractional charge. The
electrical production of such soliton-antisoliton pairs is one
of the possible mechanisms of nonlinear conductivity’®* of
a number of quasi-one-dimensional compounds (TaS,,
NbSe,, etc.).

A situation will therefore seem to have emerged in
which formal one-dimensional quantum field theory models
are being successfully applied to quasi-one-dimensional con-
ducting media, whereas experiments in this branch of phys-
ics, which is remote from quantum field theory, partially
confirm a prediction that is unusual for a modern high-ener-
gy physics model, namely, the fragmentation of the fermion
charge. On the other hand, the existence of fractional charge
in quasi-one-dimensional physics has not as yet been directly
verified by experiment.

Fractional quantum numbers were first observed by
Tsui et al.’* who measured the Hall conductivity of a two-
dimensional electron gas (quantum Hall effect) in hetero-
junctions based on gallium arsenide (GaAs-AlGaAs). In-
teger quantization of the transverse component of
magnetoresistance and the simultaneous vanishing of the
longitudinal component in a gas of two-dimensional elec-
trons in a strong magnetic field were discovered in 1980 by
von Klitzing et a/.°® and were interpreted in terms of the
coherent motion of delocalized electronic states correspond-
ing to completely filled Landau levels. The high precision
with which the integer quantization of Hall conductivity was
observed has been explained in terms of the topological na-
ture of the effect.!0"105:10¢

The existence of the Hall-type topological current was
predicted soon after in gauge models of quantum field theory
in (2 + 1)-dimensional space-time.*®*® In particular, it was
shown that, in two-dimensional quantum electrodynamics,
the electric fields E give rise to a nondissipative vacuum cur-
rent with conductivity o = e*/4r# at right-angles to the di-
rection of E (e is the electron charge). However, while, for
the Peierls-Frohlich system, field-theoretical models can be
obtained from microscopic Hamiltonians and therefore
claim to provide a description of the real situation, the rela-
tionship between the topological vacuum current in 2D-elec-
trodynamics and the Hall current of nonrelativistic two-di-
mensional electrons in a quantizing magnetic field is purely
formal and does not involve the different physical factors
that explain both effects.

The integer quantum Hall effect (QHE) can be ex-
plained in terms of the single-particle model of 2D-electrons
interacting with an external electromagnetic field and with
impurities. The experimentally observed fractional quanti-
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zation of Hall conductivity is a consequence of many-parti-
cle effects, e.g., the Coulomb interaction between electrons.
The model of an incompressible electron quantum liquid'®’
was proposed by Laughlin to explain the fractional QHE.
The ground state of this model corresponds to a condensate
of electrons rotating about a common center of mass, and
quasiparticles (quasielectrons and quasiholes) have a finite
excitation energy and a fractional electric charge. But possi-
bly the most unusual property of the Laughlin quasiparticles
is their anomalous statistics.!?’*'?? Here again, there is a
close conjunction of ideas and methods developed in quan-
tum field theory and in solid-state physics.

In 1982, Wilczek studied the motion of a particle of
charge ¢ in the field of an infinitesimally thin solenoid pro-
ducing a flux P, and pointed out that the quantity Ay = qg®/
27 could be regarded as the spin of this two-dimensional
bound system (the composite consisting of a particle and
magnetic field flux has been given the name, “anyon”)."'®
The quantum-mechanical ensemble of indentical anyons is
then found to obey anomalous statistics which, in general, is
intermediate between the traditional Fermi and Bose statis-
tics of ordinary particles.''®'*” The anomalous statistics of
quasiparticles in fractional quantum Hall effect is a further
example of the interdependence of fundamental ideas that
arise in different branches of modern physics.

The topological charge (and the associated anomalies
in the polarization of the fermion vacuum) is not a specific
property of low-dimensional models. It is present in spaces
of any dimension. However, in this review, we shall confine
our attention to one- and two-dimensional theories because
it is precisely in low-dimensional physics that current re-
search has shown an intimate connection between the pre-
dictions of quantum field theory models and many unusual
effects found experimentally in the physics of condensed
media.

Our aim is to provide a systematic account of theoreti-
cal facts on the problem of fractional charges. We have tried
to present our material in a form that will be interesting to
specialists working either in quantum field theory or solid-
state physics. However, the account is based on ideas devel-
oped in quantum field theory (this also applies to the termin-
ology that we shall use). The “‘solid-state” aspect of the
problem will not be fully dealt with and most attention will
be devoted to the field-theoretical point of view. To a lesser
extent, this also applies to the section devoted to the quan-
tum Hall effect but, here again, we shall say very little about
the part played by disorder, which is very important in this
context, but is not in our direct line of sight here. Unfortu-
nately, the experimental situation in this field cannot yet be
regarded as fully settled. Moreover, the experimental facts
relating to the quantum Hall effect will also be presented in a
very brief form. All this additional information can be
gleaned, for example, from published reviews (Refs. 3942,
61, 94, 135, 136.

2. FRACTIONAL CHARGE IN ONE-DIMENSIONAL QUANTUM
FIELD THEORY MODELS

2.1. Solitons in the Jackiw-Rebbi model

We shall begin our study of the phenomenon of frac-
tional charges with the simplest one-dimensional model de-
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scribing the interaction between fermion ¢ and scalar ¢
fields:

£=1 0,97—U (@) +1 (1.0, —£9) ¥; 2.1)

where =49 y,, 7, are the Dirac matrices {y,,,7,} = 2g,.
and g is the Yukawa coupling constant. The condition im-
posed on the potential U(g) [in addition to the requirement
of renormalization of the model (2.1)] is that the boson
sector of the model must contain static topologically stable
solitons. Suppose that U(g) has, for example, the form
shown in Fig. 1 [with the correct choice of the potential,
U(p) =A(¢?— @2)? the Lagrangian (2.1) is sometimes
referred to as the Jackiw-Rebbi model]. The solutions of
(2.1) for g -0 that have the asymptotic behavior

Qgy T—>00, —@gy T > 00,

q’§($)={ — gy, Z—— 00, qu(I)‘—‘{ Py, £ —-—00,

(2.2)

have finite energy and are absolutely stable. It is also clear
that such solitons occur for the Yukawa interaction between
the scalar fields ¢ and fermions (at least for weak coupling
constants). Once U(g) has been chosen, we can readily find
the solutions of the classical equations of motion for the
fields @ and ¢, which correspond to the boundary conditions
(2.2) (see, for example, Ref. 1). However, for our purposes,
the explicit form of the soliton solutions is unimportant. We
must examine what influence the topologically stable soliton
has on the fermion vacuum.

2.2. Supersymmetry, zero modes, and fractional charges

We shall assume that the static soliton ¢ 5 (x) is an ex-
ternal field, in which case, (2.1) reduces to the Lagrangian
for Dirac electrons with position-dependent ‘“mass”
m(x) = g@s (x). Werecall that, in the (1 + 1)-dimensional
space, ¥ is a two-component Dirac spinor and describes two
degrees of freedom (particle-antiparticle). Since one-di-
mensional electrons do not have kinematic spin (there is no
rotation group), the Dirac matrices degenerate to the Pauli
matrices (¥g,71,¥s = Yo¥1) —0;. For example, if we take
Yo= — 0,71 = — io;and assume that ¢(x,r) = "' ¢(x),
we have

Hpv (z) = op @), Hp = 0gp — aym (), (2.3)

where w is the energy of the fermions in the static scalar field
m(x), p= —id,. Since {H,0,} =0, we can readily con-
struct two anticommuting Hermitian operators @, , whose
squares are equal:

Q== Hpy Q, = iosHp, {Q,. @4} =0,

Hg=Hb= Q= Q%= p?+ m? (z) + ogm’ ().

(2.4)
(2.5)

The operator H g is the Hamiltonian of the supersymmetric

ulg)

FIG. 1.
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Witten quantum mechanics. According to the general prop-
erties of supersymmetric theories, the Hamiltonian (2.5)
has the following properties (see, for example, the review in
Ref. 32): (1) all the “energy” levels E ¢ > 0 of the Hamilto-
nian H ¢ are at least double degenerate, which is a conse-
quence of the charge symmetry ¢ _ , = o0,¢,,, and (2) the
zeromode H s ¢, = Oisnot degenerate and the very existence
of this normalized solution depends on the “topology” of the
potential m(x). In particular, when m (x) assumes different
signs as x — + oo, the zero energy level exists independently
of the specific local behavior of the function m(x). Conver-
sely, when the potential m (x) has the same sign at spatial
infinities, the zero mode is absent.

It is readily seen that the zero modes of the Hamilto-
nians Hg and H [, are identical. Since the requirement of
topological stability of the soliton ¢  (x) satisfies the condi-
tion for the existence of the zero mode of the supersymmetric
Hamiltonian H ¢, we must conclude that a bound state with
Zero energy appears on the kink.

For spinless fermions, the zero mode can be either emp-
ty or singly filled. Since the energy of the fermion in the zero
energy level is, of course, zero, the states of the soliton are
doubly degenerate in energy. However, these states differ by
the sign of the fermion charge. Let us suppose that F__is the
fermion charge of the soliton with filled zero rnode and F_
the charge in the unfilled zero mode. We then have
F,_ — F_ =1. Since considerations involving charge sym-
metry suggest that the fermion charges of these states are
numerically equal, we find that F, = — F_ = 1/2. All this
can be readily translated into rigorous algebraic language
and the fractional charge of the kink can be proved'?® (see
also Ref. 4, where the connection with supersymmetry is
employed). We shall not reproduce the formal algebraic
proof here. Instead, we will consider analytic methods that
yield the same final results, but are more convenient in the
study of the behavior of a fractional charge in an external
field.

2.3. Fractionally-charged solitons and bosonization

A simple proof of the existence of fractionally charged
solitons in the model defined by (2.1) can be obtained” by
the bosonization method (see also Refs. 3 and 5).

We recall that, in (1 + 1)-dimensional space-time,
quantum-mechanical systems can be described in the equiv-
alent languages of boson or fermion variables. This equiv-
alence was noted as far back as the 1960s for massless, free
theories of fermions and boson fields (see, for example, the
review given in Ref. 24). In particular, there was the simple
fact that the canonical commutation relation for Bose opera-

tors
lo @), o @) =i @ — y) (2.6)

transformed into the single-time fermion current commuta-
tor

[]'l»l (.’E), ]V(y) = '__:: ehv’ (x—y)v el—= —glo—1
2.7)

under the formal replacement

1
1" @)= p e, 2.8)
The canonical energy-momentum tensor of the free scalar
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field transforms into the energy-momentum tensor of mass-
less fermions, written in terms of the fermion current den-
sity.

In 1975, Coleman?? proved a theorem on the equiv-
alence of two nontrivial models of one-dimensional quantum
field theory, namely, the massive Thirring model

Er=Vivudup— mpp——5 (Grp)* (2.9)
and the quantum sine-Gordon model
$G=—;—(auo)2——%(1—cosﬂo); (2.10)

where i is the two-component Dirac spinor, o is a real scalar
field, m is the fermion mass, and 3, g are the coupling con-
stants of the scalar and fermion fields.

When the Fermi fields are expressed directly in terms of
the Bose operators, the result takes a very unwieldy nonlocal
form.?*?% Structurally, the Fermi fields assume the form
F~ P, where B are the Bose operators, and the anticommu-
tation relations for F appear because the commutator of the
Bose operators is equal to the c-number i7:

F F; = eBigBs — ¢BigBiglBi, Bil = eBigBigit = — F,F,.

For bilinear combinations of Fermi fields, the transfor-
mation formulas have a simple local form and are convenient
in practical calculations. In particular, the transformation
from the massive Thirring model to the sine-Gordon model
is accomplished by replacing the normal operator products
as follows:

DI, 0,p <> % H(B,0)2:, (2.11)
P s o> e, (2.12)
s <> cos (Bo) : (2.13)
The field coupling constants are then related by
W5 (2.14)

(We note that the constant x in (2.10) is proportional to the
mass for which the normal ordering procedure is carried
out.)

It follows from (2.14) that, when 8% = 47( g = 0), the
Thirring model degenerates to the free fermion model which
corresponds in the boson formalism to the topologically sta-
ble solitons of the sine-Gordon model (for 82 = 4r). This
property enables us to use the bosonization procedure in nu-
merous models of one-dimensional quantum field theory by
considering the fields interacting with fermions as external
(adiabatic approximation).

After bosonization, the Lagrangian (2.1) assumes the
form

£ 5= 5 (3u0)*+ 5 (0,02—V (o, @), (2.15)
V (o, ) =U (9)+gnecos (2 V n0).
According to (2.8) and (2.12), the fermion charge
Or = Sdz%o\p (2.16)

is identical with the topological charge of solitons in the bo-
son formulation:
(2.17)

Ao =0 (00)—0 (—o0).

