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The article sets forth the theory of the influence of multiple scattering on the radiation of
ultrarelativistic particles in matter. The classical theory of the Landau-Pomeranchuk effect of
suppression of the radiation of relativistic particles in an amorphous medium is presented both
in the simple form given by the authors and in a refined form due to Migdal. It is shown that in
investigation of the influence of multiple scattering on the radiation of fast particles in matter
it is possible to use a functional integration method which permits construction of a
quantitative theory of the effect in both amorphous and crystalline media. The question of the
possibility of stochastic motion of fast charged particles in a crystal is discussed. The general
regularities and distinctive features in processes of radiation of relativistic particles in
amorphous and crystalline media and also in intense external electromagnetic fields are
discussed.
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1. INTRODUCTION

Many electromagnetic processes which occur in the in-
teraction of fast charged particles with matter, such as elas-
tic scattering, radiation, and electron-positron pair produc-
tion, develop in a large region of space along the particle
momenta. The length of this region, which is called the co-
herence length, increases rapidly with increase of the parti-
cle energy. If this length is large in comparison with the
average distance between the atoms in the medium, then es-
sentially it is necessary to take into account the interaction of
the incident particle with all atoms located within the coher-
ence length. This was formulated clearly for the first time by
Ter-Mikaelyan' in a study of the radiation of relativistic par-
ticles in crystals.

The importance of this remarkable and seemingly para-
doxical phenomenon was soon evaluated. Landau and
Pomeranchuk2 showed on the basis of this result that in an
amorphous material the increase of the coherence length
with energy leads to a substantial decrease of bremsstrah-
lung (the Landau-Pomeranchuk effect). This was followed
by discoveries of still other effects in electrodynamics and in
the physics of strong interactions (see for example the re-
views of Refs. 3-6 which are devoted to this subject, and
references therein).

The interaction of a particle with the atoms within the
coherence length can have both a regular nature and a sto-
chastic nature.

A regular interaction is possible (see below) in passage
of a particle through a crystalline medium. The influence of
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the periodicity of location of the atoms in the crystal on the
radiation of an ultrarelativistic particle was first noted by
Williams.7 Correct criteria for the appearance of the effect
and a rigorous and quantitative theory of it, however, were
not given until the papers by Ferretti,8 Ter-Mikaelyan,' and
Uberall.9 In these studies it was shown that in motion of a
relativistic particle in a crystal coherent and interference ef-
fects are possible in the radiation, and that as a result of these
effects the radiation from a particle in a crystal can substan-
tially exceed the radiation in an amorphous medium. The
effect occurs in the case in which the particle is moving at a
small angle to one of the crystalline axes and, in addition, if
there are a large number of lattice atoms within the coher-
ence length.

A stochastic nature of the interaction of a particle with
the atoms of matter occurs in the case of passage of charged
particles through an amorphous medium. The stochasticity
is due in this case to the multiple scattering of the traversing
particles by the atoms of the material. The influence of this
scattering on the emission of radiation was first noted and
studied in the papers of Landau and Pomeranchuk.2 In these
studies it was shown that multiple scattering of an ultrarela-
tivistic particle in an amorphous medium within the coher-
ence length can lead to a substantial decrease of the brems-
strahlung. The effect arises if the mean square angle of
multiple scattering in the coherence length exceeds the
square of the characteristic angle of radiation of the relativis-
tic particle.

It should not be supposed, however, that stochasticity
in the interaction process is a property characteristic only of
amorphous media. Actually, even in the case of a crystal,
and even in an ideal one at absolute zero temperature, the
interaction can have a stochastic nature. The point is that in
motion of the particle in the crystal its trajectory can be
stochastic in spite of the absolutely ideal potential of the
crystal lattice. This in turn is related to the number of inte-
grals of motion of the particle in the crystal field (see
Section 5).

Recently a number of studies10"12 have been devoted to
the fact that an effect similar to the Landau-Pomeranchuk
effect can occur in the motion of a fast particle in a crystal. In
this case, however, the coherent radiation of the relativistic
particle, and not ordinary bremsstrahlung, is suppressed as a
consequence of multiple scattering. Here it is important that
in the motion in the crystal the conditions of appearance of
the effect of radiation suppression are satisfied at substan-
tially lower energies of the particles and in a substantially
larger region of frequencies of the radiated photons than in
an amorphous medium. For this reason new possibilities are
opened up for study of the influence of multiple scattering on
radiation by means of contemporary accelerators.

A number of reviews and books 5'13~21 have been devot-
ed to the theory of the radiation from relativistic particles in
matter. However, at the present time there is no review in
which the theory of the radiation of relativistic particles in
amorphous and crystalline media is presented from a unified
point of view. There also are no expositions of the theory of
the influence of multiple scattering on the radiation of fast
particles in crystals, although as we have just mentioned
there are at the present time new possibilities for investiga-
tion of this effect. The present review is devoted to a detailed
discussion of these questions.

We shall begin with introduction of the concept of co-
herence length, which appears naturally in the theory of the
radiation from relativistic particles in matter. Then we shall
present the classical theory of the Landau-Pomeranchuk ef-
fect in amorphous media, both in its simple form given by
these authors and in the refined form given by Migdal.22

In addition to the kinetic-equation method used in Ref.
22, for description of the Landau-Pomeranchuk effect it is
possible to use also the method of functional integration.23

The advantage of this method is the fact that it is possible by
means of it in the framework of the original formulation of
the problem of Landau and Pomeranchuk to construct in a
unified way a quantitative theory of radiation both in amor-
phous and in crystalline media, and in addition to bring out
the general regularities and distinctive features of the parti-
cle radiation processes in these cases and also of radiation in
intense external electromagnetic fields. Sections 4.5,4.6, and
6 of this review are devoted to this method and the results
obtained with it.

In their original study2 Landau and Pomeranchuk in-
vestigated radiation only in an unbounded medium. The co-
herence length for the radiation process at high energies can
have a macroscopic size, so that the size of the target may be
either greater or less than the coherence length. The thin-
target case has not previously been investigated in detail.
Section 6.3 of our review is devoted to the theory of the radi-
ation from ultrarelativistic particles in a thin layer, in both
amorphous and crystalline materials.

At the end of the review we discuss briefly experimental
studies which are being performed of the interaction of high-
energy particles with crystals.

2. COHERENCE LENGTH

2.1. Radiation formation length in the quantum theory

The radiation of a relativistic particle in matter devel-
ops in a large region of space along its momentum. In order
to be convinced of this we recall that the radiation cross
section is determined by a matrix element which contains
under the integral over the space coordinates a factor ex-
p(ixr), where x is the momentum transfer, K = p — p' — k,
p and p' are the electron momenta before and after radiation,
and k is the momentum of the radiated photon (here every-
where H = c = 1).

The exponential exp(ixr) determines the effective val-
ues of r which contribute to the matrix element. In the rela-
tivistic region the radiation process develops mainly along
the particle momentum p (the z axis). The effective region of
z obviously is zeff~\/>c^, and the effective region of dis-
tances perpendicular to p is ri eff ~ \/XL . From the conserva-
tion of energy and momentum during the radiation

E = E' -f to,
p = p ' - f - k + x (2.1)

it follows that in the relativistic case when p, p', and k are
almost parallel to each other we have

(2.2)"•« -r — f 1V~ 2££^ '

where E and E' are the electron energies before and after
radiation, and m is the electron mass. It follows from this
that zeff~2EE 7m2co. The length
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ZEE'
(2.3)

is called the coherence length. The reason for this name will
be made clear below.

The coherence length /,. increases rapidly with increase
of the particle energy and with decrease of the frequency of
the radiated photon, and for sufficiently large E and small co
it can reach macroscopic dimensions. For this reason in
study of the radiation process it is not always possible to
restrict the discussion to the interaction of the electron with
one charged particle, in particular, with one charged nu-
cleus. This means that if/,, is larger than the size of an atom,
it is necessary to take into account the interaction of the
incident electron not only with the nucleus of the atom, but
with the atomic electrons. This interaction is taken into ac-
count as the screening effect in the Bethe-Heitler theory of
bremsstrahlung24'25

However, if lc exceeds the average distance between the
atoms of the medium, then it is necessary to take into ac-
count the influence both of the atomic electrons and of many
atoms on the particle radiation process.1'2

We note that the factor expO'xr) enters not only into
the matrix element of the radiation process, but also into the
matrix elements of such processes as elastic scattering, elec-
tron-positron pair production and so forth. Therefore the
concept of coherence length can be introduced not only for
bremsstrahlung, but also for elastic scattering, for e+e~ pair
production, and so forth. Here the coherence lengths will be
different for the different processes, since for these processes
the specific expressions for conservation of energy and mo-
mentum are different. An important consideration is the fact
that in the high-energy region the coherence lengths of all
these processes rise with energy and at sufficiently high ener-
gies reach macroscopic dimensions.

2.2. Coherence length in classical electrodynamics

We have introduced the idea of coherence length in a
discussion of the matrix element of the radiation process in
quantum electrodynamics. However, this concept can be ar-
rived at also in classical electrodynamics.

For this purpose let us consider the motion of a fast
particle in a medium along a trajectory which is close to a
straight line. This particle obviously will radiate. Here the
phase difference Atp of the waves radiated by the particle at
an angle # to its momentum at moments of timer and t+ (I/
y) will be

Acp = co kl cos 0,

where / is the path traveled by the particle in the interval of
time (t,t+ ( l / v ) ) .

We shall define the coherence length l(co,9) as the dis-
tance in which A<p = 1. Then it is easy to see that

)" ' . (2.5)

In a medium the frequency co is related to the wave vec-
tor k of the radiated wave by the expression k = co£112 ,
where e is the dielectric permittivity, and therefore the co-
herence length takes the form

Z(o> , 8 )=—(1 — (2.6)

length goes to infinity. This case corresponds to Cherenkov
radiation in the uniform motion of a charged particle.

This approach to interpretation of the physical essence
of the Cherenkov effect is due to Frank26 (see also Ref. 27).
An original feature of it is the discussion of phase relations
for waves radiated by a particle from different portions of its
trajectory. (The radiation formation length, i.e., the length
in which the radiated waves add and reinforce each other,
was called by Frank the Fresnel zone in analogy with diffrac-
tion theory.)

We emphasize that the concept of coherence length has
a meaning independent of the quantity e: it always deter-
mines the order of magnitude of the region of space for
which interference effects are important in the radiation.

It is easy to see that Eq. (2.5) corresponds to Eq. (2.3)
for the coherence length obtained in the preceding section in
the case of radiation by a relativistic particle. For this it is
sufficient in (2.5) to set 6 = 0 and £ = 1 and to replace the
quantity (1 — v) by m2/2E2. As a result we obtain the for-
mula

9/-'2
; _ ^£_ (2 71f C — m2,., ' \t- I )

in which there is no difference between the particle energies
in the initial and final states, whereas in the quantum for-
mula (2.3) the difference due to recoil on radiation is taken
into account.

