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The present state of the theory of strongly charged polyelectrolytes of the DNA type is
reviewed. An infinitely long, uniformly charged cylinder immersed in a dielectric continuum is
adopted as a model of DNA. Small mobile ions are treated as impermeable spheres. A
comparison of the results of rigorous and approximate theoretical approaches to the
description of this model shows that the self-consistent-field method, i.e., the Poisson-
Boltzmann equation, is a reliable basis for deriving quantitative results. The theory of
polyelectrolytes based on a solution of the nonlinear Poisson-Boltzmann equation is used to
analyze the role played by electrostatic interactions in conformational changes in DNA.
Transitions of two types are considered: a helix-coil transition and a transition between the
ordinary right-hand-helix DNA (the B form) and the recently discovered left-hand-helix (the
Z form). In the latter case the theory predicts a nonmonotonic behavior of the difference
between the free energies of these conformations as a function of the salt concentration. It also
predicts the existence of a critical point of a B-Z equilibrium for ionic strengths in the

physiological region.
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1. INTRODUCTION; BASIC MODEL OF THE THEORY OF
POLYELECTROLYTES OF THE DNA TYPE

Many polymers dissociate in solution, forming a
charged polyion and small mobile ions (protons, hydroxyl
ions, metal ions, etc.). In general, a solution may also con-
tain other small ions of both signs. A system of this type,
containing polyions and small ions, is called a “polyelectro-
lyte solution.” The long-range electrostatic potential makes
both the experimental behavior and the theoretical descrip-
tion of polyelectrolytes substantially different from those of
ordinary uncharged polymers. The recent development of a
theory of polyelectrolytes has been motivated by the circum-
stance that DNA is an example of a highly charged polyion
in which there are two electron charges for each monomer
unit (a pair of nucleotides).

The discovery of a completely new structure of the dou-
ble helix, the so-called Z form, has caused a surge of interest
in electrostatic effects in DNA. In contrast with the stan-
dard right-hand-helix of DNA of the B form, the Z form is a
left-hand helix (Fig. 1). There are several other fundamen-
tal differences between the structures of the B and Z forms.'
Sequences with a regular alternation of guanine and cyto-
sine, poly (dGC) -poly (dGC),

GCGCGCGCGE . . . . . .
CGCGCGCGCG . . v v v o

convert most easily into the Z form. The unusual structural
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transition which occurs in this polymer as the ion strength is
raised was discovered by Pohl and Jovin? by a circular-di-
chroism method. After Rich ez al.® determined the structure
of the Z form by x-ray structural analysis, studies by numer-
ous methods (NMR, Raman scattering, etc.) showed that
the transition observed in Ref. 2 did indeed correspond to
the B-Z transition. The B-Z transition in DNA has now been
studied in detail by a variety of experimental approaches
(this work is reviewed in Refs. 1 and 4). A very interesting
fact has emerged: A chemical modification of the alternating
GC polymer consisting of a replacement of cytosine by
methylcytosine [this compound is called poly(dGm>C)
-poly (dGm>C) ] sharply reduces the ionic strength at which
the B-Z transition occurs.’ Furthermore, it has recently been
found that a polymer of this sort converts into the Z form not
only as the ion strength is increased but also as it is
lowered®™® (Fig. 2). These results make it a very urgent mat-
ter to develop a polyelectrolyte theory for the conforma-
tional transitions in DNA. ‘
Electrostatic effects also play an important role in other
structural transitions which are observed in DNA, the best-
known and best-studied of which is the helix-coil transition.
As is described in detail in the reviews in Refs. 9-11, the
melting point of DNA depends linearly on the logarithm of
the salt concentration in the solution; this simple relation
has been a challenge to theoreticians for a long time now.
Electrostatic interactions also play a very important role in
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FIG. 1. Left-hand helix of the Z form (at the left) and right-hand helix of
the B form (at the right), according to data from x-ray structural analy-
sis.' The solid lines show the course of the sugar-phosphate chain. There is
one electron charge on each phosphate group. The pitch of the helix of the
Z form is 4.46 nm, and the number of pairs of nitrogenous bases per pitch
of the helix is 12.0. For the B form, these values are 3.40 nm and 10.0.

the relaxation processes which are observed in the course of

the helix-coil transition, which have recently attracted par-

ticular interest.'%-'2

In the theoretical work on electrostatic effects in DNA,
the most popular model is the simple one (Fig. 3) in which
DNA is an infinitely long, uniformly negatively charged cyl-
inder of radius @ with a surface charge density — es, where e
is the charge of the proton. This cylinder is assumed to be
immersed in an infinite medium with a constant dielectric
constant D~ 80 (an aqueous medium). Also in the volume
are mobile ions, which are modeled by impermeable

Fraction of B form

R AT BTG

FIG. 2. Fraction of the DNA in the B form for poly (dGm?®C) as a func-
tion of the salt concentration ¢, according to measurements based on the
circular-dichroism spectra.® At a low ionic strength (¢, <0.01M) the
DNA is in the Z form. As ¢, increases, there is a transition to the B form
(Z-B) and later, at ¢,~0.8M, back to the Z form (B-Z). In Refs. 7 and 8,
which were published later, the Z-B transition was observed at lower ionic
strengths ( ~0.002M).
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FIG. 3. Basic model of polyelectrolyte theory.

spherical particles of nonzero diameter d with a charge
ne(n = + 1). The concentrations by volume of these mobile
ions at infinity are identical, equal to ¢, (a solution of a mon-
ovalent salt of the NaCl type).

We are interested in determining certain characteristics
of this electrostatic system: the equilibrium electrostatic po-
tential # (#) and the equilibrium concentrations of positively
and negatively charged particles, ¢* () and ¢~ (r), which
depend (by virtue of the cylindrical symmetry only on the
distance from the axis of the cylinder, r. These characteris-
tics are related to each other by the Poisson equation

W)+ ) = —dnlp @ () — e @), (D

where the prime means differentiation with respect to the
radial coordinate r, and / 5 = ¢°/DkT is the Bjerrum length
(/5 = 0.7 nm for an aqueous medium at room temperature).
The dimensionless potential #(r) in (1) is found in terms of
the ordinary electrostatic potential U(r) by means of the
relation #(r) = eU(r)/kT. The boundary conditions on Eq.
(1) are

W (@)="2, u(R)=0; 2)

here R is a point which is infinitely remote from the axis of
the cylinder. The boundary condition at this point formally
makes the system electrically neutral at the macroscopic lev-
el. The most important parameter of polyelectrolyte theory
is the quantity ¢, the dimensionless negative charge per unit
length on the cylinder:

g=2nalps =2, (3)

where b is the length of that section of the cylinder on whose
surface the charge — eis concentrated. In calculating g for a
specific DNA structure (Fig. 1), we will take b to mean the
average distance along the DNA axis between elementary
charges. For the B form, for example, the distance along the
axis of the helix between pairs of nucleotides is 2b = 0.34
nm, and we have ¢ = 4.2. For the Z form we have 2b = 0.37
nm and g = 3.9.

This is the very simplest basic model of polyelectrolyte
theory. Knowing the functions « (r) and ¢” (r), we can cal-
culate the electrostatic contributions to various thermody-
namic characteristics of the DNA.

Other models constitute complications of one sort or
another of this basic model. For example, it is natural to
consider the bends of the cylinder; in this case it becomes
possible to calculate the electrostatic contribution to the per-
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sistence length. Incorporating the interaction between dif-
ferent cylinders is necessary for analyzing three-dimensional
effects and for dealing with concentrated polyelectrolyte so-
lutions. One could take the path of adding details in the sense
of incorporating the discrete nature of the charge distribu-
tion at a polyion, incorporating the molecular structure of
the solvent, etc. However, there is no point in considering
any of these complicating factors until we have found an
appropriate method for solving the basic problem.