1 ¢ _ Ao
Or = 2 —Smdxﬁxo_ v
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To determine Q¢, 1t is therefore sufficient to determine the
vacuum values of the scalar fields ¢ and o. In the quasiclassi-
cal approximation, this problem reduces to the study of the
minima of the potential V(o,@) (2.15):

U' (@) + gucos (2 Vmo) =0, sin (2 Y mo) =0. (2.18)

For a weak Yukawa coupling constant g (when the en-
tire calculation scheme can be justified), the solutions of
(2.18) are asshown in Fig. 2 ( + ¢_> are the vacuum values of
the field ¢). Stable static inhomogeneous solutions of the
model (2.12) that reach the same equilibrium value of the
field p( + @ or — @) as x— + w have |Ag| = /7, so that
according to (2.17) they have unit fermion charge. This is a
fermion of the model defined by (2.1) (more precisely, a
polaron, i.e., a locally perturbed scalar field vacuum with a
bound single-fermion state). For solitons that assume
asymptotic field values of different sign for x—» + «, we
have |Ag| = \7/2, and their fermion charge is half-integral.
These states correspond to kinks. Thus, solitons with un-
filled zero-energy level have the charge Qr = — 1/2 and
those with a filled level have Q¢ = + 1/2. We note that the
kink will also change the density of states of fermions in the
continuum, but this perturbation reduces merely to a rede-
finition of the energy of a quantum soliton.

2.4. Chiral anomaly and fractional charge

In this Section, we shall generalize the problem to some
extent, i.e., we shall consider vacuum polarization by a com-
plex scalar field @ =pe” [ p(x) >0)]. The Lagrangian for
fermions in the external field ¢, which satisfies the general
symmetry requirements (in relation to hermiticity, Lorentz
invariance, and P-parity) is

L= (11,0, —gp () €V p,  vy=1ov,, (2.19)

where g is the Yukawa coupling constant. It is convenient to
transform the Lagrangian (2.19) by separating out the term
that is the mass of the Dirac electron m = gp for p = const.
The form of this unitary transformation (chiral rotation) is
uniquely dictated by the form of the fermion-boson coupling
in (2.19):

UsypUs' = exp ( —71.'\’59 (x)) P,
UghUs' = exp (—5 18 (2) ).

(2.20)

If we use the canonical anticommutation relations for the
Fermi fields, we can readily verify that the chiral rotation
operator U, can be written in the form

Us=exp (4 (#(@0@da), h@=Tnwy, 21

where /> is the axial-vector current.
Ju

_____ *_____E7___
i [ i L

FIG. 2.
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Transformations such as (2.20) can be readily carried
out using the formal operator identity

‘¢'4Be~tA=B 4 i[4, Bl+ (4, [4, Bll+ ..., (2.22)

if we know the algebra of the operators 4, B. In our case, we
must evaluate the commutator of the vector and axial-vector
currents. We note that the Dirac matrices satisfy the simple
relation y#9° =¢*”y, in (1 + 1)-dimensional space, and
the only nontrivial commutator (of the densities of vector
and axial-vector charges) is readily found using, for exam-
ple, the bosonization procedure (2.6)-(2.8):

(18 (@), Jo @] = —L8 (—)- (2.23)

The relations given by (2.20)-(2.23) are sufficient to
enable us to derive the chiral-transformed Lagrangian
(2.19)%¢:

UpLUs = Lo = $in0,p— 2090+ 5 Wyeu,d*8
1
+55 (6,97 (2.24)

We draw attention to the last term in (2.24), which is due to
the appearance of Schwinger terms in the charge-density al-
gebra (2.23). In the functional approach, this addition to the
classical Lagrangian is due to the transformation Jacobian
for the change of variables ¥ = exp[ — (i/2)ys0(x) ]y in
the functional integral over the Fermi fields.?*~°

The transformation formulas for the vector and axial-
vector currents under local chiral rotations can be readily
found using (2.20)-(2.23):

K , 1 . , 1
in (@) =1u (2)— 5= end"8, ji (&)= ji (2)— 57 9.6
(2.25)

According to the first of these, the fermion charge of vacuum
QOr= [ daOIPreI0) —57 . AO=0(e0) 0 (—)
- (2.26)

consists of two parts, namely, the topological charge due to
the nonzero phase difference A6 and the polarization charge
induced by the interaction between the vacuum fermions
and the real scalar (p) and vector (4 >=¢,,3"6/2) fields
[see (2.24)].

Without imposing restrictions on the form of p(x) and
0(x), we cansay very little about the integral part of the total
vacuum charge determined by filling all the fermion states of
negative energy in an inhomogeneous external field. On the
other hand, the fractional part is connected only with the
global (topological) characteristics of the external field and
can be calculated for a sufficiently general situation.

We now turn to the first term in (2.26). This is the
ground-state charge Q %", induced by the positive-definite
scalar field p(x) and vector field 4 ) :

pol __ ¢ 0Sers .
F = 3 d.l' 6-43 N

-~ 00

(2.27)

where S,;; is the effective action, deduced from the Lagrang-
ian (2.24) without the last term and integrated over the Fer-
mi fields:

exp (iSepr) = 5 DyDy exp (i S dzx,‘c).
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For soliton-type external sources, p (x) —p, for |x| - « and,
according to the general theorems discussed earlier, the
Dirac 1D-Hamiltonian does not have zero modes in this sca-
lar field. The interaction between the fermions and the field
p(x) does not, therefore, affect the fractional part of the
vacuum charge.

The vector field 4 ; polarizes the fermion vacuum. It is
clear that the effective action in (2.27) is a functional of only
3,45 (u#v). For weakly inhomogeneous quasistationary
fields, |4,|, |4 4] < gpos this coupling is effectively local and,
in the lowest order in the external field, it provides a contri-
bution to the vacuum energy density that is proportional to
(A5)2~(0")? (4,)*~(6)% This is much less than the
contribution of the chiral anomaly, (d, 9)?, which plays the
part of the mass of the vector field 4 ;. The contribution Q §
can therefore be neglected, and the fractional part of the
vacuum charge in the external complex scalar field is pro-
portional to the topological charge of the phase solitons

p= —28 (2.28)

The question is: what does this formula give us for the
model of a real scalar field that we examined above? In this
case, the phase 8 can assume the values O or 7 (mod 27). For
topologically stable solitons (¢ — + @, as x— + « ), the
phase difference is |A8 | = 7 and (2.28) reproduces the re-
sults obtained in Sections 2.2 and 2.3: the charge of the kink
with unfilled zero-energy levelis @ = — 1/2,and that with
thefilled levelis Qp = — 1/24+ 1= + 1/2.

In the general case of complex scalar fields, the relation
given by (2.28) does not forbid the existence in the vacuum
of one-dimensional fermions with arbitrary fractional part
of the charge.>"

2.5. Interaction between fractional charge and electric field.
Topological nature of fractional charge

When fermion models are electrically charged, the frac-
tional fermion charge of solitons transforms into the frac-
tional electric charge Q = eQ ., and we have to consider the
important problem of its interaction with the electromagnet-
ic field.

In the model defined by (2.19), the external electric
field is introduced by the standard device of extending the
derivative: d, -»D, =3, — ied,,. After chiral rotation of
the fermion fields, the Lagrangian for the model assumes the
form

£°(4) = (19,0 — £0) -+ 5 VYHPe,0Y0 -+ o (3,0)°

e

— " b, (2.29)
where F,, =4,4, — 3,4, and the last two terms in (2.29)
appear because of the presence of anomalous Schwinger
terms in the commutator of the charge densities (2.23)
(chiral anomaly). We shall now show that the last term in
the Lagrangian (2.29) describes the interaction between the
external field and the fractional charge. Integrating this
expression by parts, we obtain

Lot = —ﬁequuﬁ#eAuj{", b= —2;;8"”(7\,6;
(2.30)

where j* is the topological current whose conservation for a
smooth function 8(x,t) is assured by the trivial identity
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a, ji~4a,08,0e*”=0. The zero component of this current in-
tegrated with respect to the space coordinate is equal to the
fractional vacuum charge (i.e., the charge of the phase soli-
ton). According to (2.30), the interaction between the elec-
tric field and the topological current has the standard elec-
trodynamic form: it is local despite the collective character
of the fractional charge.

The different methods that we have used to investigate
the reaction of vacuum to an external topologically non-
trivial field relate the fractional fermion charge and the glo-
bal characteristics of the field.

We may therefore expect that, in the most general case,
the fractional fermion vacuum charge can be expressed in
terms of the topological invariants of the theory.

It is convenient to relate the vacuum charge to the spec-
tral parameters of the problem. We are essentially investigat-
ing the asymmetry of the spectrum of the Dirac equation in
flat space in an external field. The fermion charge operator
Qr has the required properties under the transformation of
C-conjugation CQC ' = — O, and it is well-known that
it can be expressed in terms of the fermion field commutator

(2.31)

. 1 ¢ )

Or =~ ) dz [$*, $1, Qr=(0|Qr|0).
Expanding i and ™ into a series in terms of the eigenfunc-
tions ¥, (x) of the Dirac equation with positive and negative
energies @, , we can readily write the charge operator in the
form (see, for example, Ref. 130):

Oe=Am—nm)—— (21— 2 1),

k k, k, (2.32)
mk>0 ("h<0
where A, (7, ) is the particle number (antiparticle number)
operator. Standard texts on quantum field theory usually
assume that the last term in (2.32) is zero. The vacuum
charge is then also found to be zero, {0|Q¢|0) = 0. This
procedure is undoubtedly correct for free fermions, but it is
not always valid when external fields are present. Actually,
the expression

7](0): 2 1— Z 1‘=‘ngnm
k, K, 7 R

o (2.33)
in (2.32) is a formal series. To achieve a correct description
of the sum, (2.33) must be regularized. It is convenient to
use the following regularization:

NO)=limn(s), 1= 3 (sgnoglasl+n, 23
mh;,bo
where n, is the number of zero modes. The quantity 7(&) is
called the Atiyah-Palodi-Singer #-invariant.” Thus, the to-
pological fermion vacuum charge can be expressed in terms
of the p-invariant:”®

Qr=——51(0). (2.35)

For Dirac fermions in the external scalar field ¢ (x)
(2.3), the charge symmetry of the problem ensures that the
energy spectrum o, is symmetric with respect to zero. This
means that only the zero modes n, contribute to the sum in
(2.34). For an external field that has asymptotic values of
different sign as x— + o, there is only one zero mode,
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7(0) = 1, and we again find that the fermion charge of a
kink is half-integral.

When there is no charge symmetry, all states (including
the continuum) contribute to the sum in (2.34), and the
calculation of spectral asymmetry is less elementary (a gen-
eral discussion and particular cases can be found, for exam-
ple, in Refs. 8 and 11).

3. ANOMALOUS QUANTUM NUMBERS IN THE PEIERLS-
FROHLICH SYSTEM

The existence of extended objects with unusual quan-
tum numbers, i.e., fractional fermion and electric charges,
was first predicted in quantum field theory.! A similar con-
clusion was reached independently in Refs. 35-37, 38, and
57, where a theoretical study was made of the formation of
topological structure defects in a number of quasi-one-di-
mensional conducting compounds. These compounds be-
long to a class of models that are called Peierls dielectrics.
We shall now use the language of quantum field theory to
formulate a microscopic model of a Peierls dielectric, and
will show how the phenomenon of fractional charges that
has been examined in detail in quantum field theory has its
parallels in the physics of quasi-one-dimensional condensed
media.

3.1. Peierls dielectric: a model of dynamic mass generation

The Peierls dielectric belongs to a class of media in
which the gap A at the Fermi level in the spectrum of con-
duction electrons is an order parameter. The appearance of
the gap is in itself energetically favorable because it reduces
the energy of filled electron states. In the Peierls transition,
this splitting of the band occurs as a result of the electron-
phonon interaction.

In the language of quantum field theory, the appear-
ance of the gap at the Fermi level signifies that the fermions
acquire mass; the Yukawa fermion-boson coupling corre-
sponds to the electron-phonon interaction. The nonzero
vacuum expectation value of the scalar field for the electron-
lattice system, which is necessary for mass generation, is as-
sured by the phonon condensate, i.e., a macroscopic shift of
ions from their position of equilibrium. The system therefore
undergoes a structural phase transformation.

The above analogy can be made more precise (see the
review papers in Refs. 33 and 34). As an example, consider a
one-dimensional metal with half-filled conduction band.
Suppose that a Peierls phase transition has taken place in the
system and a gap has appeared in the electron spectrum
(Fig. 3) at the Fermi level (which we shall take as the origin
of energy from now on). In the quasiclassical approxima-
tion, the energy density can then be written as the sum of two
contributions, namely, the negative energy of electrons in
the filled band (vacuum) and the positive energy of the
phonon condensate:

kp .
- Ak e o Aoyiay A2 AP
e(d)=—2 § T AR Sk s
e
where ¢, = — W cos(ka) is the spectrum of conduction

electrons in the strong-coupling model (W is the half-width
of the conduction band, a is the interatomic separation), & g
is the Fermi momentum (k g = 7/2a, in our case), and g is
the electron-phonon coupling constant. The last two terms
in (3.1) correspond to the elastic and kinetic energies of the
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FIG. 3. kg = m/2a is the Fermi momentum.

lattice in the harmonic approximation (because of the small
ion shift, |A| ~|u,| €a; Fig. 4), and @ is the frequency of
condensed phonons with momentum Q = 2k . The quanti-
ties W, @ and g can be regarded as the bare constants of
Peierls theory.