In obtaining Eq. (2.5) for the coherence length it is
assumed that the particle trajectory is a straight line or de-
parts very little from it. It is easy to take into account also the
change of direction of the trajectory due to elastic collisions
of the particle with the atoms of the medium. For this pur-
pose it is necessary in Eq. (2.5) only to replace v by
U|l = v cos •&,, where -9, is the multiple-scattering angle of
the particle in the coherence length. Then we arrive at the
following expression for the coherence length, which was
obtained by Galitsky and Gurevich28:

I (u, 8) — v cosft, (co — tocos d, cos9)~'. (2.8)

We note that the average value cost?, in matter itself de-
pends on the coherence length, and therefore Eq. (2.8) is
actually an equation for determination of l(a>,6).

Taking into account the smallness of the characteristic
angles of scattering and radiation of a relativistic particle in
matter, we find for E = \

, (2.9)

( 2 4 ) where y = E /m is the Lorentz factor of the particle.

I (at, 6) = lc (1 + (2.10)

We see that if cos 6 — V/VE , then the coherence

Equation (2.10) is general and does not depend on in
what kind of medium the radiation occurs—amorphous or
crystalline. This means that the coherence length itself does
not yet determine the dynamics of the radiation process. In
other words, on the basis only of the value of l(co,d), we
cannot say whether interference within the coherence length
will lead to enhancement or weakening of the intensity of the
radiation. In particular, for a uniform motion the formula
(2.10) itself also has a meaning, although in this case for
e = 1 there is no radiation at all.

With increase of the energy E and with decrease of the
frequency co of the radiated wave, the length l(a>,9) in-
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creases. Here there is also an increase of the average values
i?2. Therefore with increase of l((o,6) the condition

-f &} < 1 will be violated.
Equation (2.9) shows that for y2 &1 > 1 the coherence

length will decrease in comparison with the length deter-
mined by Eq. (2.10). We emphasize that this result indicates
only that for y2 •&} > 1 there is a decrease in the size of the
region of space in which interference effects in the radiation
are important, but as before on the basis only of the value of
l(co,6) we cannot say how the radiation process develops
within the coherence length.

2.3. "Stripping" of a photon from the radiating particle

The coherence length can also be interpreted as the
length in which stripping of a photon from the electron
which radiates it occurs.29'30

Indeed, suppose that an electron, colliding with an
atom, radiates an electromagnetic wave with frequency a>.
For ultrarelativistic particles radiation occurs mainly at
small angles 9~m/E to the momentum, and therefore in
what follows we shall be interested in the radiation in the
direction of motion of the particle.

It is clear that immediately after a collision with an
atom the electromagnetic wave radiated by the electron (the
wave packet) cannot be separated very far from it. The elec-
tron and the electromagnetic wave can be considered to be
independent objects only if the wave moves away from the
electron by a distance at least of the order of the length of this
wave A = !/&>. Since the electron and the wave radiated by it
move in the same direction, the relative velocity at which
they separate will be yrcl s; 1 — v (see Fig. la). Therefore the
interval of time in which the wave will be separated from the
electron by a distance A is

(2.11)

The distance traveled by the electron in a time Ai, lc = i>A/,
coincides with the coherence length introduced previously.

At large E and small co, as has already been mentioned,
the length /c has macroscopic dimensions. If within this
length the particle collides with many atoms of the medium,
it is necessary to take into account the interference of the
waves radiated in these collisions. However, if the collisions
occur at distances greater than /c, then the radiation events
can be considered independent.

Note that not only the radiation process, but also a

T
k Am-r

FIG. 1. Formation lengths of processes of radiation (a) and production of
an electron-positron pair (b) at high energies.

number of other electrodynamic processes at high energies
such as electron-positron pair production, ionization loss of
clusters, electromagnetic showers, and so forth develop in a
large region of space along the particle momenta, and there-
fore for such processes also it is necessary to take into ac-
count interference effects in the interaction. We shall make
clear why this is so.

Let us consider first the production of an electron-posi-
tron pair by an energetic photon in the field of a nucleus. The
electron and positron can be considered to be free particles
only in the case in which these particles separate from each
other by a distance greater than 2/m. At high energies they
are emitted mainly at small angles to the photon momentum
•&± ~m/E ± , where E_ and E+ are the electron and posi-
tron energies, and therefore before the electron and positron
separate by a distance 2/m they will traverse a path equal in
order of magnitude to 1 ± = 2E+E_/m2a> (Fig. Ib). The
quantity / ± is the length in which the electron-positron pair
is formed. Since the characteristic values of the energies E+

and E_ of the particles produced are in order of magnitude
E+ ~E_ ~co/2, we have /± -co/2m2 and consequently for
sufficiently large co this length can become arbitrarily large.

We note that the length / ± has the same structure as
the coherence length lc in the radiation process: the only
difference is that the initial and final energies of the electron
in the radiation process are replaced here by the energies of
the electron and positron.

The relative velocity with which the electron and posi-
tron separate in production of an electron-positron pair
yrcl ~u(i?+ + i?_) is small in comparison with the velocity
of translation of the particles v, and therefore the electron
and positron move for an extended period of time close to
each other. Here the ionization loss by the pair particles will
be decreased in comparison with the case in which the parti-
cles have been separated far from each other.31 This is due to
the fact that the main contribution to the ionization loss of a
charged particle is from the region of impact parameters v/
cop ~Zp £ \/m, where a>p is the plasma frequency. Therefore
if the electron and positron are at a distance 5 from each
other smaller than v/cop, then the Coulomb electromagnetic
fields of the electron and positron will cancel, as a result of
which in this case the main contribution to the ionization
loss will be from the region of impact parameters s ̂ p 5: I/
m. It is clear that the ionization loss of the system consisting
of the electron and positron will increase with separation of
the particles.

For s > v/a)p the electron and positron will lose energy
to ionization as independent particles.

A similar effect occurs in passage of fast molecules
through a thin layer of matter.32 The ionization loss of the
atoms formed as the result of breakup of a molecule turns out
in this case to be greater than the ionization loss in the case in
which these atoms are separated by a large distance. This
effect is due to the coherent addition of the Coulomb fields of
the separating atoms of the molecule.

The examples given show that if fast particles are close
together for an extended period of time, the efficiency of
their interaction with the atoms of the medium can differ
from the efficiency of interaction in the case in which the
particles are far apart. Here interference effects in the inter-
action are important, as a result of which the yield of various
reactions can either increase or decrease in comparison with
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the yield of these reactions in the case in which the particles
are far apart.

3. RADIATION BY A RELATIVISTIC PARTICLE IN CLASSICAL
ELECTRODYNAMICS

3.1. The field of a moving electron

As we have already pointed out, the coherence length
itself does not determine the dynamics of the radiation pro-
cess, but determines only the size of the region in which in-
terference effects in the radiation are important. In order to
find the consequence of the interference it is necessary to
know the evolution of the field created by a moving electron.
This question from the classical point of view will be dis-
cussed in the present section.

We recall that the potential A(r,f ) of the field of a mov-
ing electron is given by the wave equation

2-- A( r , <) = -r(t)) , (3.1)

where e is the charge of the electron, v ( f ) and r(?) are the
velocity and trajectory of the electron in the external field,
and <5(r) is a delta function.

The retarded solution of Eq. (3.1) has the form

A(r ' f ) = (3.2)

This expression can be rewritten in the form of a Fou-
rier expansion

A (r, *) = -ij- Re j -^- { fc_
Viiv(f) «p [»k (r - r (f))]

-I(k, i)exp[i(kr-to)]}.

where

, t)=

(3.2')

(3.3)

For uniform motion of the charge the second term in
Eq. (3.2') vanishes, and the first term determines the Cou-
lomb field of the electron

A(r , t) = A , -< (3.4)

where y = (1 — v2) ' /2, the z axis is parallel to v, and p is a
radius vector in the plane orthogonal to v.

In the presence of acceleration, the second term in Eq.
(3.2') determines the radiation field of the particle. The
spectral and angular density of the radiation is given by the
quantity I (k, oo ):

A'f, e*

dco do | k |=co . (3.5)

In the following we shall be interested in the motion and
radiation of an electron in matter. In this case the electron
velocity changes as the result of collisions with atoms of the
medium. At high energies the change of velocity occurs dur-
ing small time intervals in comparison with the radiation
formation time, so that one can assume that the electron
velocity changes in jumps in collisions with the atoms.
Therefore we should discuss first of all the case in which the
electron velocity in the time interval ( — oo ,0) is equal to v,

while in the time interval (0, + oo) it is equal to y,.30'33 With
this motion of the particle before scattering (t < 0) the vec-
tor potential A(r,f) is the vector potential of the electron
Coulomb field (3.4). After the scattering (t> 0), according
toEq. (3.2),

A(r, t) = - T R e *te*

k — kv e-ikt}.

This formula can also be written in the form

A(r, t) = Q(r-t

(3.6)

(3.7)

where &(x) is the Heaviside step function (0(x) =0 if
;c<0and©(;c) = 1 if.x>l) andAVi is the vector potential of
the Coulomb field of an electron moving uniformly with a
velocity v,.

Similar results are easily obtained for the retarded po-
tential of the electric field of the electron.

Equations (3.6) and (3.7) show that before scattering
the electromagnetic field which surrounds the electron is a
Coulomb field moving with the electron with velocity v. The
main contribution to this field is from Fourier components
with wave vectors k whose directions are close to the direc-
tion of the particle velocity v; specifically, the angle between
the effective values of k and v is of the order m/E. After
scattering (t>0) the Coulomb field is stripped from the
electron and continues to advance with velocity v in the di-
rection of initial motion of the particle, gradually being re-
constructed into the radiation field. This means (as is shown
by the function ®(r — t) in the first term of Eq. (3.7)) that
in the region r>t which the signal of the collision has not yet
reached the field will be Coulomb in spite of the fact that
there is no electron at the point z = vt; after scattering it
moves in the direction of vt. For r<t according to Eq. (3.7)
there is present only the second term, which consists of the
Coulomb field of a particle moving in the direction of v,.
Therefore at r = t there is a rearrangement of the electron
field, as the result of which radiation occurs.

At the scattered electron the Coulomb field associated
with it does not appear immediately. According to Eq. (3.6)
for an interval of time Af 5 (k — kv,) ~' the Fourier compo-
nents of the potential A(r,f) which have a wave vector k
actually do not exist. Since the main contribution to the po-
tential Au is from wave vectors k whose directions are close
to the direction of the velocity v, (the angle between the
effective values of k and v, is of the order m/E), the time
interval during which the Fourier components of the Cou-
lomb field of the scattered electron are essentially absent will
be of the scale

A t -

Figuratively speaking, we can say that after the first
collision the electron for a time interval A? ~ IE 2/m2a) is in a
"semibare" state, i.e., substantially without its Coulomb
field."

