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Macroscopic kinetics describes relaxation in terms of macroscopic states, i.e., the distributions
of density, temperature, and so on. Two types of system are examined in this review, namely,
(1) closed systems (or systems interacting exclusively with a thermostat) and (2) flow
systems in which the nonequilibrium state is maintained by an external agency (source of
supply or pump). In both cases, states are established that do not depend (in a particular
range) on the initial conditions. These are the attractor states. Spatially homogeneous states
(kinetic phases) are discussed for flow systems, together with transitions between them that
are the analogs of the motion of interphase boundaries. In closed systems, the establishment of
equilibrium can be preceded by the appearance of other attractors in the form of intermediate
asymptotic behavior. A comparison is made between similar states in different processes
(chemical reactions, viscous flows, absorption of light, and so on). Stability conditions are
discussed.
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"...in a pun two truths lie hid under one
expression, so in an analogy one truth
is discovered under two expressions."

J. C. Maxwell

INTRODUCTION

In 1928, N. N. Semenov published a paper1 on chain
and thermal ignition. This was the beginning of the concept
of explosive instability in chemistry. The course of a reaction
was found to change abruptly as the parameters of the sys-
tem (for example, the temperature) were varied continuous-
ly. Subsequent studies of the relationship between reactions
and transport processes revealed the phenomena of bistabi-
lity and hysteresis in chemical systems.2'3 The theory of
combustion waves4 showed how a moving structure evolved
in a distributed system, where the velocity and other param-
eters of the wave were determined by the state of matter and
did not depend, within wide limits, on the manner of excita-
tion (in modern terminology, this is an attractor). D. A.
Frank-Kamenetskii5 then combined these and a number of

other results, and proposed a new subject, namely, macro-
scopic chemical reaction kinetics.

Macrokinetics investigates reactions under real condi-
tions in which they must be considered together with trans-
port processes. A reaction produces a change in the concen-
tration of reagents and in the temperature (because of the
release of heat), whereas the rate of the reaction itself de-
pends on temperature and the concentrations. Mathemat-
ically, the problem is to find the distributions of temperature
and concentration (which, in general, are functions of
time). In the corresponding equations of thermal conduc-
tion and diffusion, chemical reactions are represented by
sources that are nonlinear functions of the required quanti-
ties. In many natural and artificial systems, reactions are
accompanied by the flow of the medium. Convective trans-

293 Sov. Phys. Usp. 30 (4), April 1987 0038-5670/87/040293-24$01.80 © 1987 American Institute of Physics 293



port, usually much more effective than diffusion, is then
brought into play. On the other hand, reactions influence the
flow because of the relationship between viscosity, on the
one hand, and chemical composition and temperature, on
the other.

Theoretical and experimental studies of interactions be-
tween all these factors have led to considerable advances in
macrokinetics (see, for example, the second edition of
Frank-Kamenetskii's book5 and Ref. 6). Some of the results
will be discussed below. For the moment, we must draw at-
tention to another aspect of the problem. Even in his original
paper,1 N. N. Semenov, in his treatment of thermal explo-
sions, cites the study of breakdown in dielectrics at high tem-
peratures, reported in Ref. 7. For a given voltage, there is a
reciprocal relationship between current and Joule heating
(because of the increase in conductivity with temperature),
and a similar relationship between the exothermic reaction
rate and heating. In both cases, this leads to a disruption of
the thermal balance of the system. An analogous explosive
instability was subsequently investigated theoretically8 and
experimentally9 for the flows of a very viscous liquid (the
reciprocal relation is then assured by the strong temperature
dependence of viscosity). For a pulsed discharge in a gas, the
expansion of the current channel was interpreted in Ref. 10
as an analog of flame propagation. This analogy was exten-
sively exploited in Ref. 11 in relation to discharges in differ-
ent frequency ranges. In one of his last papers,12 D. A.
Frank-Kamenetskii called for a comparative study of pro-
cesses occurring in plasmas and chemical systems. A collec-
tion of the analogs of combustion in different processes is
given in Refs. 13 and 14.

From the theoretical point of view, there is no justifica-
tion for singling out processes involving chemical reactions.
The standard definition of a macroscopic state (in terms of
the distribution of thermodynamic variables such as density,
concentration, pressure, temperature, velocity, and so on, in
a continuous medium) implies that there is a science that
investigates relaxation in the language of macrostates. This
is, in fact, macroscopic kinetics, and it is precisely in this
wide sense that we shall use the terminology first introduced
by D. A. Frank-Kamenetskii. Unfortunately, the ground
covered by this definition is immense. In the present paper,
we shall pursue a more realistic goal, i.e., we shall compare
chemical and nonchemical processes, and discuss some typi-
cal nonlinear effects exhibited by these processes.

We shall consider two types of nonequilibrium systems.
In a closed system (or a system that interacts only with a
thermostat), nonlinearity gives rise to a number of phenom-
ena that accompany the transition to equilibrium (self-ac-
celeration, evolution of inhomogeneities, relaxation waves,
and so on). The second type includes systems in which the
nonequilibrium state is maintained by external factors
(source of supply or pump). We shall refer to them as flow
systems. While equilibrium is established in a closed system
in the course of time, the evolution of a flow system ends
when it reaches an "attractor" state whose parameters do
not depend (in a certain sense) on the initial conditions. In
the case of relaxation of a closed system, an attractor regime
that is different from equilibrium can only be observed in the
form of the so-called intermediate asymptotic behavior30

with a limited lifetime.
The space of the parameters of a flow system splits into

regions belonging to different attractor regimes (these re-
gions may, in fact, partially overlap). As the parameters
vary, a rearrangement occurs when the boundary of a partic-
ular region is reached, i.e., there is a transition to another
attractor regime. This rearrangement occurs because, within
its own region, the old regime is unstable against appropriate
small perturbations. While equilibria are the subject of ther-
modynamics, the basic task of macrokinetics is to investigate
attractor regimes and their rearrangement.

Like plasmas, nonequilibrium chemical systems exhibit
a variety of instabilities. Studies of thermal instability1"3

were further advanced in Refs. 15 and 16 where, in particu-
lar, thermokinetic oscillations were investigated. Postula-
tion of the hydrodynamic instability of laminar flamesI7JK

led to extensive searches for stabilization mechanisms (see
Ref. 19). The problem of diffusional instability of combus-
tion waves is closely approached in Ref. 20 (see also Ref.
21). The result of the nonlinear stabilization of these instabi-
lities is the experimentally observed cellular flame22 or, in
condensed systems, self-oscillatory23'24 and spin24 combus-
tion.

An important contribution to macrokinetics was the
discovery of self-oscillatory and spatially inhomogeneous
states in the Belousov-ZhabotinskiT reaction.25 An impor-
tant class of nonlinear electrochemical phenomena, that in-
cludes the propagation of nerve pulses (see, for example,
Ref. 26), has been investigated, but only to a very limited
extent. "Unifying concepts," such as autowaves (see Refs.
27, 28, and so on), dissipative structures and self-organiza-
tion,29'30 synergetics,31 and catastrophe theory32 have been
widely discussed in recent years in relation to a variety of
nonlinear effects in nonequilibrium (active) systems.

It has become clear that the subject is getting closer to
the modern (nonlinear) theory of oscillations.33 A detailed
investigation of the simple diffusional instability model has
led to a large number of solutions describing "kinetic heter-
ostructures," their pulsations, and randomization34'36'6

(Vol. 1, Part 1, p. 3). This range of problems has been ade-
quately treated in the review literature, and we will not go
into it in any detail. To keep our review to manageable pro-
portions, we have also had to leave out the consideration of
interesting effects such as "chemical" free convection,37 the
interrelation between reactions and viscosity in flow sys-
tems,38 gas-dynamic interruption of reactions leading to the
formation of a quasiperiodic structure on the detonation
front,39 and so on.

We begin by considering explosive instability in homo-
geneous and metastable states and in stationary regimes. We
shall examine the conditions necessary for the appearance of
inhomogeneities and the coexistence of kinetic "phases" in
flow systems. A particular type of inhomogeneity is the pro-
gressive solitary wave, first investigated in Refs. 4, 40, and
41. A solitary wave maintains an exact balance between sup-
ply and dissipation (similarly to the way in which a soliton
maintains precise compensation between nonlinearity and
dispersion42). Sections 3 and 4 are devoted to the structural
complication of solitary waves. One of the reasons for this
complication is the above-mentioned diffusional instability
and its nonlinear stabilization.43^47 The banded structure of
waves can be due to a sequence of reactions,4S'49 phase transi-
tions,50'51 filtration in porous media,52'53 and other factors.

The present state of our knowledge in the field of non-
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linear kinetic effects is such that a more or less arbitrary
selection has to be made from the vast available information
(in other words, the authors' interests constitute a signifi-
cant factor). Nevertheless, we hope that our review will
serve as an introduction to this frontier of physics, which
closely approaches chemical physics and biophysics. We are
grateful to A. P. Aldushin and Ya. B. Zel'dovich for useful
discussions.

1. EXPLOSIVE INSTABILITY

In the simple case of a single reaction in a stationary
medium, we have the following two equations:

r\ (1-1)

, T); (1.2)

where 7Ms the temperature, 77 is the so-called transformation
depth, which is zero for initially pure material and 1 for the
reaction products, % is the thermal diffusivity, D is the diffu-
sion coefficient, <t> is the reaction rate ("frequency" of ele-
mentary events), and Q is the heat of the reaction per unit
specific heat c. We shall consider exothermic reactions, i.e.,
Q>0.

1.1. Thermal and chain ignition

For many reactions, the dependence of 4> on 77 can be
represented by the factor (1 — 77)", where n is a positive
number of the order of unity. At the initial stage of the reac-
tion, when 77 < 1, this factor is of little significance and we
can confine our attention to the single equation (1.1) with
4>(0, T). As far as the stability of stationary regimes is con-
cerned (the heat released in the reaction is completely re-
moved from the system), the long-wave modes are the most
"hazardous." It is therefore sufficient to confine our atten-
tion to the equation averaged over the volume:

At
(1.3)

where V, S are the volume and the surface area of the vessel
containing the medium, respectively, T0 is the temperature
of the thermostat, a is the effective heat transfer coefficient,
and/o is the density.

The Semenov diagram shown in Fig. 1 illustrates the
temperature dependence of the two terms on the right-hand
side of (1.3). The dependence of <I> on Tis basically of the
activation type, i.e., <I>~exp( — e/T), which is the Arrhen-
ius law. It is clear that, of the two" stationary points, only

FIG. 1. Semenov diagram: ignition occurs when the initial temperature of
the reagents is higher than T2 or the temperature of the thermostat is
higher than Ta.

the low-temperature point (1) is stable. As the temperature
T0 increases, the two points approach one another and merge
(broken line a). When T0> T.A (broken line b), we have
accelerated heating (thermal explosion), independently of
the dependence on the initial temperature of the medium.21

Suppose, however, that the condition for an explosion

x = QeVpc ( (1.4)

is not satisfied, and the temperature is constant (T = Tt).
The best known reason for the self-acceleration of a reaction
in this case is chain branching.'

A reaction (especially in the gas phase) practically nev-
er reduces to the direct transformation of the initial materi-
als into reaction products (the cross section for this process
is too low). The initial stage is the formation of intermediate
active particles (free radicals, ions). These particles then
enter new reactions in which final products and new active
particles are produced. These active particles "multiply" in
the branched chain reaction. For example, the oxidation of
hydrogen involves the following sequence of reactions:54

OH + H2 -»- H20 + H,
H + 02 -» OH + 0,
0 + H2 -^O

(1.5)

Some of the radicals are lost to the walls and in chain-break-
ing reactions within the volume. If we regard 77 as the con-
centration of active particles (for example, //). and if we use
the boundary condition

(DVj.il + = 0, (1-6)

where Vx 77 is the normal component of the gradient on the
surface and &w is the reaction rate on the (heterogeneous)
surface, spatial averaging of (1.2) finally yields

d £ ~ w ' \ » • ' /

where K0 is the rate of spontaneous production of the radi-
cals H under the influence of light, collisions of the second
kind, and so on, K+ and K_ are the rate of the second"
reaction in (1.5) (branching) and the rate of loss in reac-
tions within the volume, respectively,

jf i n } i o —i \ —1 f 1 Q ̂

is the renormalized rate of the heterogeneous reaction,
P~pDSV ~~' is the mass transfer coefficient, and A", is a func-
tion of the concentrations of the other components in the
mixture. The linearity of (1.7) is entirely due to the quasista-
tionary approximation.

The avalanche increase in 77 (chain ignition) occurs for
K} > 0 when the rate at which new radicals are produced is
greater than the rate at which they are lost. Since K + ~ Pand
K_ ~P2 (Pis the pressure), the chain explosion corresponds
to a relatively narrow pressure interval56 (Fig. 2).

It was suggested in Ref. 57 that explosive instability is
always a chain or thermal process. In an active medium con-
sisting of excited molecules, a thermal "explosion" will de-
velop if the rate of deactivation increases with temperature5"
(the "chain channel" of instability then corresponds to the
laser pulse). In a flow of a very viscous liquid, the heat gener-
ated by friction tends to reduce viscosity (which falls with
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electron and hole densities nc and «h are determined from
the equations

440 , °C

FIG. 2. Region of chain ignition of an explosive mixture (shaded) on the
P, /"plane (data taken from Ref. 56).

temperature), a considerable amount of heat is released as a
result of the increase in velocity, and so on, so that the explo-
sive instability sharply alters the energy transfer from the
external source that maintains the given flow.8'9 An analo-
gous feedback situation leads to the self-acceleration effect
during the baking of fine metallic powders, in which the ex-
cess surface energy is the source of energy.59

1.2. Breakdown in dielectrics

A clear example of a process demonstrating explosive
instability is that of a current flowing in a dielectric. As in all
other cases, where a very complex phenomenon takes place,
we shall treat breakdown from the "macrokinetic" stand-
point.