The equilibrium gap A, is determined from the condi-
tion that the énergy £(A) be a minimum:

=4Wexp(— nng). (3.2)

[
‘5X=O=>A=:tAU’

Thus, at low temperatures, the one-dimensional metal with
one electron per atom must be in the dielectric phase, which
is characterized by twice the lattice period (dimerization)
and the order parameter + A,.

For weak electron-phonon coupling constants, the re-
sulting gap is Ay € W. In this approximation,

e(A)—e (0) ._—[1 —1] (3.3)
(we are using a system of units in which #i=v; = 1) and
(3.3) remains unaltered if we linearize the electron disper-
sion relation near k ~k:

E()=E (p) = £ (o + AY7,

After linearization, the electron sector of the Peierls dielec-
tric model assumes a form typical for the models of one-
dimensional relativistic quantum-field theory:

£ =Fe (W= A) bo—Gr + 5,

where ¢ is a two-component relativistic spinor describing
two degrees of freedom of the Dirac field (particle-antiparti-
cle) in (1 4+ 1)-dimensional space. The Dirac matrices ¥,
then degenerate to the Pauli matrices. The spin of the real
electron is taken into account by the “isotopic’’ doubling of
the components, o = 1, 2.

p=k—kp. (3.4)

(3.5)

3.2. Microscopic model of a Peierls dlelectric

In the microscopic description of the Peierls phase tran-
sition,**-** the starting point is usually the Hamiltonian for
the electron-phonon Frohlich interaction:

H=k,20 e,,a{’, oak,,+§ o)qb;’bq (36)
+ N2 . 2 . 8aR+q, on, o (bg+ b¥y);
D
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wherea,’, (a,,), b, (b, ) are the electron and phonon cre-
ation (annihilation) operators, €, , w, are the electron and
phonon spectra, g is the electron-phonon coupling constant,
and N is the number of atoms in a chain of length L(N = L /
a). The functional model of the Peierls dielectric is derived
from the Hamiltonian (3.6) by averaging over |k |~k ¢ and
linearizing the electron spectrum. A rigorous derivation of
this model, that includes effects due to the commensurability
of k¢ and the Brillouin momentum #/a, is given, for exam-
ple, in Refs. 42 and 56. Without concentrating our attention
on the specificity of solid-state aspects of the derivation of
the model, we shall now extend the results of the preceding
section to the general case of arbitrary filling of the conduc-
tion band.

In our case, the Peierls dielectric is characterized by the
complex order parameter A = |A|e’® ~N ~'/2(b, ), whose
modulus is the gap in the conduction-electron spectrum at
the Fermi level and whose phase @ describes large-scale var-
iations in the chemical potential. The resulting modulation
of the charge is called the Frohlich charge-density wave
(CDW).

The interaction between electrons and the complex or-
der parameter results, as in the example considered earlier,
in the appearance of the mass of Dirac electrons. In the field-
theoretic approach, we can readily write down the general
form of the terms describing the interaction between Dirac
electrons ¥ and the order parameter A that is consistent with
symmetry considerations:

Lya= "'AATPG\PG — iAz\E'Ys\Pm

where A, = |A|cos @ and A, = |Ajsin ¢ are the real and
imaginary parts of the order parameter, respectively. The
same result follows when the functional model is derived
from the Frohlich Hamiltonian.

The complete Lagrangian for the functional model of
the Peierls dielectric is

_ 1A | Aje

gaan
In reality, (3.8) descrlbes the dynamics of the Peierls dielec-
tric with the so-called incommensurable charge-density
wave, for which the degree to which the band is filled cannot
be represented by a ratio of integers. Commensurability ef-
fects will be taken into account below but, for the moment,
let us compare (3.8) with known models of one-dimensional
quantum field theory.

Without the first term (kinetic energy of the lattice),
the Lagrangian (3.8) is identical with the quasiclassical La-
grangian U(1) ® U(1) of the chiral-invariant Gross-Neveu
model.** The authors of Ref. 43 have examined the mecha-
nism of dynamic generation of mass in relativistic models
with four-fermion interaction.

(3.7)

(wua —A —ivA,) Yoo (3.8)
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In the U(1) ® U(1) chiral-invariant one-dimensional
model

Fon = Wordutbe + B (@b — @otsho)?l  (3.9)
(oc=1,.., N,),if we substitute
A= —g¥oa, Ay =ig%oVs\o (3.10)

the Lagrangian (3.9) becomes formally identical with (3.8)
(without the first term). Hence, it follows that, if the A, ; in
(3.10) are weakly-fluctuating fields, the four-fermion inter-
action effectively reduces to the model describing the dy-
namics of free fermions in the self-consistent complex scalar
field. For the Gross-Neveu model, the condition that the
fluctuations of A are small is satisfied for N, » 1. For the
Peierls dielectric (3.8), the classical behavior of the field A is
assured not by the multicomponent nature of the electron
wave function but by the existence of a slow subsystem, i.e.,
the lattice. In the model defined by (3.8), there are two inter-
nal time scales, namely, the electronscale f, ~A;™ ! (A, is the
equilibrium gap) and the small phonon scale ¢; ~ (g@) -1,
Their ratio ¢ = £, /¢ is always small in the system we are
considering (for polyacetylene, @ ~0.1), so that the adiaba-
tic approximation is valid and electronic processes are inves-
tigated against the background of a nonfluctuating lattice.>®

The model (3.5) is a special case of (3.8) for a real
order parameter (A, = 0) and describes a one-dimensional
Peierls dielectric with twice the period of the trans-polyace-
tylene-type lattice. When the field A can be considered to be
classical [the last term in (3.5) is omitted ], the Lagrangian
(3.5) becomes identical with the quasiclassical Lagrangian
of the Gross-Neveu model.*® The remarkable property of
this model is that it contains solitons.** As far as the Peierls
dielectric is concerned, we are interested only in static soli-
ton solutions of the Gross-Neveu model because the evolu-
tion of the order parameter A in time is determined by the
kinetic lattice components in (3.5).

The quasiclassical approximation is used in Ref. 44 to
show that there are two types of static soliton solutions,
namely, topological solitons (kinks) of the order parameter

A (z) == Ay th Agz, Essz—%“— (3.11)

(E) is the soliton energy), where, on each kink, there can
be localized n, =0, 1, ..., N, spinless fermions with energy
g = 0; and bound kink-antikink pairs (polarons)

A=A, [1 +-vth (AOVKT—Q—; In 1—_Y)

=¥

1 1+
—vth (Age-- 5 {51) ], (3.12)
E'p:—%NmyAm y = sin ( A’;::l TT) ; (3.13)

where E is the polaron energy and n, = 1, 2, ... < N, is the
number of fermions localized on the polaron. For a Peierls
dielectric such as trans-(CH), , the index o corresponds ex-
clusively to spin degeneracy, and NV, = 2. The phenomeno-
logical model of a lightly doped trans-polyacetylene, that is
convenient for the description of soliton-type excitation, is
proposed in Refs. 37 and 45.

3.3. Chiral anomaly and charge-density wave

Let us rewrite the Lagrangian (2.8) in terms of the
modulus ;A| and phase ¢ of the order parameter, and let us
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introduce the electromagnetic field d, -~ D, =3, —ied,,:

2

Az INE INEL
1Az |+|gz|0_);p + FoituDibs

gto? g2

£ =

— | A | g exp (i) ‘Pa_%’Fav- (3.14)
The electronic sector of the model (3.14) is analogous to
that examined in Section 2.4, and we shall therefore use the
results obtained previously to derive the effective Lagrang-
ian. Integrating (3.14) with respect to the fermion field (see
Sec. 2.4), we find that

Letr=—7 Fiv+ 250 + 22, (3.15)
jxé?f)dzx:fdzx( 1412 42
gho? £ ) (3.16)
— i In Det (iy,D,—| A |),
@) _ ¢ 1o e
Lett = | A |2 g,a,—m(q? P—— Eg, (3.17)

where E is the electric field. In deriving (3.17), the phase ¢
was assumed to be a slightly nonuniform field |@ '| € A, and
time derivatives of the phase “of electronic origin” were
omitted because the analogous lattice terms were greater by
the factor (Ay/@)*> 1. The real part of .¥ 2’ is determined
by the polarization of the vacuum by the external electric
field, whereas the imaginary part is the rate of creation of
electron-hole pairs via the tunnel effect (see, for example,
Ref. 131). It is clear that the latter process becomes signifi-
cant only in fields E, ~ A2 /e, so that, when E<E_, we shall
assume that the modulus of the order parameter is homogen-
eous. For a constant external field, the problem of polariza-
tion of the ground state of the Peierls dielectric can be solved
exactly.*® When E<E,, we have Re .¥ ;(A,,E) ~E % and
the first two terms in (3.15) reduce to the standard expres-
sion for the energy of the electric field in the medium:

"2
e E

Le=——, eA:1+%(OjT§)2;

(3.18)

where £, is the permittivity of the Peierls dielectric due to
virtual electron-hole transitions,> and w} = 8¢°n; (n; is the
two-dimensional density of chains in the sample).

The expression given by (3.17) is the Lagrangian of the
incommensurate charge-density wave in the electric field

A2
L9 = 2L 19— ()] — = E, (3.19)

o

where ¢, = g&/2\7 A, We note that both the phase gradient
and the interaction of the phase with the external field ap-
pear in this approach because of the chiral anomaly.% Com-
parison with (2.29) shows that this expression contains the
additional factor 2 in both terms. This is due to the fact that
we have taken into account the spin of the real electron [the
isospin o of the model (3.8)]. In accordance with (2.30)
and (3.16), the topological current is given by

e
. € v
jtpw = — - V09

(3.20)

This shows that the charge density in the charge-density
wave is related to the phase gradient, and the CDW current
is related to the time derivative of the phase:
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(3.21)

e . e *
pcow = ——- 9, Jepw =—@.

It then follows that the total charge of the charge-den-
sity wave is

Qcow = Sw dl‘pcnwz—%rl Ag (3.22)
and is the “topological characteristic” that depends only on
the global phase change Agp = ¢ ()} — @( — ). Inthein-
commensurable charge-density wave, the phase difference is
not fixed. The action corresponding to the Lagrangian
(3.19) is invariant under a phase change by an arbitrary
angle (¢ -9 + a) and, when Coulomb effects can be ne-
glected, the incommensurable charge-density wave is a gold-
stone under spontaneous U(1)-symmetry breaking. The to-
pological fragmentation of charge appears when we take into
account the commensurability energy that preserves the de-
generacy of the ground state of the Peierls dielectric but only
under discrete phase transformations.

3.4. The spin-charge anomaly for solitons in polyacetylene

A very important special case is that of the structural
Peierls transition with doubling of the lattice period (two-
fold commensurability ). The microscopic functional model
of the Peierls dielectric (3.1)—(3.5) contains one collective
degree of freedom, namely, the real order parameter A. The
phase @ is absent as an independent dynamic variable. The
linear polymer trans-polyacetylene [trans-(CH), ] is an ex-
ample of this.**

As already noted, functional models of the Peierls di-
electric, such as trans-polyacetylene (3.5), are identical
with the N, = 2 model of Gross and Neveu in the adiabatic
approximation. Since the energy density in this model has
two energy-degenerate minima ( & A,), topologically stable
solitons can exist in this system. These solitons are the do-
main walls (structure defects) separating phases that are
degenerate in energy in the dimerized chain of carbon atoms
(Fig. 5).

The explicit form of the soliton solutions is not impor-
tant for the purposes of the present review. We merely note
that, according to (3.11)—(3.13), two types of inhomogen-
eous quantum objects can exist in the Peierls dielectric with
real order parameter [trans-(CH), , NV, = 2]:topologically
stable solitons [kinks Ag (x) > + A, forx— + oo ] withen-
ergy Eg =2A,/m, and polarons [bound SS-pairs:
A, (x) = A, for |x|— o] with energy E, = 2v2A,/7. The
polaron carries one localized electron (hole) state
lw, | = Ag/V2. Since E, < A, the free electron is unstable in
the conduction band (hole in the valence band ) against self-
localization with the formation of a polaron®® in a time

H H H H H H H H
N RSN,
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I R B T
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FIG. 5. a—Defect-free chain of the trans phase of polyacetylene; the at-
tenuation of single and double bonds results in a structure with a doubled
period. b—Chain of trans (CH),, containing a soliton-antisoliton pair
(SS).
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t>w~'. The polaron is therefore always charged

(@, + =+ e) and has a half-integral spin. A pair of polarons
is, however, unstable against decay into an SS pair.*!