In this time the electron travels a distance lc = AyAf,
which coincides with the coherence length introduced pre-
viously.

The results obtained in this section are illustrated in
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t<0

FIG. 2. The field surrounding an electron before ( r<0 ) and after ( f > 0 )
scattering by an atom at an angle i?.

Fig. 2, in which we have shown schematically the equipoten-
tial surfaces of the electron field before and after scattering.

3.2. Radiation in the case of many collisions of an electron in
the coherence length

In the preceding section we showed that after a collision
an electron is for a considerable length of time in a semibare
state, i.e., substantially without its Coulomb field. During
this time interval the electron can undergo many collisions
with the atoms of the medium. Therefore we shall investigate
now what happens in this case with the electric field which
surrounds the electron.30

Let us discuss first of all the case of two collisions.
If at t = tl = 0 as the result of a collision with an atom

the velocity of the electron changes from a value v to a value
v,, and at t = t2 it changes from v, to v2, then according to
Eq. (3.2) the vector potential at t>t2 will be given by the
formula

A(r, *)=-53-Re [-£*-«*'

/ - X
L k —
-
kv2

(3.8)

where r(?) = r2 + v2(f — t2) and r2 are the coordinates of
the point at which the second collision occurred.

The terms in this expression which contain the vectors v
and v2 have the same structure as the corresponding terms in
Eq. (3.6) —they are determined by the evolution of the field
in the directions of the initial and final motions of the parti-
cle. The term which contains \l determines the evolution of
the field in the direction of the intermediate motion of the
particle.

If the second collision occurs at a moment of time
t2 ̂  (k — kv2) ~', then the electron at the moment of the col-
lision is in a semibare state. Here according to Eq. (3.8)
radiation of waves with wave vectors k close in direction to
Y! will be suppressed in comparison with the case in
which the second collision occurs at a moment of time

Let us consider now the case in which in the coherence
length there are many (N> 2) collisions at moments of time
t = tj>0, where j = 1,2,....,N. Then the vector potential at
t>tN will be given by Eq. (3.2) with

l(k, t) = l (k)

(3.9)

The characteristic angles of scattering of a fast particle
in matter are small: |v7 — v| 4,v.

If

(k — kvj.i) t ,<l, (3.10)

the electron in all collisions will be in a semibare state. In this
case

fc-kv. k — kv (3.11)

We see that the value of I(k) will depend only on the
initial and final velocities of the particle and will not depend
on its intermediate velocities.

Knowing I(k), we can according to Eq. (3.5) find the
spectral and angular distribution of the radiation. The spec-
tral density of the radiation will be given by the formula

dw n

X In I

2M + 1

!)'/*] -l}, (3.12)

where g = yd /2 and tf = \VN — \\/v is the scattering angle
of the particle ( i?<l) .

We note certain features of the radiation process if the
condition (3.10) is satisfied.

The first term of Eq. (3.11) determines waves propa-
gated in a direction close to the direction of the final motion
of the particle vw, and the second term determines waves
which propagate in a direction close to v. Radiation occurs
mainly into cones with opening angles of the order m/E
(Fig. 2). The phases of the waves which propagate near di-
rections \N and v are opposite, and therefore depending on
the relation between the scattering angle t? and the opening
angle of the radiation cone m/E various interference pat-
terns will occur.

Ifd<^m/E, then there will be a strong cancellation of
the fields associated with the two terms in Eq. (3.11). In this
case the quantity |I(k) [ will be proportional to t?, and the
spectral distribution of the radiation will be proportional
to*?2:

3n (3.13)

For scattering angles which exceed the opening angle of
the radiation cone, j? ̂ > m/E, cancellation of the fields practi-
cally does not occur. Here the spectral distribution of the
radiation will depend weakly on the scattering angle:

d<$ 4<?^
•HTT ^-^lnv#- (3.14)
Thus, we see that for y^< 1 and yt?> 1 the nature of the

radiation is substantially different. In the first case there is
strong interference of the waves radiated in the directions of
the initial and final motions of the particle; in the second case
there is practically no interference.

3.3. Radiation in distances greater than the coherence length

The formulas obtained above can be used when the path
traveled by an electron in matter is less than or of the order of
the coherence length. In other words, it is required that the
thickness of the material not exceed the coherence length.
However, if the target thickness T is greater than the coher-
ence length /, then to find the spectral density of the radi-
ation a special calculation is necessary. This calculation will
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be carried out in the following section. Here we shall give
only simple estimates of the spectral density of radiation in
this case and shall establish conditions under which multiple
scattering substantially changes the nature of the radiation
of a particle in matter.

To estimate the spectral density of the radiation for
7"> / it is obviously necessary to break down the target into
layers whose thickness is equal to the coherence length / and
to sum the fields which arise in each of the layers. Interfer-
ence of the radiation from the individual layers need not be
taken into account here. Then in the n-th portion of the path
the spectral and angular density of the radiation will be given
by Eqs. (3.5) and (3.11). The combined spectral and angu-
lar density of the radiation in this case will be

d<D do

where vn is the velocity of the particle at the end of the «-th
portion and the summation is carried out over all portions of
the path traveled by the particle in the target material.

The main contribution to the integral over the angles of
radiation is given by values 9 ~ max (7"', | vn — vn _ , | / v ) in
each term of Eq. (3.15). Therefore, using Eq. (3.12) and
taking into account that the number of layers is T/l, we
eventuallv obtain

du> dto (3.16)

where d.%,/dco is given by Eq. (3.12), t?, is the scattering
angle on the coherence length /, and / is determined from the
relation (2.9) for fl-max^"',#,).

In derivation of Eq. (3.16) no specific law of motion of
the particle was used, and therefore this formula can be used
for evaluation of the radiation spectrum in both amorphous
and crystalline media and also in motion of the particle in
external electromagnetic fields.

In the case of amorphous materials the mean square
angle of multiple scattering of the particle per unit length is
given by the formula5'34

q = (3.17)

where n is the density of atoms and <7(d) is the differential
cross section for elastic scattering of the particle by an indi-
vidual atom of the medium at an angle d.

Note that the integral entering into Eq. (3.17) diverges
logarithmically in the region of large t?. In multiple-scatter-
ing theory the upper limit in this integral is of the order34

^max ~ l/E /&„. where Rn is the radius of the nucleus of the
atom. In problems involving radiation, the upper limit of the
integral should be set equal to t?max ~~m/E (see Section 19 of
the book by Ter-Mikaelyan5).

Substituting the relation (3.17) into Eq. (2.9), we find
that if ydt <1, then I~2y2/co, while if 72?, >1, we have
/^ (2/<y<?)1/2. Using these expressions for /, we obtain ac-
cording to Eq. (3.16)

_dS_ [-i-?2?7' ?*,<!, (3.18a)
d(° ~ 1 ̂ -(Zug^TlnWt),^*.!. (3.18b)

The first of these formulas coincides with logarithmic
accuracy with the Bethe-Heitler formula,24'25 in which the
influence of multiple scattering on the radiation is not taken
into account. The second formula corresponds to the case in

which multiple scattering plays an important role in the ra-
diation (it differs only by a numerical factor from the result
of Landau and Pomeranchuk2).

In motion in a crystal at a small angle if> to one of the
crystallographic axes (the z axis) the mean square angle of
the particle in scattering by the ordered atoms of the lattice
can considerably exceed the mean square scattering angle in
an amorphous medium (see Section 5). Here over a wide
range of angles if> (R /d > i/> > ̂ c) the relation between these
quantities per unit length is given by the formula

9c~i£r?. (3-19)

where R is the screening radius of the atom, d is the distance
between atoms in the lattice along the z axis, and ific is the
critical angle of axial channeling. Accordingly for small and
large scattering angles the spectral density of radiation in the
crystal will be given by Eq. (3.18) with the only difference
that the quantity q in Eq. (3.18) must be replaced by qc. The
first of the formulas (3.18) in this case will differ only by a
numerical factor of the order of unity from the correspond-
ing result of the theory of coherent radiation of a relativistic
electron in a crystal.5'17 The second formula will correspond
to the case in which multiple scattering has a significant ef-
fect on the radiation of a particle in a crystal.

The relations presented therefore permit us to estimate
on the basis of a unified approach the spectrum of radiation
of a fast particle in both amorphous and crystalline media.
These relations make clear not only the reason for the
change in the nature of the radiation of a particle in the medi-
um at yd, ~ \, but also the reason for the difference in the
radiation spectra in a crystal and in an amorphous medium
for yi?/ < 1. This difference is due to the difference in the
average values of the scattering angles in these cases.

3.4. Spectral density of radiation

In Section 3.1 a general formula (3.5) was obtained for
the spectral and angular density of radiation of a particle
moving with a certain acceleration. We made use of this for-
mula to estimate the radiation spectrum, breaking down the
path traveled by the particle in the material into portions
equal to the coherence length. Here interference effects in
the radiation were taken into account in each of the portions,
but interference between neighboring portions was not taken
into account. We shall now remove this limitation.

We shall start as before from the general formula (3.5)
in which we shall understand I(k) to mean the expression

I (k) (3.20)

where a> and k are related as k = el12co. As a result of this the
influence of polarization of the medium on the radiation,
which was not considered in the previous section, is taken
into account.

Following Landau and Pomeranchuk,2 we carry out in
(3.5) integration over the angles of radiation. The spectral
density of radiation obtained in this way can be represented
in the form
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— oo — oo

sinfc |r(r+T)-r(7-) |

(3.21)
where

T+T

-r(r)= dtv(t) .

The characteristic scattering angles of a fast particle in
matter are small, and therefore in Eq. (3.21 ) we can set

v (T + T) « v (T) [l - -i- 0* W] +* (T), (3-22)

where tf(r) is the angle of scattering in the time interval

Using this expression, we find with accuracy to terms of
order # 2

-00 -00

T

sin [k [w - 4 J ^- ( { dtf (t))2]} .
o

(3.23)

For e = 1 this formula goes over into the corresponding
result of Ref. 17, in which the influence of the polarization of
the medium on the radiation was not taken into account.

The interest which equation (3.23) presents lies in its
generality and in the possibility of discussing by means of
this formula from a unified point of view radiation in various
media and in external fields. In the latter case d(r) is a de-
fined function of T. If the radiation occurs in a medium, then
Eq. ( 3.23 ) must be averaged over the random process which
the scattering involves. This averaging must be carried out
differently in amorphous and crystalline media.