Figure 3 shows a typical temperature dependence of the
breakdown voltage U of a solid dielectric. There are two
well-defined regions, namely, the high-temperature region
in which f / 2 ~ exp( — e/T) and the activation energy e is the
same as for the conductivity of the given medium,7 and the
low-temperature region in which U( 7") is a slowly-varying
function. It was shown in Refs. 7 and 61 that pure "thermal
breakdown" occurs at high temperatures. To describe the
thermal instability, it is convenient to use Fig. 1 and (1.3) in
which Q<t> is replaced with crE'(pc) ~', where a is the con-
ductivity and E the field strength. A condition analogous to
(1.4) shows that U falls exponentially with T. For specimens
in the form of sufficiently thin plates, for which a is indepen-
dent of the thickness d (external heat transfer), we find that
U~d 1/:, which is also in agreement with experiment.

At low temperatures, the field necessary for the devel-
opment of thermal instability turns out to be too high, and
breakdown is due to collisional ionization. Electrons accel-
erated out of the conduction band by the applied field ac-
quire sufficient energy to eject further electrons from the
valence band, and so on. At the same time, collisions with
phonons lead to energy losses and, in the final analysis, to
recombination. The modern theory of collisional ionization
is developed in Refs. 62 and 63. In the stationary state, the

210 250 290 330

FIG. 3. Temperature dependence of the breakdown voltage of porcelain."
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T) + [wie(E) - w r e ( E ) } «e +
T) + [u;lh (E) — wr h (E)] «„ ~

=0, d-9)
= 0, (1.10)

where n0e
 ar>d «oh are the rates at which electrons and holes

are produced by thermal ionization and are directly removed
by the field (tunnel effect), and w,, wr are the average ioni-
zation and recombination probabilities (evaluated using the
nonequilibrium distribution function found in Ref. 62).

Comparison of (1.9) and (1.10) with the right-hand
side of (1.7) shows that low-temperature breakdown consti-
tutes a "chain explosion" in the number of carriers. The
probability wr decreases with increasing field (in accor-
dance with a power-type law), while the relative number of
slow electrons decreases and so does the recombination rate.
The probability w{ increases exponentially with increasing
field [in weak and moderate fields, this is basically
exp( — const/£"), whereas in strong fields the variation is
exp( — const/£"2), which corresponds to the "diffusion" of
electrons in energy space63]. Once w,(E) and w , ( E ) are
known, they can be used in (1.9) and (1.10) to find the
breakdown field Ec.

Because of the drift of carriers in the field E, the insta-
bility that leads to "chain" breakdown is, in general, convec-
tive. In a solid dielectric, the convective nature of the insta-
bility is not very significant because both types of carrier
produce ionization. The breakdown condition is62

(/e-/h)rf = ln-^- , (1 .11)

where/is the ionization coefficient (ratio of IT, to the drift
velocity), so that d is only a logarithmic function of/e //h. In
low-pressure gases, secondary avalanches result (according
to Townsend) in the bombardment of the cathode by posi-
tive ions, whereas at high pressures they result in photoche-
mical ionization (see Ref. 64).

1.3. Induction

If, instead of (1.4), the strong inequality x^> 1 is satis-
fied, the time taken for the temperature to rise from T0, i.e..
the induction period, is shown by (1.3) to be

T, » Tl (Qek)-1 ee>'T*. ( 1 . 12 )

The significant point is that, when 7~0<^£. the main contribu-
tion to -, is provided by the low-temperature stage of the
reaction (so long as its acceleration is small). This means
that we can ignore the complicated subsequent stages of the
process when we use the estimate given by (1.12) ,4 ' Condi-
tion (1.4) can be conveniently written as T { < T . where
-— Vpc(S)~l is the characteristic time for heat transfer to
the thermostat.

Figure 4 shows the time dependence of the temperature
difference T — T0 for the liquid in the gap between a fixed
outer cylinder and a rotating inner cylinder." The experi-
ments were performed at fixed torque, so that the rotational
frequency increased during the dissipative heating, the vis-
cosity fell in accordance with the expression \' — exp(f/7").
and there was a corresponding increase in the power sup-
plied by the source. Substituting this power — crv~ ' (a is
the tangential stress) for Q<S> in(1.3) . we obtain a thermal

A. G. Merzhanov and E. N. Rumanov 296



16 32 'fS MO"3, s

FIG. 4. Heating of castor oil in the gap between two concentric cylinders.
Thermostat temperature: 1—8.8; 2—11.1; 3—12.2; 4—14; 5—20 °C.

instability condition that is similar to (1.4). For the param-
eters of the system used in Ref. 9, this condition becomes
T0 > 9.8 °C, in agreement with Fig. 4. The curves shown in
Fig. 4 are similar to the thermograms of a typical exothermic
reaction with one exception: in the region of thermal stabil-
ity (curve 1), the heating-up of the chemical systems tends
to zero for r — oo because the system burns out.

For chain ignition, (1.7) shows that the concentration
growth rate is Kt. For explosion to take place, the nonlinear
terms must not suppress instability. For example, if we add
the term K2tj

2 to the right-hand side of (1.7), we must have
K2>0. For chain reactions, nonlinear amplification is as-
sured by the so-called positive chain interaction (see Ref.
65). When K2 4 ( K } K <f '), the induction period is

Tr-\ i K\ f 1 1 7 \TittK,l\n—±- . (1.13)

When the spontaneous chain nucleation rate K0 is low
enough, the delay of the explosion fluctuates, depending on
the random value of the initial concentration.159

Autocatalysis of an exothermic reaction can lead to an
explosion even when (1.4) is not satisfied,66 and the thermal
state is stable. However, the accumulation of active material
increases the reaction rate <I>. The <!>( T) curve of Fig. 1 tends
to rise, and, at a certain instant of time, the condition for
thermal instability is satisfied for the temperature of the sys-
tem. The explosion therefore occurs in two stages, namely,
the autocatalytic and the thermal. The low-temperature
breakdown of solid dielectrics is also found to conclude with
the thermal stage.

1.4. Focal explosion

Suppose that a certain portion of a combustible mixture
is suddenly heated to a temperature T. If the linear size of the
region is / > /0, where

IXT, (1.14)

the reaction will accelerate more rapidly than the rate at
which heat is lost. The result will be the focal explosion in-
vestigated in Ref. 68. During the time f~r , , the ambient
medium remains cold but, at the center of the heated region,
the temperature rises without limit ("intensified state" in
the terminology used in Ref. 69). Figure 5 reproduces the
temperature distributions calculated in Ref. 70 for a reactive
sample (diameter d) heated on the surface. It is clear that, as
dl 0~ ' increases, the "intensified" temperature peak shifts
from the center to the periphery. Comparison of (1.4),
(1.12), and (1.14) shows that, when a~pc%d ""', we have
x ~ [d //„( T0) ]

2. The quantity /„ is well-known in combus-

tion theory (see, for example, Section 119 of Ref. 71). It is
referred to as the "correlation length" in Ref. 69.

Inhomogeneities in the initial temperature distribution
become intensified in the course of the explosive heating if
their size is72 / 2: /„. This appears to have a significant influ-
ence on the structure of the detonation front. The exother-
mic reaction zone follows the density discontinuity in the
detonation wave, and sets up the initial conditions for the
explosion. Deviations from the homogeneous temperature
distribution immediately after the discontinuity become in-
tensified and form "hot spots" on the front (these are the
foci of intensive reactions), which serve as the sources of
secondary detonation waves. The result of this is that a com-
plicated quasiperiodic structure replaces the plane front.39

1.5. Extinction

In a closed chemical system," explosive instability ac-
celerates the transition to equilibrium. We now turn to flow
systems. Suppose that an exothermic reaction occurs only on
a surface in contact with a flowing mixture with fixed con-
centration 1 — 77 of initial material. We then have2

= Kv (1 - T|) SV~ (1.15)

where ATW is given by (1.8). Since kw ~exp( — e/T), the
fy(T) curve is S-shaped and is such that 4>~exp( — e/T)
(kinetic region); at high temperatures, it approaches asymp-
totically the constant value S/3(pV)~* (diftusional region).
Substituting (1.15) in (1.3), we obtain the following expres-
sion for the stationary state:

[Q (1 - T)) - a (Pc)-i (T - T0)]k, = a (pc)-' (T - T0).

(1.16)

The graphical solution of (1.16) is shown in Fig. 6, where
the stationary points 1 and 2 are similar to the corresponding
points in Fig. 1. The new, high-temperature point 3 (diffu-
sional state) is stable, so that bistability occurs for a particu-
lar range of the parameters. When the parameters are varied
(for example, a is varied), the ignition process that we have
already described (point 1 coalesces with the unstable point

d/2 0 tt/2 0
a b

FIG. 5. Temperature distribution during surface heating, shown for
successive instants of time: the numbers against the curves are the values
o ( t / T j ( T n ) . (d//u)2 = 8 (a) and 20 (b).
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2) can occur side by side with the reverse transition (from
the diffusional to the kinetic state), i.e., we have extinction2

in which points 2 and 3 coalesce.
A picture analogous to Fig. 6 (bistability and hystere-

sis) is also found to occur in the case of a volume reaction.3

The conditions at entry and exit provide the contribution
(T — T0) TQ ' to the right-hand side of (1.3), where r0 is the
time spent by the medium in the flow reactor in which the
temperature at entry is the thermostat temperature. Corre-
spondingly, it follows from (1.2) that

where it is assumed that the order of the volume reaction is
n —- 1 and, at entry, rj = 0. In the stationary state [cf.
(1.16)]

[QpcV (pcV + aS-r,,)-1 - (T - T0)h0ke~*/T = T-T0.

(1.18)

The dependence of the left-hand side of (1.18) on T is
the same as in (1.16). Moreover, if we consider thermal
states for different values of r0, we find that, in addition to
the S-shaped portion of the T(TO) curve, a closed T(r0)
curve splits off from the low-temperature branch in a certain
range of parameter values. I6° The closed curve lies above the
low-temperature branch, but only its upper arc is stable.
Spontaneous transitions from the low-temperature branch
to the state corresponding to the isolated curve are not, of
course, possible. On the other hand, outside the bistable re-
gion, when only the low-temperature stationary state is pos-
sible, the reactor temperature can rise to values typical for
the high-temperature state for suitably chosen initial condi-
tions. Extensive transformation of the reagents then takes
place, the reactor cools down, and is filled with new materi-
al, eventually reaching the stationary state.161

The stationary flow of a viscous liquid in a tube of
length L is described by

PL-1 = \vd~z, (1.20)

where .P is the pressure drop and d ~ is the cross-sectional area
of the tube (numerical coefficients depend on the shape of
the cross section, and are omitted). Eliminating the velocity
v, we obtain73

which is also similar to (1.16) and (1.18) when v~exp(£/

7"). When the temperature Tin of the liquid at entry is greater
than T0, bistability may occur in cooling states74 even when
the heat due to friction is not taken into account. Actually, if
we replace (1.19) with

ad-1 (T - T0) + pevL-1 (T ~ TlD) =0 (1.22)

we find that

pc(rln-r)/>v->(4)2 = ad-'(7'-r0)- ( 1 2 3 )

The presence of the reverse transition (extinction) in
the flow system is due to the fact that both stable states
(points 1 and 3 in Fig. 6) are nonequilibrium states, where-
as, in a closed system, the explosive decay of the metastable
state concludes with transition to equilibrium. We now men-
tion a few examples of bistability in flow systems. The ther-
mal state of a cloud of interstellar gas cooled by radiation is
considered in Ref. 75. The energy input is provided by cos-
mic radiation. Two stable states with different degrees of gas
ionization are then possible for given intensity of this radi-
ation. The thermal balance of material heated by a current is
determined by the equations

aE°- = cr1;2 = (T — T0 (1.24)

FIG. 6. Thermal steady-states in a flow system. The bistability region lies
between the broken lines.

so that, if a( T) is ̂ -shaped, we have thermal bistability in a
given field E, whereas, if the curve p (T) = a~' is 5-shaped,
the bistability occurs at constant current/ The former case
corresponds to melting or a polymorphic transformation in
solid dielectrics and semiconductors,76 and the second to a
transition of a superconductor to the normal phase. The bis-
tability of a dielectric during melting in a high-frequency
field was first noted in Ref. 77 (it was reported in Ref. 78 for
the dc case). It was noted for the polymorphic and supercon-
ducting transitions in Refs. 79 and 80, respectively.

Concentrational bistability is possible under isothermal
conditions. Analysis of the creation of electron-hole pairs in
a semiconducting film (under the influence of laser radi-
ation) and of their recombination has shown that there are
two concentrations that are stable against small perturba-
tions in a given light flux: for the lower concentration, the
medium is a semiconductor, whereas for the higher—a semi-
metal. Bistability with respect to the presence of Cooper
pairs (see Ref. 82) is possible when a superconducting film is
illuminated: one stationary state corresponds to a supercon-
ductor and the other to a normal metal.

1.6. Stabilization and stratification

The role of illumination (or some other way of affecting
concentration) is reduced in Refs. 81 and 82 to a shift of the
phase equilibrium point. The phases themselves remain (at
least qualitatively) as the phases of the medium in equilibri-
um. By analogy, stationary states in other flow systems with
bistability, that were discussed above, can be referred to as
"kinetic phases." One of the first papers in which this analo-
gy was noted appears to be the review in Ref. 83. Hysteresis
in such "phase transitions" is similar to hysteresis due to
heating and supercooling. Let us now consider spatially in-
homogeneous states in flow systems that are the analogs of
"phase equilibrium."