Solitons in polyacetylene have unusual quantum
numbers. The expression given by (3.22) for the CDW
charge is also valid for a model with a real order parameter
A. Although, in this case, the phase is rigidly fixed (¢ = 0, 7;
mod 27), nevertheless, for the domain wall separating the
energy-degenerate PD vacua, A = + A, the phase differ-
ence is |Ag | = 7. According to (3.22), the kink Ap =7
must therefore acquire the topological charge Q5 = —e
(the antikink Ap = — 7 acquires Q5 = e. The spin of the
charge solitons is then zero because, in deriving (3.20)-
(3.22), wecarried out a summation over the spinindex . As
we have seen, the topologically stable soliton produces an
electronic state strictly at the center of the forbidden band
(zero mode). When the electron spin is taken into account,
this level can be empty, singly filled, or doubly filled. For the
electrically neutral system, it necessarily follows that the
collective (topological) charge must be compensated by the
electron charge (hole charge) arriving from the filled band
and forming a zero-energy bound state. This compensation
over distances I> &, (£, = fivg /A, is the coherence length of
the Peierls dielectric, which is equal to the characteristic size
of the soliton) is possible because of the local relationship
between the topological charge density and the external
field, given by (3.19) and (3.20). The kink becomes neutral
but assumes a spin of 1/2. An additional electron (hole)
with opposite spin projection can be inserted into the zero-
energy level by doping the transpolyacetylene. The kink then
loses its spin but acquires charge. Uncharged topological
structure defects are thus seen to have paramagnetic proper-
ties in polyacetylene, whereas solitons are diamagnetic.>®

The following simple observation provides an intuitive
explanation of the nontrivial spin-charge coupling. The
structural formula for the trans-modification of polyacety-
lene is shown in Fig. 5a). Dimerization corresponds to the
alternation of single and double bonds between the carbon
atoms. It is clear that a local change in structure contains at
least one soliton-antisoliton (SS) pair (see Fig. 5b). It is
readily seen that the addition of a single bond to the SS-pair
converts this structure into a defect-free chain (A4- or B-
phase in Fig. 4, depending on the boundary conditions). For
spinless electrons, a single bond corresponds to one electron,
so that, by virtue of symmetry, each kink must have a half-
integral charge. The presence of spin, which doubles the
number of electrons corresponding to a single chemical
bond, masks the fractional charge but leads to the anoma-
lous spin-charge coupling for solitons in polyacetylene (a
detailed review of experimental data confirming the pres-
ence of solitons in polyacetylene can be found in Refs. 39 and
42).

For arbitrary isospino = 1, 2, ..., ¥, (number of com-
ponents in the electron function), the topological charge of
solitons can be readily found by generalizing (3.14), (3.17),
and (3.22):

Qsz—Nm%AqJ =>—Nm—;—. (3.23)

The case N, =1 corresponds to effectively spinless elec-
trons®* and ¥, = 4 can occur in carbyne chains.>?
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3.5. Solitons in a commensurable density wave

So far, we have investigated the Peierls dielectric by
reducing it to a one-dimensional quantum field theory mod-
el. The specificity of the solid-state aspect of the problem was
reflected only in the choice of a particular form for the kinet-
ic energy associated with the order parameter: A%/g’%>. Be-
low, we shall take into account a further two factors that are
significant in condensed media.

Real quasi-one-dimensional conductors are periodic
structures. The charge-density wave in the functional model
(3.20), in which the periodicity of the lattice has not been
taken into account, is a goldstone. This approach can be
justified if the period of the CDW is commensurable with the
lattice period, and other effects giving rise to pinning (chain-
ing) of the CDW are negligible. The propagation of the
CDW is then nonactivational. In practice, pinning always
occurs in the case of charge-density waves, and small oscilla-
tions in the phase of the order parameter have a nonzero
threshold frequency.

In many quasi-one-dimensional conductors, the basic
reason for pinning is the correlation between the CDW peri-
od and the lattice period. When the conduction band is full,
which is indicated by the ratio of mutually simple integers
v=N/M (N<M, M>2 is the commensurability index
M = 7N /kra and a is the lattice period, the CDW La-
grangian acquires an additional term, the commensurability
energy”’

Leom= LAZ (L)M-z cosMp, A~1,

po P (3.24)
where 5 is the Fermi energy. When this is taken into ac-
count, the Lagrangian for the commensurable charge-den-
sity wave becomes identical with the Lagrangian for the sine-
Gordon model. Although the ratio A/eg in (3.24) is small,
the inclusion of commensurability pinning has a number of
important consequences. First, small oscillations in phase
acquire a mass given by w, = A4 V2(A/eg ) M’? ! M@ and,
second, solitons with fractional charge appear in the system.

Actually, the correlation energy (3.24) lifts the degen-
eracy of the PD Lagrangian under continuous transforma-
tions of phase, and our model has only a discrete set of vacua
@x = K-2m/M. The inhomogeneous solutions that “cou-
ple” the vacua @k and @, , are topologically stable soli-
tons (phase solitons) with fractional charge®’

rg TmTF 2

Os=—eNm 5 ==& 5 (3.25)

The next modification of the CDW Lagrangian involves
the inclusion of three-dimensional effects.®®®® These can
giverise to lateral stiffness in the system, i.e., there is a region
of size £, »>n "7, in which @ (x,) = const (Ref. 42) (the
lateral coherence of the CDW has been confirmed experi-
mentally®'-%2¢% ),

For coherent phase fluctuations in a cluster containing
a large number of chains, N ~& I g, it is important to take
into account their Coulomb interaction. Actually, the elec-
trostatic interaction between collective charges in a cluster
of size £, »>n; '/? is effectively one-dimensional and is there-
fore significant for the development of CDW electrodynam-
ics. The solution of the self-consistent problem leads to the
following structure of the CDW Lagrangian in a constant
external electric field E *°:
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(3.26)

2
—1—%’2 cos(Mcp)] .

where e* = en/me (g is the static permittivity) and

_ 2Nw A} -
NO_T(;_Z’ Cop= 0,

(3.27)

It is readily seen that inclusion of the electrostatic inter-
action of coherent CDW fluctuations has led to the appear-
ance of the plasma frequency w,, in the phase mode. Substi-
tuting the permittivity of the Peierls dielectric gy =€e4>1
(3.18) into the definition of w,,, we have® »?, = 3g°&"/7.

We note that there are a number of approaches in the
literature that describe the CDW dynamics in a field (see,
for example, Refs. 60, 61, and 67). We draw particular atten-
tion to the model (3.26) because the corresponding La-
grangian has parallels in quantum field theory (see below).
In all probability, the CDW description using (3.26) is valid
at low temperatures and when the effect of impurities is
small.

It is interesting that a slight modification of (3.26) that
does not alter the structure of the model leads to a graphic
picture® that explains the nonlinear electrical conductivity
of the CDW described by the empirical formula®’

0 (B)=0pto (1—25)exp (—52—), B> B
(3.28)

where 0, are the conductivity coefficients and E is the
threshold field at which the non-ohmic contribution to o (E)
appears.

The nonlinear conductivity (3.28) used in this ap-
proach is due to the instability of the ground state of the
model (3.26) in an external field, and is intimately related to
the idea of confinement of fractionally-charged phase soli-
tons.

3.6. Soliton confinement

The Lagrangian (3.26) resembles the boson form of the
Lagrangian in the massive Schwinger model (MSM). This
model describes the one-dimensional quantum electrody-
namics (see, for example, Refs. 7-73):

LF =P {iv, (0, — ied,)—m} Yt Fio. (3.29)
where ¥ represents the spinless Dirac fermions of mass m,
=9y, F,, =3,4; —3,4,,and 4, is a vector field.

In (1 + 1)-dimensional space-time, the electromagnet-
ic interaction reduces to the Coulomb interaction between
the charges and to the interaction between the charges and
the external field E. In gauge theories, the field 4, is not an
independent dynamic variable (the corresponding general-
ized momentum 7, = F,, is zero, m,=0) and, in the Hamil-
tonian formalism, it must be eliminated from the description
using the coupling equations. In the 4; = 0 gauge, the MSM
Hamiltonian and the coupling equations have the form

HF:l_piYIaxlp_i‘m‘—P‘P"'%ngv 0zAv=—ejo , (3.30)
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where j, = ¥y, ¢. The specificity of one-dimensional elec-
trodynamics (the presence of only the Coulomb interaction
between the charges) enables us to apply to (3.29) the fer-
mion-boson equivalence formulas (2.11)-(2.14) in the case
of free fermions, % = 47. When this transformation has
been made, the MSM Lagrangian assumes the boson form”>
1 e? 0 2 -

LB =5 (0,00 — 51— (0 +Wn:) +umecos (2 n o).
(3.31)

The parameter 6(0<6<2w7) formally appearsin (3.31) asan
integration constant during the bosonization of the coupling
equation (3.30)
1, 9 )2 e? 0 2
Fi=(0,4,)*=¢? (ax‘fo'i‘ z—n) =>— (U + 2—1/5)

n
(3.32)

and has a simple physical interpretation. Itis proportional to
the strength E of the uniform electric field characterizing the
vacuum of one-dimensional quantum electrodynamics
(6 = E 2rr/e). Actually, in one-dimensional space, the Cou-
lomb interaction force between charges does not depend on
the separation between them, so that the existence of the
vacuum electric field with amplitude |E |<e/2 is not incon-
sistent with the equilibrium condition for the system (there
is no creation of charge pairs).

Accordingto (3.31), massless (m = 0) one-dimension-
al electrodynamics is equivalent to the theory of the free
neutral scalar field with mass’™ m, = e/\/r. Since neutral
particles do not interact with a uniform electric field, the
massless Schwinger model does not depend on the angle 8
(Fy=.F49_, when o0 — 0/2{r). The question is:
what is the effect of introducing the mass?

It is readily seen that, under strong coupling conditions
(m, >m), and whatever the dependence on 8, the MSM
potential (3.31)

V(G)=%m3 (0’ -+ E—}%?)z—mpcos (2\/50) (3.33)

has a unique vacuum, so that the qualitative predictions of
the model are, in this case, the same as the predictions of the
massless Schwinger model. In particular, the spectrum does
not contain fermions which, according to the Coleman fer-
mion-boson equivalence, correspond to topological solitons
of the boson Lagrangian (3.31). Under weak coupling con-
ditions (m, €m), the potential ¥ (o) has two local minima
0 ~0and o=y, one of which is metastable for | | . This
potential does not forbid the existence of solitons bound (for
|@ | #7) by a linearly increasing potential into soliton-anti-
soliton pairs (confinement phase). This phase is convenient-
ly described in terms of fermion fields forming the fermion-
antifermion pairs due to the Coulomb potential that
increases linearly with distance (one-dimensional Coulomb
potential).

The basic difference between the Lagrangian of the co-
herent CDW (3.26) and the MSM Lagrangian (3.31) is the
arbitrary coefficient (not equal to 2\/7) in the argument of
the cosine in (3.26). This means [see (2.13)-(2.14)] that
there is an interaction (in addition to the Coulomb interac-
tion) of the soliton-antisoliton pairs that results in the for-
mation of bions. In a bion, the interaction between solitons is
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exponentially small at distances x >d, where d is the size of
the soliton.

The decisive assumption in the derivation of (3.26) was
that there was inter-chain phase coherence, which enabled
us to reduce the static interaction between effective charges
for distances x>d, >&, to the one-dimensional interaction
(d is the characteristic size of the phase perturbation along
achain). It is precisely for this type of phase fluctuation that
we can justify the appearance of the term proportional to ¢ 2
in the CDW Lagrangian (3.26). In this case, the exponen-
tially small “bion potential” can be neglected, and the elec-
trodynamics of coherent CDW in weak fields is equivalent to
one-dimensional electrodynamics of spinless massive fer-
mions.

In accordance with the description of the MSM given
above, for w,» w,, the solitons of coherent CDW in (3.26)
in fields

(3.34)

are in the confinement phase. It is readily seen that the de-
confinement field E ; is identical with the field due to a uni-
formly charged plane, namely, the ‘“condenser” plate
formed by coherent solitons (kink-antikink pair) with mean
charge density #;Q:

ET=L ntds €_nr

.35
2 gy M gt (339

We have given a possible mechanism for the confine-
ment of CDW solitons that depends on the electrostatic in-
teraction between phase solitons that are strictly correlated
on different chains. However, even if we abandon the as-
sumption of the cluster nature of the motion ofthe CDW, the
solitons on a particular chain will be in the confinement
phase,*® characterized by the absence of free solitons and the
fact that the energy of interaction of an SS-pair increases
with increasing separation between solitons.