4. THE LANDAU-POMERANCHUK EFFECT

4.1. The classical limit of the Bethe-Heitler formula

We shall first consider the case in which the motion
occurs in an amorphous medium and the angle of scattering
on the coherence length is rather small (<o/i? ;•<!). In this
case in Eq. (3.23) it is possible to expand the integrand in
terms of the scattering angle. As a result we find21 that for
EV2<\.

(4.D

where

6 = c o ( l — ye1/2), w (v) = evt.

The variable of integration v is related to the radiation angle
din Eq. (3.5) as v = co — kv.

Taking into account that at high energies the radiation
develops in a length (along the particle momentum) which
is considerably greater than the size of an atom, the quantity
|w(v) |2 can be written in the form

where #„ is the scattering angle in the collision with the «th
atom and tn is the moment of time at which this collision
occurred.

In an amorphous medium the collisions of a particle
with various atoms are random, and therefore the quantity
w(v) |2 entering into (4.1) must be averaged over the ran-

dom locations of the atoms in the medium. For a collision
with an atom located at a point ra = (pn ,zn) the scattering
angle is

— Pn, Z),

where p is the impact parameter and u(r) is the potential
energy of interaction of the particle with the atom. Substitut-
ing this relation into Eq. (4.1), we obtain after averaging
over pn and integration over v the following expression for
the spectral density of radiation:

/ d % \ = / dg \
\ dco / V dco j oI d 2Y2(1 — M51/2} ' (4 '3^

Here the first factor is the usual expression for the radi-
ation spectrum of a fast particle in an amorphous medium in
the low-frequency region without inclusion of multiple scat-
tering and polarization of the medium:

/ dg \ 2e*nT
V do) / o 3n '

(4.4)

In the case in which the potential of the atom is a
screened Coulomb potential, the integral entering into (4.4)
diverges in the region of small p. From the condition of ap-
plicability of Eq. (4.4) yd S 1 it follows that the integration
over/9 in (4.4) should be limited by the valuepmm ~ 2Ze2/m,
where Z | e \ is the charge of the nucleus of the atom. Quantum
effects in the radiation appear, however, atpmin ~ \/m, i.e.,
at distances larger than 2Ze2/m; thereforepmm must be set
equal to l/m.5 Here the quantity (dW/dco)0 coincides with
logarithmic accuracy with the radiation spectrum given by
the Bethe-Heitler formula2435

/3)+ _!_], «,<*. (4.5)

The second factor in (4.3) describes the influence of the
polarization of the medium on the radiation.3'

Equation (4.1) is valid if the condition <y/t?2 < 1 is satis-
fied. For e = 1 in the case of an amorphous medium this
inequality can be written in the form y2qlc <^ 1. The latter
inequality is violated at sufficiently high energies of the par-
ticles.

4.2. The estimates of Landau and Pomeranchuk

n. k
(4.2)

If the condition y^qlc < 1 is not satisfied, then for deter-
mination of the radiation spectrum of the particle it is neces-
sary to use the general formula (3.23), which must be aver-
aged over the random values of the particle-scattering angle
in the medium (this randomness is due to the random loca-
tion of the atoms in an amorphous medium). The exact per-
formance of the averaging is made difficult by the fact that
the scattering angle enters into the spectral density of radi-
ation in the argument of a sine function. Landau and Pomer-
anchuk, with the intention of obtaining estimates for
Y*qlc > 1, proposed replacing the average value of the sine
by the sine of the average value of the quantity. Here the
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following formula is obtained for the averaged value of the
spectral density of radiation4':

X sin [(l-i;) COT+ -^0^1:2]. (4.6)

\ dco

The influence of the polarization of the medium on the radi-
ation is not taken into account here, i.e., it is assumed that
e = 1. In the case of interest to Landau and Pomeranchuk
Y2qlc > 1 one can neglect the term proportional to T in the
argument of the sine function. Here Eq. (4.6) takes the form

dg \
d» / = do)

3(0?
2n

(4.7)

Comparison of this formula with the Bethe-Heitler re-
sult (4.5) shows that when the condition y2qlc > 1 is satisfied

do> du '

We see that the nature of the radiation of a fast particle
in an amorphous medium changes substantially when
Y2qlc ~ 1, i.e., in the region of particle energies and frequen-
cies of the radiated photons for which the mean square mul-
tiple scattering angle in a length /c becomes comparable with
the square of the characteristic angle of radiation of a relativ-
istic particle 92~y~2.

Equations (4.6) and (4.7) are suitable only for esti-
mates. In spite of this, the conclusion presented reveals the
essence of the effect—the effect is due to the curvature of the
particle trajectory in the amorphous medium within the co-
herence length due to multiple scattering.

4.3. The Landau-Pomeranchuk effect and synchrotron
radiation

An interesting correspondence exists between the Lan-
dau-Pomeranchuk effect and synchrotron radiation, i.e., the
radiation of a particle moving along an arc in a uniform mag-
netic field. Indeed, as we have seen, the Landau-Pomeran-
chuk effect is due to the curvature of the particle trajectory
due to multiple scattering. On the other hand, synchrotron
radiation is due to the curvature of the particle trajectory
due to the external magnetic field. In the latter case the ac-
celeration of the particle is given by the well known formula

(H is the magnetic field strength ) . Here the angle of scatter-
ing in a time interval T is

Substituting this expression into the general formula (3.23 ),
we obtain the following expression for the radiation spec-
trum of a fast particle in a magnetic field:

(4.8)

dco

X cos COT-sm co

This formula can be reduced by straightforward trans-
formations to the well known formula for the synchrotron
radiation spectrum,37-38 which contains an Airy function.

Equation (4.8), however, has the advantage that it permits
one to see the relation between the Landau-Pomeranchuk
effect and synchrotron radiation—in both cases the spectral
density is represented in the form of an integral over the time
rand we can directly compare the formulas which determine
the two effects.

In the Landau-Pomeranchuk effect in the argument of
the sine function (4.6) there are terms proportional to T and
r2; on the other hand, in the case of synchrotron radiation
there are terms proportional to T and r3. In both cases at
sufficiently low frequencies the terms linear in T in the oscil-
lating factors can be discarded. In this case in an amorphous
medium the radiation spectrum is determined by Eq. (4.7),
and in a magnetic field it is determined by (4.8),

0. (4.9)dco

Thus, in both cases the intensity of the radiation decreases
with decrease of co. The laws of this decrease, however, are
different, since the argument of the sine in the synchrotron
radiation formula involves a term with r3, while in the Lan-
dau-Pomeranchuk formula there is a term with r2. This dif-
ference in the powers of T is due in turn to the difference in
curvature of the trajectories due to multiple scattering and to
a magnetic field.

4.4. Inclusion of the influence of multiple scattering on the
radiation by the kinetic-equation method

In the previous sections it was shown that the radiation
from a fast particle in an amorphous medium is weakened as
a result of the influence of multiple scattering. We gave also
estimates for the case in which the effect is significant. Now
let us turn to the quantitative theory of the Landau-Pomer-
anchuk effect. There are two methods which permit develop-
ment of a quantitative theory of this effect—the kinetic-
equation method and the functional-integration method. We
shall begin by describing the first method, which belongs to
Migdal.22

We shall proceed from Eq. (3.5) for the spectral and
angular density of the radiation and shall represent it in the
form

W> uo

Re ( At \ dx [kv] [kv']
dco do

X e x p [ — WOT + ik(r ' — r)], (4.10)

where r = r ( t ) , v = v( r ) , r' = r(r + T), v' = \(t + T), and
*>=|k | .

The problem consists of averaging this expression over
all possible trajectories of the particle, i.e., determining the
quantity

K = <exp [ik (r' — r)] ([kv] [kv'])>,

where the angle brackets serve to indicate averaging.
We introduce into the discussion two probability func-

tions: W,(r,v;f) — the probability of values of the coordi-
nates r and velocities v at a moment of time t and
W2(r',\';T,y;T)— the probability of values r' and v' at a later
moment of time t + T under the condition that these quanti-
ties at the moment of time t have values r and v. Then the
quantity K can be represented in the form
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K = f dr' dv' dr dv exp [ik (r' — r)] ([kv'l [kv]) W^.

(4.11)

The probability functions Wl and W2 satisfy the kinetic
equation

, v'; «) — W(r, v; t)], (4.12)= n jdv'a(v'

where a(v' — v) is the cross section for elastic scattering
of the particle by an individual atom in which its velocity
changes from v to v' (here the scattering occurs by an angle
i? = 2 sin | v' — v|/2y). In addition, the probability functions
must satisfy the following initial conditions:

Wl (r, v; 0) = 6 (r) 6 (v - v0),
Wz (r', v'; r, v; 0) = 6 (r' - r) 6 (v' - v),

where v0 is the initial velocity.
It follows from the kinetic equation and the initial con-

ditions that W2 depends only on the difference of the coordi-
nates r' — r. In Eq. (4. 1 1 ) there is the Fourier transform of

Wk (v', v; T) = I d (r' - r) exp [ik (r' - r)]
J

X Wt (r', v'; r, v; T),

and therefore Eq. (4.11) can be rewritten in the form

K = J dr dv dv' [kv'l [kv] Wl (r, v; t) Wk (v', v; T).

(4.13)

Using the Fourier transformation of the quantity W2, it
is obviously possible to represent the kinetic equation for W2

in the form

— ik\'Whdl

= n \ dv"(T(v"-v')[Wft(v", v; t) — Wk(\', v; T)],
(4.14)

where Wk (v',v;0) = 5(y' - v).
The solution of this equation is now our main problem.
The characteristic angles of scattering and radiation of

a relativistic particle in matter are small, and therefore in the
last equation an expansion in these angles can be carried out.
It is convenient to measure the angles from the direction of
motion of the photon k = nto. In the approximation of small
angles the following relations are valid:

Substituting these relations into Eq. (4. 14) and retaining the
first two terms of the expansion in angle of the quantities
entering into (4.14), we arrive at the Fokker-Planck equa-
tion

(4.15)

with the initial condition Wk (tf',d;0) = <5(d' — d), where
q is given by Eq. (3.17).

The solution of Eq. (4.14) is to be sought in the form

where a, /?, and y are certain functions which depend on T
and t?. We shall not give here the details of the solution of Eq.
(4.15). This process has been described well in Refs. 5
and 16.

Obviously the solution must be substituted into Eq.
(4.13). As a result, after integration over the angles of radi-
ation, we obtain the Migdal formula22 for the radiation spec-
trum of a fast particle in an amorphous medium

where (d%/dco)0 = e2qT/3v(l - v) is the spectrum of ra-
diation without taking into account multiple scattering (see
Eq. (4.4)), s =1(1 -v)(a/q)>/2, and^M(s) is a function
which takes into account the influence of multiple scattering
on the radiation:

oo

OM (s) = 24s2 ( jda;cthxe-2SIsin2sz-^-). (4.17)
o

We shall consider two limiting cases of Eq. (4.16). If
s -» oo, then 4>M -> 1. This case corresponds to low particle
energies. Here multiple scattering does not influence the ra-
diation.