We begin with the thermal states of a nonlinear resis-
tor,83 described by (1.24). If the function a(T) is S-shaped,
then, as shown in Section 1.5, bistability occurs under the
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conditions for a constant voltage. The current-voltage char-
acteristic y'('E') of the specimen is also 5-shaped (there is a
region Ed <E<EU in which for each value of E there are
three values of T and, consequently, three values ofy). If we
stabilize the current flowing through the specimen (for ex-
ample, by connecting a large constant resistor in series with
the nonlinear resistor), the current distribution over the
cross section of the specimen is nonuniform for dj/dE < 0.
Two regions are formed (hot and cold "phases"), separated
by a relatively narrow transition layer, in which the tempera-
ture drop is concentrated. The voltage across this "two-
phase" specimen is determined by the condition for a sta-
tionary temperature field, from which it follows that (see
below, Section 2.1).

^-,0,,u, =u, ( 1 2 5 )

* 1

where T ] t T3 are the temperatures of the "phases" (cf., Fig.
6). Equation (1.25) resembles the condition for the coexis-
tence of liquid and vapor (Maxwell's rule), which deter-
mines the position of the horizontal segment of the van der
Waals isotherms. The distribution of the cross-sectional area
of the sample among the phases depends on the given total
current in accordance with the "lever rule"

where { j ) is the ratio of the current and the cross-sectional
area, x is the fraction of the cross section that corresponds to
the cold phase, and E is determined from (1.25).

In the case of the 5-shaped function a~' ( T ) , the cur-
rent-voltage characteristic of the specimen is ./V-shaped and
the coexistence of phases occurs when the voltage is stabi-
lized in the range dj/dE < 0. The specimen becomes strati-
fied into regions of strong and weak field at right angles to
the current.84 The current in the two-phase state is constant,
and the ratio of the layer widths is determined by the given
voltage.

It follows from (1.19)-(1.23) that, in liquids with the
standard dependence v~exp(£/T), thermal instability
leads to an 5-shaped relationship between the pressure head
and the rate of flow,73'74 where the high-temperature state is
due to convective transport of heat.73'85 If, instead of consid-
ering the distributed system, we take the simpler point sys-
tem in the form of a bifurcating tube85 (or two parallel resis-
tors86), then stabilization of the flow rate is not accompanied
by division into "phases" and, instead, there is a change in
flow symmetry: one tube is hotter than the other, and the
greater proportion of the fluid flows through it. As the flow
rate increases, symmetry is broken when TI~T, but is then
restored when r~T0 — Lv~l. The symmetry breaking oc-
curs in the soft state, and symmetry restoration in the hard
state.85

In a chemical flow system, the stabilization of thermal
instability can be achieved experimentally in the so-called
compensated electrothermograph.87 The working part of
this device is a platinum wire stretched across the flowing
reagents at temperature TQ. According to (1.16) and Fig. 6,
for exothermic catalysis, there are two possible stable homo-
geneous states on the surface of the wire, namely, diffusional
and kinetic states. The temperature of the surface, on which
the rate of catalysis depends, is stabilized by the current

flowing through the wire. This current is varied by a tracking
system so as to maintain a given value of the wire resistance
(which is a function of temperature). It is found88 that, for
certain particular values of the resistance, the reaction rates
exhibit discontinuities, and this is interpreted in Ref. 88 as
isothermic ignition and extinction. It is shown in Ref. 89 that
these results correspond to the appearance of an inhomogen-
eous thermal state (Fig. 7).

The inhomogeneous state is characterized by the tem-
perature distribution along the wire shown schematically in
Fig. 7. The kinetic "phase" occupies the region near the elec-
trodes, where there are better conditions for cooling. The
diffusional "phase" lies between them. Since the resistance
of platinum is a slowly-varying function of temperature, and
in this particular temperature range this relationship is in
any event nearly linear, the more convenient quantity,
namely, the mean temperature of the wire (7"), is shown
along the ordinate axis in Fig. 7. In the inhomogeneous state,

( T ) L = (1.27)

where L is the length of the wire, L3 is the width of the
diifusional "phase," and T,, T3 are the temperatures of the
"phases." These temperatures remain practically constant
as the average temperature { T ) is varied, and ( 1 .27 ) is satis-
fied by shifting the "phase boundaries" by varying Lv The
current / in the inhomogeneous state is almost independent
of Z,3 and is given by

(1.28)

which resembles (1.25).
The transitions shown by the vertical arrows in Fig. 7

correspond to ignition and extinction, discussed in Section
1.5. The "isothermal ignition" is a transition from the kinet-
ic to the inhomogeneous state with the formation of a hot
segment (arrow from A2 to the line CD in Fig. 7). In the
reverse transition, i.e., isothermal extinction, the hot seg-
ment disappears ( arrow from D to the line A\A2).

The segment Bt C corresponds to the "supercooling" of
the diffusional phase. Since the ends of the wire are in con-

FIG. 7. Average temperature evaluated over the length of the wire in the
compensated electrothermograph as a function of the square of the cur-
rent. A,A2 and B,B2 are the kinetic and diffusion branches, CD is the
coexistence line for the kinetic and diffusion "phases." Broken line shows
the result for the unstable "nucleus" of the diffusion state.
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tact with the cold electrodes, this supercooling is impossible:
if we take the system to the region CB2 and then reduce the
current (without stabilizing ( T ) ), then, as we approach C,
the "nuclei of kinetic phase" that are present at the ends will
ensure a transition to the kinetic state (to the point F). The
segment FA2 corresponds to the "heating" of the kinetic
phase. This means that the "nucleus of the diffusional
phase" (heated region) will grow under these conditions.6'

1.7. "Tricritical" point

Let us now follow Ref. 86 and consider the case illus-
trated in the box of Fig. 8. The resistors /?,, R2 (they have
identical electric and thermophysical parameters) depend
on temperature in accordance with the expression exp(£/
7") , but the ballast resistor R0 is temperature-independent.
Let us determine the currents /, , /2 for given voltage U. Since
we have two variable resistors, we can investigate particular-
ly simply the nonsymmetric states that are analogous to the
coexistence of kinetic phases (mentioned in Section 1.6). By
varying R0, we can smoothly go over from fixed voltage
across the working resistance ( when R0 -» 0 ) to fixed current
(R0*Ri,R2).

The behavior of this system can be described by the two
thermal-balance equations

r2_ej (4 = 1, 2), (1.29)

where <9, =e(T: -T0)T^2,
mass of the working resistor,

= taS(Mc)~\ M is the

Ri(To)
(1.30)

and the parameter x is similar to the Semenov number (1.4).
Figure 8 shows the subdivision of the x, p plane into the
different "phases." The case/? = 0, when the equations in
(1.29) are independent, was considered in the theory of
thermal breakdown,7 in which breakdown (#,— oo ) occurs
for x = \/e. When p is arbitrarily small, but not zero, the
discontinuity in the current ( finite for/? ̂  0) is accompanied
by the appearance of asymmetry (d^62or02^6^). In oth-
er words, only one of the two resistors breaks down, which is
in qualitative agreement with the experiment reported in
Ref. 7, in which a sharp spatial inhomogeneity was observed
in the breakdown phenomenon.

Transitions between symmetric and asymmetric states
exhibit hysteresis, as shown in Fig. 8. As p increases, the
region of bistability becomes narrower, and vanishes alto-
gether at p. —0.0786. When p>p*, the transition to the

0,2 -

2 4 6 ffS 10 p - f f 1

asymmetric state is not accompanied by a current discontin-
uity. Instead, there is a singularity of the form

I — 7C = const- (U — Uc)
1'-. (1.31)

The above effects resemble first-order phase transitions
(jumps and hysteresis) forp <p. and second-order transi-
tions for p >p,. Accordingly, the point xc ( p , ) in Fig. 8
plays the part of a "tricrital" point. In other cases, for exam-
ple, for "phase transitions" corresponding to (1.16), (1.18),
(1.21), and (1.23), the difference between "phases" of the
same symmetry (homogeneous phases) vanishes at the
"critical" point. The above equations can also be written in
the form

(Tm - T) =T-T,, (1.32)

where Tm and K are constants. The critical point is then
determined by the condition

FIG. 8. Kinetic "phase diagram" for a circuit consisting of three resistors:
1—symmetric state; 2—asymmetric states; 3—bistability.

The existence of the critical point (1.33) enables us to exe-
cute a continuous transition between the high-temperature
and low-temperature states, i.e., a transition without jumps
(ignition and extinction) via the post-critical region of the
parameter values. A transition between states of different
symmetry is not possible. This is the reason for the line of
soft rearrangement and the tricritical point of Fig. 8.

The connection between the symmetry of attracting
states and the subdivision of the space of the parameters into
regions belonging to these states was demonstrated here by
considering the simple example of stationary points. On the
other hand, it is quite obvious that this relationship is gen-
eral in character. The structure of the space of the param-
eters of the flow system depends on the symmetry of the
attracting states to the same extent that the shape of the
thermodynamic phase diagram depends on the symmetry of
existing phases.

2. PROGRESSIVE SOLITARY WAVES

We saw in Sections 1.6 and 1.7 that, under certain con-
ditions, the development of explosive instability will result in
spatially inhomogeneous states. Progressive solitary waves,
which constitute traveling inhomogeneities, are among the
striking phenomena studied in macrokinetics. They were
first described theoretically in Refs. 4, 40, and 41 in relation
to the propagation of a dominant gene and combustion
waves. It is shown in Ref. 4 that the velocity of uniform
motion of a flame relative to the burning material has a par-
ticular "intrinsic" value. When the undamped motion of a
hydrodynamic soliton is due to the precise compensation of
nonlinearity and dispersion effects,42 the energy spent in
heating the initial material in the combustion wave is com-
pensated by the release of heat in the chemical reaction zone.
Moreover, in contrast to solitons in a medium without dissi-
pation, the interaction between the solitary waves consid-
ered here is not at all similar to"elastic collisions." Interac-
tions will be examined in Section 4; for the moment, we
confine our attention to a single propagating wave.

2.1. Relaxation and switching waves

Let us consider (1.1) and (1.2) in a infinite medium
and seek their self-similar solutions that depend only on the
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argument x + ut, i.e., we confine our attention to the case of
a plane wave propagating from right to left along the x-axis.
The initial reagents lie ahead of the wave front and the hot
reaction products are left behind. Accordingly, in the coor-
dinate frame in which the wave is at rest, we have the follow-
ing equations:

X7" - uT' + <
Z>T]" — MT]' +

(T!, T) = 0,
(T), T) = 0

and boundary conditions

- oo, T = T0, T) =0,
+ oo, r = 0, T)' = 0.

(2.1)

(2.2)

(2.3)

(2.4)

As in Section 1.1, the function k( 1 — 77)" exp( — e/T) can
serve as a model for $(77, D. From the mathematical point
of view, the problem defined by (2.1)-(2.4) is not complete-
ly correct. Because of the small but finite reaction rate at
T = T0, the transformation will occur in a sufficiently dis-
tant region before the reaction "wave" reaches that region.
The phrase "intermediate asymptotic behavior" is therefore
used in this connection.90 To avoid introducing the finite
dimensions of the specimen, it is convenient to neglect the
source in (2.1) and (2.2) in the low-temperature region, as
in done in Ref. 4. The combustion wave is then found to
consist of two zones, namely, the heated zone and the reac-
tion zone (Fig. 9). In the heated zone

T = const -e^K, ti = const (2.5)

so that the influx of heat and reaction products into the fresh
mixture is independent of the coefficients^, D, and is a func-
tion of only the velocity u and the values T(x = 0) and
77 (.x = 0) on the boundary between these zones. Because the
source is an exponential function of temperature, the reac-
tion zone is narrow in comparison with the heated zone, and
the zone-width ratio is / R / / c ~r = T0Tf(£Q)"', where
Tf = T0 + Q is the temperature of the products. The mean
temperature in the reaction zone is close to T f , and the prod-
uct concentration is close to 77 R = exp( — T%D ~ ' ) , which
corresponds to the extrapolation of (2.5) to this narrow
zone.91 The rate of flow of heat out of the reaction zone is of
the order of pcQ<t>(i]R, T f ) l R . Using (2.5), we find that the
wave velocity is approximately given by

"2~ Tx<t> (T)R,Tt). (2.6)

A definite "intrinsic" value of u is obtained because the
problem defined by (2. l)-(2.4) is invariant under transla-
tion along the x axis. Since the solution then contains an

FIG. 9. Structure of combustion wave: C—heated zone; R—reaction
zone. The profile rj(x) corresponds to D<%.

arbitrary constant (which depends on the choice of the ori-
gin of coordinates), one of the conditions, (2.3) or (2.4), is
redundant. It can be used to determine the wave velocity.

The wave propagation mechanism is as follows. The
reaction is accelerated when the initial material receives the
heat that is rapidly released in the reaction occurring in the
heated medium. The propagation of a chain-reaction wave in
a highly diluted, slightly heated (cold flame) mixture was
discovered in Ref. 92. Isothermal propagation is due to the
diffusion of active particles from the reaction zone into the
initial medium. In both cases (chain and thermal propaga-
tion), the initial mixture of reagents is metastable, but equi-
librium is established behind the wave. Such waves can be
referred to as relaxation waves.

As mentioned above, to obtain a unique solution of the
problem defined by (2.1 )-(2.4), we must neglect reactions
at low temperatures.4'5'91 The excitation of the waves in this
way must be hard (see Section 2.6). A continuous spectrum
of wave velocities with a lower bound is obtained in Refs. 40,
41, where an analysis is made of the initial state that was
unstable against small perturbations. High velocities are ob-
tained for a "smeared out" initial distribution of active-par-
ticle concentration, and the propagation of this kind of wave
is a phase effect due to the delay of instability development in
distant portions of the system.91 Nonstationary (nonuni-
form) motion of the waves, due to the reaction at the initial
temperature is investigated in Refs. 163 and 164. A model
source is used in Ref. 164 to analyze the behavior of the
lower bound of the velocity spectrum between the limiting
cases considered in Refs. 4 and 40.