In this review we will focus on the problem of correctly
analyzing the basic model of polyelectrolyte theory and the
results of application of the theory to describe two types of
conformational transitions in DNA: the helix-coil transition
and the B-Z transition. We will also discuss the applicability
of the basic model for analyzing specific situations.

2. POISSON-BOLTZMANN EQUATION

Equation (1) relates three functions which are to be
determined: u(r), ¢* (r), and ¢~ (r). The particle concen-
tration functions ¢” (r) can be written as

™ (r) = coexp [— (fr — IR)], (4)

where the difference f] — f% is the free energy (in units of
kT) which is required to move a particle of diameter 4 and
charge ne from an infinitely remote point R to the point r.
The basic problem in calculating the functions u(r) and
¢" (r) is that in the basic model the free energy /7 is not
expressed exclusively in terms of #(r) and the first correla-
tion functions of ¢” (¥). A systematic derivation of the un-
known characteristics u(r) and ¢” () reduces to solving a
chain of coupled equations which are equivalent to a
hierarchy of Bogolyubov-Born-Green-Kirkwood-Yvonne
(BBGKY) equations (Refs. 13 and 14, for example). A cor-
rect truncation of this system of equations unavoidably re-
quires the introduction into the basic model of some addi-
tional small parameters.

It becomes significantly simpler to solve the original
problem if we switch from a discrete description of the mo-
bile ions to a model of a charged continuous medium. Spe-
cifically, we let the diameters of the mobile ions and their
charges approach zero, and we let the number of ions of each
species approach infinity, in such a way that the charge den-
sity at each point remains fixed. When we follow this proce-
dure we find in particular that the free energy f/ can be
replaced by the energy of a particle of species 7 in an average
electrostatic potential u(r). We can then write
" (r) =cy,exp| — nu(r)], and from Egs. (1)-(4) we find

u” (r) + r-w’ (r) = %t sh u (r), (5a)

u' (a) = 2g0™, u (R) =0, (5b)
where

x~! = rp = (Bnlpc,) V2 (6)
is the Debye length.

Expression (5) is the well-known Poisson-Boltzmann
equation for the case of cylindrical symmetry (Ref. 15, for
example). For the basic model, the Poisson-Boltzmann
equation corresponds to the self-consistent field approxima-
tion, while for the model of a charged continuous medium
this equation is rigorous. An explicit analytic solution of the
nonlinear equation (5) for arbitrary values of the param-
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eters g, a, and ¢, is not known. Ramanathan'® recently de-
rived the potential at the surface of the cylinder u(a), mak-
ing use of the asymptotic behavior in the case of the small
parameter xa, i.e., for extremely low ionic strengths:

u (a) = 2q In (xa), q<<1, (7a)

u(a)=2In (xa) —Inl4 (@ — 1), g>1. (7b)

Comparison of expressions (7) with the exact values found
for u(a) through a numerical solution of Eq. (5) shows that
at g < 1 and g > 2 expressions (7a) and (7b) are essentially
rigorous even at ¢, < 0.01M (xa «0.3), while at ¢,~0.1M
the difference is no more than 5%.

Equation (5) describes the case of a so-called salt ex-
cess. Another case which might be considered is that in
which there is no supporting electrolyte in the solution (an
infinite dilution in terms of the salt). Equation (5) does not
give a correct description of this limit, since the excess-salt
condition played a fundamental role in its derivation. The
concentration of mobile ions (the ionic strength) can be ar-
bitrarily low, but the total number of these ions in the vol-
ume must be much greater than the number of charges on a
polyion. Making the same assumptions as were used in the
derivation of Eq. (5), Katchalsky et al. proposed a correct
method for taking the limit of extreme dilution (see Ref. 17
and the papers cited there). They considered a model of cells
in which ions of only one sign (counter-ions) are in a cylin-
drical ring of finite radius R, around a polyion; these ions
neutralize the charge on the polyion. In this case the Pois-
son-Boltzmann equation becomes

w' () + o (r) = — 2 e, (8)

Equations of the same type describe diffusion and heat
transfer in cylindrically symmetric cases.'®
In the polyelectrolyte problem, the parameter p in Eq.
(8) is unambiguously related to the outer radius R,:
p> =8mlzct (R,). The boundary conditions for the cell
model are
29

u,(a):T,

u (Ry)=0, u(R,)=0. (9)

This model is attractive in that, in contrast with (5), an
explicit solution of nonlinear equation (8) can be found
(Refs. 19 and 20; see also the recent paper by LeBret and
Zimm') for arbitrary values of the parameters of the prob-
lem:

s (5 ) et ()] o)

Herezand R, areintegration constants; z* is a real quantity;
and we have R, > 0. Boundary conditions (9) give us a sys-
tem of equations for finding z and R , in terms of the param-
eters p and ¢:

1—ztg(zln—RaT)=q, (11a)
1—ztg(zln If;I)=o, (11b)
PR =4 (1-+ 22), (11c)

Since the 1950s, the Poisson-Boltzmann equation has
been used widely to analyze the polyelectrolyte properties of
polymer chains.'>'"-'"=*? Until very recently, the results de-
rived with the help of this equation were not completely
trusted since this equation was derived in the self-consistent-
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field approximation. There are many examples in which the
use of this method leads to incorrect results. As for the po-
lyelectrolyte theory, we note that again in this case the suit-
ability of the self-consistent-field method was by no means
obvious.

3. DEBYE-HUCKEL APPROXIMATION; THEORY OF THE
CONDENSATION OF COUNTER-IONS

The situation simplifies significantly if the condition
fu () < (12)

holds at any point . Under this condition, Eq. (5) becomes
linear and converts into the well-known Debye-Hiickel
equation:

(13a)
(13b)

u” (ry + r-w (r) = x®u (),

u‘(a):%Tq, u(R)=0.

Linearized equation (13) is rigorous not only for the model
of a charged continuous medium but also for the basic model
in general, since under condition (12) the self-consistent-
field method becomes rigorous. A solution of Eq. (13) is
(Ref. 50, for example)

u (r) = —2q (xaK, (xa))™t K, («r). (14)

Here K, (x) is a modified Bessel function.

The Debye-Hiickel equation is used very widely and
successfully in the theory of simple—nonpolymer—electro-
lytes. It leads to the well-known Debye screening of a Cou-
lomb potential: an effect whose importance extends far be-
yond the theory of electrolytes. In polyelectrolyte theory the
Debye-Hiickel equation is also used widely. For example, in
cases in which the charges are distributed sparsely on the
polyion the Debye-Hiickel equation can be applied directly.
This topic is the subject of a fairly extensive literature
(among the recent papers, see, e.g., Refs. 51 and 52).

In the present review we are interested in the case of
highly charged polyelectrolytes, for which the Debye-
Hiickel equation is definitely not valid near a polyion. At a
sufficiently large distance from a polyion, on the other hand,
condition (12) becomes valid, and we are tempted to use the
Debye-Hiickel equation in this region. However, in order to
find the potential far from a highly charged polyion on the
basis of the Debye-Hiickel equation we need to know bound-
ary conditions at the boundary of the region in which the
Debye-Hiickel equation is applicable. Consequently, until
the actual form of these boundary conditions has been
found, the approach based on the use of the Debye-Hiickel
equation will not be productive for finding the potential u (r)
even far from a polyion, since this approach gives the value
of the potential only within an unknown constant factor.

An elegant way to avoid this difficulty was proposed by
Manning.** Manning’s idea was to use the internally consis-
tent Debye-Hiickel equation in the theory and to find bound-
ary conditions in terms of a condensation of counter-ions on
a polyion. The condensation idea is simply the most brilliant
physical ideain all of polyelectrolyte theory. This idea can be
credited to Onsager,”® who discussed it as follows.