For small values of s the function <I>M~6s and the
expression for (dW/do>) take the form

(. T^~ / -~ — (M(l) " T.\ dco / ji v "

This formula differs only by a numerical factor from the
estimated result of Landau and Pomeranchuk (4.7).

A plot of the function <J>M (s) is shown in Fig. 3. We see
that the kinetic-equation method which we have described
permits not only a refinement of the coefficient in the Lan-
dau-Pomeranchuk formula, but also a description of the in-
termediate region of transition from the Bethe-Heitler result
to the Landau-Pomeranchuk result.

Subsequently the kinetic-equation method has been
used to study the effect of many other factors on the radi-
ation, such as recoil on emitting radiation,39'16 influence of
the polarization of the medium,5'36 effect of the target
boundaries,40 photon absorption, and others. The limits of
applicability of the Fokker-Planck method have also been
estimated for a given problem, and a procedure for increas-
ing the accuracy of this method has been indicated.41 The
angular distribution of the radiation and its polarization

to /.2s

FIG. 3. Plots of the functions <t>M (s) and <t>(s) which determine the influ-
ence of multiple scattering on radiation in an amorphous medium and in a
crystal.
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have also been investigated.42 Here, however, the medium
has always been assumed to be amorphous.

4.5. Averaging of the radiation spectrum over the trajectories
by the functional-integration method

The general formula for the spectral density of radi-
ation (3.23) is determined by the angles of scattering of the
particle in matter. In view of the multiple scattering, these
values are random, and therefore an average must be taken
over them. In the Migdal method in order to carry out the
averaging the kinetic equation for the particle distribution in
coordinates and velocities was used.

The starting point in this problem, however, must be
considered to be the concept of the particle trajectory, which
is random. Therefore the averaging must, in essence, be car-
ried out over random trajectories. This averaging can be car-
ried out by means of the method of functional integration. At
the present time this method has received extensive develop-
ment in connection with various problems of field theory,
not to mention the fact that by means of this method, as
Feynman43 has shown, it is possible to explain clearly the
connection between quantum and classical mechanics. The
possibility of use of the method of functional integration for
averaging over random trajectories in problems involving
radiation was established in Refs. 23 and 44. The importance
of this approach lies in the fact that it permits one to take into
account in a unified way the influence of random factors on
the radiation in various problems, such as the influence of
multiple scattering on radiation in amorphous media and in
crystals and also radiation in external fields.

The procedure for functional integration can be carried
out comparatively simply in the case in which the functional
being averaged has a Gaussian form and the random process
is Gaussian. This situation occurs in the problem considered
here.

Indeed, according to Eq. (3.23) the spectral density of
radiation is a functional d "S [•9"(r) ]/dco of the random val-
ues of the scattering angle •d(r) in which the angle •& enters
quadratically in the argument of a sine function, i.e., this
functional has a Gaussian form. In regard to the random
process related to multiple scattering, in the case of amor-
phous material this process is well known5'34 to be Gaussian.
This means that if at the initial moment of time the distribu-
tion of particles in angles is given by a delta function
/"(•d,0) = <5( t f ) , then at a time T this distribution will have
the form

Using this formula, one can obtain the density of the
probability that the scattering angles §„ = d(«A) at a time
tn = «A will lie in the intervals ($„, •&„ + ddn) (Ref. 45)

exP — -^

-], (4.19)

where A = r/N and n = 1,2,...,7V.
With this probability one must also average the func-

tional J§? [•&(?•) }/dco, and here one must carry out the limit-
ing transition to N-* oo. Therefore the basic expression for
the averaged radiation spectrum has the form

= h m
A'-oo do)

(4.20)

Usually this expression is written in abbreviated form as a
functional integral over the Wigner measure d w f t ( r )

(4.21)

Noting that

we can easily see that all terms in the integrand of (3.23)
which contain both components of the vector d = (dx,dy)
are factorized, and therefore in calculation of (d% /da>) it is
sufficient to calculate the functional integral only over one of
the components of the vector d. Here the average value of
the radiation spectrum can be represented in the form

<•£•>--• <422)

_ _ _
2 d\>, I to

where

(4.23)

The functional integral (4.23) has a Gaussian form,
and therefore it can be calculated analytically by means of
the well known procedure for calculation of such integrals.45

We give here only the result of the calculation23'44

- **- J

where D ( t ) = ch r(t — T) +

(4.24)

r(t — T), r= (icoq/

Substituting (4.24) into (4.22), one can easily show
that with the necessary accuracy (terms proportional toy'2

and ( 1 — £) are discarded),

(4.25)

Making here the substitution of variables z = rr and going
over from integration over the complex variable z to integra-
tion over the real variable* = Re z from 0 to oo (Fig. 4), we
shall write the final expression for the radiation spectrum of
a fast particle in an amorphous medium for ev2 < 1 in the
form

dg (4.26)

where <J>W (jp ) is the Migdal function introduced in the pre-
vious section, s^ = S/2V2\r = (1/4)72(1 - VEl/2)(o>/
o)LP ) l / 2 , and WLP = ?74/4.

Equation (4.26) takes into account, in addition to mul-
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FIG. 4. Integration contours in Eq. (4.25) over the complex variable z for
ev2 < 1 and Eu2 > 1.

tiple scattering, the influence of the polarization of the medi-
um on the radiation. For e = 1 it goes over to Eq. (4.16). We
therefore see that quantitative results concerning the influ-
ence of both multiple scattering and the polarization of the
medium on the radiation can be obtained not only on the
basis of the kinetic-equation method, but also on the basis of
the functional-integration method.

4.6. Influence of multiple scattering on Cherenkov radiation

In derivation of Eq. (3.23) no specific dependence of
the dielectric permittivity e on the frequency co was used, and
therefore Eq. (3.23) can be used to study the radiation of fast
particles in matter both for ev2 < 1 and in the case in which
ev2> 1. The first of these possibilities was discussed in the
preceding sections.

Let us consider now certain features of the radiation of
fast particles in an amorphous medium for ev2 > 1. In this
case, as is well known,46 Cherenkov radiation occurs. The
length in which this radiation is formed in matter has macro-
scopic dimensions (for straight-line motion of a particle in
the absence of absorption of the radiated waves this length
actually is infinite; see Section 2.2), and therefore it is impor-
tant to know how multiple scattering affects Cherenkov ra-
diation.

In study of the influence of multiple scattering on the
radiation of a fast particle in an amorphous medium for
EV2 > 1 (and ex 1) it is possible to use Eq. (4.25) which was
obtained in the previous section. We shall immediately
transform this equation to a form convenient for analysis.

For this purpose we shall carry out in (4.25) the re-
placement of the variable of integration r by z = rr and then
go over from integration over the complex variable z to inte-
gration over the real variable x = Re z between the limits 0
and — oo (for ev2> 1, in contrast to the case sv2 < 1, for
convergence of the integral it is necessary to close the inte-
gration contour in the direction of the negative semiaxis
x = Rez; see Fig. 4). In this replacement of the integration
contour it is necessary to take into account the residues at the
singular points of the function cth z. The resulting expres-
sion for the spectral density of radiation here can be written
in the form47'48

where
_ . , . |T ru, / 6 \ . 1 , 61

Jzr(sp) = 4sp|Im|^T (-§-)+"6— 2 J

— 2jtRe(e-'J"J— I)"1] ;

here /5 = — 2( 1 + /') sp and *(x) = ^ In T(x)/dx is the
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logarithmic derivative of the F function.
The first term in (4.27) determines the Cherenkov radi-

ation spectrum.46 The second term describes the influence of
multiple scattering on this radiation.

If |sp | £ 1, then y(sf)^- 1/6 |sp j . The correction to
the spectral density of Cherenkov radiation due to multiple
scattering is negative in this case.

For sp | -»0 the function .*? (sp ) -»1 and consequently
the radiation in this case turns out to be greater than Cheren-
kov radiation.

For arbitrary values of sp a plot of the function & (sp )
is given in Fig. 5.

Therefore multiple scattering changes the spectrum of
Cherenkov radiation, and there can be either a decrease or
an increase of the radiation, depending on the value of the
parameter sp.

The formulas obtained are valid if the medium in which
the radiation occurs is transparent, i.e., if the imaginary part
of the dielectric permittivity is equal to zero. Effects asso-
ciated with the absorption of the waves have been discussed
in Ref. 48.

5. MULTIPLE SCATTERING OF FAST PARTICLES IN
CRYSTALS

5.1. The possibility of stochastic motion of a charged particle
in a crystal

We have considered the influence of multiple scattering
on the radiation of a fast particle moving in an amorphous
medium. Here it was shown that the effect depends substan-
tially on the ratio between the mean square angle of multiple
scattering of the particle on the coherence length and the
square of the characteristic angle of its radiation, and in-
creases with increase of the ratio of these quantities. Multi-
ple scattering can influence the radiation of a charged parti-
cle moving not only in an amorphous medium, but also in a
crystal. Here multiple scattering will occur not at individual
atoms, but at groups of atoms, for example, at strings of
atoms in the case of motion of a particle near a crystallo-
graphic axis.

Multiple scattering usually is associated with random-
ness and therefore at first glance it appears that it has no
place in the motion of a particle in a crystal, which is a regu-
lar structure. In reality, however, randomness can arise even
in motion in a crystal, but the reason for this will lie not in a
disordered location of the atoms as occurs in an amorphous
medium, but in the features of the very dynamics of the mo-

-7-

FIG. 5. Plot of the function ,y~(sr) which determines the influence of
multiple scattering on Cherenkov radiation.
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tion of the particle in the crystal. The point is that, as is well
known,49'51 even in particle motion in comparatively simple
fields which depend on two coordinates, the motion may
have a nature which is not necessarily regular, but stochas-
tic. This question is determined entirely by the number of
integrals of motion in the problem considered. For example,
in the case of a system with two degrees of freedom, which
has two integrals of motion, any finite motion will be regular
and quasiperiodic. However, if there is only one integral, the
motion will be stochastic.

Just this situation exists in the motion of a fast charged
particle in a crystal at a small angle ̂  to one of the crystallo-
graphic axes (the z axis). In this case it is well known52'53

that the variation of the impact parameter between succes-
sive collisions of a particle with the atoms of the lattice is
small in comparison with the impact parameter. Under these
conditions the motion of the particle in the crystal is deter-
mined mainly by the continuous potential of the strings of
atoms located parallel to the z axis, i.e., by the lattice poten-
tial averaged over the coordinate z

i f j. ̂  . . / _ _ N (5D

where u(r — r k ) is the potential energy of interaction of the
particle with a crystal atom located at the point r^ and
p = (x, y) are the coordinates in the plane orthogonal to the
z axis.