A relaxation wave can propagate in the "active medi-
um" produced by exciting the molecules of the material from
the equilibrium state (to vibrational or electronic levels).
Such processes are considered in Ref. 58 (wave of thermal
deactivation in a vibrationally excited gas) and in Ref. 93
(wave of thermal quenching of luminescence). The wave of
thermal recombination of free radicals (nitrogen atoms de-
posited on a liquid helium film) is investigated experimen-
tally in Ref. 94. Frontal crystallization of a highly super-
cooled liquid (in which the velocity of the interphase
boundary was an increasing function of its temperature) is
studied in Ref. 95.

In detonation waves, the heating of the original medium
is produced not as a result of thermal conduction but by a
shock wave. However, for all types of progressive solitary
waves in closed nonequilibrium systems (or systems inter-
acting with a thermostat), these are relaxation waves that
take metastable material to equilibrium. We now turn to
flow systems. To begin with, we shall suppose that the corre-
sponding states include a spatially homogeneous (and sta-
tionary) state. When the conditions are such that there is
bistability, the inhomogeneous state described in Section 1.6
(coexistence of kinetic "phases") is possible. The position of
the inhomogeneity, i.e., of the interphase boundary, can be
stabilized (in the same way that, for the temperature and
pressure corresponding to the phase equilibrium, the mass
ratio of these phases is set by fixing the volume). In general,
the inhomogeneity is not at rest. Let us consider the uniform
motion of the boundary in a bistable system. We shall follow
Ref. 96, in which the following equation is given for a hetero-
geneous reaction on a wire stretched across a current of
freshly prepared mixture:
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- uT + Q® (T) - Nu ~ TO) = 0. (2.7)

where the source <I> is given by ( 1 . 1 5 ) , the boundary condi-
tions are

z->-oo, T = 7\; x -^+oo, rs, (2.8)

r,, T3 are the temperatures of the kinetic and diffusional
states, respectively (see Fig. 6), d is the wire diameter, and
Nu is the Nusselt number.

One value of the velocity u in the problem denned by
(2.7) and (2.8) corresponds to each set of parameters in the
bistability region. When

(2.9)

we have u = 0. A "phase transformation" occurs when the
integral in (2.9) is not zero, and the direction of this trans-
formation (the sign of u) is the same as the sign of (2.9). So
long as the integral in (2.9) is small, we have

T-3

TJ-* \ F(T)AT.
TI (2.10)

Nu1/2

Both directions of propagation of the thermal wave are pos-
sible because both homogeneous states (before and ahead of
the wave) are nonequilibrium states. Such waves are called
switching waves. A large number of switching waves in dif-
ferent bistable systems is described in the literature. They
include ionization and recombination waves in the interstel-
lar gas,75 waves of transition between a semiconductor and a
semimetal,79'8' or between a superconductor and a normal
metal,80'82 waves of transition between bubble and film boil-
ing states,97 and so on. Figure 10 shows examples of the mea-
sured switching-wave velocity as a function of the supplying
thermal source (current). The graph in Fig. lOa is in qualita-
tive agreement with (2.10), whereas in Fig. lOb there is a
plateau for u = 0. A plateau is also observed in other systems
in which it is probably due to slight stabilization by inhomo-
geneities98 (in contrast to the stabilization described in Sec-
tions 1.6 and 1.7).

2.2. Separation phenomena

In contrast to switching waves whose velocity can be
either positive or negative, depending on the parameter val-
ues, the velocity of relaxation waves is always positive.
Moreover, we always have u>ut, where u, is a threshold

u
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FIG. 10. Velocity of switching waves supplied with Joule heat: a—motion
of the boundary between a superconductor and normal metal*"; b—transi-
tion between film and bubble boiling states97 with the wire heater im-
mersed in water.

velocity. The presence of thresholds was found in Ref. 99,
where an analysis was given of a flame propagating along a
tube (diameter d) . The narrow reaction zone can be regard-
ed as a surface on which

(2.11)

The temperature gradients T'_0, T'+0 are determined by

-»(r- T0) = 0, (2.12)

which is valid everywhere except for* = 0, and by the condi-
tion

T (x = ± oo) = 0) = T(-0). (2.13)

To close the problem denned by (2.11)-(2.13), we must
also provide the relationship between the velocity u and the
temperature T(x = 0) = Tm , which is given by the internal
solution. Let us suppose that

= const -exp ( — e/7"m) (2.14)

[cf. (2.6) ]. The equation for u, obtained by eliminating 7"m

from these equations, will, in general, have three roots, say
HI, «2, and tt, in order of increasing value. The solution cor-
responding to «2 is unstable. The root «, is redundant: for
velocities as low as this [(u, /«3)~exp( — e/271,,)], we
must take into account the reaction at T = T0, and there is
no wave solution. It is significant that, when

2eNu (2.15)

in which UQ = u(d-> oo ), the stable root u3 merges with u2

and vanishes. At the point of merging u = u, ~ uQ/e'/2. Heat
losses reduce the velocity of the combustion wave, but not to
zero, and separation (extinction) occurs for u = ul. The
separation mechanism can be reduced to positive feedback99

between the temperature Tm and velocity u. The velocity
falls when Tm is reduced, and the loss of heat increases,
which leads to a further reduction in Tm, and so on (see also
Ref. 91).

The velocity of an isothermal flame, propagating as a
result of the diffusion of active particles into the fresh mix-
ture, was calculated in Ref. 100. It was shown that also in
this case separation occurred for a finite (nonzero) velocity
as a result of the merging of stable and unstable solutions
(see also Ref. 101). The reason for separation is the loss of
active particles to the tube walls (see Section 1.1). When the
wave velocity is reduced, the diffusion current to the walls,
which is responsible for the losses, is found to increase, while
the maximum concentration of radicals (in the flame) falls.
Consequently, the reaction slows down, there is a farther
reduction in the wave velocity, and so on.

The motion of a plane crystallization front toward a
supercooled amorphous phase is discussed in Ref. 95. In-
stead of (2.14), we then have

= Const- (2.16)

which represents, approximately, the velocity of the inter-
phase boundary as a function of its temperature Tm, the tem-
perature of phase equilibrium Te, and the latent heat Q. At
low enough temperatures, (2.16) and (2.14) are practically
indistinguishable. As before, eliminating Tm with the aid of
(2.11)-(2.13), we obtain u as a function of the initial tem-
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perature T0, which is schematically illustrated in Fig. 11. Of
course, u = 0 when T0 = Te. The velocity increases in the
course of supercooling, but separation occurs at T0 = TA,
and u falls discontinuously to an exponentially small value.
This separation is similar to the combustion limit discussed
in Ref. 99. During heating to T0 = TB, the motion of the
boundary accelerates abruptly.

2.3. Flow reactor

When the excitation rate is low, a flow system may be
regarded as approximately closed over limited intervals of
time. As we have seen, switching waves occur in flow sys-
tems, and relaxation waves in closed systems. The velocity of
the latter has a threshold. To elucidate the relationship be-
tween these two types of solitary wave, we consider again the
exothermic flow reactor as an example. As noted in Section
1.5, there is a definite range of parameter values in which
there are two stable homogeneous states, namely, the high-
temperature and the low-temperature ones. Switching waves
propagating in the lateral direction (relative to the supply-
ing flow) accomplish the transition between these states. On
the other hand, when the parameters are such that only the
low-temperature (homogeneous) state is possible, the medi-
um filling the reactor at a given time can be "ignited." The
resulting wave is a relaxation wave that leaves behind the
reaction products. The weak supplying flow then ensures
that the initial state (cold fresh mixture) is restored well
behind the wave front. Thus, in addition to the homogeneous
state, there is also the inhomogeneous state, i.e., a propagat-
ing pulse,102 whose leading edge is the relaxation wave.

Let us now take the x axis at right-angles to the supply-
ing flow, to achieve maximum simplification, let us take the
length of the reactor along the x axis to be infinite, and as-
sume instantaneous mixing in the axial direction. Instead of
(2.1) and (2.2), we then obtain

j=|i(l —Ti)ee —T);

(2.17)

(2.18)

where |" = x/(r^)' /2, T is the time spent by the medium
in the reactor, 9 = £(T- ro)7Y2, v = u(r/x)1/2,
H = rK(T0), K is the reaction rate constant, 7= T2

0/eQ,
K~ ' = y( 1 + rrd~ '), and rd = d~/N% is the characteristic
time for heat transfer across the reactor walls. The transport
of material along the x axis will be neglected, the relevant
condition for this being D^X- A.S before, we assume that

FIG. 11. Velocity u of the crystallization front95 as a function of the initial
temperature of the amorphous phase T0. Broken curve—unstable solu-
tion.

The subdivision of the plane of the parameters ju, x for
homogeneous states5 is shown in Fig. 12a. The line^Z> corre-
sponds to the coexistence of the kinetic "phases" (2.9),
which takes the form

ft = e-*/2. (2.19)

In the region BAD, the high-temperature state is the "more
stable," whereas in the region CAD the low-temperature
state is the "more stable." The ignition line AB and extinc-
tion line AC play the role of kinetic spinodals. When x^> 1,
the equations for these lines assume the simple form:

(ex) (2.20)

respectively. The critical point A has the coordinates x = 4,
H = e~2. The velocity of the switching waves is v = 0 along
the line (2.19). When v < ^ ( y x ) l / 2 , we can neglect the left-
hand side of (2.18), as is done in Ref. 96. Eliminating rj, we
obtain a source of the form (1.15) in (2.17). The solutions
for this case are described at the end of Section 2.1.

Below the line AC, the boundary conditions for (2.17)
and (2.18) wi th ,u<l are

= ± oo, u., 9 (2.21)

The structure of the traveling pulse includes a heated zone, a
reaction zone, and a cooling zone, in which 9 and 77 return to
the values given by (2.21). When 7«<1, cooling is faster
than the influx of the fresh mixture, i.e., when 17 ~1, the
traveling pulse "reduces" to a relaxation wave.71 A calcula-
tion analogous to that given in Section 2.2 yields the follow-
ing estimate for the separation boundary:

II ~s 9w -3V ~\0-~ 1/v /") O l AY" rZZf tjc y >v t ' ' \L*.I,£, )

(the line EtE2 in Fig. 12a). When y is small enough, the line
EtE2 lies below the bistability region ABC. Consequently,
both switching waves and traveling pulses correspond to the
parameters belonging to this region. Figure 12b shows sche-
matically the function u(/z) for given x, where OH is the
traveling-pulse branch and O 'O " is the branch correspond-
ing to the switching wave. The separation for/* = fj., is anal-
ogous." At O', the switching wave is abruptly transformed
into a traveling pulse because of competition between the
terms vrj'g and — 77 in (2.18).

When the switching wave propagates toward the low-
temperature state (ignition wave), the reaction transforms

c u

FIG. 12. The states of the flow reactor: a—plane of the parameters (bista-
ble region shown shaded); b—v as a function of [t for given x. Unstable
solution shown by the broken line.

303 Sov. Phys. Usp. 30(4), April 1987 A Oi Moryhannw anH



not only the materials entering the reactor, but also the fresh
mixture lying along the path of the wave in the cold part of
the reactor. The faster the wave propagation, the greater is
the fraction of this "additional supply" that acts as positive
feedback for the system. Hence, the self-acceleration of the
wave ends discontinuously at the point O'.

The difference between a traveling wave front, for
which the states of the medium ahead of the solitary wave
and behind this wave are different, and a traveling pulse be-
hind which the initial state is restored, has frequently been
emphasized in the literature (see Refs. 27, 28, 157, 165).
From the point of view of the properties of solitary waves, it
seems to us that the most significant point is whether a given
wave is a relaxation wave, for which the velocity can change
sign, or a relaxation wave, which has a velocity threshold. In
particular, points representing v(/u </*2) on the branch OH
in Fig. 12b correspond to a solution in the form of a wave for
which the initial low-temperature state is restored behind
the wavefront, whereas points representing v(fj.>fj,2) corre-
spond to the situation where the high-temperature homo-
geneous state 0 = #3 =^x(< l/y) is established in the bista-
bility region behind the front, in which the temperature 0 is
close to \/Y- This change in the wave structure at /x =1*2
does not lead to a significant change in the wave velocity
because the change is largely confined to the "rear" of the
solitary wave.

When//2 <fi <fi3, the switching wave takes the reactor
from the high-temperature to the low-temperature state, and
this can be interpreted as a consequence of the "metastabi-
lity" of the high-temperature state. However, for the same
values of//, it is possible to excite a relaxation wave whose
propagation is accompanied by the replacement of the low-
temperature state by the high-temperature state.

2.4. Light-induced combustion

We now turn to the case of "longitudinal" propagation
in which the solitary wave travels toward the energy-supply-
ing flow (or recedes from it).

Examples of counter propagation include the motion of
a plasma region that absorbs energy from a laser beam' °3 and
microwaves in a waveguide.104 A receding wave is produced
when fog is illuminated by a laser beam.105 The evaporation
front associated with absorbing droplets in fog leaves behind
a transparent channel through which energy is supplied to
the front. Analogous effects are produced when the reacting
medium is eliminated: a counter wave is produced when the
initial mixture is transparent and the reaction products are
absorbed,106 while an accompanying wave appears in the
case of absorbing initial materials and transparent prod-
ucts.'07

The velocity of these waves depends on the power sup-
plied to the system, but they are structurally very close to
relaxation waves. In this respect, the light-induced combus-
tion wave,103 i.e., absorbing plasma, produced by thermal
ionization and propagating in the direction opposite to the
incident beam, is of considerable interest. For simplicity, the
absorption coefficient can be assumed to be zero'' for T<T.
and equal to the constant x for T>T* (7\ ~ 104 K is the
somewhat arbitrary temperature at which absorption satu-
rates ). When xd 4,1 (d is the diameter of the light channel),
and the motion is uniform, the plasma takes the form of a
column lying along the beam. Well away from the end of the

column, the heat release and the energy loss through the side
surface are in balance:

x/ (x) (2.23)

where /(*) is the intensity at a distance x from the leading
edge. The column is effectively bounded by two switching
waves, namely, an ignition wave ahead of the column and an
extinction wave at the rear. The length / of the column is
determined by the condition that the two wave velocities be
equal, i.e., u[I(Q)} = — «[/(/)]. The velocities are given
by formulas such as (2.10). However, this picture is useful
only when the length / is large enough.