We consider a negatively charged polyion consisting of
an infinitely thin rectilinear filament with a charge per unit
length — e/b. We assume that the mobile ions are point
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charges. Here r is the distance from the filament to the near-
est counter-ion. At sufficiently small values of r, the electro-
static energy of this counter-ion is determined by the un-
screened Coulomb potential of the filament:

u(@ry=2q9Inr. (15)

That component of the complete partition function which
comes from configurations in which the nearest counter-ion
lies at a distance r < r, from the filament, while all the other
mobile ions are at distances greater than r,, can be written
within a finite factor as

To To
Z .=\ etOrdr=\ rt=29dr. (16)
v

We see that for ¢ > 1 the partition function diverges at the
lower limit. Onsager and later Manning concluded from this
fact that if the charge per unit length on a polyion is such that
the relation ¢ > 1 holds then the counter-ions should ‘“con-
dense” on the polyion, thereby reducing its charge density to
the critical value corresponding to g = 1.

On the basis of these considerations Manning proposed
a procedure for calculating the potential around a polyion.
Specifically, the potential is to be calculated from the Debye-
Hiickel equation with the following boundary condition at
the surface of the polyion:

w' (a) = 2L, (17a)

*=q ¢g<1 ¢ =1 ¢g=1 (17b)

In Manning’s theory the boundary-condition problem is
thus resolved without reference to the magnitude of the ini-
tial charge density on the polyion. The case ¢ < 1, in which
Manning’s theory reduces to the conventional Debye-
Hiickel theory, corresponds to the case of a weakly charged
polyion, while the case ¢ > 1 corresponds to that of a highly
charged polyion. In Manning’s theory no formal distinction
is made between these two cases.

Manning’s theory is attractive because of its physical
transparency and because it allows the derivation of some
simple explicit expressions, since a linear equation is used for
the potential. At one time, these factors won the theory
widespread popularity in research on various physicochemi-
cal properties of polyelectrolyte solutions.** " Many experi-
mental confirmations of the theory have been found (see the
reviews in Refs. 63 and 64, for example). The success of the
theory has been attributed to the concept of a condensation
of counter-ions, which is part of the basis of this theory. It
gradually came to be believed that all the conclusions of
Manning’s theory are consequences of the condensation
idea. Furthermore, the theory itself came to be called ‘‘con-
densation theory.” It also gradually came to be believed that
the picture of condensation which was introduced in the the-
ory on the basis of the formal mathematical arguments pre-
sented above corresponds to physical reality. In other words,
the counter-ions surrounding a polyion decompose into two
phases: Some of themn “settle’ on the surface of the polyion,
while others form a diffuse cloud around it.

By the beginning of the 1980s, the following situation
had thus developed in the theory of highly charged polyelec-
trolytes (see the review in Ref. 36). There were two indepen-
dent approaches: one which used the Poisson-Boltzmann
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equation,'*~'7'*% and one which reduced the problem to a
Debye-Hiickel equation through the use of the concept of
condensation.>*~ Since each of these approaches starts
with an ad hoc postulate, the only way out of the situation
was to derive a more rigorous theory.

4. RIGOROUS METHODS FOR ANALYZING THE BASIC
MODEL

The most direct approach which might be taken in an
attempt to find accurate values for the potential and density
of the mobile ions for the basic model is the Monte Carlo
method or, more precisely, that version of the Monte Carlo
method which is known as the Metropolis method.”"”* This
method has been used in several studies,”*’® and the results
of direct simulations have been compared with the solution
of the Poisson-Boltzmann equation both for the cell mod-
el”™ and for the case of a salt excess.”>’® A general conclu-
sion which follows from these studies is quite encouraging:
The differences between the results found by the Monte
Carlo method and those found from the Poisson-Boltzmann
equation are slight. The discrepancy in even such a sensitive
characteristic as the density of counter-ions near the surface
of the polyion does not exceed 10% in the worst cases.

On the other hand, for the time being the results found
for a given problem by the Monte Carlo method should be
interpreted somewhat cautiously, especially in the case of a
salt excess.”>’® In practice, the convergence rate of the Me-
tropolis method is such that the actual number of ions in-
volved in the process cannot exceed a few hundred. On the
other hand, the long-range nature of the electrostatic poten-
tial, which is used without screening in this approach, has
the consequence that the ““cell” volume in the Monte Carlo
method must be extremely large. This comment applies in
particular to the size of a cylindrical “cell” along the axial
direction.”” Accordingly, the number of particles which
should be taken into account for a correct solution of the
problem is considerably higher than can be handled by exist-
ing computers, so it becomes necessary to appeal to approxi-
mate methods, which lack a solid basis for solving this prob-
lem‘75.76

Some theoretical papers of a general nature appeared in
parallel with the Monte Carlo calculations and furnished
results which, in our opinion, overlap the results of the
Monte Carlo work for the basic model of polyelectrolyte
theory.

The first study which took up the question of a statisti-
cal-mechanics foundation for the Poisson-Boltzmann equa-
tion was a paper by Fixman.”” Fixman developed a method
for making correlation corrections to the Poisson-Boltz-
mann equation, and for a certain particular model he nu-
merically calculated the expected deviation from the results
given by the Poisson-Boltzmann equation. Specifically, the
error in the value of the electrostatic potential found from
the Poisson-Boltzmann equation can be of the order of 20%
at ionic strengths ¢, < 0.1M, according to Fixman.”” A point
which should be emphasized here is that although just how
general the calculations carried out by Fixman were, re-
mained unclear, this study changed the course of the debate
over the Poisson-Boltzmann equation and Manning’s ap-
proach (see the review in Ref. 36) and spurred the subse-
quent widespread use of the Poisson-Boltzmann equation.
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A rigorous analysis of this problem in the case of ex-
tremely low ionic strengths was carried out by Ramanathan
and Woodbury.” They took an approach based on an analy-
sis of a chain of coupled BBGKY equations. For the basic
model of polyelectrolyte theory, a correct method for trun-
cating this chain can be implemented by retaining the lead-
ing terms in the expansion in terms of additional small pa-
rameters which arise because of the small values of the ionic
strengths: xa €1, xd €1, x/ 5 € 1. The basic result of Ref. 78
is the demonstration that the Poisson-Boltzmann equation is
rigorous for this particular limiting case. The question of the
suitability of the Poisson-Boltzmann equation at nonvanish-
ing values of the ionic strengths, on the other hand, remains
open. Bacquet and Rossky’® examined the problem of finite
ionic strengths, also working from an analysis of a chain of
coupled equations for correlation functions. Their analysis,
however, cannot be accepted as convincing since it was
based on a technique for splitting the equations which, al-
though it is a standard technique (the hyperchain approxi-
mation), has absolutely no justification for this particular
problem.

In Ref. 80 we carried out a statistical-mechanics analy-
sis of the basic model of polyelectrolyte theory for finite ionic
strengths. That approach made it possible to avoid the prob-
lem of finding an ‘“‘exact” solution of a chain of coupled
equations. Specifically, closed equations, amenable to effec-
tive solution, were found for functions u,,,,, () and u_;, (r)
such that they bracket the unknown equilibrium electrostat-
ic potential # (r) which satisfies relations (1)-(4):

Umin (r)< u(r)< Umax (r) (18)

Analysis based on a numerical solution of these equations
showed that the “‘gap” wu,., (r) — u.;. (r) is fairly small
over essentially the entire region of values of the parameters
a,q,d,and ¢, which is of interest. Here we will simply outline
the basic idea of the method and then look at the final results.