In this averaged field the particle momentum compo-
nent pz parallel to the z axis obviously will be conserved.
However, in the plane perpendicular to the z axis the motion
will be determined by the equation

(5.2)

where £„ = ( pi + m2)1/2, £„ ^E.
We therefore arrive at the problem of two-dimensional

motion of a particle in a field C/(p).
The potential U( p) in which the particle motion in the

crystal occurs is a periodic function of the coordinates x and
y, and therefore the impression may be formed that the mo-
tion in this field can be only regular and quasiperiodic. How-
ever, this is not the case. The motion of the particle in the
(x, y) plane can be either regular or random. This is deter-
mined entirely by the number of integrals of motion of Eq.
(5.2).

One integral of motion of (5.2) is well known.17'52'53

This is the integral of the energy of the transverse motion

E± = -|-£'p2 — V (p). (5.3)

Depending on the value of EL, the motion of the particle
can be either finite (channeling) or infinite (superbarrier
motion) in the (x, y) plane.

If in addition to EL there is a second integral of motion,
then the variables in Eq. (5.2) separate and the motion of the
particle in the field U( p) will be regular. The existence of a
second integral of motion in the problem considered, how-
ever, is not at all obligatory. On the contrary, as will be
shown below, very frequently the second integral of motion
will be absent. The motion of a particle in a crystal in this
case will be random. Therefore even in a crystal irregular
motion of a particle is possible, and this conclusion applies in

equal degree to the motion of both channeled and superbar-
rier particles.

The discussion carried out above is classical. This dis-
cussion is valid if the effective constant of interaction of the
particle with the atoms of the lattice within the coherence
length is large in comparison with unity, and in addition, the
number of quantum states which determine the motion of
the particle in the crystal is large. These conditions are satis-
fied at sufficiently high energies E and small values of the
angles of incidence of particles onto the crystal ^.10>18

5.2. Regular and irregular motions of relativistic electrons in
axial channeling

In this section we shall discuss the motion of a relativis-
tic electron in a crystal under conditions of axial channeling
and shall show that it can be either regular or irregular.

The potential energy U(p) enters into the equation of
motion (5.2) and we must have a specific expression for this
function. As an illustration we shall consider the motion of a
relativistic electron in a silicon crystal along the (110) axis.
Equipotential surfaces of the continuous potential energy

U (p) = const (5.4)

in this case are shown in Fig. 6. The numbers by the lines
correspond to values of U( p) in electron volts. In the center
of a cell this quantity can be taken equal to zero. The calcula-
tions were carried out with inclusion of thermal vibrations of
the atoms in the lattice, corresponding to room temperature.
As the potential of an individual atom of the lattice we used a
Moliere potential.53

The function U(p) has deep minima at the coordinate
values determining the positions of the strings of atoms in
the ( x , y ) plane, and also saddlepoints on the straight lines
joining adjacent strings. Channeled electrons in this case,
depending on the value of EL, can move in the field of either
one or two strings of atoms.

A change of the nature of the electron motion is natural-
ly expected at those values of EL for which the electron has
the possibility of entering into a region with negative curva-
ture of the potential energy, where its motion is unstable.54

The curvature is clearly negative in some vicinity of the

ff,

7A

FIG. 6. Equipotential surfaces of the continuous potential energy U(p) of
interaction of an electron with a silicon crystal in motion of a particle
along the (110) axis.
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FIG. 7. Poincare sections for axial channeling of
electrons in a silicon crystal along the (110) axis.

saddlepoint, and therefore we shall consider the motion of an
electron for transverse energies comparable with the value of
the potential energy at the saddlepoint Uc ~ — 24 eV.

In order to find out if there is a second integral of mo-
tion of Eq. (5.2) in the case considered EL ~UC <0, it is
convenient to use the method of Poincare sections.50'51 This
method is particularly effective for systems with two degrees
of freedom, whose phase space is four-dimensional
(x,x, y, y). In view of the conservation of the energy of the
transverse motion, the phase trajectory of a particle will lie
on a three-dimensional surface .E^ (x,x, y,y) = const. Let us
consider the points of intersection of the phase trajectory
with an arbitrary plane, for example the plane (y, y), i.e., we
shall set x = const. Then in the case in which there is a sec-
ond integral of motion / the set of consecutive intersections
of the trajectory with a chosen plane will lie on some curve
y=y(y, J) determined by this integral of motion. However,
if there is no second integral, the points of intersection will be
distributed randomly over a certain portion of this plane
bounded by a separatrix. Poincare sections can be construct-
ed by numerical solution of the equation of motion. This
problem was formulated and solved numerically in Ref. 55.

In Fig. 7 we have shown Poincare sections x = 0 for
EL = 1.1 Uc and Ei =0.5UC. In these cases the motion of a
particle will occur correspondingly in one and two potential
wells. The various symbols correspond to various initial con-
ditions, and the thin line shows the separatrix.

In Fig. 8 we have shown typical trajectories of a chan-
neled electron in the (x,y) plane corresponding to various
initial conditions with E± = \.IUC and EL = 0.5UC.

Our results show that atEL = \.\UC, depending on the
initial conditions, in addition to quasiperiodic motion there

is random motion of the particle in a channel. With increase
of EL the fraction of initial conditions for which the motion
is random increases. For EL =0.5UC the phenomenon of dy-
namical chaos appears practically for all initial conditions.
The randomization is due to instability of the trajectories of
the channeled electron with respect to change of the initial
conditions in the sense that a small change of the initial con-
ditions leads to an exponential dispersal of initially close tra-
jectories. At large times this instability leads to a motion
which is perceived as random.

Let us note now some features of physical processes as-
sociated with the chaotic motion of an electron in a crystal.

First of all there is a change in the nature of the radi-
ation under conditions of channeling. In quasiperiodic mo-
tion the electron radiation spectrum will contain sharp
maxima at frequencies for which the coherence length is
comparable with the length traveled by the electron during
one oscillation (see for example Ref. 5 6). On the other hand,
in chaotic motion of the electron in a channel there are no
periodically repeated portions of the trajectory and conse-
quently the radiation spectrum in this case will not contain
sharp maxima.

Furthermore, in quasiperiodic motion along a trajec-
tory of the rosette type the electron will not approach close
to the nuclei of the lattice atoms. Therefore the yields of
inelastic processes due to small impact parameters (nuclear
reactions, scattering at large angles, and so forth) in such
motion will be suppressed in comparison with the yields of
the processes in random motion of the electron in a channel,
when it can closely approach the nuclei. For the same reason
allowance for the phenomenon of dynamical chaos should
lead to a more rapid dechanneling of relativistic electrons in

FIG. 8. Regular and chaotic trajectories of a chan-
neled electron in the plane perpendicular to the
channel axis for EL = 1.1 Vc (a) and EL =0.5f/c
(b) (the dashed lines bound the regions with posi-
tive curvature of the potential energy).
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comparison with the case57 in which this phenomenon is not
considered.

We note in this connection that in a crystal randomness
can result also from the interaction of a particle with irregu-
larities of the crystal-lattice potential, and also with impuri-
ties. These factors also lead to destruction of the stability of
motion of channeled electrons and, in particular, to accel-
eration of the dechanneling of particles.58

5.3. Scattering of a fast charged particle by strings of crystal
atoms

We have considered motion of a fast electron under
conditions of channeling and have shown that its motion in
the channel can be either regular or chaotic. This conclu-
sion, however, does not apply only to channeled particles. In
fact, the motion of an electron in a channel becomes unstable
if its trajectory passes through a region with negative curva-
ture of the potential energy. For superbarrier particles this
condition is satisfied, and therefore their motion in the field
of the continuous potential of the atomic strings of a crystal
also can be either regular or irregular. The nature of the
motion of a superbarrier particle in a crystal in this case can
be determined by means of the Poincare-section method in
the same way as was done in the preceding section.55'59 The
difference between the two types of motions in this case lies
in the following.

A fast particle under conditions of superbarrier motion
encounters atomic strings located parallel to the z axis along
which the motion occurs. There may or may not be correla-
tions between successive collisions. If there are correlations,
the change of the impact parameter between successive colli-
sions of a particle with atomic strings is small in comparison
with the impact parameter, so that the trajectory will change
smoothly with depth of penetration of the particle into a
crystal. This case corresponds to regular motion.

Absence of correlations means that the change of the
impact parameter is comparable with its value. This case
corresponds to irregular, chaotic motion of the particle in
the crystal. Here its collisions with different strings of atoms
can be regarded as random.

A large spread of the impact parameters in successive
collisions obviously corresponds to a pattern of random dis-
tribution of atomic strings—the strings remain parallel to
each other and penetrate the entire crystal, but the distance
between them and their relative location in the plane orthog-
onal to the z axis is in effect random. In other words, in this
case one can proceed from a picture in which the collisions of
the particle occur with irregularly located but nevertheless
parallel strings. The motion of the particle in the field of an
individual atomic string is determined by the continuous po-
tential of the string. This potential in what follows we shall
consider to be axially symmetric.

We shall now show that the relation between the impact
parameter b and its variation A£ in successive collisions with
atomic strings depends on the energy of the particle and on
the orientation of the crystallographic axes relative to the
particle momentum.

We note first that the approximation of continuous
strings, when the latter appear as objects on which the scat-
tering occurs, has meaning only in the case in which the
angle i/> between the particle momentum and the string axis
is sufficiently small, r/>^R /d.17'52'53

FIG. 9. Multiple scattering of a fast particle by atomic strings of a crystal.

In the field of the continuous potential of an individual
atomic string Ur(p) (potential in the form of a filament) the
momentum component parallel to the string axis (the z axis)
is conserved. Here scattering is possible only along the azi-
muthal angle <p in the plane orthogonal to the z axis. This
angle is determined by the energy of transverse motion of the
particle Ei = Etp2/2 and by the impact parameter of the
string b (Refs. 17 and 60):

UT (P) ft2

(5.5)

The angle of scattering of the particle by the string i? is relat-
ed to the azimuthal angle <p by the equation

(5.6)

As a consequence of scattering by different strings of
atoms there is a redistribution of the particles in the angles <p
(Fig. 9). It is clear that correlations between the collisions of
particles with strings of atoms can appear only in the case in
which a particle is moving near one of the crystallographic
planes, in which the strings are located periodically. We
shall denote by a the angle between the particle momentum
and this plane (Fig. 10). Then the change of the impact
parameter will obviously be given by the relation

A6 — — max (a, (5.7)

where dy is the distance between strings in the (y,z) plane.
We are interested in the case in which kb^b. This con-

dition will occur only if a ^ (b /dy )^and \<p <1. The latter
inequality is valid for EL^>\Ur\. For such values of EL, ac-
cording to Eqs. (5.5) and (5.6),

(5.8)

Since scattering occurs mainly at b~R, the inequality
will be valid under the conditions

FIG. 10. The angles i/> and a which determine the orientation of crystallo-
graphic axes relative to the particle momentum.
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(5.9) gle °f *ne particle in the crystal per unit length,

where ̂  = ( 2 U0/E)1/2 is the critical angle of axial channel-
ing52'53 and U0 = 2Ze2/d ( U0 determines in order of magni-
tude the value of the potential energy Ur(p) forp~R).