Calculations of the interaction between the wavefronts
have shown108 that the dependence of the light-
induced combustion velocity on the parameter
s = I(Q)xd2(NpcxT, ) ~ ' have two branches that merge
when

(2.24)'

The lower of these branches is unstable,'09 which is fully
analogous to the results obtained for relaxation waves (see
Section 2.2). Since x increases with increasing pressure P,
( 2.24 ) shows that the threshold intensity /, initially falls as a
function of P and then reaches a constant value, which is in
qualitative agreement with the data reported in Ref. 1 10.

Studies of an optical discharge in a flowing gas" ' have
revealed a nonmonotonic (including a minimum) depend-
ence of the threshold power on the gas velocity u. This result
is interpreted108 as a consequence of the two-valuedness of
the function u (s ) . Since the lower branch of u (s ) is unstable,
a different explanation must be found. It may be considered
(in agreement with Ref. I l l ) that, when u < u, , the plasma
is displaced from the lens focus in the forward direction.
This produces an increase in d, so that u = ut (d), and the
threshold power ~/t ( d ) d 2 increases.

2.5. Interphase boundary

As in Section 2.2, the fact that the reaction-zone width
is small enables us to subdivide the combustion wave prob-
lem into an external and an internal problem. The internal
solution gives a nonlinear boundary condition that closes the
external problem. The same procedure is used to solve the
problem of the motion of the interphase boundary. The
boundary has an atomic width, so that the solution of the
internal problem that is necessary to obtain (2.16) lies out-
side the framework of macrokinetics. This solution is ob-
tained in Ref. 1 12 for a medium near the critical point, in
which the width of the boundary is a "macroscopic" quanti-
ty (of the order of the correlation radius of fluctuations) and
the van der Waals equation is valid. We shall write this equa-
tion in the form

(2.25)

where p=(P-Pc)P~\ r=(p-pc)p-1, t = (T
— Tc)T~l, the subscript c refers to variables evaluated at

the critical point, a phase difference can occur only for t < 0,
and the numerical coefficients are chosen in accordance with
the law of corresponding states. The last term on the right-
hand side is necessary if we are to describe the inhomogene-
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ity, i.e., the interphase boundary. The definition of the inter-
nal problem implies that t = const (T = Tm; see Section
2.2). Combining (2.25) with the condition for one-dimen-
sional stationary continuity and the Navier-Stokes equa-
tions

= p0U, P — P0 + p0M (V — U) = (2.26)

where v is the flow velocity, the subscript 0 refers to the state
ahead of the boundary, i.e., within the internal scale
x = — oo, v — (4/3 )rj + £, 17, f are the first and second vis-
cosities, and transforming to the dimensionless coordinate
g = x( -tG~})}'2, we obtain

eiE-^et=-(^ + 6)(e-e0)+-|-(es_ej); (2.27)
where 0 = r/( - / ) 1 / 2 , g = v(p,PcG)~v-, and U=u[pc/
( — tPc) ]' '-. The boundary conditions

e (| = - oo) = e0f o5 (i = + oo) = o (2.28)
are satisfied only for certain definite ("eigen") values of U,
which depend on #„.

In contrast to the formulation of the problem given in
Refs. 81, 82, which is close to (2.27) and (2.28), the right-
hand side of (2.27) depends on the velocity U because we
have taken into account the momentum balance (2.26). The
phase boundaries examined in Ref. 81 (semiconductor-se-
mimetal) and in Ref. 82 (superconductor-normal metal)
propagate under the influence of light that produces a non-
equilibrium quasiparticle concentration. The absorbed ener-
gy is dissipated in the form of noncoherent recombination
radiation (into excitons and Cooper pairs, respectively).
The boundary propagates as a switching wave, and the given
light intensity determines the densities of both phases (bista-
bility) in accordance with the conditions for equilibrium be-
tween pair creation and recombination. As far as the propa-
gation of the boundary between metastable and equilibrium
phases [defined by (2.27) and (2.28)] is concerned, the
density in the final state (equilibrium phase),
0(g = oo) = 02, is

 not given and must be found together
with the velocity. It is only for t/— 0, i.e., in the case of small
supersaturation for which the change in pressure in the wave
can be neglected, that Q^ is determined by the equation of
state. Similarly, in the case of slow combustion (when the
wave velocity is small in comparison with the velocity of
sound and the pressure is />= const), the temperature Tf of
the products is determined thermodynamically (see Section
2.1), whereas the state behind the fast combustion front de-
pends on its velocity (see Ref. 71, Section 122). A gas-dy-
namic calculation of the final state is given in Ref. 166 for the
decay of the metastable phase.

To be specific, we shall suppose that the metastable
phase has the lower density. The range of variation of 6Q

between the binodal and spinodal is ( — 2, — 2/v/3), and
#2>2 (equilibrium phase). As was first shown in Ref. 113,

U = - 3/3 (2g)-*Qlt (2.29)

where (9, is a root (as are #0 and #2) of the polynomial on the
right-hand side of (2.27). It is readily seen that, wheng2 < 9/
2, the function U(0(l) is two-valued in this region (U> 0). A
rising branch passes through the phase equilibrium point
00= — 2, U = 0; the solution corresponding to the other
(descending) branch is unstable. For sufficiently fluid mate-

rials (g<2), these branches merge at <90 = #. < — 2/V3,
and we again have the phenomenon of separation. We may
suppose that inclusion of terms of higher order in r in (2.25)
will lead to the appearance of a new branch with greater
values of U, and the solution (2.29) undergoes an abrupt
transition to this new branch at 0,.

The onset of separation at 6, can be explained as fol-
lows. The boundary is stationary when the chemical poten-
tials of the two phases are equal, so that the phases are in
equilibrium with each other. The velocity of the boundary
increases with the diiference A,u between the chemical po-
tentials of the equilibrium and metastable phases. Accelera-
tion of the boundary is accompanied by an increase in the
pressure of the equilibrium phase and in A,w, which leads to
further acceleration, and so on.

The "initial" supersaturation 00 is found by solving the
external (thermal) problem. The solution of the internal
problem (see Section 2.2) together with (2.29) shows that,
for a three-dimensional specimen, the temperature Tm of the
boundary is almost equal to the phase equilibrium tempera-
ture 7"e for all 7"0. The velocity of the boundary is therefore
small in comparison with (2.29), and depends neither on
viscosity nor on thermal conductivity (Stefan state). It is
only in one- and two-dimensional cases (films and fila-
ments), for which Tm^T0, that the velocity is close to
(2.29) (hydrodynamic state). For the crystallization
front,95 the transition from the Stefan to the hydrodynamic
states in the two-dimensional system corresponds to super-
cooling 71,, 5 7"e — Q.

2.6. Ignition

The study of solitary waves is a relatively complicated
task because the process is nonstationary and there is an
obvious variety of initial conditions that lead to a given
steady state. For relaxation waves, the unstable solution
serves as the boundary of the attractor region, but only for
one class of initial conditions. A reaction in a layer in contact
with a hot surface was considered in an early paper.'14 It was
assumed that ignition corresponded to the separation of the
stationary thermal state. At the point of separation, the tem-
perature gradient on the surface becomes equal to zero, i.e.,
the release of the heat of reaction in the boundary layer is
completely compensated by its loss to the cold medium. It
was assumed in Ref. 115 that ignition occurred when the
heat yield of the reaction was equal to the heat input into the
system. A numerical experiment was used in Ref. 116 to
investigate the entire process of approach to combustion,
and not just its initial stage. It was found that this approach
was often accompanied by oscillations in the distribution of
Tand T). Oscillations were also observed in the experiments
reported in Ref. 117 on the propagation of a combustion
wave across the separation boundary between two types of
solid fuel. The oscillations were probably due to the same
mechanisms that were responsible for the instability of sta-
tionary waves, to which we now turn.

3. DIFFUSIONAL INSTABILITY OF RELAXATION WAVES

3.1. Hydrodynamic and diffusional instabilities

Hard decays of metastable states were examined in Sec-
tion 1. As noted in Section 2.6, relaxation waves evolve to

305 Sov. Phys. Usp. 30 (4), April 1987 A. G. Merzhanov and E. N. Rumanov 305



such states under certain definite (localized) interactions.
In addition to separation phenomena (Section 2.2), relaxa-
tion waves exhibit diffusional instability that develops in the
soft state, and also hydrodynamic instability. These instabi-
lities were originally discovered by studying combustion
waves. The hydrodynamic instability ' 7> ' 8 appears as a conse-
quence of the thermal expansion of the burning medium. If
we look upon the combustion wave as a surface across which
there is an abrupt change in density, the spectrum of the
corresponding linearized problem is described by the follow-
ing dispersion relation17:

Q2(w0 + u) + 2Qku0u + - u) = 0, (3-D

where u0, u are, respectively, the unperturbed velocity of the
original material and the velocity of the products (in the
coordinate frame in which the wave is at rest and the unper-
turbed flow is a steady state one) . Because of thermal expan-
sion u>ua ensures that there is a root H > 0. In accordance
with (3.1), short waves grow more rapidly than long waves
but, when k S; un/x, the wave can no longer be looked upon
as a surface of discontinuity, and we must take into account
its structure, as described in Section 2. 1 .

A new ( diffusional ) instability is revealed when the
structure is taken into account. Qualitative ideas explaining
the origin of this instability were first put forward in Ref. 21.
Let us suppose that the ratio of the diffusion coefficient and
thermal diffusivity is Le = D /%> 1. The protrusion that ap-
pears on the plane surface of the flame is then in an "advan-
tageous" position: the fresh mixture arrives in the reaction
zone more rapidly than heat leaves this zone. The tempera-
ture in the reaction zone becomes higher and, at the same
time, there is an increase in the rate of combustion on this
part of the front. The protrusion runs forward, and the cur-
vature of the front increases. We shall see in Section 3.2 that
both instabilities can be stabilized by the same factors.

When Le < 1 , the ratio of the diffusion and thermal
fluxes from the reaction zone is such that it tends to suppress
the curvature of the front. Calculations of the stability lim-
it"8 confirm these qualitative considerations. Moreover,
studies of the diffusional instability"9'120 have shown that,
when Le = 0 (see also Ref. 43), the instability also occurs in
the region s > 4, where

d In u
(3.2)

is the so-called temperature coefficient of velocity. The posi-
tion of the limit of stability on the Le, s plane is shown in Fig.
13 (taken from Ref. 121). According to this figure, there are
two instability regions (I and II). The boundaries of these
regions approach the Le = 1 line asymptotically as j-» oo.
When Le = 1, it is clear from (2.1)-(2.4) that the rj and
T — T0 profiles are similar, and one of the equations (2.1)
and (2.2) can be eliminated. In the case of a single equation,
the monotonic solution describing the combustion wave is
always stable.122 The mechanism responsible for the insta-
bility in region I was discussed above. The instability in re-
gion II is probably generated by structural features on the
combustion wave for Le < 1: because there is little diffusion,
the heated layer ahead of the reaction zone is virtually free of
combustion products. The front can propagate rapidly
through a heated fresh mixture of this kind, and then comes
to rest before the cold medium (see Ref. 20). Instability to

curvature is a secondary effect: when the separation between
two portions of the front is much greater than the character-
istic length I0~x/u, the two cannot influence one another
and the "phases" of their motion are, in general, different.19

The growth-rate spectra calculated in Ref. 119 are in
agreement with the above discussion.19 All the spectra ter-
minate (Re O passes through zero) for a finite value k = ka,
where k0 is of the order of / 0~ '. At the same time, in region I
we have Sl~k2 for fc-»0, and in region II the growth rate
remains finite for long-wave modes.81 When stability was in-
vestigated in Refs. 118-120 and elsewhere, the analysis was
based on a simplified model of the combustion wave (see
Section 2.2): the reaction zone was replaced by a surface on
which the thermal and diffusion fluxes had a discontinuity.
Instead of the "internal" solution, we can introduce a non-
linear boundary condition relating the temperature of the
"surface" and the velocity of the wave. The dependence of
velocity on temperature gradients is additionally taken into
account in Ref. 121. The approximation involving an infini-
tesimally narrow reaction zone enables us to examine the
spectra so long as |ft| <^TR ', where rR is the reaction time.
The restrictions on the side of the short-wave modes are less
significant because k0 < (%TR )" 1/2. We shall return to this
question in Section 3.4.

Gas mixtures in which the concentration of the light
reagent is lower than the stoichiometric value can serve as a
model of a medium with Le> 1. When a combustion wave
propagates through a condensed medium, we have Le < 1.
We shall consider both these cases in the account that fol-
lows.

3.2. Cellular structures

The transformation of a laminar into a cellular flame
was discovered in experiments22 with gaseous mixtures
(Fig. 14, taken from p. 265 of the book by Lewis and von
Elbe54). The bright cells framed by darker boundaries have
dimensions of the order of 1 cm. The mixture, whose flame
was photographed, included nitrogen, oxygen, and butane.
The concentration of the last of these was greater by a factor
of 1.39 than the stoichiometric figure. Cellular structures
have also been observed when butane was replaced with hy-
drocarbons in a comparatively wide range of pressures and
other parameters. In all cases, the mixtures were depleted in
the light reagent. It appears that the corresponding diffusion
coefficient was higher than the thermal diffusivity of the
mixture, so that the situation corresponded to region I in
Fig. 13.