Returning to the initial relations, (1)—(4), we write the
free energy required for the transfer of a particle of diameter
d with charge ne from an infinitely remote point R to the
point r as

fr—th=(fr =7 -+ (") — (TR —TR); (19)

here f? — f% isthe free energy required for the formation of
a spherical cavity of diameter d which is free of ions and
which is centered at a point r. This free energy is reckoned
from the free energy of the formation of an equivalent cavity
at an infinitely remote point R. We denote by P, the proba-
bility that the center of no particle lies within a spherical
cavity of radius d which is centered at the point ». We then
have

fi—ih= —Un P, —1n Pyp). (20)

The difference f7 — f? is then the free energy required for a
change in the charge in a spherical cavity from zero to ne. To
calculate it, it is convenient to use the standard charge-vari-
ation technique. We fix the center of a test particle of diame-
ter d and charge nte (0 <t < 1) at point r, and we denote by
u(r|r,nt) the equilibrium potential which is set up at point »

by all the mobile particles and the polyion. We then write
1

r—f=n j w(rlr, nt) ds. ZD
0
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For the function ¢” () we thus have
1

c"(r):coﬁ—;exp{ -n S [w(r|r, nt)—u(R|R, nt)]dt},
4]

(22)

We wish to call attention to the fact that the equilibrium
potential u (r|r,nt) is calculated under the condition that the
test particle is fixed at the point #. The presence of this parti-
cle changes the statistical weights of the configurations of
the mobile ions; in general the potential u(r|r,nt) will be
different from « (7). These quantities are equal to each other
only in the approximation of a charged continuous medium.
Pursuing the discussions in this direction, we find that in
order to obtain the potentials « (#|r,nt) we need to carry out
a variation of the charges of rwo test particles; etc. Accord-
ingly, and as we have already mentioned, the systematic der-
ivation of the unknown characteristics #(r) and c¢” (r) re-
duces to the problem of solving an infinite chain of coupled
equations which is equivalent to the BBGKY equations.
However, a different approach can be taken here.

Let us take a more detailed look at what the difference
between the potentials «(r|r,nt) and u(r) actually is. We
first note that the placing of a test particle of diameter d and
charge nte at point r is accompanied by a displacement of a
charge E(r,c) from the corresponding spherical region. The
magnitude of this displaced charge can be easily calculated
from the given equilibrium charge density ec(r), where
c¢(r) =c¢*(r) — ¢~ (r) in the neighborhood of the point 7.
After we have placed the test particle at point r, the equilibri-
um charge density must change in such a way that the charge
nte — E(r,c) which is placed at point 7 is screened. We de-
note by I(r,nt) the component of the electrostatic potential
u(r|r,nt) at point r which stems from this additional screen-
ing. The potential «(r|r,nt) can then be written in the form

w(rlr,nty=u@)—v, c)+1(r n), (23)

where v(r,c) is the component of the electrostatic potential
u(r) which comes from particles in the spherical region
around point 7 before the test particle is placed there. This
quantity, like the charge E(r,c), is completely determined by
the equilibrium charge density ec(r) near point 7.

The basic problem is to find the additional screening
function I(r,nt). A rigorous calculation of this characteris-
tic of course runs into the same difficulties as the solution of
the origin:l problem, but for it we can find upper and lower
estimates. Specifically, we know the net charge which sets up
the additional screening: It is equal to the negative of the
screened charge. The maximum possible screening is
reached when we place all of the screening charge at the
smallest possible distance (d) from the screened charge. The
minimum possible screening is the removal of the screening
charge to an infinite distance from the screened charge. This
type of analysis of the screening function yields rigorous up-
per and lower estimates of the integrals of the potential dif-
ference u (r|r,nt) — u(R |R,nt) which appear in the expres-
sion for the particle concentration functions ¢” (r). There is
no difficulty in finding upper and lower estimates of the ratio
P /Py.

These estimates lead to inequalities involving the con-
centration functions ¢” (r), which serve in turn as the basis
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for a derivation of closed equations for the potentials
Umin (r) and u,, (r) satisfying inequalities (18). These
equations are

un () +rlupm (r) = —4nlg (ch (1) —em (), (24a)

, 2q
um (@) ==, (24b)
Uy (R) = (—1)™ (%—111(1—8“%3%)”2) . (24¢)
c;rn (r) :COG;H (rw C;rn’ C;n) exp (_um (r)—L:n (I', cr+ns cl_Il))v
(24d)

em (1) =coGm (r, i, cm)exp (+uy (N +Lan(r, ¢, cm))-
(24e)

The subscript m in these expressions has the meaning
m = min if we are calculating u_;, () or m = max in the
opposite case. In boundary condition (24¢) we have m = 1
for u,,;, (R) and m =2 for «,,,, (R). The functions G, (r)
and L, (r) are simultaneously functionals of the particle
concentrations ¢, () and can be expressed in terms of them
explicitly.*” In addition to the difference in boundary condi-
tions (24c¢), the systems of equations with ““min” and “max”
differ in the specific form of these functionals. On the whole,
relations (24) constitute a closed system of nonlinear inte-
grodifferential equations for the three unknown functions
u, (r), ¢t (r) and ¢, (r). The specific features of these
equations suggest use of the effective procedure of Ref. 80 for
a numerical solution. That procedure can be implemented
on a minicomputer at roughly the same speed at which Pois-
son-Boltzmann equation (5) can be solved.

In Ref. 80 we gave a rigorous proof that the functions
Umin () and u,,, (r), which are solutions of systems of equa-
tions (24), satisfy inequalities (18). The only fundamental
restriction on the approach taken in Ref. 80 is the require-
ment that there be no short-range order (or, even more so,
no long-range order) in the arrangement of the mobile ions
in the system (this is the *“gas” approximation ). The formal
expression of this fact is that absence of short-range order is
necessary if we wish to find unambiguous estimates of the
screening function /(r,nt) and to prove inequalities (18).
The gas approximation is valid for mobile-particle concen-
trations below a certain critical ¢,, which depends on the
diameter of the mobile ions, the temperature, and other pa-
rameters of the system. The following crude estimate, clearly
on the low side, was found in Ref. 80:

4nd?

Cor= ( 3
Figures 4 and 5 illustrate the situation with values
found for the potentials u,,;, () and u,,,, (r) at the surface
of a polyion (r = a) through a numerical solution of systems
(24) for two values of the diameter of the mobile parts:
d = 0.8 nm and d = 0.2 nm. These values are typical of the
cases of hydrated and nonhydrated ions. The radius of the
polyion is @ = 1 nmy; this figure corresponds to the case of
DNA in the B form. The results are compared with the solu-
tion given by the Poisson-Boltzmann equation over broad
ranges of the parameters ¢, and ¢. These results show that
the ““gap” between the limiting values of u,,, (r) and
Umin () 1s small enough to permit a reliable estimate of the
actual value of the potential (7). Completely similar results
are found for the potentials at any distance from the polyion.

+2ndzzB) ! (25)
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FIG. 4 Maximum and minimum values of the electrostatic potential at the
surface of a4 polyion as functions of the ionic strength of the solution for
two diameters of the mobile ions. Solid lines: 1—u,,,, (d = 0.2 nm); 2—
U, (d=02nm);3—u,, (d=08nm);4—u_, (d =0.8nm). Dashed
line: The result of a solution of the Poisson-Boltzmann equation. The
other parameter values are /; =0.7nm, g =4.2, and ¢ = 1.0 nm.

Our data agree completely with the estimates of Fix-
man,’” the results of the study by Ramanathan and Wood-
bury,” and the conclusions which follow from Monte Carlo
studies.”*~7® Qur data established the range of applicability
of the Poisson-Boltzmann equation for finite values of the
ionic strengths. Within the context of this review we can
conclude that the approach based on the Poisson-Boltzmann
equation is completely adequate for our problem, especially
for small diameters of the mobile ions.