3.7. Tunneling as a means of creating soliton-antisoliton pairs
and nonlinear conductivity

We have noted in Section 3.5 that the model defined by
(3.26) was based on the assumption that there were no free
electrons. Topological solitons carrying an electric charge
can then contribute to CDW conductivity. When the dielec-
trization of the Fermi surface is not complete (there are im-
purity levels or temperatures sufficient for appreciable con-
centrations of excitations lying above the gap), the soliton
charge is screened.*® We note, however, that, in real one-
dimensional chains at low temperatures, the mobility of free
electrons is suppressed by localization effects. When free
electrons are subject to the strong localization effect, they
produce high static permittivity'*? £(0), but do not lead to
the Debye screening of soliton charges. Phenomenological
allowance for free carriers then reduces to the replacement
of £, with® £(0). This two-fluid model (Peierls subsystem
plus free electrons in the localization regime) can be used to
ensure agreement between theoretical predictions and ex-
perimental data® without significant modification of our
ideas on collective excitations in the Peierls dielectric.

We shall therefore assume that the topological solitons
in the charge density wave have an electric charge given by
(3.25). Since small oscillations in the phase of the order pa-
rameter for arbitrarily small pinning (wy7#0) do not con-
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tribute to the dc conductivity [o(w) -0 for @ -0 (Ref.
55)], the nonlinear static conductivity of the Peierls-Froh-
lich system is due to CDW solitons and is proportional to the
density of the SS-pairs. At low temperatures, T<w,, the
principal mechanism for the formation of the SS-pairs is
their creation by the electric field as a result of the tunnel
effect.

The rate of creation of SS-pairs by a constant electric
field in the Peierls-Frohlich system was first calculated by
Maki®® without taking the confinement effect into account
(see also Refs. 5 and 62b), who used the then traditional
instanton procedure. In complete agreement with analogous
calculations performed for one-dimensional models of quan-
tum field theory,”>~"® the SS-pair production process was
found to have no threshold.

Confinement effects lead to the appearance of a thresh-
old field E 1, at which the formation of soliton-antisoliton
pairs becomes energetically more convenient. Let us calcu-
late the rate of formation of SS-pairs near the threshold in
this case, using the model (3.26) and the fermionization pro-
cedure.”

The potential for the model (3.26) is

.

V((P)=No[% 0% (tp%——:-i—)z—— ;L)[‘Z’z cos (Mrp)_]

(3.36)

and, for a realistic ratio of the activations of the phase mode,
ie, w<w, [g) ~£(0) ~ 107 for trichalcogenides], it has an
absolute minimum ¢ =0 only in fields E<Ey =en;/
Me(0) (3.34)-(3.35). It is readily verified that, when
E> E,thestatep = — 27/M corresponds to a lower ener-
gy. The tunneling decay |0) — | — 27/M ) is accompanied by
the creation of an SS-pair (Fig. 6) with charge density ,Q .
In weak fields (near the pair-production threshold) or,
equivalently, for a weak ‘“‘warping” of the vacua, i.e.,
AV <KE/d (Eg is the energy and d the size of the soliton}),
such that
2n

AV =V (0)—V (——') =2Nx |Qs| (E—Er)

W (3.37)

the solitons can be regarded as free and the fermion language
is convenient in calculations of the tunneling decay probabil-
ity. The Lagrangian for the coherent CDW (3.26) is then
equivalent to the Lagrangian for free spinless (one-dimen-
sional) Dirac fermions in a uniform external electric field
(gE *=AV). The rate of creation of SS pairs is therefore
identical with the well-known expression for the rate of cre-
ation of fermion-antifermion pairs of charge ¢ in a constant
field E *(¢E* = AV):

1

-\ £§ )

S8~ iy exp(_n_—Al’-cgh (3.38)

If we express the quantities in (3.38) in terms of the
parameters of the problem, we find®® that the nonlinear
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CDW conductivity 6(E) ~n;Is5/E is given by (3.28). The
experiments reported in Ref. 61 have also established that
the threshold field satisfies the universal relation
E 1 £(0) = const, which is readily explained by the above
model of electrostatic confinement [see (3.34) and (3.35)].
Using the same assumptions as when we took into account
the contribution of nondielectrized electrons to the permit-
tivity £(0), we can qualitatively explain the temperature and
concentration dependence of the threshold field.**

4. TWO-DIMENSIONAL FIELD THEORY MODELS AND THE
QUANTUM HALL EFFECT

So far, we have investigated quantum-field theory mod-
elsin (1 + 1)-dimensional space-time and have related their
predictions to experimentally established phenomena in the
physics of quasi-one-dimensional compounds whenever the
physical situation could be reduced to an effectively one-
dimensional one. In this Section, we examine anomalies in
gauge models of two-dimensional quantum-field theory and
discuss their connection with the quantization of the Hall
conductivity of two-dimensional electrons in a strong mag-
netic field (quantum Hall effect®®),

We recall that, in odd-dimensional spaces (space
+ time), we cannot construct matrices (¥, _ , ) that anti-
commute with all the Dirac matrices 7, . This means that
there are no chiral transformations in such spaces. However,
in odd-dimensional space-time, there are in gauge theories
anomalous terms in the effective action that are of “topologi-
cal origin.” These terms are commonly referred to as topo-
logical action (or the Chern-Simons action).

Studies of two-dimensional quantum electrodynamics
(2D-QED) are particularly intersting for our purposes here.
Therefore, without pausing to consider the hierarchy of
anomalies in gauge theories and their nontrivial mathemat-
ical structure (connection with characteristic classes in dif-
ferential geometry and cocycles in cohomology®*=**), we
shall use simple physical considerations to write out the
anomalous extra term in the 2D-QED action.

4.1. Topological action in two-dimensional quantum
electrodynamics

Consider Dirac fermions ¢ in (2 + 1)-dimensional
space in an external electromagnetic field 4, :

£ = {iva (0, — ied,) — m}y; (4.1
where m is the fermion mass, y,, are the Dirac matrices that
inthiscase (1 = 0, 1, 2) reduce to the three Pauli matrices o.
The external field will be considered to be the magnetic field
B=¢YF;/2 (i,j = 1,2) and, following the scheme expound-
ed in Section 2.5, we shall determine the “charge” of the
vacuum of two-dimensional fermions, induced by the exter-
nal gauge field. According to (2.31)—(2.34), this charge is
due to the asymmetry of the spectrum of the Dirac equation:

Qr= —% Z sgn Wy ,

{1}
where {k} is the set of quantum numbers. In this particular
case, the required equation is

Hyp = oy, Hp = a (p — eA) - pm ,

(4.2)

(4.3)

where a, ;, B is the set of Pauli matrices, and it is readily
shown that all the eigenvalues of (4.3) with |o| > m are sym-
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metric relative to zero and only the states w_ = — m (or
@, = + m) produce an asymmetry of the spectrum. Actu-
ally, since the operators H, and [H , 8] anticommute

{HD [HDv ﬁ]}:[H27 B]:Ov (44)

theeigenfunctions¢, andy _, = [H , B]¢,, haveenergies
that are equal in magnitude and opposite in sign. According-
ly, their contribution to (4.2) is zero. Next, the Hamiltonian
of the 2D-electrons (4.3) has the following matrix structure:

HD:(m D-

T _m), D*=D,+iD,, D;=p;—eA;.

(4.5)

and the operators D* do not commute in the magnetic field
B, ie, [D™, D] = —2eB(x,y). The “zero modes”
¢, ([Hp, BlY,, = 0) satisfy the equation

Hole = 0svs, Yo= (1 £B) Y (4.6)
It is readily verfied that, because the operators D+ do not
commute, only one of the two equations D+ ). = Ocanbe
satisfied (depending on the sign of eB). According to (4.5)
and (4.6), this means that the zero modes are always asym-
metric, i.e., eB>0,w, = 4 m (the statew_ = — m is not
present in the spectrum) and vice versa. The spectrum of
(4.3) is therefore asymmetric, and the external magnetic
field induces a nonzero “charge” *® (4.2) in the vacuum.

To evaluate (4.2), we must know the degree of degener-
acy of the zero modes. This can be done by transforming
from H , to the “Hamiltonian”

Hs=Hb—m2=Q!, Q,=aD. (4.7)

The operator Hg is the Hamiltonian of supersymmetric
quantum mechanics with supercharges @, and @, = i8Q;
{Q,,0,} = 0 (see Ref. 32 for further details). The general
properties of supersymmetric theories then lead to the fol-
lowing: (1) all states of H¢ with energy E2 = * — m?>0
are doubly degenerate even in a nonuniform magnetic field
B(x,y) (for the nonrelativistic problem, this is the well-
known degeneracy in the spin of the electron) and (2) the
zeromodesEg =0(w, = + morw_ = — m) donot have
superpartners (they are spin-polarized). Their degree of de-
generacy is a topological invariant that depends only on the
magnetic-field flux® N, = |®|/P, (P, = 27/e is the quan-
tum of the magnetic flux). For a magnetic field with infinite
flux, the degree of degeneracy is infinite, and the density of
states is

y=—1P (4.8)

where dS is an element of area and V= |eB|/27 for
B = const. In view of (4.8), we can readily show that the
density of the “charge” induced in the vacuum is given by

JO=—%;sgn (eBm)= —sgnm -—;:Te"jFi,-. (4.9)
The question is: why bring in the induced charge even
though we are considering the reaction of the vacuum to an
external magnetic field? We shall show below that, when the
sign of the mass is fixed, two-dimensional Dirac fermions
can assume only one (out of the two possible) spin value.
States with positive and negative energies have opposite
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spins. A magnetic field will polarize the spins and give rise to
partial “flipover.” However, in the two-dimensional case,
the sign of the spin is strictly correlated with the sign of the
energy, so that spin polarization automatically involves an
asymmetric spectrum and the magnetic-field induced charge
appears in the vacuum.

The relativistically covariant generalization of (4.9)
leads to the following simple expression for the vacuum cur-
rents;3¢*8

(4.10)

Jh= & enooF
——sgnm--SFS pas

ThecurrentJ* is topological, d, J* =0, and gauge invariant.
However,the vacuum current is an axial vector and therefore
has unusual P-parity.

It is well-known that any nondissipative current can be
obtained by varying the action with respect to the potential.
The 2D-QED action then acquires the additional topologi-
cal term

2
Scs=(sgnm) p— 5 2 deehvP A, F = if, 5 ©3, (4.11)
where 0, = 2me” sgn m and

(4.12)

1
5 0= -3 5 d3zeuve A F

is the U(1)-topological invariant of Chern and Simons (see,
for example, Refs. 28 and 81) in three-dimensional (Euclid-
ean) space. It is readily verified that the Abelian Chern-
Simons action (4.12) is gauge-invariant, so that the constant
6, with which (4.12) appears in the effective action of the
theory is not quantized and, in general, can depend on the
parameters of the medium such as temperature, chemical
potential, and so on.?’

4.2. Topological current in relativistic and nonrelativistic
systems of 2D-electrons

Equation (4.10) leads to an unexpected conclusion: in
the relativistic theory of two-dimensional electrons, the elec-
tric field E gives rise to a vacuum (nondissipative) Hall-type
current (at right-angles to E), given by

Ji = (sgn m) oeVE; (4.13)

with quantum conductivity o = */2h (h = 27#).
The standard expression for the Hall current of real
particles is

ji=iw? = oo eisEs; (4.14)
where j, = en is the charge density, B is the uniform magnet-
ic field, v” is the drift velocity of electrons in the crossed
electric and magnetic fields £<B, and ¥° = E/B. Al-
though the formula for the current density given by (4.14) in
the form of a product of charge density and charge velocity
has the classical nonrelativistic form, the substitution
Jjo=ev makes it exact for the relativistic single-particle
quantum-mechanical problem (ev = ¢|eB | /2 is the charge
density of a filled Landau level). This can be verified by
direct calculation'® and has a simple explanation. It is clear
that the degree of degeneracy v of the Landau levels in the
uniform magnetic field is the same for both relativistic and
nonrelativistic particles. The drift velocity of Landau orbi-
tals is also unaltered. Actually, since the electric and mag-
netic fields £, and B are orthogonal in the laboratory frame
of coordinates, and E, < B, there is an inertial reference
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frame'?® (moving with the velocity v, = E, /B) in which the
electric field is zero, so that there is no charged current.
Transforming back to the laboratory system, we can readily
find the mean current due to the drift of Landau orbitals:

e—;(sgneB)eijEj. (415)

The total current of K filled levels (without taking the spin
degeneracy into account) is

Ji= (SgHEB)—s iE;. (4.16)

We recall that, for Pauli electrons with normal magnetic
moment in a magnetic field, all the Landau levels (except for
the lowest) are twofold degenerate in the spin direction.
However, for conduction electrons in condensed media, the
effective mass m* of an electron that appears in the diamag-
netic part of the Hamiltonian and the mass m that deter-
mines the paramagnetic response of the system, are general-
ly different (m*#m). Degeneracy in the spin is thus lifted,
all electrons in each energy level are polarized, and the level
separation is of the order of w, = eB /m*.