In this region,"8'121 the growth rate spectra exhibit a
maximum at the wavelength ~ \0%/u. We may suppose that
the behavior of the system is determined by the mode with
the highest growth rate fl(km) [other modes grow more
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FIG. 14. Cellular structure of a flame. The photograph was taken at an
angle from below. Pressure 414 torr.

slowly and their amplitudes eventually become negligible in
comparison withA(km ) ] . On this assumption, the mecha-
nism responsible for stabilization appears to be as fol-
lows.123'124 Consider the curving of the front, for example, in
accordance with the law sin kmy, where they axis is directed
along the unperturbed plane front. As the front propagates,
its shape changes in a way that can be readily determined
from the Huygens principle. Depressions are replaced by
corner points. However, a corner point propagates more
rapidly, its velocity being «/cos a, where a is the angle be-
tween the y axis and the front at this point. Propagation of
the corner points compensates the increase in curvature, and
the steady-state value of the amplitude is ~ fl/uk2. Numeri-
cal calculations121 have shown that, when Le> 1, the solu-
tion describing the combustion wave does actually reach a
stationary state (uniform motion) in which the front is
curved. The curvature scale is 2ir/km, and the convex por-
tions are separated by "corner points" at which the curva-
ture is a maximum. The temperature maximum is reached at
the center of a convex portion, and exceeds T(. Accordingly,
the velocity of the curved front is higher than that of the
plane front. The calculated cellular structure is thus made to
resemble the observed .structure.

The stabilization of curvatures by the corner points is a
purely geometric factor which works equally well for diffu-
sional and hydrodynamic instabilities. The growth rate of
the latter is shown by (3.1) to increase with k. However, for
large k, the dependence of the combustion rate on the front
curvature22 due to transport phenomena (as discussed
above) becomes significant. Short-wave hydrodynamic
modes turn out to be stable, so that the growth rate spectrum
H(/c ) has a maximum for a certain km. This determines the
scale of the structure stabilized by the corner points. Ac-
cording to Ref. 19, the growth of long-wave modes eventual-
ly suppresses the cellular structure. For example, during
flame propagation in a tube, when the Reynolds number is
sufficiently high and hydrodynamic instability should devel-
op, the laminar flame transforms into a convex flame (single
cell, covering the entire cross-section of the tube; cf.
Ref. 167).

3.3. In-phase oscillations

We now turn to region II in Fig. 13. Combustion waves
in condensed systems (D <j) belong to this case. The insta-
bility is due to the fact that the heated zone contains practi-
cally no reaction products20 because there is little diffusion.
The front can traverse the heated medium at high speed, but

comes to rest after the heated layer has been consumed. The
temperature in the reaction zone falls, and thereafter the
influx of heat from the combustion products produces a new
heated layer, and the entire picture recurs. Instead of the
uniform motion of the combustion wave, a self-oscillatory
state is established in which its velocity and other character-
istics are periodic functions of time. Combustion waves in
condensed media generally have a complicated banded
structure (see Section 4). In view of the effect of this struc-
ture on diffusional instability, we can subdivide all systems
into two classes. In gunpowder and other explosive media,
the combustion wave is accompanied by a sharp fall in den-
sity (evaporation, gasification). During the depression
stage, which follows the rapid combustion of the heated lay-
er, the influx of heat from the gaseous zone of reaction prod-
ucts is relatively small and, instead of growth of oscillations,
we frequently have extinction (similarly to the separation
described in Section 2.2). Fuel mixtures containing con-
densed reaction products (thermites are an example) belong
to the second class. The high thermal-energy density in the
products effectively supplies the combustion front during
the depression stages. Different types of self-oscillation are
therefore readily observed during combustion in such sys-
tems. Some are described below.

E. I. Maksimov has observed23 pulsations in radiation
from the hot surface of nitroglycerin powder and noted the
formation of condensed intermediate products on the sur-
face, i.e., a grid of carbonized cellulose filaments. Theoreti-
cal analysis43 of a model of gunpowder combustion that ex-
tended previous work20 led to a solution for the in-phase
oscillations of the front (excited in the hard state). Oscilla-
tions in the rate of combustion of a thermite compound were
reported in an earlier paper.U6

Systematic studies of combustion waves in mixtures
containing condensed reaction products have identified the
region in which oscillatory states occurred, and their proper-
ties were investigated. One of the factors that stimulated in-
terest in these systems was the development and application
of methods of self-propagating high-temperature synthesis
based upon them (see Ref. 127).

Numerical experiments have played a major part in the
investigation of different self-oscillatory states. In order to
reach a given state, it is sufficient to choose the initial condi-
tions in an "attractor region." Of course, whether a particu-
lar experiment is effective depends on the extent to which the
chosen conditions are close enough to a particular state. The
attainment of in-phase oscillations44 was the first to be im-
plemented. The evolution of these oscillations as the bifurca-
tion parameter (3.2) moves into the instability region is il-
lustrated in Fig. 15, which presents the results reported in
Ref. 128. Velocity oscillations are excited in the soft state,
and there is clear evidence of successive period doubling.

In-phase oscillations have been observed24 during the
combustion of many systems (Nb-B, Hf-B, and so on).
Their characteristics are in good qualitative agreement with
the foregoing discussion and with numerical experi-
ments.44J2X The quantity s in (3.2) is a decreasing function
of temperature in the reaction zone [e.g., in the simplest
case, s= (1/2)(£?£• TV2). This means that dilution of the
burning mixture with an inert material24 (reaction product)
corresponds to an increase in s. The measured frequency of
the oscillations decreases with the degree of dilution. In the
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FIG. 15. Evolution of oscillations in the velocity of a combustion wave:
«0—velocity of a steady-state (unstable) front; g—dimensionless coordi-
nate.

self-oscillatory state, the combustion wave propagating over
the specimen produces a structure that is periodic in its
chemical composition because the "depth of transforma-
tion" during crests and troughs is different.

A theory of the steady-state and self-oscillatory propa-
gation of the "neck" produced during the deformation of a
polymer rod was developed in Ref. 129 on the basis of an
analogy with the combustion wave (for Le = 0), and the
corresponding experiments were reported in Ref. 130. Oscil-
lations in the velocity of the crystallization front in a highly
supercooled liquid95 appear to be possible when the "intrin-
sic" velocity (2.16) of the separation boundary between the
phases increases with temperature. In the oscillatory state,
the liquid layer adjacent to the front becomes heated and
crystallizes rapidly. The front then comes to rest, heat is
transferred from the solid phase, the phase executes another
"hop," and so on.

3.4. Spin states

The propagation of a luminous "reaction focus" along a
helical line on the surface of a sample was observed in Ref. 24
in addition to in-phase oscillations. This process was called
spin combustion.91 Figure 16 reproduces a photograph131 of
a longitudinal cut through a sample in which this type of
combustion has taken place. Since the temperature of the
focus is higher than that of the main front, the helical trajec-
tory is determined by the composition of the combustion
products. Comparison of the sample diameter with the pitch
of the helix shows that the linear velocity of the focus is
several times greater than the velocity of the main front (the
latter is of the same order as in the steady state). While in the
case of in-phase oscillations, the accelerated motion of the
front near the heated layer of the material occurs against the

temperature gradient (as in the steady-state wave), in the
case of spin, the focus runs over the heated layer along the
front.

These simple concepts are in agreement with numerical
calculations.25 Equations (1.1) and (1.2) with D = 0 were
integrated over a two-dimensional domain in the form of a
band of width d. The cyclic condition T(y = 0) = T(y = d),
r/(y = 0) =i) (y = d) was imposed at the edges of the band,
and the ignition condition (high temperature) was applied
to one of the ends. When s = 12.5 (this corresponds to the
instability region in Fig. 1 3 ) , the system approaches the state
of in-phase oscillations as d increases, and the spin state
evolves thereafter. For still greater values of d, the structure
of the "spin" waves becomes more complicated: two foci are
formed and run along the helix in the same direction. The
"multiplication" of foci was observed even in the early ex-
periments.24 Special examination132 subsequently revealed
structures with two or three foci, associated with an increase
in the sample diameter (see below ) .

An original approach to the theory of spin states was
developed in Ref. 46. A phenomenological equation was pos-
tulated for the function g(y, t) denning the position of the
front in the coordinate frame moving with the mean combus-
tion velocity:

+ <oJg = 2«2 [I— |- (3.3)

FIG. 16. Longitudinal cut through a specimen burnt in the spin state.
Initial composition Ti + FeB.

where (o% = co\ + a>\, &»,, a>2 are the frequency and growth
rate of laminar perturbations, known from studies of the
stability of a stationary combustion wave for Le = 0 (see
Section 3.1), and A0 is the amplitude of the in-phase oscilla-
tions. According to (3.3), each segment of the front can be
assigned a nonlinear oscillator. The nonlinearity ensures
that the instability is stabilized. Coupling between neighbor-
ing oscillators, described by the last term in (3.3), is due to
thermal conduction. The range of this coupling is equal to
the correlation length /„. While the medium is present in the
reaction zone, a given portion of the front does not have time
to receive heat from regions located at distances exceeding
'„•

To describe the spin states, the periodic boundary con-
dition g(y,f) — g(y + d,t) must be added to (3.3), where d
is the perimeter of the sample cross section. As d increases, in
addition to the in-phase oscillations, there are also solutions
corresponding to spin combustion with one, two, and so on,
foci. The state corresponding to spin combustion turns out
to be hard, since solutions with sufficiently small amplitude
are unstable. Both numerical experiments45 and phenome-
nological theory46 deal with "one-dimensional" fronts; in
the case of a cylindrical sample, this means that the reaction
is localized in a thin surface layer.

A systematic analysis of spin states was performed in
Refs. 47 and 133 in the proximity of the stability boundary,
where the solution was not too different from an unstable
steady-state wave (see also Ref. 134). The corresponding
corrections can be calculated from (1.1) and (1.2), linear-
ized on a steady-state plane wave T(x + ut), rj(x + ut),
where, in the frame in which the steady-state wave is at rest,
the coefficients of the linearized set of equations do not de-
pend on time. A general scheme of this type of calculation is
described, for example, in Ref. 7 1 ( Section 27 ). The solution
is a periodic function of time ( frequency a> , ) , with amplitude
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FIG. 17. Specimen burnt in the stochastic state.'"

A~iv2/2. The factors in the solution that are functions of
coordinates, in turn split134 into products f t ( x ) f2(y,z),
where /, are eigenfunctions of the Laplace operator on the
cross section of the sample. In the case of a circular cylinder,
it is convenient to transform47 to the moving coordinate
frame defined by x = x' + ut, <p = arc tan(z/y) = <p ' + catt,
in which the problem becomes a steady-state one. In general,
the "two-dimensionality" of the front leads to a great variety
of structures. In addition to the in-phase oscillations and
spin states mentioned previously, solutions appear with peri-
odic splitting and merging of foci, oscillations of foci be-
tween the center and the periphery, and so on.

The stability of different periodic solutions is due to the
natureofthegrowth-ratespectrumw:(& 2) (Ref. 134).Sup-
pose that the bifurcation parameter is the quantity s in (3.2),
and that the stationary wave loses stability when 5 = 5..
When w,(s,. ) vanishes for k - = 0, the in-phase oscillations
are stable, but, when k : > 0, the spin states are stable. We
recall that, strictly speaking, we are concerned only with the
neighborhood of the point s,. According to Ref. 119, the
second case occurs for Le = 0, and the line s ( k 2 ) corre-
sponding to the stability boundary has a minimum for
k~l 0~ '. However, the depth of the minimum is small. (For
a given s, the short-wave modes k ^ 10~ ' are damped out by
heat conduction, and this is responsible for the "basic"
monotonic" dependence on k of the position of the boundary.
The behavior for small k is evidently dominated by the inter-
play of relatively weak interactions.) Because the depth of
the minimum is small, we may suppose that different period-
ic states are "almost equivalent" in a transition from one
state to another for a sufficiently small change in the param-
eters or the conditions of excitation as is observed experi-
mentally.

In addition to the complication of the structure of spin
states mentioned above, it has been found experimentally135

that, in samples of rectangular cross-section, the focus hops
periodically from edge to face (in accordance with the calcu-
lations reported in Ref. 134); when ignition is applied to the
center of a disk, the focus moved over a discontinuous
untwisting helix'36; and so on. We have already noted that
the dilution of the initial mixture with reaction products
simulates an increase in 5. Under these conditions, one ob-
serves a transition from a steady-state wave to in-phase oscil-
lations, and then to spin combustion. Between the in-phase
oscillations and the spin states, there is an interval of concen-
trations that leads to a random propagation of the front [ir-
regular oscillations of the focus or several foci132''37 (Fig.
17)] .

We note in conclusion that, in the case of a soft (or a
hard, but approaching a soft) instability development, the
nature of the new attractor state is predetermined by the

"eigenfrequency" on the stability boundary. For example,
Im fi^Oon the boundary of region II in Fig. 13, and period-
ic waves (in-phase oscillations and spin states) are created.
Near the boundary of region I we have Im ft = 0, and the
wave remains a steady-state one, but acquires a cellular
structure.

3.5. Complication and stochastization

The region of unstable stationary waves 5 > s, has not as
yet been penetated too far. In 1971, G. I. Barenblatt suggest-
ed that the complication of the structure of in-phase oscilla-
tions found in numerical experiments44 (see Section 3.3) led
to a stochastic combustion state ("one-dimensional thermal
turbulence") as s increased further. The sequence of bifurca-
tions, i.e., the period doubling demonstrated in Fig. 15,
seems to present us with evidence for a relatively simple
"scenario" of stochastization. However, numerical experi-
ments44'128 are artificially restricted by the one-dimensional
situation, and the plane front is "secured by hand." It be-
came clear later that the instability of the plane combustion
wave generated not only in-phase oscillations, but also a
multitude of non-one-dimensional periodic states, as men-
tioned in Section 3.4.