The primary result of the recent theoretical work of a
general nature has thus been to explain the fact that, in con-
trast with the situation in many other cases of the use of the
self-consistent-field method, the Poisson-Boltzmann equa-
tion is an extremely good approximation for the basic model
of polyelectrolyte theory. The Poisson-Boltzmann equation
is thus regaining its status as the basis for theoretical re-
search on polyelectrolytes, now with a complete foundation
and a clearly defined range of applicability.

5. PRESENT STATUS OF CONDENSATION THEORY

In the course of the “rehabilitation” of the Poisson-
Boltzmann equation, old results derived back in the 1950s by
Katchalsky et al.'” were reinterpreted, and also new results
were obtained, which revealed in particular the reasons for

L—u(a)

1 7 K] 4 g

FIG. 5. Maximum and minimum values of the electrostatic potential at
the surface of a polyion as functions of the charge per unit length on the
polyion g. Solid lines 1-4 have the same meaning as in Fig. 4; the dashed
line is a solution of the Poisson-Boltzmann equation. All the curves were
obtained for ¢, = 0.01M.
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the success of Manning’s condensation theory,'®=!77- 788182

In light of the Poisson-Boltzmann equation, these successes
are at first glance surprising, since the Poisson-Boltzmann
equation does not predict the existence of a phase separation
of counter-ions for a finite polyion radius. Indeed, the very
form of the Poisson-Boltzmann equation rules out the possi-
ble existence in this case of solutions with singularities (such
a solution arises only in the limit of an infinitely thin fila-
ment®'). In this connection we should recall that the con-
densation concept arose specifically in the study of an infi-
nitely thin charged filament. One might suspect that this
phenomenon is in general an artifact of this particular model
and disappears for any finite radius of the polyion. Let us
examine this fundamental question in more detail.

We first consider the case of a limiting dilution in terms
of the salt, in which case the solution essentially contains
only counter-ions. This case is important from the concep-
tual standpoint since it allows us to see the real meaning of
*‘condensation” for a polyion of finite radius, as was origin-
ally pointed out by Zimm and LeBret.*

Following Ref. 82, we take up the solution of the Pois-
son-Boltzmann equation for cell model (10), (11). We note
that for the case of interest to us, ¢ > 1, the integration con-
stant R ,, has a clear physical meaning. We denote by W (r)
the number of counter-ions which lie in a cylindrical shell of
height /; with outer radius r < R,,. For W(r) we find from
(10) and (11)

W (r) = —’jr S e rdr o tg (zln %\1) +qg—1. (26)
It follows that the number of counter-ions which lie within a
cylindrical shell with an outer radius R ,, is

Wn=¢q—1 27

This is precisely the number of counter-ions which accord-
ing to Manning’s theory should “settle” on the surface of the
polyion (in other words, which should be in a cylindrical
shell which has a thickness of the order of the radius of the
polyion and which is adjacent to the polyion).

For any Win the interval 0 < W < g the outer radius of a
cylindrical shell enclosing a givenr number of counter-ions W
is given by

(28)

r (W)= Ry exp (z“ arctg —w) ,

We now take the limit p — 0 (R, — oo ). In this limit, the
asymptotic form of function (28) is different in the cases
W<Wy, W=Wy and W> Wy

. w ,
Hmr (W) - a cexp W]’ W<<Wy, (29)

p~0

. . 2a \1/2 Wn—1

| oy _ oxp W=t 30

pxp}MW a) }JLHJRM (p) eXp g (30)
. 2 . 1
}Ell}r(IV)=7e\p(1—m), W>WM (31)

According to Manning’s theory, the radius R, which
bounds the cylindrical shell enclosing the counter-ions
which neutralize the charge on the polyion to g = 1 does not
depend on p; it has a value of the order of the polyion radius
a. Actually, however, as can be seen from (30), the value of
R, in the case of infinite dilution tends toward infinity as
(a/p)'"* = (aR,)'*. We see that the two-phase model does
not hold up, and the concept of a condensation of counter-
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ions in the sense treated by Manning is incorrect.

Zimm and LeBret showed,** however, that in a certain
sense one can speak in terms of if not a condensation, then a
“confinement” of counter-ions by a polyion.This confine-
ment effect becomes particularly transparent when we com-
pare the behavior of counter-ions around charged objects of
three types—a plane, a cylinder, and a sphere—in the limit
of infinite dilution. In the first of these cases, we know quite
well that all the counter-ions will condense on the plane, and
an electrical double layer will form. In the case of the sphere,
in contrast, all the counter-ions will go off to infinity; i.e., a
sphere is incapable of confining a cloud of counter-ions
around itself. The same comments apply to the case of a
weakly charged cylinder (g <1). In the case of a highly
charged cylinder ( ¢ > 1), however, some of the ions go off to
infinity, while the others form a diffuse cloud around the
cylinder, so that the concentration of counter-ions falls off
smoothly with distance from the cylinder. Expression (29)
gives the limiting expression for the distribution function of
counter-ions in the case ¢ > 1. Interestingly, however, the
total number of confined ions is precisely equal to the num-
ber of “condensed” ions in Manning’s theory [see (26),
(27 1.

We wish to stress again that this confinement of
counter-ions is completely different in nature from Man-
ning’s condensation, since there is no finite radius within
which these confined ions would be enclosed.

The analysis offered in Ref. 82 refers to the case of an
extreme dilution. To study the distribution of counter-ions
near a polyion in the case of a salt excess, described by Eq.
(5), it is necessary to resort to numerical calculations. Such
calculations were carried out by Gueron and Weisbuch,*?
who subjected the question of the existence of a condensa-
tion of counter-ions to a careful analysis. In general, the
transition to finite concentrations does not change the re-
sults. In particular, for small ionic strengths (¢ —0) the nu-
merical calculations yielded for R ,, the asymptotic behavior
Ry ~ (a/%)"2. In the context of the condensation problem
there is accordingly no fundamental distinction between the
case of a limiting dilution in terms of the salt and the case of
finite ionic strengths in terms of the nature of the distribu-
tion of counter-ions around the polyion.

The recent work has thus placed polyelectrolyte theory
on a reliable theoretical foundation. It has been found that of
the two theoretical approaches which have been available
(the Poisson-Boltzmann equation and Manning’s theory)
preference should be given to the Poisson-Boltzmann equa-
tion, which has a fairly broad range of applicability. Man-
ning’s theory, on the other hand, now appears not as a rival
of the Poisson-Boltzmann equation but as a rather crude
approximation of the picture drawn by the Poisson-Boltz-
mann equation. Using this approximation may result in
some particularly large errors in calculations of characteris-
tics in which the distribution of ions near the polyion plays
an important role.

6. APPLICATION OF THE THEORY TO THE ANALYSIS OF
CONFORMATIONAL TRANSITIONS IN DNA

6.1. Electrostatic free energy

During the 1970s, Manning’s condensation theory
dominated polyelectrolyte theory almost completely. Many
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theoretical and experimental studies permeated by the ideas
of this theory were carried out during this period; many have
now become classics and have even found their way into
monographs, textbooks, and lecture courses. This is true in
particular of the work on DNA. Now that it has been learned
that Manning’s theory is only a crude approximation of
more-rigorous approaches based on the Poisson-Boltzmann
equation and on the even more general theories discussed
above, it is clear that we need to reexamine all the theoretical
results derived from Manning’s theory for the case of highly
charged polyelectrolytes.