When these conditions are satisfied the particle trajec-
tory will change smoothly in successive collisions with
strings of atoms. The trajectory in this case will be deter-
mined by the continuous potential of the plane near which
the motion occurs52'53:

(5.10)

where x is the coordinate orthogonal to the (y^) plane near
which the motion occurs, Ty is the linear dimension of the
crystal along the y axis, and t/(p) is the potential energy
given by Eq. (5.1).

In this way we have arrived at the one-dimensional
problem of motion of a particle in the field U p ( x ) . It is clear
that the motion in such a field will be regular.

If even one of the conditions (5.9) is violated, then in
successive collisions of a particle with strings of atoms a sub-
stantial spread in the impact parameters will occur, A6 £ b.
Here the collisions of a particle with different strings can be
treated as a random process. We emphasize that we are ev-
erywhere here discussing the region of high energies of the
incident particles. The motion of a particle with respect to
atomic strings, as we see, can have either a regular or a ran-
dom nature, and which of these possibilities occurs will de-
pend on the angles of incidence of the particle with respect to
crystallographic axes and planes and, generally speaking, on
the initial conditions. On violation of the conditions (5.9)
the interaction of a particle with strings can be considered as
a random process and can be described by means of the ki-
netic equation.

We shall denote by f(<p,z) the distribution function of
particles in a crystal in the azimuth angle q> at depth z. This
quantity changes as a consequence of scattering of particles
by atomic strings in accordance with the following kinetic
equation61,62.

*)-/(<P, «)]• (5.11)

The solution of this equation with inclusion of the
boundary condition f(<p,Q) = 8(<p), where 8(<p) is a delta
function, is a rather complicated function of the angle <p

oo

/ (q>, z) = -̂ - 2 coak(f
h=-oo

oo

Xexp[ —zndi|> j d6(l —cos q> (&))]. (5.12)

Substantial simplifications appear at i/>^-i/>c when the
particle trajectory in the plane orthogonal to the z axis is
close to a straight line. The distribution of the particles in
angle in this case is Gaussian,17'62

(5.13)

where -&~tff(p,qc — y2ip2 is the mean square scattering an-
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(5.14)

and <p(b) is given by Eq. (5.8).
If the potential of an individual atom of the crystal is

taken as a screened Coulomb potential, then, as can easily be
shown,

gc = (5.15)

Comparing this quantity with the mean square multiple
scattering angle q of the fast particle per unit length in an
amorphous medium, we find that

2 In (183Z-1/') (5.16)

Therefore, over a wide range of the angles i/>
(i/>c <^</J /d—the condition of applicability of Eq. (5.16))
the mean square angle of multiple scattering of a fast particle
in a crystal by atomic strings considerably exceeds the mean
square multiple scattering angle in an amorphous medium.
For this reason the influence of multiple scattering on the
radiation in a crystal can be significantly greater than in an
amorphous medium, and consequently the Landau-Pomer-
anchuk effect in the case of a crystal can appear much more
intensely. This opens up new possibilities for investigation of
the Landau-Pomeranchuk effect with the aid of contempo-
rary accelerators.

6. INFLUENCE OF MULTIPLE SCATTERING ON THE
RADIATION FROM ULTRARELATIVISTIC PARTICLES IN
CRYSTALS

6.1. Influence of multiple scattering on coherent radiation at
small azlmuthal scattering angles

Multiple scattering of particles leads, as we have seen,
to a suppression of bremsstrahlung at high energies in amor-
phous materials. It also leads to suppression of coherent ra-
diation in crystals. In order to describe this effect in crystals
it is necessary to average the general formula (3.23) for the
spectral density of radiation over the scattering angles. In a
crystal, in contrast to an amorphous medium, scattering oc-
curs only in the azimuthal angle tf> (see Fig. 9). If this angle
is small (<p 2lc < 1), then according to Eq. (5.13) the distribu-
tion of particles in angle is Gaussian. We shall begin the
discussion with this case, which is the simplest.

If the azimuthal scattering angle <p is small, then the
particle scattering angle t? which enters into Eq. (3.23) (see
Fig. 9) will be given bydzzifvp. The scattering in the angles t?
therefore will also be Gaussian. Here the probability density
that the scattering angles in the crystal t?n = i/><p(«A) at a
moment of time rn = nA, where n = 1,2,. ..,N, A = r/N, and
7V> 1, will lie in the intervals (#„ ,#„ + ddn) is given by the
relation45

2?CA

(6.1)

Using this expression, we can represent the average val-
ue of the radiation spectrum of a fast particle in a crystal in
the form of a functional integral23'44
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(6.2)

Equation (6.2) differs from the corresponding formula
for an amorphous medium ( 4. 2 1 ) by the fact that in a crystal
the scattering angle tf (r) has only one component, whereas
in an amorphous medium d(r) contains two components.
The average scattering angles in a crystal and an amorphous
medium, as is shown by Eq. ( 5.6 ) , can differ considerably. It
can be concluded from this that the formula for the average
value of the radiation spectrum in a crystal will differ from
the formula for the average value of the radiation spectrum
in an amorphous medium in that in Eq. ( 4.22 ) it is necessary
to make the replacements Q 2

± a — Q ± „ and q^2qc. There-
fore we arrive at the following expression for
(Refs. 23 and 44):

<1
where

_\ _

/c ~ do) (6.3)

dco 3it

is the corresponding result of the theory of coherent radi-
ation of a fast charged particle in a crystal,5'17

(6.4)

andsc. = ( l /4)72( l -«r1 / 2 ) (<y/«c)1 / 2 ;«c = ?c//2.
Equation (6.3) determines the effect both of multiple

scattering and of the polarization of the medium on the in-
tensity of the coherent radiation of a fast particle in a crystal
for£!T<l.5)

At small and large values of sc the function 4>(sc) has
the following asymptotic forms:

I1 '
I 6T)SC,

(6.5a)
(6.5b)

where

For arbitrary values of sc the function <I> ( s c ) is given in
Fig. 3. The curves in this figure show that the functions
4> (sc) and <I>M (s) are very close to each other. On the other
hand, the variables sc and i for given E and co can differ
considerably, and therefore the conditions at which a change
in the nature of the radiation occurs are different in a crystal
and in an amorphous medium.

Let us compare now the main characteristics of the ra-
diation of fast particles in a crystal and in an amorphous
medium in the low-frequency region.

We note first of all that the quantity d^coh /do) is relat-
ed to the spectral density of radiation of a particle in an
amorphous medium (4.5) by the equation

(6.8)d8coh _ gc
do g

In the range of angles if> of interest to us (^c 4<ip<,R /d),
according to Eq. (5.16), we have qc$>q, and therefore
®coh ^ ® BH-

In the frequency region a)^o)p, as is well known,3 the
dielectric permittivity is given by the relation
5=1 — (a2/co2), where cop = [4irnZe2/m)l/2 is the plas-
ma frequency. The quantity 2y2(l — v e } / 2 ) which enters
into Eqs. (4.26) and (6.3) in this region of frequencies can
be written in the form

Equations (4.26) and (6.3) show that both in an amorphous
medium and in a crystal the polarization of the medium af-
fects the radiation in the frequency region co 5 fa)p . In addi-
tion, multiple scattering in an amorphous medium and in a
crystal affects the radiation respectively at CO^K>LP and

(ch x— 1) (sh x)~3/2 « 1-33.

(0$. (2qc/q)caLP.Fori/>c ^<^R /d, according to Eq. (5.16),
we have qc > q, and therefore the change in the character of
the radiation in a crystal occurs at lower energies and in the
region of higher frequencies than in an amorphous medium.

In Fig. 1 1 we have shown the results of a calculation of
the radiation spectrum of electrons with E = 1 and 10 GeV
in an amorphous medium (dashed curves) and in a crystal
(solid curves) in the case in which the beam enters a tung-
sten crystal at an angle ^ = 2 mrad to the { 100) crystallo-
graphic axis. As the potential of an individual atom of the
medium in the calculations we used a screened Coulomb
potential.

Our results show that in emission of radiation in a crys-
tal the frequency region in which multiple scattering has an

Therefore for sc > 1 Eq. (6.3) goes over into the correspond-
ing result of the theory of coherent radiation of relativistic
particles at atomic strings of the crystal with inclusion of the
effect of polarization of the medium on the radiation

dscoh 1/_d£\ _
\ dm /0 d(0 2Y2(1 — ye1/2) '

For sc -> 0 Eq. ( 6. 3 ) gives a more accurate value of the coeffi-
cient in the corresponding result of Ref. 1 2, which was found
on the basis of qualitative estimates. In this limiting case,
according to Eq. (6.5b),

We see that for sc -^ 1 (<y 4 o)c) there is a significant sup-
pression of the coherent radiation due to multiple scattering.

<u,MeV

fffff

FIG. 11. Spectrum of radiation of low-energy photons by electrons in a
tungsten crystal in motion at an angle t/i = 2.10~3 rad to the (100) axis
(solid curves) and in an amorphous medium (dashed curves).
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important effect on the radiation is significantly larger than
the corresponding frequency region for an amorphous medi-
um. It is also important that at not very high particle ener-
gies in an amorphous medium the effect of multiple scatter-
ing on the radiation cannot be discussed independently of
the influence of the polarization of the medium, whereas in a
crystal such a treatment is possible. For this purpose it is
necessary to satisfy the conditions

These inequalities, in particular, are satisfied in the case in
which an electron with E = 1 GeV is moving in a tungsten
crystal at an angle if> = 2 mrad to the (100) axis. For E = 10
GeV, as can easily be verified, the conditions

- £ -

are satisfied and consequently for this energy there is a fre-
quency region in which, both in a crystal and in an amor-
phous medium, the influence of multiple scattering on the
radiation can be discussed independently of the influence of
the polarization of the medium.

Therefore in the motion of ultrarelativistic particles in a
crystal the suppression of the coherent radiation due to mul-
tiple scattering ( the analog of the Landau-Pomeranchuk ef-
fect of suppression of bremsstrahlung in an amorphous me-
dium) can appear at significantly lower particle energies
than in an amorphous medium.