The Hall current of the first fully occupied Landau lev-
els (4.16) has a structure similar to that of (4.13), which has
led a number of authors®’~*% to relate the topological current
in 2D-QED to the observed whole-number quantization of
Hall conductivity. However, we shall see later that the phys-
ical picture underlying (4.10) and (4.13) and the reason for
the quantization of the Hall conductivity of real electrons
are different, and the connection between 2D-QED and the
quantum Hall effect discussed in these papers is purely for-
mal.

We shall now attempt to explain, first, the “‘physical”
reason for the anomalous reaction of the 2D-electron vacu-
um to the external electromagnetic field. The most surpris-
ing fact is that the current vector J is perpendicular to the
electric field although, in contrast to (4.16), the magnetic
field is not explicitly present in (4.13) (instead of sgn(eB),
we have sgn m).

As already noted, in three-dimensional space-time, the
algebra of the Dirac matrices is isomorphic to the algebra of
Pauli matrices. The wave function of relativistic 2D-elec-
trons is therefore a two-component spinor that describes
only two degrees of freedom (particle-antiparticle). Kine-
matics is thus seen to forbid the existence of the spin degree
of freedom in the case of the 2D-fermions. On the other
hand, the existence of the rotation group in the O(2) plane
formally allows the Dirac fermion to have spin s = + 1/2
(in two-dimensional space, the spin is, of course, a pseudo-
scalar and not an axial vector). Consequently, there is a
kinematic reason that forces the fermion to occupy one of the
two possible polarization states. This reason is the mass of
the fermion."” Actually, the mass term myy = my™* By is
invariant in the two-dimensional case under P-reflections of
the coordinates, x - — x, y—y (simultaneous reflection of
the two coordinates is equivalent to rotation) because
P, (xy,t)P ' ~a,( — x,p,t), and only the combined oper-
ation of P-reflection and the replacement m— — m leaves
the Lagrangian unaltered®® (see also Jackiw’s lectures™). It
is therefore natural to introduce the spin matrix for the two-
dimensional fermions =% = (sgn m)f /2 and, since Bis also
the matrix of the sign of energy, states with positive and
negative energy have spin polarizations of opposite sign.
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This is most clearly seen in the Foldy-Wouthuysen represen-
tation in which the free-electron Hamiltonian is
HE VYV =p(p*+m?)?and [ HLE V] =0.

Thus, the Dirac vacuum of 2D-fermions has not onlv an
electric charge, but also nonzero magnetization. Naturally,
the total “‘charge” of vacuum is not physically meaningful,
but the part of it that is induced by the external field is, i.e.,
50 = Q1F,.} — Q{F,. = 0}.

We now turn directly to our problem. Let B be the ex-
ternal magnetic field, so that, depending on the sign of ¢B,
the spectrum of the Dirac equation (4.3) does not contain
states with energy @ = + m or w = — m. Next, all the
vacuum states of 2D-Dirac electrons are completely polar-
ized whether or not the magnetic field is present, but the
number of vacuum states with energy £ < — m is lower by
an amount equal to half the states that have “‘condensed” on
thelevelsw = — morw, = m. Hence, the induced vacu-
um magnetization, is determined by the zero modes of the
operator (4.7), in complete agreement with the quantum-
mechanical calculation given in the last Section. If, in addi-
tion to the magnetic field, there is also an electric field E in
the x, y plane, the latter will give rise to the drift of charges
filling the Landau levels at right-angles to E. The “charge”
density induced by the magnetic field is J, = — 2sgnm-§
[S = (#/4)sgn(eB) is the induced spin], so that, substitut-
ingJ,in (4.14), we obtain exactly the same expression as the
formula given by (4.13) for the vacuum current of 2D-elec-
trons.

In the standard quantum electrodynamic approach, the
anomalous (topological) addition to the effective Heisen-
berg-Euler Lagrangian of 2D-electrons was first obtained in
Ref. 87.

In its physical significance (vacuum polarization), the
current (4.13) is specific precisely to relativistic 2D-fer-
mions. This property ensures that the magnetic field B does
not appear in the expression for the current density (4.13),
and the direction of J for given ¢ is determined by the sign of
the mass [and not the sign of eB, as it is in standard formulas
for the Hall current (4.15)]. The topological nature of the
vacuum current manifests itself also in the fact that (4.13)
remains valid even in a nonuniform magnetic field B(x,y) (it
is important to ensure that the flux remains constant; see last
Section), whereas (4.15) and (4.16) are meaningful only for
B = const.

Thus, the topological addition to the 2D-QED action
cannot determine the Hall current of real 2D-electrons in
solids (see also Ref. 100) and we must seek other physical
factors to explain the quantization of Hall conductivity (see
next Section).

To conclude this Section, we must make one further
remark about the transition from the relativistic to the non-
relativistic description of 2D-fermion systems. It is well-
known that, in contrast to relativistic fermions, nonrelativis-
tic two-dimensional fermions can have the two polarization
states s = + 1/2. Since nonrelativistic physics is a limiting
case of relativity, is this not a contradiction? The paradox
can be resolved as follows. In the (2 + 1)-dimensional
space, the sign of mass is an additional new quantum number
of Dirac fermions. In nonrelativistic physics, mass can only
be positive. Since the sign of mass in nonrelativistic physics is
fundamentally unobservable, the transition from the Dirac
picture to the Pauli picture must, in addition, involve aver-
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aging over the quantum number “sign of mass.” It can be
readily appreciated that this “mixture” of Dirac electrons
(after averaging, the theory becomes P-even) gives the spin
degree of freedom to the Pauli 2D-electrons.

4.3. Integral quantum Hall effect

In 1980, von Klitzing et a/. discovered the following
unusual phenomenon. In the system of 2D-electrons that
exists in the conducting layer (channel) of MDS structures
(metal-dielectric-semiconductor) or heterojunctions placed
in a strong magnetic field (B~ 100 KG) perpendicular to
the conducting plane, the Hall component of magnetoresis-
tance p,, at low temperatures (7T~1 K) has a piecewise
constant form as a function of the magnetic field (or as a
function of the charge density in the channel, which is set by
the voltage across the MDS structures; see Fig. 7):

) 1 &
e =K

(4.17)

where K (B) is a step-function which assumes integer values
on each “step” with a precision that is unusual for solid-state
effects (AK /K ~1077; see the reviews given in Refs. 94 and
95). In the same range of parameters, the diagonal compo-
nent of the magnetoresistance p,, is practically zero
(pxx S 1071%) when the quantization of the Hall resistance
takes place. The observed picture is stable against changes in
temperature, concentration of impurities, and type of struc-
ture containing the conducting 2D-electron layer, over a
wide range of variation of these parameters. The high preci-
sion of the quantization of Hall resistance, and the universal-
ity of the observed picture, have led to a search for general
laws of quantum physics underlying this effect.

The components o,,, o,, of the conductivity matrix
and the components p,,, p,, of the magnetoresistance ma-

trix are related by
O e — Py oo — (2
v Pret iy XET Pk TRy
It follows that, if p,, vanishes for p,, #0, this implies the
simultaneous vanishing of the longitudinal component of

conductivity.

(4.18)

72000

8000

4J04

g
/or:ryl)M
T T T T T T T
5
200 [ 3 -
71 |49 24
700~ ~
Vil 1} %
/) N i 1 L A\ i
g 20 40 60 80
8, kG

FIG. 7. Experimental curves taken from Ref. 95.

384 Sov. Phys. Usp. 30 (5), May 1987

In the ideal gas of 2D-electrons, the vanishing of o,
and the whole-number valuesof 0, /o<’ (where 00 =e?/h
is the quantum-mechanical unit of conductivity) are
achieved only at individual points when the density of elec-
trons (or, for a given density, the strength of the magnetic
field) is such that the first K Landau levels are completely
filled (4.16). The variation in longitudinal magnetoresis-
tance p,, that is periodic in 1/B is therefore an expected
effect (Shubnikov-de Haas oscillations). The unusual fea-
ture of von Klitzing’s result, which has given rise to a steady
flow of theoretical papers, is that, for real 2D-electrons,
these properties are observed with high precision over a fin-
ite range of variation of electron density (magnetic field).
The reaction of 2D-electrons interacting with one another
and with impurities to the external electric field is always the
same (excluding very narrow regions, for which g, #0), as
it is in the ideal Fermi gas with completely filled Landau
levels.

A qualitative explanation of this behavior of real 2D-
electron systems appears to be as follows. Because of the
interaction between conduction electrons and impurities,
the infinitely degenerate §-sharp Landau levels spread out
into bands (recent measurements®® actually indicate an ex-
tended Gaussian distribution of the electron density of
states). At the edges of the bands, all the states are localized
and do not contribute to conductivity. For high impurity
concentrations (low electron mobility in the channel of a
field transistor, or the conducting layer of a heterojunction),
anincrease in the density of 2D-electrons is therefore accom-
panied by a slow displacement of the Fermi level e; over the
localized states (in the mobility gap) between the two con-
tinuous-spectrum regions. In this situation, only the filled
regions (£ < €y ) of delocalized states (near the centers of the
Landau levels) contribute to the Hall conductivity. The fact
that it is precisely the existence of localized states that is
responsible for the steps on the function ¢, (B) is confirmed
by comparisons of the width of the steps for specimens of low
and high charge mobility. It has been demonstrated experi-
mentally that the step width decreases with increasing
mobility.

Of particular importance for this range of questions is
the paper by Laughlin,'®! who first gave the general proof
(without using a specific form of the interaction Hamilto-
nian or perturbation theory) of the integral quantization of
Hall conductivity, based on gauge invariance. We follow
Ref. 101 and consider a “thought experiment” involving the
“measurement” of Hall conductivity in the geometry of Fig.
8. Here, the system of 2D-electrons producing a current [ in
a magnetic field B is arranged in the form of a cylinder with

FIG. 8, Laughlin’s “thought experiment”’: /—azimuthal current of elec-
trons, Uy —Hall voltage, B—constant magnetic field, perpendicular to
the surface.
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an infinitely long solenoid running along its axis. Since the
magnetic field B is perpendicular to the surface of the cylin-
der, the moving charges experience the Lorentz force which
pushes the electrons to one of the ends of the cylinder. A
potential difference Uy (Hall voltage) is applied between
the ends of the cylinder to compensate this force.

Let ® be the flux produced by the solenoid, so that the
potential 4, on the surface of the cylinder is 4, = ®/27R,
where R is the radius of the cylinder. The current I can now
be found from the general thermodynamic relationship (see,
for example, Ref. 129, p. 176) in terms of the change §F in
the free energy of the system and the change §® in the mag-
netic flux through the circuit:

aF

Tn=5g.

(4.19)
Our problem is to evaluate (4.19) for an increase in the flux
for which the initial and final states of the system are identi-
cal. A similar device (thermodynamic cycle) usually yields
the quantization of the system parameters. It was precisely
for this reason that Laughlin chose his original geometry of
the experiment with a fictitious solenoid.

When the flux in the solenoid is equal to a whole num-
ber of quanta, & = K¢, an infinitely long solenoid is physi-
cally unobservable in the external region. Actually, in the
gauge-invariant theory, the Hamiltonian for charged parti-
cles in an electromagnetic field depends only on the kinemat-
ic (gauge-invariant) momenta

H = H (9 — eA), (4.20)

where j is the particle number. The gauge transformation

AY > AP —L 0 A0 A(j)::zi:): e

R aq(h (4.2
completely removes the potential from the region outside the
solenoid. At the same time, the charged-particle wave func-

tions are multiplied by the phase factor
exp (ie D Am) =[] exp (i %(p(j)) .
. N [
J J

For an arbitrary flux ®, this gauge transformation is singu-
lar, and (4.22) shows that the corresponding wave functions
are not single-valued. The requirement of single-valuedness
leads to the flux quantization ® = K®,, where X ia an in-
teger.

Suppose now that the chemical potential of the system
of 2D-electrons lies in the mobility gap (this is equivalent to
therequirement of o, = 0). The excited states of the system
are then separated by a finite energy gap from the ground
state, and cannot be reached as a result of an adiabatic
change in the parameters. An adiabatic change in the flux in
the solenoid will therefore leave the system in the ground
state. When this state is not degenerate, the initial (|® = 0))
and final (|$ = ®,)) states of the many-body Hamiltonian
must be identical by virtue of gauge invariance. However,
the wave function of the system in the final state has acquired
the additional phase factor (4.22). This factor can, never-
theless, be removed by performing a translation by a dis-
tance a = P,/27RB along the axis of the cylinder (we recall
that translations in a magnetic field are accompanied by the
phase rotation of the wave functions of charged particles;
see, for example, Refs. 128, Section 60). By virtue of the
translational invariance of the system (on average, in the

(4.22)
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presence of impurities) and the nondegenerate character of
the ground state, the resulting wave function leads to the
same average characteristics of the system as |® = 0). Phy-
sically, this means that, when there are delocalized electron
states, a change in the flux by &, is accompanied by the
transport of a whole number of electrons N, from one end of
the cylinder to the other (localized electrons do not, of
course, participate in this transport). Hence, the change in
the free energy is AF = NyeUy and, according to the defini-
tion given by (4.19),

=)= = Ny 5 Un, Gy ¥, S, (423)

0 —h_ ’
where (I ) is the mean Hall current as the flux in the sole-
noid varies from 0 to @, or, in other words, it is the average of
(4.19) over the flux:

Dy

Iy = ; a2

0
It is only because of the presence of the gap in the excitation
spectrum that the actual (I i ) and average ( (I, )) Hall cur-
rents are equal with exponential precision. In other words,
the wave function of delocalized electrons contributing to
the Hall conductivity is coherent.