According to the above analysis of the status of Man-
ning’s theory in the light of the present understanding, those
conclusions of the theory which deal with the behavior of the
free ions at a significant distance (essentially infinite) from
the polyion apparently remain valid, although this question
has not been studied exhaustively, to the best of our knowl-
edge. On the other hand, all the conclusions without excep-
tion of Manning’s theory for which the behavior of the po-
tential and/or the density of the ions near the polyion is
important come under doubt and must be reexamined. An
example is the question of the electrostatic contribution to
the rigidity of a polymer chain. This problem has been ana-
lyzed in detail*®**° on the basis of the Poisson-Boltzmann
equation (see Ref. 83 for an analysis of the experimental
situation). An analysis of this question, however, goes be-
yond the scope of the present review, since it involves leaving
the basic cylinder model and incorporating bends or breaks.

Here we wish to analyze in detail another very impor-
tant aspect of polyelectrolyte theory which concerns the role
played by electrostatic interactions in conformational
changes of the DNA molecule.

In the basic model of polyelectrolyte theory, a confor-
mation of DNA is characterized by two parameters: the ra-
dius of the cylinder which serves as a model of the polyion, a,
and the charge per unit length of this cylinder, ¢. To find the
relative stability of two conformations it is necessary to cal-
culate the difference between their free energies. The total
free energy of the system consisting of a polyion with given
parameters a and g and mobile ions, for which the concentra-
tion by volume of the particles of each species at infinity (the
ionic strength), c,, can be written as

F = F° 4 Fel, (32)

where Fis the free energy of this system at g = 0, and F * is
the electrostatic part of the free energy. Since the free energy
increases linearly with increasing length of the cylinder, it is
natural to look at the specific free energy. In the case of
DNA, it is convenient to consider the free energy per pair of
nucleotides, i.e., the free energy corresponding to that length
of the cylinder on which a charge of — 2e is concentrated.

The term F ¢ is equal to the work required to change the
charge on the cylinder from zero to the value corresponding
to a given charge per unit length ¢. Using the standard
charge-variation technique we have

b
F(a, g, ¢;) = —2kT Su(a, tq, co)dt; (33)
1]

here k is the Boltzmann constant and u(a,fq,c,) is the di-
mensionless electrostatic potential at the surface of a polyion
which has a charge per unit length zq, for a given ionic
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strength ¢,. This quantity cannot be calculated correctly in
the condensation theory. Asis shown by the result presented
in Sec. 4 (Refs. 73-80), Poisson-Boltzmann equation (5)
can serve as a reliable basis for a quantitative analysis of this
problem. This assertion is true in particular if we are dealing
not with the absolute values of the potentials at the surface of
the polyion but with their dependence on the ionic strength
and on the charge on the polyion (Figs. 4 and 5). This is the
approach which we will take below toward the analysis of
the dependence of conformational changes in DNA on the
ionic strength.

6.2. Helix-coi! transition in DNA

The role played by electrostatic interactions in the melt-
ing of the DNA double helix has been the subject of very
many studies (see, e.g., Refs. 23-25 and 84), but Manning’s
approach has enjoyed the greatest popularity here, as else-
where. That approach is presented, in particular, in the fun-
damental textbook by Cantor and Schimmel.®® Here we will
analyze this question on the basis of the Poisson-Boltzmann
equation. In the theoretical work on the ionic-strength de-
pendence of the thermodynamic characteristics of the helix-
coil transition, the conventional approach, dating as far back
as the work by Kotin,”* has been to model both conforma-
tions of DNA—helical and molten—as infinitely long, uni-
formly charged cylinders with parameter values which re-
main constant as the ionic strength of the solution changes.
We will also use this model here, although its validity for
describing single-strand DNA is not completely obvious
(more on this below).

To calculate the melting point 7,,, of DNA as a function
of the ionic strength ¢, we begin with the equation expressing
the equality of the free energies of the molten (C) and helical
(H) states per pair of nucleotides:

Frc= Fic+ Fiic =0, (34)

where F{. = F2 — F{, is the difference between the non-
electrostatic parts of the free energies,

'61‘%(:: F™ (ag. qc: co) — F (au, qu, €o)s (35)

and F < is given by integral (33). The quantities a., g and
a4, gy are the parameters of the cylinders which model the
DNA inthesingle- and double-strand conformations. Equa-
tion (34) is conveniently rewritten as

Fre Ul -= TShc+ AFSic = 0, (36)

where U ¥ and S };c are respectively the transition enthalpy
and transition entropy at a certain standard value of the ion-
ic strength, ¢, = c¥*, and F$,. is the change in the transition
free energy due to the difference between ¢, and c¥. We take
the standard value to be ¢ =0.1M, for which we have
Utc =8500cal/mole and S ¥ = 23.7 cal/(mole-deg)
(Refs. 86-88; for this particular problem, the heterogeneity
in the stability of pairs of basis can be ignored ). Our calcula-
tions show that the quantity AF§jc can in practice be ap-
proximated very accurately by a linear function of the tem-
perature for all possible values of the structural parameters
over the temperature interval from 290 to 370 K. Writing
this functional dependence as

AFiie - Fiie (c)) — Filc (¢h) = AUSlc— T ASS;.., (37)

325 Sov. Phys. Usp. 30 (4), April 1987

where AU §jc and AS §j. are the changes in the electrostatic
parts of the corresponding quantities upon a change in the
ionic strength, we find the following expression for the melt-
ing point from (36):

Ul t AUSi.

= (38
St ASHig )

m .

The calculation of the melting point can thus be out-
lined as follows: The parameters a,, and gy, are fixed at val-
ues corresponding to the data from x-ray structural analysis
for the B form of DNA: ¢, = 1.0 nm and ¢, = 4.2. For
single-strand DNA the radius of the cylinder modeling the
DNA, ac, is an adjustable parameter. Although we do not
know g precisely, it lies between 1.05 (a chain which has
been stretched out completely) and 2.1 (single-strand DNA
has the same length as double-strand DNA). By specifying
certain values of these two parameters for several values of
the ionic strength over the interval — 3.0<lg ¢, < — 0.5 we
can work from the solution of Poisson-Boltzmann equation
(5) through the use of (33) and (35) to calculate the tem-
perature dependence of the change in the electrostatic com-
ponent of the free energy, AF§. (the temperature factor
enters the problem through the Bjerrum length [, = ¢?/
DKT). Over the interval of interest here, the temperature
dependence of the dielectric permittivity of water can be ap-
proximated by the power law®**9% D(T) = D(T,)(T,/
)'#, where T, =293 K. We then determine AU¢, and
AS e in (37) for the given ionic strength and use (38) to
find the melting point.

Figure 6 shows curves of the melting point of DNA as
functions of the ionic strength of the solution calculated by
this procedure for four sets of parameters chosen for single-
strand DNA. The results are compared with experimental
data on the melting point of DNA having identical concen-
trations of AT and GC pairs. The experimental data for this
case can be approximated very accurately by®'

T =100.3 + 14.8 g ¢, (39)

where the temperature is expressed in degrees Celsius, while
the ionic strength is expressed in moles per liter.

We see that the theoretical dependence of T, on the
logarithm of the ionic strength by no means necessarily re-

T
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FIG. 6. The melting point of DNA, T, as a function of the ionic strength
of the solution, ¢,, for four selected sets of parameters of single-strand
DNA. The parameter values used in finding the solid lines are as follows:
l—gc =2.1, ac =0.25 nm; 2—¢. = 2.1, ac = 0.50 nm; 3—q . = 2.1,
ac = 1.00 nm; 4—q¢ = 1.1, a¢c = 0.50 nm. The dashed line is a plot of
expression (39), which is an approximation of the experimental data.

Frank-Kamenetskil ef a/. 325



mains linear over the entire range of ionic strengths. In addi-
tion, there is a completely definite pair of plausible values of
the adjustable parameters a and ¢ for which this depend-
ence is essentially linear and has a slope very close to the
experimental value.

A theory based on the Poisson-Boltzmann equation
thus gives a satisfactory description of the exnerimental de-
pendence of the stability of the DNA double helix on the
ionic strength.