Investigations of nonstationary combustion in the Ti-B
mixture containing Cu as the inert additive,132 or the iron-
zirconium thermite diluted with the reaction products,137

mentioned in Section 3.4, yield the following picture. As the
concentration of the inert component increases, the in-phase
oscillation state becomes randomized, but the stochastic
state is not one-dimensional, and irregular pulsations of one
or more foci are observed. The range of concentrations cor-
responding to combustion in the stochastic state is restrict-
ed, and strong dilution leads to the replacement of the sto-
chastic state by a regular state, i.e., spin combustion. This
change of state is one of the most topical theoretical prob-
lems in this area.

4. MULTIZONE STRUCTURE OF PROGRESSIVE WAVES

From the hydrodynamic point of view, the combustion
wave is a surface of discontinuity of density, temperature,
concentration, and so on. The structure of the heated zone
was taken into account in studies of separation and diffu-
sional instability, while the reaction zone was looked upon as
the surface of discontinuity of thermal and diffusion flows.
To calculate the velocity of combustion waves and of the
analogous progressive waves, we must now consider their
structure as a whole. In many cases, the structure of a
steady-state wave is complex (multizone). In a complex
structure which, like a simple structure, constitutes an at-
tractor for a whole range of initial conditions, the effects of
self-organization are particularly prominent, as is the forma-
tion of that "ordering" which Schrodinger contrasted with
the order in crystals138 as far back as 1943.

Here, we shall briefly describe a few examples of the
multizone structure of steady-state waves, due to different
factors. Mathematically, each case requires a set of equa-
tions that is more complicated than equations (1.1) and
(1.2) of Sections 1-3. Accordingly, the results which we
shall now consider can be classified as belonging to the "zoo-
logical level," even more so than the previous results. In
addition, it is found that a complicated wave can always be
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divided into a number of zones of different function, and the
set of equations can be simplified in a specific manner within
each such zone.

4.1. Two-zone combustion wave

In Section 2.1, we considered a combustion wave con-
sisting of heated and reaction zones. Let us now suppose that
the chemical transformation occurs in two stages:
A-»B-»C. A stationary combustion wave is described by a
self-similar solution (which is a function of x + ut) of a set
of three equations for T, rjB, and TJC . The corresponding
numerical calculations and their analysis were first reported
in Ref. 48. They can be illustrated by simple qualitative con-
siderations.49 As shown in Section 2.1, the reaction zone oc-
cupies a narrow temperature interval (~T2/e). We shall
start with a structure in which the first reaction occurs near
the temperature T1, and the second near the higher tempera-
ture T2. (When T>Tlt the first reaction does not proceed
because the original mixture A has already been consumed.)
For each of the reaction zones, we can write down relation-
ships such as (2.11), while outside these zones, the flux of
heat is a linear function of temperature (Michelson's law).
As far as the "internal" solutions are concerned, we follow
Ref. 5 and replace (2.14) with

(* = 1, 2), (4.1)

where q, =xT'(T= T, +0). It is assumed in (4.1) that
integration of the complete set of equations leads to an analo-
gous relationship between 71, and u, and the only difference
is that there is a weak (power-type) dependence of F, on T,.

If we neglect heat losses, we have T2 = T0 + Qi + Q2,
q2 = 0. The wave velocity u is then determined from (4.1)
for/ = 2, i.e., it depends only on the kinetic parameters of the
second reaction. Substituting this value of u in (4.1) for
/ = 1, and recalling that

?! = u (T, - T0 - Ql}, (4.2)

we obtain 7", and hence the structure of the wave. Thus, the
velocities of the two zones become equal (steady-state wave)
because the second reaction zone heats the first and raises its
velocity. This is the "control state." It is possible only for a
limited range of parameter values for which TW<TI <T2,
where Tto=T0 + Ql. When 7", = Tlo, the first zone can no
longer be controlled and a transition to the separation state
takes place. In this state,I0) the second zone has no influence
on the first, q, = 0, and the wave velocity u is determined by
the rate of the first reaction at its "own" temperature Tw. On
the other hand, when 7", = T2, the two zones merge and the
combustion wave degenerates to the single-zone situation.
This is illustrated in Fig. 18.

The peculiar two-zone thermal wave is generated by
supplying to the separation boundary between a solid trans-
parent dielectric and a conducting melt a sufficient amount
of microwave power through the dielectric.141 The absorb-
ing boundary of the melt moves in the opposite direction to
that of the microwaves (see Section 2.4), and heat is released
in the skin layer of the melt and in the heated layer of the
solid phase near the boundary. Although the conductivity of
the solid phase at the melting point is usually lower by sever-
al orders of magnitude76 than the conductivity of the melt,
the power dissipated in these two zones can be comparable if

T0 a T2 T T0 7, b T2 T

FIG. 18. Phase trajectories of the two-zone combustion wave: a—merging
state; b—control state; c—separation state.

the former zone is much wider than the latter. The control
state prevails so long as the supply of heat from the melt to
the solid continues. However, when Qu = q+, where Q is the
latent heat of melting and q+ is the flow of heat from the melt
to the interphase boundary, the first zone "separates," the
width of the heated zone in the solid increases, and the
microwaves penetrate the entire melt.

When Q2 <0, the control state is not possible.142-143 In-
stead, there is bistability: depending on the ignition condi-
tions, we can have either the merging state (the temperature
in the wave increases monotonically from Tn to T-, <Tm) or
the separation state (the temperature increases to almost TU)

and this is followed by a fall to T2 due to the slow second
reaction). It is clear that the wave velocity in the separation
state is greater in such systems than in the merging state.

4.2. Multizone waves

The idea of three propagation states of the two-zone
wave (control, merging, and separation) can be naturally
transferred to multizone structures.49 According to these
ideas, the space of the parameters (pressure, initial tempera-
ture, and so on) splits into regions in each of which the wave
velocity depends on the kinetic constants (activation energy,
pre-exponential factor) of only one reaction. There is always
a dominant zone in the wave structure, but, as the param-
eters vary, this function can be transferred from one zone to
another.

However, in real multizone waves, there are not only
reactions, but also phase transitions and other processes that
result, in particular, in the evolution of different inhomo-
geneities. The picture is significantly complicated by the in-
terrelation between the reactions and these processes. Figure
19 shows the temperature distribution in a steady-state com-
bustion wave in the alloy 5Ti + 3Si, measured with microth-
ermocouples compacted into the samples.l44 Judging by this
profile, the structure of this wave is an example of the com-
plication mentioned above.

4.3. Wide zones

In the simplest case, the influence of the inhomogeneity
of the medium reduces to a significant widening of the reac-
tion zone. As noted in Section 2.1, the narrow width of the
reaction zone is due to the activation-type (Arrhenius) de-
pendence <t>~exp( —£/T), This ensures that the reaction
zone occupies the temperature interval T}e~^4,Q. How-
ever, diffusion restrictions lead to a weaker temperature de-
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FIG. 19. Temperature profile of a combustion wave in the mixture
5Ti + 3Si. Titanium particle size

pendence of the reaction rate at high temperatures (see Sec-
tion 1.5).

Since, in a combustion wave, the heat can be transferred
only to distances /,,—^/w, a wide reaction zone is found to
consist of two zones145 whose structure and functions are
different. In the propagation zone, whose width is ~ /„, prac-
tically the entire released heat is transferred to the fresh mix-
ture. It follows that the temperature does not change very
much within this zone. In the remaining part of the reaction
zone (burnout completion zone), the heat flow in the direc-
tion of propagation of the wave can be neglected and practi-
cally the entire heat released in a given portion of the medi-
um is expended in heating this portion. In its heat-flow
distribution, a wave with a wide reaction zone resembles a
two-zone wave in the separation state (see Fig. 18c). The
relatively small temperature range within the propagation
zone means that this zone can be approximately character-
ized by a single temperature T., which now plays the same
part as Tf in the case of a wave with a narrow reaction zone.
The wave velocity u can still be estimated from (2.6) pro-
vided we introduce the replacements Tf->T,, F — 1. A cal-
culation of u for a given function ̂ (r/, T) is given in Ref. 145.

4.4. Gasification

In gunpowder and certain other condensed media, the
reaction products are gaseous and a phase transition occurs
within the structure of the combustion wave. It was assumed
in early work20'146 that the condensed medium first evapo-
rated and then reacted, releasing heat which was transferred
to the surface of the specimen and produced evaporation.
Subsequent experiments showed147 that a substantial frac-
tion of the heat was released in the surface layer of the con-
densed material. Systems in which the surface layer is solid
or porous are discussed in Ref. 148. Gaseous reaction prod-
ucts are extracted through the pores of the "burning" sur-
face. The solid carcass of the surface layer can be destroyed
by reactions and gas jets, and this explains the dispersion of
this layer observed147 at low pressures.

In most gunpowders, the heated surface layer is in a
liquid state. Equilibrium release of the gas produced in the
reaction should give rise to the foaming of this layer and,
even for small values of the transformation depth 77, the den-
sity should fall sharply. Calculations based on the equilibri-
um gas-release model'49 have shown that, at moderate pres-
sures, the reaction zone in the surface layer (K zone) is
controlled by the reaction zone in the dispersed medium
above the surface (D zone). According to the data presented

in Ref. 147, the K-zone plays the leading part (mechanical
removal of the D-zone does not lead to extinction), which
corresponds to the separation state.

It has been suggested150 that equilibrium gas release
does not actually occur and that the gas concentration in the
K-zone is significantly higher than the solubility 77,, (usual-
ly, 77,, < 1). The resulting gas is removed by diffusion through
the burning surface well before the supersaturated solution
decays. Because the diffusion coefficient in the condensed
material is low, the first term in (2.2) need not be taken into
account when the structure of the combustion wave is calcu-
lated, except for the neighborhood of the interphase bound-
ary (burning surface). The boundary conditions on the sur-
face are

& l_ *T. J )

where/?s andp are the densities of the condensed material
and of the gas, respectively, and 77'!,, is the gradient on the
surface on the side of the K-zone. The rate of outflow of gas
from the surface, ue, is determined by the condition ps u-i)s

= pus, where 77,, is the depth of transformation in the K-
zone. It follows from (4.3) and (2.2) that a narrow diffusion
zone between the K-zone and the surface is present, and its
width ~D /u is small in comparison with the width ~ FX/U
of the K-zone. The chemical source in (2.2) can be neglected
within the diffusion zone, and the concentration of products
falls from 77S to 77,, in proportion to exp(ux/D). In the labo-
ratory frame, the initial material in front of the combustion
zone is stationary, whereas the portion of this material con-
tained within the diffusion zone moves together with the
wave.

The nonmonotonic distribution 7 7 ( x ) is analogous to
the "inverted" temperature distribution in the laser evapora-
tion wave.151 The light flux incident on the surface of a con-
densed material is absorbed in a layer of width '.Since
the surface is a heat sink, the temperature distribution in the
condensed phase has a maximum at a distance ~%/u from
the surface, where u is the evaporation velocity, i.e., the ve-
locity of the interphase boundary. It is shown in Ref. 151
that a plane interphase boundary is unstable in the case of
the "inverted profile." A similar instability apparently oc-
curs in the case of the combustion wave with a diffusion
zone. 15° The origin of the instability can be explained as fol-
lows. The velocity of the hot surface (in the laboratory
frame) is proportional, according to (4.3), to the diffusion
current and, consequently, inversely proportional to the
width of the diffusion zone. When a depression is formed on
the surface, the width of the diffusion zone is reduced, and
the velocity of the surface increases, so that the depression
becomes deeper, and so on.

4.5. Filtration waves

Motion in the porous medium of the reaction zone be-
tween the solid carcass and the gas is accompanied by filtra-
tion of the latter. This problem was first examined in relation
to adsorption in Ref. 170 (p. 62). At constant filtration ve-
locity v, the boundary between the "pure" and saturated re-
gions of the sorbent moves uniformly with velocity u given
by

un0 = (v — u)nlt

where n0 is the number of particles saturating a unit volume
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of the porous medium and n is the concentration in the origi-
nal flow. During the filtration of a mixture, the difference
between the velocities of adsorption waves corresponding to
the mixture components gives rise to separation (this is the
basis of chromatography). In the case of chemical interac-
tions that result in the formation of a solid product, the ini-
tial experimental152 and theoretical153 work was followed by
detailed studies of the structure and characteristics of filtra-
tion waves under different conditions ("natural" filtration,
in which the pressure gradient is produced not by external
conditions, but by the consumption of the gas in the reaction
zone; or the gas is drawn through the porous specimen by an
applied constant head of pressure, or by consumption of gas
along or against the propagating filtration wave). States of
incomplete transformation, wave front reversal, wave front
division, and other effects are found to occur, depending on
the ratio of the characteristic relaxation and filtration times.

We must now consider the case of "associated filtra-
tion," in which the gas enters the reaction zone through a
layer of reaction products. It is shown in Ref. 52 that the
temperature distribution in a porous medium depends on the
concentration of the reacting component in the gas flow. The
first integral of the steady-state one-dimensional equation of
thermal conduction is

' j-<?UT] = [u-pmvp? (1 - — T0) (4.4)

[compare this with (2.1) and (2.2) ], where m is the poros-
ity (fraction of the volume associated with the pores), v is
the absolute velocity of the gas flow, andps is the density of
the pore-free solid material. For simplicity, we are assuming
that the specific heats of all the media are equal and the
reaction does not alter the porosity or density of the solid
carcass. The combustion wave velocity u is given by the ob-
vious relation

ps (1 — m) u = pmva, (4.5)

where a is a dimensionless coefficient that depends on the
stoichiometric ratios and the concentration of the reacting
component in the gas. To the right of the reaction zone, we
have V) — 1 and the temperature

T = T, + Q (1 - a-1)'1 (4.6)

is higher than that in the thermally insulated burnt-out mix-
ture. The point is that the incident gas flow (original tem-
perature ro) cools the burnt-out layer and transfers heat to
the "temperature plateau" (4.6). The width of this plateau is
in the ratio of 1 — a~' to the width of the burnt-out layer.