Thus, (1) gauge invariance, (2) the existence of the
mobility gap, and (3) the nondegenerate character of the
ground state reduce the problem of quantization of Hall con-
ductivity to the quantization of the electron charge. Laugh-
lin’s qualitative treatment has been generalized,'*>'* and a
rigorous theorem on the topological nature of the average
Hall conductivity has been established, subject to assump-
tions (1)—-(3).

In the above, essentially thermodynamic, discussion,
we have deliberately avoided specifying the form of the
Hamiltonian or the integer NV, because the proof of the quan-
tization of 7, is valid under conditions (1)-(3) irrespecti-
vely of the form of the many-body Hamiltonian of the 2D-
electrons or the type of energy-level classification. In
particular, it is valid for the perfect gas of charged particles
for the same isolated values of the magnetic field B for which
the complete occupation of the Landau levels takes place.
Comparison of (4.23) with (4.16) shows that the number
N, is then equal to the number of filled Landau levels, i.e., in
the Laughlin thought experiment, a change in the flux by ¢,
is accompanied by the transfer of exactly one electron from
one edge of the cylinder to the other for each filled Landau
level. This conclusion also follows from elementary micro-
scopic analysis (see, for example, Section 3.2.3 in Ref. 134).
It is natural to suppose that Landau systematics will not be
affected by the presence of weak disorder. However, the im-
portant questions that are raised by the role of disorder are
outside the framework of our review.'9'%

4.4. Quasiparticles with fractional charge

Two years after the discovery of the whole-number
quantization of Hall conductivity, Tsui e a/.°* measured the
magnetoresistance of selectively doped heterojunctions
GaAs-Al, Ga,, As with maximum mobility z for these
specimens (i~ 10° cm?/V+s) at temperatures 750.1 K,
and discovered a plateau on the function p,, (B) and the
simultaneous vanishing of p,, (B) for fractional (v = 1/3)
filling of the lowest Landau level. This phenomenon is now
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called the fractional quantum Hall effect. Subsequent stud-
ies of FQHE in heterojunctions (see Ref. 95) and in silicon
MDS structures® have shown that fractional quantization
of the Hall conductivity occurs for rational values of v = ¢/
p, where pis always an odd number (v*? = 1/3,2/3,4/3,5/
3,1/5,2/5,3/5,4/5, 6/5,2/7,3/7,4/7, 4/9, 5/9). As in
FQHE, fractional quantization occurs with high precision
[for the steps, v = 1/3,2/3 and Ap,, /p., ~3X 107> (Ref.
95) 1, but FQHE is observed at lower temperatures and only
for specimens with low carrier density and high charge mo-
bility.

Laughlin’s formal arguments that result in whole-num-
ber quantization of G,, are readily generalized to the case of
fractional quantization."'" Since, in experiments performed
under the conditions of quantization of transverse conduc-
tivity, the longitudinal conductivity is zero, the system must
have a mobility gap. Whole-number quantization is a conse-
quence of the additional assumption that the wave function
of the ground state is nondegenerate (see last Section). Con-
versely, the hypothesis that the ground state has a finite de-
gree of degeneracy provides an explanation of fractional
quantization in the spirit of Laughlin’s thermodynamic ar-
guments.

Actually, in Laughlin’s “thought experiment,” the
adiabatic increase in the solenoid flux per flux quantum &,
led only to the transfer of 2 whole number of electrons be-
cause of the gauge invariance and nondegeneracy of the
ground state. In the case of a p-fold degeneracy of the ground
state, the flux of the solenoid must be increased by p®, flux
quanta in order to return the system to the initial configura-
tion. Suppose that the net result is that g electrons are trans-
ported from one end of the cylinder to the other. According
to (4.23), the Hall conductivity then assumes the fractional
value 7,, = (¢/p)(€’/h) (see also Ref. 105b, which cites
arguments in favor of the topological character of the quan-
tization of Hall conductivity under FQHE conditions). We
shall see below that certain anomalous properties of excita-
tions in FQHE (their anomalous statistics) indicate that
odd values of p are more likely. This provides partial justifi-
cation for the empirical rule demanding an odd
denominator.

The first question that arises in the study of FQHE is:
what is responsible for the gap in the excitation spectrum?
We know that the Fermi energy is equal to the energy of the
lowest Landau level in this case, and there is no gap in the
excitation spectrum in the single-particle theory of 2D-elec-
trons. Many-body effects, i.e., the Coulomb interaction
between the charges, must therefore be taken into account if
FQHE is to be explained.

For a constant magnetic field, two physically equiva-
lent ways of describing the electrons are usually employed.
In the Landau gauge, A = (0, Bx), the separation of vari-
ables in the Schrédinger equation can be performed in terms
of the Cartesian coordinates, and the conserved quantum
number with which energy degeneracy is associated is the
momentum k along the y-axis. Accordingly, the wave func-
tion of the electron in the Landau ground state in a rectangu-
lar region of size L is

oo (2, Y= (@ L)V exp [ — e (@]
(4.24)
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wherea, = (eB) ~!/?is the magnetic length (i = ¢ = 1) and
x, = ka} is the center of the Landau orbit. The degeneracy of
energy with respect to the momentum £ is thus seen to sig-
nify a clear independence of the electron energy of the posi-
tion of the center of the orbit on the x, y plane. The number of
states is

eB p, L?

~ [0)]
Ny=v f WS=g- =gz L=0g

S

=7, (4.25)

In the symmetric gauge, A = ( — yB /2, xB /2), the
Schrodinger equation allows the separation of variables in
the case of polar coordinates. The conserved quantum num-
ber that does not influence the energy is now the angular
momentum m of the electron. In terms of the complex vari-
ables z = x — iy, Z = x + iy, the electron wave function for
the lowest energy level is®*'%’

W0, m (2, 2)=(2™um!)~V/2 2™ exp [— —471;3- |z|2:|. (4.26)

The mathematical convenience of (4.26), as compared
with (4.24), is that, with the exception of the exponential
factor that is common to all the electrons filling the Landau
level, (4.26) is a holomorphic function of the complex co-
ordinates [the representation (4.26) is therefore a holomor-
phic representation®; for the QHE context, see Ref. 110a).
Since the Coulomb interaction conserves the total angular
momentum

N
M= 2 m;
i=1
the representation given by (4.26) is the natural basis for the
wave functions of the many-body Hamiltonian.

The first theoretical explanation of FQHE was given by
Laughlin.'®” His model of the incompressible quantum elec-
tron fluid makes use of the gauge (4.26). Tao and Thou-
less'"® continued the approach, using the gauge (4.24) and
the idea of the charge density wave on Landau orbitals. The
Laughlin scheme seems to be the most successful attempt to
describe the symmetry properties of a many-body system of
electrons in a strong magnetic field. However, since both
approaches yield many qualitatively similar predictions, in-
cluding the prediction of quasiparticles with fractional
charges, which is important in our context here, we must
now summarize the Tao-Thouless approach.

4.4.1. Laughlin's approach

In FQHE, the magnetic fields are so strong (and the
disorderis so weak) that theenergy gap A between regions of
delocalized states is greater than the characteristic (Cou-
lomb) energy of electron-electron correlations: e*/a, S A
(A~w,~eB /m*). This means that a particular combina-
tion of single-particle wave functions such as (4.26) may
provide an adequate approximation for the description of
the ground and lowest-lying excited states of the N-particle
Hamiltonian H of electrons in the Landau ground state with
Coulomb interaction

H=Hy+ 3V (r)+ 2 ot
j i<y
N (4.27)
1
Ho=73 o (p;—eA)%
2

j=1

where H,, is the Hamiltonian for free 2D-electrons in a trans-
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verse magnetic field, m* is the effective mass of electrons (jis
the particle label), and V(r;) is the potential of the lattice
that ensures the system is electrically neutral.

For the simplest type of fractional occupation number
v=1/p (p is odd), Laughlin proposed the following trial
function'®’ for the ground state of the Hamiltonian (4.27):

N

Vi e 2 o 2= [[ Gz exp (— o 3 1512).
i< * =t

(4.28)

The exponential factor in this expression is obvious and
needs no comment. The specific form of the preexponential
function f (z,, 25, ..., zy ) can be justified as follows. The
function /' must be (1) completely antisymmetric in the co-
ordinates z; (Pauli’s principle) and (2) it must be a homo-
geneous polynomial [see the representation (4.26) ] of de-
gree

(conservation of total angular momentum M). Finally, f
must minimize the Coulomb energy. This requirement is
strictly taken into account only for systems with a finite
(small) number N of electrons, and enables us to write it in
the form of (4.28).

Actually, the Coulomb energy of electrons decreases
with increasing orbital angular momentum m,; of each pair
of particles. This suggests that the function fshould be taken
in the form of the product of factors (z; —z; )™ (describing
the orbital motion of the pair i) with equal and maximum
possible (for the given total angular momentum M) values
of the exponents m,;; = m_,,, . Requirement (2) immediately
leads to M = CYm,,, [CY =IN(N —1) is the number of
different pairs among the NV electrons].

To relate m,,, to the occupation number v, Laughlin
used the formal but precise analogy between the model of
2D-electrons in the Landau ground state and the theory of
classical one-component plasmas.’®” We shall now consider
qualitative arguments, involving a quasiclassical quantity
such as the mean area “occupied” by a rotating quantum
particle, to obtain the same results in a graphic manner. It is
readily seen that, in a strong magnetic field, an electron ro-
tating around a common center of inertia with angular mo-
mentum m sweeps out an area S, that is greater by a factor
of m (for m> 1) than the area S, = 27a} occupied by the
flux quantum ®y(S,, = 7(m|r’|m) ~2mraim). Onthe other
hand, in the case of a fractional occupation number v=N/
N, = NS,/S = 1/p, the maximum area occupied by a uni-
form distribution of charge per particle is S/N = pS,.
Hence, m; = m,,, = p, and we obtain (4.28).

A more “rigorous” justification of the preexponential
function can be obtained in spherical geometry when the
plane of the 2D-electrons is compactified into a sphere at the
center of which there is a monopole producing a magnetic
field B that is perpendicular to the surface of the sphere. '
In this case, the magnetic field flux is finite, the degree of
degeneracy of the Landau levels is finite, and the problem of
N-particle level occupation is correctly posed. This ap-
proach '°® has been used to show that the Laughlin function
(4.28), written in terms of variables on a sphere, is the exact
solution for the three-particle problem. For N> 3, the func-
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tion W, is always the approximate wave function for the
ground state of electrons experiencing the Coulomb interac-
tion, and its particular variational property is that it sup-
presses states in which pairs of particles are at the shortest
distances from one another (see also Ref. 108b).

Although one of the requirements that initially enabled
adetermination to be made of the form of ¥; was the conser-
vation of total angular momentum, the important properties
of the Laughlin function are entirely due to behavior at short
distances. The Coulomb potential was replaced by the short-
range repulsive potential in Ref. 112, and simple analysis
showed that, in this case, the Laughlin function is the exact
wave function for the ground state of 2D-electrons in the
partially filled lowest Landau level''? with v=1/p (p-
odd).

Within the framework of the picture described above, in
which the 2D-electrons rotate around a common center of
mass, it seems likely that the change in the area occupied by
the Laughlin quantum liquid, which is due to centrifugal
barriers, can occur only in quanta (incompressibility).
Thus, the removal of one electron (production of a hole) for
v=1/p is equivalent to a reduction in the area by
S, =p-2a} =pS,. We are therefore entitled to ask: what
would happen if we changed the area by the amount S, occu-
pied by the flux quantum $,?

It is readily seen that this excitation is equivalent to
placing at some point £ in the liquid an infinitely thin sole-
noid in which the flux changes adiabatically by ®,. In this
case, the single-particle wave functions (5.31) have their
orbital angular momentum increased by unity, so that
2™ »z™ ! [see (4.22) and (4.26)] and the many-particle
state becomes

~

v, — U1 (2:—8) WL (2. 2o +v ey 2y) = Ay V.

i=

(4.29)

According to Laughlin, '’ this is the wave function of a qua-
sihole # with complex coordinate £. The wave function of the
quasielectron & can be readily constructed by analogy with
(4.29). This is done by applying the adjoint A . of the oper-
ator A, to the preexponential factor in ¥, (the exponential
factor in the holomorphic representation can be removed by
introducing it into the integration measure'**'1% ).