How does the analysis above compare with the analysis
of the same question on the basis of Manning’s theory? We
first note that there is no hope that Manning’s theory would
be successful in finding this functional dependence except in
the case of extremely low ionic strengths. Even for that limit-
ing case, however, an analysis based on condensation theory
involves several assumptions. Manning actually breaks up
the free-energy difference F§j. into two components: one
from the entropy of mixing of the counter-ions, which are
liberated as a result of the decrease in the charge per unit
length during denaturation, with ions in a free phase, and
one from the change in the electrostatic free energy calculat-
ed from the Debye-Hiickel equation (the procedure for cal-
culating F§i~ on the basis of Manning’s condensation theory
is given in detail in Ref. 85). The resulting expression is

AFfic= kT (g3 — &) (Inco—Inc). (40)

This expression leads to a linear dependence of T, on the
logarithm of the ionic strength. The slope of this dependence
is essentially the same as the asymptotic value of the slope at
¢y < 0.01M which we found above. The terms considered by
Manning, however, are only part of the overall change in the
free energy. Within the framework of condensation theory
there is also a term corresponding to the electrostatic free
energy of the binding of condensed ions with the polyion. It
follows from the considerations which led to the concept of
condensation that this free energy is infinitely large. A dif-
ference between infinitely large quantities of this type should
appear in F §i.. If this difference is zero or if it is independent
of the ionic strength, then it will not contribute to expression
(40). However, Manning proved neither of these conditions.

This example clearly demonstrates the advantages of
the approach based on the Poisson-Boltzmann equation. It
becomes possible to incorporate correctly all contributions
to the electrostatic free energy, and we run into none of the
internal contradictions which arise in condensation theory
whenever we take up the problem of calculating the free en-
ergy of a polyion. At the same time, we must not forget that
the approach taken in this problem is based on some nontri-
vial assumptions. First, there is the replacement of the actual
structure of the polyion by a continuously charged cylinder.
Furthermore, there is the assumption that the geometric pa-
rameters of the macromolecule are independent of the ionic
strength. For double-strand DNA this model seems com-
pletely acceptable. To demonstrate this point, we note that
the persistence length of DNA, i.e., the length scale over
which the macromolecule may be regarded as rectilinear—is
of the order of 50 nm even at high ionic strengths.”” This
length is considerably greater than the other length scales of
the system (the radius of the polyion, the Debye length, the
distance between charges on the DNA, etc.). At the same
time, the theoretical analysis undertaken in Refs. 43 and 74
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shows that replacing the discrete configuration of charges on
the polyion by a continuously charged cylinder does not sig-
nificantly change the mean value of the potential or of the
distribution of counter-ions near the polyion. Furthermore,
there are no direct indications of a significant change in the
distance between the charged groups in DNA upon a change
in ionic strength.

Single-strand DNA presents a completely different sit-
uation. This conformation obviously has a far greater struc-
tural lability, and there is essentially no justification for the
model of a cylinder in this case.

6.3. Polyelectrolyte theory of the B-Z transition®?3

A transition induced between the ordinary right-hand-
helix B form and the left-hand-helix Z conformation by a
change in ionic strength (Fig. 1) is one of the most vivid
effects associated with electrostatic interactions in DNA. A
description of this phenomenon on the basis of the basic
model of polyelectrolyte theory is completely justified, since
both forms of DNA have a fairly long persistence length'
and can be approximated by infinitely long, continuously
charged cylinders.**"

As in the case of the helix-coil transition, to analyze the
behavior of the B-Z equilibrium we need to calculate the
difference between electrostatic free energies:

F&y = F (az, qz, co)— F*' (ap. op. co)s (41

where the free energies F ' are given by (5) and (33). We
wish to emphasize that in this problem, in contrast with the
helix-coil transition, all the parameters of the theory are
known from x-ray structural analysis': ¢ = 4.2, ay = 1.0
nm, g, = 3.9, and a; = 0.9 nm.

Before we look at the results of rigorous calculations of
F%, we wish to present a simple qualitative theory of the B-Z
transition based on the use of the Debye-Hiickel equation.
Although the Debye-Hiickel theory does not give a correct
quantitative description of electrostatic interactions in
DNA, as has been stated repeatedly, that theory is still useful
since the simple explicit expressions which it yields help us
understand the results of rigorous numerical calculations.
We will thus work from Debye formulas (13) and (14),
considering separately the two limiting cases rp >a and
rp €a.

In the first of these cases (low ionic strengths) the
asymptotic expression of the Bessel functions in (14) in the
parameter xa < | gives us

u(a) - 2q1n%. (42)
Substituting (42) into (33), we find
Fl— —2kTgIn-+. (43)
s}

Retaining in this expression only the term which depends on
the ionic strength, we find

F&, — kT (go— q7) Inc,. (44)

This simple theory thus predicts that the quantity F§),, and
with it the relative stability of the B form, should increase
with increasing ionic strength at low values of the ionic
strength, by virtue of the relation g > ¢, . The same conclu-
sion is reached in Manning’s condensation theory. Here the
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resulting expression is {cf. (40)].
Fiz = kT (92" —g5) In ¢, (45)

All the experimental data on the B-Z transition in regularly
alternating GC sequences of DNA (see the review by Rich er
al.") provide evidence that an increase in the ionic strength
stabilizes the Z form. On this basis, Behe and Felsenfeld®
expressed doubt regarding the applicability of the basic
model of polyelectrolyte theory for describing the B-Z tran-
sition.

We turn to another limiting case. At high ionic
strengths, (rp <a) the asymptotic expression for the Bessel
functions in (14) in the parameter xa > | gives us

2rpg

u(a)= — . (46)

a

The same result can be derived in a more graphic way. Since
the characteristic radius of the electrostatic interactions in
this limit is much shorter than the radius of curvature of the
charged surface, the problem becomes equivalent to the
problem of a charged plane, for which the Debye-Hiickel
equation is

(47a)
(47b)

u" (1) =rpu(z),

w'(0) == 4mlps.

Here x is the distance from the plane, and — es is the surface
charge density. From (47) we find

u (0) = —anrplgs, (48)

which corresponds precisely to (46) since the ratio ¢/a is
proportional to the surface density s [see (3)]. From (46)
and (33) we find
X q, q _1/2
Fijz - 0,6hT (—a;—— f) it (49)
It follows from (49) that at high ionic strengths the free-
energy difference F§, continues to increase with increasing
salt concentration, as at low ionic strengths, if not only the
charge per unit length but also the surface charge density is
higher in the B form. In the opposite case, however, i.e.,
under the condition
92 az

; (50)

I B
the quantity F$, decreases with increasing salt concentra-
tion at high ionic strengths. The geometric parameters of the
B and Z forms satisfy the latter inequality (the surface
charge density is higher in the Z form). This simple theory
thus predicts that the quantity F'§}, and thus the stability of
the B form with respect to the Z form should reach a maxi-
mum at ionic strengths for which the relation r, ~a holds,
Le., at c,~0.1M.

Figure 7 shows the results of rigorous calculations of
F g, as a function of the ionic strength. In complete accor-
dance with the simple theory, F§, increases monotonically
over the entire range of ionic strengths under the inequality
qz/qp <day/ag (curves 1 and 2) and goes through a maxi-
mum as soon as condition (50) becomes satisfied (curves 3
and 4). The position of the maximum also agrees with the
rough estimate found above.