When a<l, the expression given by (4.6) becomes
meaningless, and the structure of the filtration wave in this
region is significantly different. Convective heat transfer is
then so high that the high-temperature plateau lies ahead of
the reaction zone. At the rear of this zone, where 17 = 1, we
have T= T0. The combustion-wave structure is thus "in-
verted." 52 The constant in (4.4) was chosen in accordance
with the condition 77 = 0, T = T0. In the case of the inverted
structure, the right-hand side of (4.4) acquires the addi-
tional term — Qu and the temperature ahead of the reaction
zone is

T = T, + Q (a-1 - I)-1. (4.7)

In the inverted combustion wave, we have not an in-
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crease but a fall in temperature, chemical transformation
does not occur in the hot medium ahead of the wave, and the
medium receives only the inert component of the gas flow
since the active component is completely consumed in the
reaction zone. It is clear from (4.7) that, when a is suitably
chosen (i.e., the gas composition is right), associated filtra-
tion will efficiently heat up the initial solid medium even
when the heat of the reaction is small (depleted oil deposits,
and so on). As in the case where a > 1, the width of the hot
region increases with time.

4.6. Melting of porous material

Analyses52'l53 of filtration waves have been based on the
assumption that the temperatures of the two phases (solid
and gas) were equal in every small portion of the medium.
This assumption is valid only when the wave velocity is not
too high, so that the medium spends sufficient time in the
wave for heat to be transferred over distances of the order of
the inhomogeneity length d (the pore diameter and the sepa-
ration between pores are usually of the same order). Studies
of melting waves in porous media53 have shown that inter-
phase heat transfer has a dominant influence on the charac-
teristics of these waves.

The motion of the boundary between metastable and
equilibrium phases is examined in Sections 2.2 and 2.5. Here,
we shall consider melting due to heat release in the melt. The
source of heat may be a reaction occurring only in the liquid
phase, or a flowing current when the solid phase is dielectric
and the melt is a metal. Melting of dielectrics by heat transfer
from hf-heated melt is described in Ref. 77. When the solid
material is a porous medium (for example, powder), the
solid particles are heated by the melt flowing through the
pores. This flow occurs because a liquid always wets its own
solid. The variables characterizing this type of flow can be
used to form the grouping

d^v~l = Xctt , (4-8)

which has the dimensions of thermal diffusivity (/z is the
surface tension and v the viscosity) and its magnitude ex-
ceeds the usual value of % by several orders of magnitude.
The motion of the reacting melt into the interior of the po-
rous medium is equivalent to the transport of the source of
heat. The melting wave, i.e., the two-phase regions (the
pores are filled with the liquid) between the solid phase and
the melt, cannot be subdivided into heat-release and heated
zones, whereas all the solitary thermal waves considered
previously can be so separated. The thermal structure of the
melting wave is fundamentally "two-dimensional": in addi-
tion to the direction of propagation (along the normal to the
macroscopic powder-melt boundary), there is a "direction"
of microtransfer of heat along which the heat flows from the
melt to each solid particle.

This microtransfer is due to ordinary thermal conduc-
tion. However, the surface area of interphase contact (and,
together with it, the rate of heat transfer) is greater by a
factor o f l d ~ l than the contact area between the melt and the
monolithic (pore-free) solid material, where

I , (4.9)

is the depth of penetration of the melt into the pores. Similar-
ly, in the course of turbulent burning, the mixing of the hot
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particles of burnt-out gas with the cold initial mixture in-
creases the effective surface area of the flame and, hence, an
increase in the rate of burning.

Crystallization of the liquid rather than melting of the
solid occurs on the leading edge of the two-phase region. The
leading edge of the flowing melt constantly comes into con-
tact with new solid particles at initial temperature TQ. The
influx of heat into each such particle is high (initially, infi-
nite). This means that, whatever is the temperature of the
melt on the leading edge, the heat arriving on the surface of
the solid particles cannot replace the heat expended in heat-
ing these particles, so that the melt begins to "freeze on" to
them. The latent heat of crystallization that is released as a
result of this is expended in heating up the particles. As this
heating continues, the rate of interphase heat transfer is re-
duced, so that, at a certain distance from the leading edge,
the heat released is in balance with the heat lost to the solid
phase. The direction of the phase transition is reversed, and
melting begins.

The porosity m(x) in the two-phase region is thus a
nonmonotonic function and has a minimum at a certain xf .
Partial crystallization for 0 <x <x. reduces the fraction of
material in the liquid state, and weakens the source of heat.
This means that the thermal output of the source has a
threshold for the steady-state propagation of the melting
wave.

The threshold power density is

Ft = (T.

(4.10)

where ?cs is the thermal conductivity of the solid phase, m(, is
the initial porosity, Te is the melting point, and Q the latent
heat of melting. At the threshold power, the minimum value
is m(x, ) 7^0, and the presence of the threshold is a conse-
quence not of the stopping up of the pores but of separation,
similarly to the phenomena described in Sections 2.2-2.5.

Figure 20 shows schematically the two-dimensional
distribution of current lines in the coordinate frame in which
the wave is at rest in the case of the "sandwich model" (flat
plates of the solid phase in front of the two-phase region,
separated by gaps, i.e., pores) . Some of the lines form closed
loops, i.e., the trapped portion of the material travels togeth-
er with the melting wave. The trapped material periodically
changes its state: it crystallizes on the leading edge of the
wave and then, as the wavefront passes, the material melts,
flows toward the leading edge, recrystallizes again, and so
on.

When F>Ft, the large value of^eff leads to a high wave
velocity, in accordance with (2.6). When the thermal power
is below the threshold value, the melt penetrating the pores
freezes up, forming a solid layer between the porous charge
and the melt. This layer melts slowly as a result of thermal
conduction. When the melt is again in contact with the po-
rous medium, it rapidly penetrates it, forming a new frozen
layer, and so on. The process is quasiperiodic, and the mean
wave velocity in this state is determined by the slow melting
of the frozen layers. The velocity is lower by a factor of about

' / 2 than the velocity in the steady state.

FIG. 20. Current lines in the "sandwich model": thick lines represent the
phase separation boundary.

4.7. Thermal wave in a flow of helium

Filtration of a liquid can be accompanied by consider-
able release of heat as a result of friction. Some aspects of the
hydrodynamic thermal instability were examined in Section
1.5 where the viscosity was assumed to be a decreasing func-
tion of temperature, which is typical for most liquids. There
are, however, cases where the viscosity increases with tem-
perature in a certain range (examples include sulfur, where
the increase is due to irreversible structural changes at
7"~450 K). The increase in viscosity gives rise to an N-
shaped relationship between the head of pressure and the
rate of flow in the case of Poiseuille flow. Actually, v~Pv~ '.
When the head of pressure P is small, the dissipative heating
of the liquid is small, and v ~ const. However, as P increases,
both temperature and viscosity increase. This means that the
v(P) curve has a negative slope for a certain range of values
of P. This region of the characteristic is unstable (see Section
1.6), the flow becomes inhomogeneous, and a thermal "do-
main" is formed and is transported by the flow. The velocity
v does not depend on P and is determined by the condition of
equilibrium between the kinetic "phases" (cold and hot liq-
uid), by analogy with (1.25) and (1.28). As the domain
leaves the end of the tube, the hydrodynamic resistance falls
and the velocity increases. Instability then ensures that a
new domain is formed. The flow rate thus pulsates with a
frequency o>~vL ~ ' , where L is the tube length. ' 54 The entire
phenomenon is the hydrodynamic analog of the Gunn effect
(see, for example, Ref. 83).

In an ordinary liquid, the velocity of a thermal domain
is trivially equal to the flow velocity. In liquid helium, on the
other hand, which flows in a capillary in a thermostat held at
a temperature TQ < TA , the kinetic phases are He I and
He II. They are "kinetic" only in the sense that they have
different temperatures, and heat flows into He II through
the interphase boundary. Since heat transfer in He II is due
to the flow of the normal component, wide convective zones
are formed on either side of the thermal domain (He I re-
gion). In one of these zones, which lies in the lower flow, the
direction of the normal velocity is the same as the direction
of the resultant flow, whereas these directions are opposite in
the zone lying in the upper flow. In the latter case, solutions
describing flow in the convective zone and in He I obviously
cannot be directly joined across the interphase boundary. It
is shown in Ref. 51 that there is a narrow boundary zone
between the convective zone and the He I region, in which
molecular heat transfer is significant. This structure corre-
sponds to a nonmonotonic pressure distribution in the capil-
lary.

According to Ref. 51, the interphase boundary in heli-
um flow is always moving relative to the liquid, and this is
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accompanied by the growth of the phase in the upper flow. If
we consider a capillary containing a thermal domain, the
He I-»He II transformation occurs on the "upper" bound-
ary of the domain and the reverse transition occurs on the
"lower" boundary. When the rate of flow is small, the upper
boundary moves relative to the liquid more rapidly than the
lower boundary, and the He I region disappears. When the
rate of flow is high enough, He I fills the entire capillary.
Equal velocities of the two interphase boundaries corre-
spond to a particular flow rate u(). It is precisely this value
that is established154 when the head of pressure/Ms applied.
Actually, when v < vu, the length of the He I region is re-
duced and the hydrodynamic resistance falls, which leads to
an increase in the flow rate, and so on. Within the plateau, on
which the domain is stable, the motion of the domain does
not reduce to a simple drift, and the domain velocity is
greater than the flow velocity v().

CONCLUSION

In the 1920s, attention was riveted to atomic phenome-
na, and quantum mechanics was created. Against this daz-
zling background, advances in other areas (e.g., self-oscilla-
tions or chain reactions) appeared to be relatively less
striking. Today, nonlinearity is the most popular topic
among theoreticians, especially, of course, under the guise of
nonlinear gauge theory. Kinetics has naturally assumed a
more modest role but, even there, we see a considerable level
of activity.'" A multitude of processes has been investigated,
and relationships between different effects have been estab-
lished in many cases. Whenever possible, we have tried to
concentrate our attention on connections of this type. How-
ever, universality is hardly easier to achieve in kinetics than
it is in field theory.

Publications devoted to particular processes (and they
constitute the great majority of theoretical papers on kinet-
ics) at best mention analogies that constitute the origin of
phrases such as "light combustion," "kinetic phases," and
so on. In this situation, any attempt at a generalization is
particularly valuable. The greatest efforts in this direction
have been made by mathematicians, or by people approach-
ing the subject from the mathematical point of view. There is
obvious value in such work, and significant advances have
been made. On the other hand, since the interests of math-
ematicians and physicists are not always identical, the reac-
tion to this has been a tendency toward less refined ideas and
concepts. The reader is now in a position to judge the out-
come of all this. We recognize ourselves that the net result
has been a regrouping of a limited volume of factual informa-
tion, and there is no point as of now in claiming that any-
thing more than that has been achieved. At any rate, it ap-
pears that a long and difficult path lies ahead.

The sphere of macrokinetic investigations is continu-
ously expanding. Laser thermochemistry155'156 is one of the
most recent achievements. Its particular feature is that opti-
cal heating is almost instantaneous and that absorptive pow-
er is a nonlinear function of temperature and chemical com-
position. The role of thermal fluctuations in chemical
kinetics has begun to be investigated.l59-17'-'73 It has been
shown171"173 that, in the concluding stages of the reaction,
when the concentration of the initial material is low, spatial
inhomogeneities due to fluctuations transform the reaction
to the diffusion state. This alters the asymptotic behavior of

rj(t) as /-> oo. There is a known similarity between the equa-
tions for chain reactions and the so-called population dy-
namics,l57 although the consequences of this similarity have
not as yet been adequately explored. Moreover, experience
accumulated by studying relatively simple nonlinear kinetic
systems should be useful to those who are bold enough to
tackle ecological problems for which so far there are only
"philological" solutions. We end with Feynman's optimistic
words (retranslated from the Russian, so may be not a liter-
ally exact quotation): "Because they are unaware of the pos-
sibilities of simple equations, people frequently conclude
that to explain all the complexity of the world we need some-
thing God-given and not simply equations."

"For typical reactions, £^> T throughout the temperature range that we
are considering (in which chemical compounds exist).

2lWe note the early work reported in Ref. 158 on thermal explosions and
flame propagation, which was ahead of its time. Unfortunately, it was
rapidly forgotten (in contrast to Ref. 1, it was not based on chemical
kinetics).

"Quasistationary concentrations are assumed for other reactions.
"'Theoretical studies of the late stages of explosive instability are not ade-

quately advanced in many cases. It is known that shock and detonation
waves (in chemical systems), the formation of streamers during break-
down, and so on, are all possible during the late stages.

"Or in a system interacting with a thermostat.
^'Processes involved in the establishment of an inhomogeneous state in a

barretter are examined in Ref. 162.
7'We note that A. S. Kompaneets estimated the velocity of a nerve im-

pulse, assuming that the influence of the reduction stage of this quantity
was unimportant.67

"'Actually, the calculated function RE tt(k) is nonmonotonic. A weak
maximum43'"* occurs for k ^0.

"This terminology is introduced by analogy with spin detonation investi-
gated earlier; see, for example, Refs. 168 and 169.

•""The mechanism of the transition to the separation state was originally
investigated in Refs. 139 and 140.
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