(4.30)

Quasiholes (quasielectrons) have finite dimensions R ~aq,
and a finite excitation energy A ~ (1/p2)e%/a, (see Ref. 107
for further details). This means that, in FQHE, quasiparti-
cles constitute a local change in the electron density. Their
chargeis + e* and they carry a quantum of flux ®,. Physi-
cally, the flux is due to a circular current flowing around the
quasiparticles.

The unusual property of the Laughlin quasiparticles is
their fractional charge ¢* = + e/p, where e is the charge of
the electron.'”” We are led to this relation even in the intu-
itive picture because, when v = 1/p, there is one electron for
p quanta of flux. However, like the fractional charge of one-
dimensional solitons, the fractional charge of two-dimen-
sional quasiparticles is a topological parameter. The fraction
appears not as a result of averaging, but as a precise quantum
number. We shall follow Ref. 123 and give a simple “topo-
logical” derivation of the fractional charge of quasiparticles
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for an arbitrary rational occupation factor v = ¢/p.

As we have seen, under the conditions of FQHE, a
change in flux by one quantum, A® = + &, is always due
to alocal change in the electron density (formation of quasi-
particles). Let v = ¢/p and suppose that our problem is to
find the effective charge e* of the quasiparticles. By taking
an electron around a closed contour containing one flux
quantum, we change the phase of its wave function by
Agp. = + 27. Correspondingly, one circuit of a localized
flux quantum around a resting electron produces a change in
the phase of the quasiparticle by Ap. = F 2. If we place ¥
electrons in the interior of the contour, we have
A@, = F27N. On the other hand, a change in the phase of
the wave function is always due to the total flux ¢ through
the contour (4.22): Ap; = e*®. Recalling that ® = N /v,
and equating the change in the quasiparticle phase found by
the two different methods, we obtain

ey = Fve.

(4.31)

It is readily seen that, when v = 1/p, the creation of p quasi-
particles at a given point is equivalent to the creation of one
real electron (hole).'®''% Actually, p-fold application of
the quasihole creation operator 4, to the Laughlin wave
functions (4.28) produces the same state, but with one “re-
moved” electron, since

. N
Wy=(4y)? ‘PL=,Q (2:—8 Y1, (21 23y «.., 2y) (4.32)

describes the wave function of the Laughlin quantum liquid
with one unoccupied (at £) electron state.'!?®

4.4.2. The Tao-Thouless approach

In the Landau gauge, the single-particle states (4.24)
are plane waves in one of the coordinates (for example, y)
and Gaussian wave packets (of size a,) in the other coordi-
nate. The problem of placing the particles in the Landau
orbitals, and of minimizing their Coulomb energy, is there-
fore effectively one-dimensional in this case because it re-
duces to the problem of finding the centers x,, of the occupied
orbitals. In the Tao-Thouless scheme,'® the partially filled
(v = 1/p) lowest Landau level of the ground state corre-
sponds to the formation of a regular superlattice (centers x,)
with period a, =pa, where a=L /N, is the distance
between the centers of the orbitals (see Fig. 9a, where, for
convenience, we have taken v = 1/2). By construction, this
state is p-fold degenerate.
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FIG. 9. a—Energy-degenerate configurations (A4 and B) superlattices for

v = 1/2. b—Superlattice with electron-hole excitation. c—Topological
defect—a soliton in Landau orbitals.
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The elementary perturbations are now the states in
which the electron is in one of the unoccupied ground-state
orbitals (particle) or is absent from an occupied orbital
(hole) (see Fig. 9b). Qualitatively, there is no doubt that,
because of the regular disposition of the Coulomb-interact-
ing electrons in the orbitals, the formation of a particle-hole
pair requires a finite amount of excitation energy (this is, of
course, literally the characteristic Coulomb energy A ~ ¢*/a,
and calculations based on perturbation theory of the Cou-
lomb potential enable us to determine the small numerical
factor''?).

Apart from single-particle excitations, the system can
have collective states, i.e., topologically stable solitons and
antisolitons''*'"* (see Fig. 9c). Their existence is the un-
avoidable consequence of the finite degeneracy of the ground
state. Solitons are then the “domain walls’’ separating ener-
gy-degenerate phases and, from this point of view, the Tao-
Thouless solitons are completely analogous to solitons of the
commensurate charge-density wave (see Section 3). For the
fractional occupation number v = 1/p, the commensurabi-
lity index of the superlattice is p and the topological excita-
tions in this model carry fractional charge e* = + e/p, just
like the CDW solitons.? At this point, we have complete
agreement between the Laughlin and Tao-Thouless theories.

4.5. Hierarchies of quasiparticles and anomalous statistics

Both the Laughlin and Tao-Thouless theories in their
original form were capable of explaining the quantum Hall
conductivity, but only for the simplest fractional values of
the occupation factor of the Landau ground level, v = 1/p
(p—odd). Subsequent experiments showed that there was a
plateau on the function o0,, (B), which corresponded to a
rational level occupation v = ¢/p, and attempts were made
to modify the theoretical FQHE models according-
ly.'08:199.121 The CDW model is readily generalized to ration-
al occupation factors v = ¢/p by having regular clusters of ¢
particles in a superlattice of period @, = pL /N, where L is
the size of the system and &, the number of Landau orbitals.
The idea of structural hierarchy of quasiparticles'®**'?' was
introduced to explain the quantization of o,, for v=g¢/p
within the Laughlin model.

Let v = 1/p, in which case, the 2D electrons form a
condensate (incompressible Laughlin quantum liquid) in a
strong magnetic field in which excitations (quasiparticles)
have finite activation energy. Since quasiparticles are local
objects carrying an electric charge, they can be due to impur-
ities. When the density of 2D-electrons is close to v = 1/p,
the density of quasiparticles is low (an increase in the num-
ber of electrons by one is equivalent to the excitation of p
quasielectrons). They are all pinned by impurities and do
not contribute to conductivity at low temperatures. Hence,
0.x = 0and o,, corresponds exactly to the Hall conductiv-
ity of the partially filled (v = 1/p) Landau ground state.
Further change in the electron density produces an increase
in the density of quasiparticles. Delocalized quasiparticle
states appear, and, by analogy with the Laughlin picture,
they themselves form a condensate, so that there is a new
stable occupation factor v, = ¢,/p,. The preceding discus-
sion remains valid for the new structure, and we thus have a
hierarchial structure of quasiparticles and their conden-
sates.

In accordance with the Laughlin arguments, the trial
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wave function for a condensate of quasiparticles with effec-
tive charge e = + ge is'*'!

Ng
|
Vi_n=0Q{Z;} P{Z;}exp ( - LZ%) 2 lelz) y (433)
=1
where Z, is the complex coordinate of quasiparticle j. The
splitting of the preexponential function into the product of
two factors has the following simple interpretation. The
polynomial P{Z,} is always chosen to be symmetric

P(Z}= L] (Z:—Z)*, (4.34)
where [ is a positive integer. Its variational properties were
discussed in detail in Sec. 4.4.1. The function Q{Zj} deter-
mines the symmetry properties of the quasiparticle wave
function under quasiparticle interchange. For electrons, re-
quirements of Fermi statistics unambiguously lead to the
polynomial form

Q (z;) = [] &: — 2),

i<j

and, according to Laughlin (see Sec. 4.4.1), we have
2/ + 1 = v~ '. For quasiparticles that carry not only a charge
but also the magnetic flux ¢, the symmetry properties of the
many-particle wave function turn out to be much more com-
plicated.

In contrast to three-dimensional space (and spaces of
higher dimensionality), indistinguishable quantum parti-
cles in two-dimensional space can, in general, have anoma-
lous statistics.'!'2°

In the functional approach, the particle statistics in a
space of dimensionality d is determined by the one-dimen-
sional irreducible representations of the fundamental homo-
topy group of the configuration space of ¥V indistinguishable
particles, 7,(M_y). It is readily shown that, for d>3,
7 (M35 ) =Sy (Sy is the permutation group). Since there
are only two types of irreducible representation of Sy, i.e.,
¥+ =1land y_ = + 1 (even and odd permutations), there
are only two types of statistics in spaces with d>3, namely,
Bose-Einstein (y, ) and Fermi-Dirac (y_). For d =2,
7,(M,, ) is an infinite non-Abelian group. Its one-dimen-
sional unitary representations have the form

Iw=exp(—i0) (00 < 2n)

so that two-dimensional indistinguishable quantum objects
can obey anomalous (theta) statistics that is intermediate
between boson (6 = 0) and fermion (6 = 7) statistics.

As a simple example, consider the bound system of a
spinless particle of charge ¢ and an infinitesimally thin sole-
noid carrying a flux ¢ and cutting through through the
plane of motion of the particle (Wilczek called this system
“anyon”'''®). The solenoid potential 4, acting on a particle
atapoint ris4, = ®/27rand, in the singular gauge (4.21),
can be completely removed from the region outside the sole-
noid. According to the general requirement of gauge invar-
iance, the transformation of the potentials is accompanied
by phase rotation of the wave function. Hence, in the gauge
A, =0 (4.21), the wave function of a charged particle is, in

'
general, multivalued:

W, (@) =MW (q) = exp (i 26) v, (4.35)

i
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VYo (p+2m)=00¥ (9). 8=¢D, (4.36)
where W (@) is the single-valued particle wave function.

A system of two identical anyons is equivalent (this can
be readily shown by transforming to relative coordinates) to
a single anyon, but with a flux ¢ - 2®. If we use this fact, we
can readily generalize (4.35) to a many-particle wave func-
tion of N identical anyons
Wolry, 1oy ool ry) = H exp (i .—24\0”) Yr, ry, ....1Ty);

i (4.37)

where r; is a two-dimensional vector representing the posi-
tion of the charged particle, ;; is the azimuthal angle of the
pair i, and ¥(r|, 1, ..., T ) is a single-valued wave function.
According to (4.37), a permutation of any two anyons
(A, = 7) multiplies the multiparticle function ¥, by the
phase factore' . Hence, for A, =6 /27 = g®/2mequal toan
integer, the anyons are bosons, whereas for A4, equal to half
an integer they are fermions. In the general case, we have
anomalous statistics (&-statistics). To reconcile spin with
statistics, it is convenient to consider A, as the anyon spin.”
In terms of the complex coordinates z;, Z; of the particles, the
multivalued wave function (4.37) assumes the form'?"

Vo= ] @—2)!" 15 ),
<]

(4.38)

where f'is a single-valued function of the coordinates.

Let us now determine the phase 8 for quasiparticles in
FQHE in the simplest case, where the anyon quasiparticles
are *“‘constructed” from electrons (the first structure level).
The change Ag in the phase of the wave function of a quasi-
particle in a closed adiabatic path around another quasipar-
ticleis Ap = e*®, and, for v = 1/p, we find from (4.31) that
|A@ | = 27/p. Hence, the phase change that accompanies the
interchange of quasiparticles is Ap /2 = v = 6. According
to the general structure of (4.38), the factor Q{Z;} in the
pseudowave function of the Laughlin-Halperin quasiparti-
cles (4.33) is now

Q{zy= 1l z,—z)='", (4.39)
1<)

where the signs -+ ( — ) correspond to hole and electron

quasiparticles, respectively.

In conclusion of this Section, we shall show that the
anomalous statistics of quasiparticles provides at least a par-
tial theoretical justification of the empirical odd denomina-
tor rule.'?® To show this, consider two clusters, each of
which consists of p quasielectrons. Since each quasiparticle
obeys anomalous statistics with & = 7v, and the interchange
of two clusters is equivalent to p? interchanges of pairs of
quasiparticles, the parameter 8, that represents the cluster
statistics is 8, = p°0. Accordingly, whenv = ¢/p (g <p; g.p
are mutually primitive numbers), the interchange of two
clusters multiplies the quasiparticle wave function by
exp(if,) = exp(impq). According to the equivalence
theorem, the excitation of p quasielectrons in FQHE with
v = q/p is equivalent to the formation of ¢ electrons. Since
electrons obey Fermi statistics, the same phase factor is giv-
en by

einng - glitg?

(4.40)

When p is even, this necessarily means that ¢ must also be
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even and the numbers, g, p cannot be mutually primitive. In
other words, for even denominators p, anomalous statistics
forbids the simultaneous formation in the system of a large
number of quasiparticles, and the condensation of quasipar-
ticles into the incompressible quantum liquid is impossible.

5. CONCLUSION

It is now more than ten years since the publication of the
first paper on fractionally charged solitons. The fractional
charge problem has since been carefully examined, both in
field theory and in solid-state physics. It will be particularly
important to find real quasi-one-dimensional and quasi-two-
dimensional systems exhibiting phenomena closely related
to the fractional charge effect. In this new research area the
ideas and methods developed in parallel in quantum field
theory and in solid-state physics have unexpectedly found an
extensive region of contact. One hopes that further advances
in theoretical and experimental work will “convert” the as
yet unusual phenomenon of fractional charge into a general-
ly accepted concept of modern fundamental physics.
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