Polyelectrolyte theory thus predicts that the relative
stability of the B and Z forms of DNA will be a nonmono-
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FIG. 7. Difference between the electrostatic free energies of the Z and B
forms of DNA as a function of the ionic strength according to calculations
from Egs. (5), (33) and (41). The parameter values are gg =4.2,
gz = 3.9 and ag = 1.0 nm, which are taken from x-ray structural analy-
sis.' The curves correspond to various values of the parameter a; (nm):
1—1.00; 2—0.95; 3—0.90; 4—0.85. The data of the x-ray structural anal-
ysis' correspond to line 3. According to condition (50). the maximum
should appear at a; <0.93 nm.

tonic function of the salt concentration. This conclusion
leans heavily on the specific numerical values of the geomet-
ric parameters of these structures, which we have taken from
X-ray structural analysis. We are naturally led to ask how
much these parameter values will change upon a change in
conditions? In particular, does the structure of DNA in solu-
tion differ from that in a crystal or a fiber? The data available
on these questions imply that the assumption that the pa-
rameters remain constant appears to be quite realistic. In-
deed, exceedingly precise measurements of the number of
pairs per turn of the helix of the B form of DNA in solu-
tion®*** yield the number 10.5, which is close to the value of
10.0 which follows from x-ray data. The situation with re-
gard to the Z form is similar.®~*"

Let us look at the experimental data available on the B-
Z transition in light of the discussion above.

The Z form of DNA was originally discovered for alter-
nating GC polymers at anomalously high ionic strengths’
(of the order of 2.5M). As soon as the three-dimensional
structure of the Z form was deciphered® it was learned that
charged phosphate groups of the different strands are closer
to each other in this conformation than in the B form (Fig.
1). The distance between the nearest phosphates of the dif-
ferent strands in the B formi1s 0.8 nm, in contrast with 1.2 nm
in the B form.! For a long time the decrease in the electro-
static repulsion between phosphates caused by screening by
counter-ions upon an increase in the salt concentration was
regarded as the main cause of the increase in the relative
stability of the Z form as the ionic strength was increased
(see the review by Rich et al.'). However, the long-range
nature of the electrostatic interaction and the specific poly-
electrolyte properties of this system (the concentration of
counter-ions near a polyion depends weakly on the ionic
strength of the solution'®*'*?) cast doubt on the validity of
that explanation. On the basis of the results presented above,
the following mechanism might be suggested as the reason
for the transition of DNA to the Z form upon an increase in
the ionic strength: The B-Z transition is accompanied by an
increase in the length of the polymer and by a decrease in its
effective radius, but the relative decrease in the radius ex-
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ceeds the relative increase in length, with the result that the
surface charge density in the Z form becomes greater than
that in the B form—although the opposite relation holds for
the charge per unit length. It is the higher surface charge
density of the Z form which determines the growth of its
relative stability upon an increase in the ionic strength at
high salt concentrations.

A fundamental conclusion which follows from the po-
lyelectrolyte theory of the B-Z transition is the existence of a
maximum in the relative stability of the B form at ionic
strengths in the physiological region (c,~0.1M). Experi-
mentally it is customary to measure the point of the B-Z
transition along the scale of the ionic strength; this point is
determined by the equality of the total free energies of the
conformations, FS, + F3, = 0. If we vary the nonelectro-
static component of the free energy by varying some experi-
mental parameter (e.g., the concentration of a nonelectro-
lyte), then our theory predicts the presence of a critical point
for the B-Z equilibrium. At a favorable value of F$; one can
observe two transitions as the salt concentration is raised: a
Z-B transition at low ionic strengths and a B-Z transition at
high ionic strengths (overall, we have a Z-B-Z transition).

The value of F}, may be influenced by the chemical
modification of the nitrogenous bases, the binding of the
polymer with ligands of various types, a change in the sol-
vent composition, etc. Since the work by Behe and Felsen-
feld,® there is no further doubt that the Z form can exist
under low-salt conditions (see also Refs. 99-102). However,
finding convincing evidence that this effect is of a purely
electrostatic nature required detecting the Z-B-Z transition
through a variation of the ionic strength alone. The most
convenient system for such an experiment is poly (dGm*C)
-poly(dGm°C), for which F2, is far smaller than for the
ordinary poly(dGC)-poly(dGC) by virtue of a chemical
modification of the cytosine, and both transitions occur at
ionic strengths which are accessible to measurements. The
Z-B-Z transition for poly(dGm®C)-poly (dGm>C) was re-
cently detected simultaneously in three studies®® (Fig. 2).
These studies were criticized in a very recent paper,'®* but
we find the criticism unconvincing.

For a quantitative comparison of theory and experi-
ment we need the entire experimental curve of the depend-
ence of F§, on the ionic strength. Obtaining this informa-
tion requires varying the quantity F$, by changing, for
example, the properties of the solvent and finding the points
of the Z-B and B-Z transitions along the scale of the ionic
strength. Measurements of this type were recently carried
out by V. I. Ivanov and E.I. Minyat; the results agree well
with the theory (Fig. 8).

In concluding this section of the paper we note that our
examination of the problem of the B-Z equilibrium in DNA
has made extensive use of the basic model of polyelectrolyte
theory. As has been shown by the many studies discussed in
the preceding sections of this paper, this basic model gives a
reliable description of the electrostatic properties of double-
helix DNA at low and intermediate values of the ionic
strengths, up to a salt concentration of the order of IM. As
the salt concentration is raised, the deviations from this
model become more and more obvious. The *‘gas™ approxi-
mation (Sec. 4) fails, and the concentration of mobile ions
around a polyion becomes so high that these mobile ions may
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FIG. 8. Difference between the free energies of the Z and B forms, reck-
oned from the value of this difference at ¢, = 0.0025M, as a function of the
ionic strength. The points are experimental data obtained by V. L. Ivanov
and E. I. Minyat; the solid lines are results calculated from Egs. (5). (33),
and (41). The parameter values in the theory are gy = 4.2, 9, = 3.9. and
ag = 1.00 nm. 1—a; =0.90 nm; 2—a; = 0.85 nm.

form something of the nature of a *‘liquid” or even “crystal-
line” phase. Just how and under what conditions these
events occur we can only guess at, since at this point we have
no methods for constructing a reliable theoretical descrip-
tion of such a situation. What apparently happens is that
such factors as the microstructure of the solid, the discrete
nature of the charge distribution on the polyion, the details
of the polyion surface, the nonelectrostatic interactions of
mobile ions with each other and with the polyion, etc., come
into play simultaneously. We are therefore unconvinced by
attempts to analyze, say, the B-Z equilibrium by approaches
in which some of these factors are taken into account as
rigorously as possible, while others are arbitrarily ig-
nored‘l()-kl(ﬂ

7. CONCLUSION

We have examined the theoretical foundations and
practical applications of the polyelectrolyte model of DNA.
This model treats the DN A molecule as a cylinder which has
a charge smeared uniformly over its surface and which is
immersed in a continuous dielectric medium. An alternative
approach to this model is to treat the system consisting of
DNA + smallions + water in all its complexity by Monte
Carlo or molecular dynamics methods.'”*'"* That ap-
proach requires powerful computers (a recent study used a
CRAY supercomputer''?). That approach is of course ex-
tremely promising for studying the fine structural details of
DNA and the solvent around it under fixed conditions.
However, such an approach could hardly be realistic for cal-
culating the free energy of this system. and it is specifically
the free energy which we need in order to analyze conforma-
tional transitions. The circumstance is illustrated particular-
ly clearly by the data on the B-Z transition which we have
presented in this review. As can be seen from Figs. 7 and 8.
the electrostatic effects which substantially influence the B-
Z equilibrium have a magnitude of the order of a few hun-
dredths of AT per pair of DNA bases. Clearly. no first-princi-
ples calculation for such a complex system is now or will ever
be capable of guaranteeing such an accuracy. On the other
hand. the model approach offers the indisputable advan-
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tages that its results can be interpreted clearly and that their
qualitative reliability can be confirmed by simple physical
considerations. This is precisely what was demonstrated
above for the case of the B-Z transition.
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