Up to this point we have been discussing dynamic sto-
chasticity which arises in motion of a particle in a given po-
tential. However, in a crystal there is also another kind of
stochasticity due to thermal vibrations of the atoms in the
lattice. It also leads to a change of the radiation spectrum —
to a small decrease (by 10-25%) of the incoherent part of
the radiation cross section in comparison with the Bethe-
Heitler result. In what follows we shall not discuss this ques-
tion. It was first investigated by Ter-Mikaelyan ' and has
been treated in detail in his book.5 The influence of channel-
ing and superbarrier motion of fast particles in a crystal on
the incoherent part of the radiation cross section has been
investigated in Refs. 64 and 65.

6.2. Influence of multiple scattering on coherent radiation at
large azimuthal scattering angles

In the preceding section we have considered the influ-
ence of multiple scattering on the coherent radiation of fast
particles in a crystal at small values of the azimuthal scatter-
ing angle. In passage of a particle through a crystal the con-
ditions can also be such that the characteristic values of the
azimuthal angles of its scattering by atomic strings will not
be small in comparison with unity. In this case the scattering
will not be a Gaussian process, and therefore a special study
is required. Such an investigation can be carried out in the
general case if the radiation has a dipole nature, i.e., if the
condition 'f&}< 1 is satisfied.6'

The spectral density of the radiation from a relativistic
particle in the dipole approximation is given by Eq. (4.1).
We shall be interested in what follows in the radiation in the
frequency region for which the coherence length /,, = 272Ao
is large in comparison with the length 2R /ifi in which the
acceleration of a particle in collision with each atomic string
is nonzero. In this frequency region the quantity |w(v)|2

which enters into Eq. (4.1) is determined by the relation
( 4. 2 ) , in which we understand the angle ftk to be the scatter-
ing angle in the collision with the k th string and tk is the
moment of the collision.

The relation (4.2) must be averaged over the scattering
angles •&. As before, we shall be interested in the radiation in
the case in which the collisions of the particle with various
strings are random. Taking into account that the scattering
in the collision with each string involves a change of the
azimuthal angle <p (see Eq. ( 5.5 ) ) , we obtain after averaging
over <p ( Refs. 44 and 66 )

2 2 cosv(im — i
m, h

-*l — <cos(p>lm-&+'l),

(6.9)

where

(cos qp) = (a)"1 \ d& cos (p (b)

and a is the average distance between strings, a = (nd) ~'/2.
Note that in an amorphous medium after averaging | w 2

over angles, the double sum over the scattering centers (4.2)
has gone over to a single sum. As a result of this, the depend-
ence of (|w|2) ontk has dropped out. However, in the case of
a crystal the double sum after averaging over angles is still
present and consequently the dependence of <|w|2) on tk is
retained. Therefore Eq. (6.9) must still be averaged over the
random moments of time of the particle collision with atom-
ic strings tk.

The procedure for averaging Eq. (6.9) over^ has been
described in detail in Ref. 44 and we shall not dwell on this
question here, but shall only give the resulting expression for
the average value |w|2 on the assumption that the target
thickness T is significantly greater than the coherence
length /:

(6.10)

where ~r = a/i/r is the average time of free travel of the parti-
cle between successive collisions with atomic strings. Here
the average value of the spectral density of radiation takes
the following form:

/JiA -T
\ do) /c " -F(z), (6.11)

where eod = 4y2{sm2(<f>/2))/ T, x = (2eo/cad)(\ -ve1'2),
and

F(:r) = :i:(-|--z2)arcctga; + 3z2[l—~ In (1 -far2)] .

(6.12)

This formula is valid for arbitrary values of the azi-
muthal scattering angle. It is required only that the condi-
tions l^>2R/i/> and y2 •& ]4,1 be satisfied.

Let us consider some limiting cases of Eq. (6.11) for the
case co £ ya>p.

The function F(x) at small and large values of x has the
following asymptotic behavior:

^(*)»
-f a; (n +2* In (e

(6.13a)

(6.13b)

The argument of this function in the frequency region of
interest can be written in the form x — (co/(od ) [ 1 + (72&>2/

214 Sov. Phys. Usp. 30 (3), March 1987 A. I. Akhiezer and N. F. Shul'ga 214



co1) ]. From the latter relation and also from the asymptotic
behavior (6.13) it follows that the spectral density of radi-
ation from a fast particle in a crystal will depend substantial-
ly on the relation between the frequencies co, ya)p, and u>d,

If the condition ad 4,y(op is satisfied, then according to
(6.11) and (6.13a) we have

/ d'e \
\ da /c"

(6.14)

If in addition to the condition wd 4.ycop the inequality
c is satisfied, then this formula goes over into the corre-

sponding result of the theory of coherent radiation (6.6)
with inclusion of the influence of the polarization of the me-
dium on the radiation.

The frequency cod depends on the ratio between ̂  and
if>c. The maximum of a>d is achieved at if> 5 if>c, i.e., when the
characteristic values of the azimuthal scattering angles are
comparable with unity. In this region of the angle i[> we have
in order of magnitude cod ~4y2ndRific. Comparing this val-
ue of o)d with ya>p, we find that

This relation shows that for if> 5 $c in the region of sufficient-
ly large y the inequality a)d > ycop can always be satisfied. In
this case there are three regions of the frequency ca in which
the radiation differs substantially: a»o}d, cad>a»y(i)p,
and ycop ><y.

In the frequency region co>a}d (as before we assume
satisfaction of the condition/> 2/?/^) Eq. (6.11) goes over
into Eq. (6.14). In this frequency region multiple scattering
and polarization of the medium do not have an effect on the
radiation. The radiation here is determined only by the fea-
tures of the particle interaction with the field of an individual
atomic string.

For cod > co > ycop, according to Eqs. (6.11) and
(6.13b),

\
*L \ = 1
du /<• 2 (6.15)

In this frequency region multiple scattering of a particle by
atomic strings leads to a rapid decrease of the spectral den-
sity of the radiation with decrease of the frequency of the
radiated photon.

We note that Eq. (6.15) can be obtained easily from the
approximate formula (3.16). In fact, for tAS^c, according
to Eqs. (6.6) and (5.12), we have tP~2^2.17 Substituting
this relation into Eq. (3.16), we arrive at the dipole approxi-
mation with accuracy up to the numerical coefficient in Eq.
(6.15).

Comparing this result with the corresponding result for
an amorphous medium (3.18), we see that in motion in a
crystal multiple scattering of a particle by atomic strings has
a significant influence on the radiation not only for
y2 !F^> 1, as was the case in an amorphous medium, but also
in the case in which y2 •& f < 1. This is due to the violation of
the condition of a Gaussian distribution of the particles in
the crystal in angle for ifr?ii/!c.

Forw <ya)p Eq. (6.11) goes over to Eq. (6.14). In this
frequency region the polarization of the medium has a signif-
icant effect on the radiation of a particle in a crystal.

The formulas obtained in this section are valid if the
condition of dipole radiation of the particle in the crystal is

satisfied, y1 &24\. For 4>~il>c we have in order of magni-
tude &2~i/>2 and the inequality y2^} 41 leads to a restric-
tion on the particle energy E. Note in this connection that
there is an interval of energies E in which the conditions
yil>c 41 and ycop 4cod are satisfied simultaneously. Specifi-
cally, these inequalities are satisfied if (4ndR 2) ~' 4 y 4 md /
4Ze2. Therefore there is an interval of the energies E in
which multiple scattering of a fast particle in a crystal con-
siderably affects its radiation if the condition of dipole radi-
ation is satisfied.

6.3. Influence of multiple scattering on radiation in thin layers
of matter

The results obtained up to this time have concerned the
case in which the target thickness is large in comparison with
the coherence length: 7"> /. However, the length in which the
radiation of a fast particle in matter is formed increases rap-
idly with increase of the particle energy and with decrease of
the frequency of the radiated photon. Therefore at sufficient-
ly high energies E and small co and Tone can have the condi-
tion T4,l, in which the radiation is formed in a region larger
than the target thickness T. We shall show that multiple
scattering in this case, like the case T^> I, can have a substan-
tial influence on the radiation."'30'40

The spectral density of radiation for T41, according to
Eq. (3.12), is determined only by the angle of scattering of
the particle by the target i?. The angles of scattering of differ-
ent particles are different, and therefore Eq. (3.12) must be
averaged over the distribution /(•&) of particles emerging
from the target in angle,

(6.16)

Note that for large target thicknesses T^> I we carried
out an averaging over the particle scattering angles inside the
target. On the other hand, in the case being considered the
averaging is carried out over the scattering angles at the exit
from the target.

For values of the mean square scattering angle of the
particle i?"1 = / d #/(t?) Q2 large and small in comparison
with y~2, Eq. (6.16) has the following asymptotic behavior:

<• dco
2*'
3n

- (6.17a)

. (6.17b)

The equations (6.17) show that for small and large val-
ues of the parameter y2 W1 the radiation differs substantial-
ly. This is due to the fact that the phases of the waves radiat-
ed by an electron in directions close to the momenta of the
incident and scattered particles are opposite, and therefore,
depending on how these waves interfere with each other, the
radiation will also be different. The interference of these
waves is determined by the parameter yd (see Section 3.2).
Equation (6.16) is valid both for radiation in an amorphous
medium and in a crystalline medium. The difference be-
tween the radiation spectra in these cases will be due only to
the specific form of the distribution function /(#) over
which the averaging is carried out.

In an amorphous medium the distribution of the parti-
cles in angle is Gaussian with a mean square multiple scatter-
ing angle (3.17) proportional to the target thickness T.
Equation (6.17a) in this case gives with logarithmic accura-
cy the Bethe-Heitler result (4.5).
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In motion in a crystal at a small angle ift to one of the
crystallographic axes, as was shown in Section 5.3, over a
wide range of the angles i/> (t/>c <^ip<^R /d) the average values
of the scattering angles are substantially greater than in an
amorphous medium. Equation (6.17a) in this case gives a
result which coincides with the corresponding result of the
theory of coherent radiation (6.8), according to which in the
low-frequency region the intensity of the radiation from
electrons in a crystal %"coh significantly exceeds (in order of
magnitude by R /4i/rd times) the intensity of radiation WBH

in an amorphous medium. Therefore the enhancement of the
radiation from an electron in a crystal in comparison with
that in an amorphous medium is due to the increase in the
average scattering angles of the particle in a crystal in com-
parison with the average scattering angles in an amorphous
medium.

With increase of the target thickness, the condition
T2 tf^ 1 is violated, and in a crystal this condition is violat-
ed much more rapidly than in an amorphous medium. For
T^tP^l, according to Eq. (6.17b), the intensity of radi-
ation is practically independent of T. This means that for
Y2 tP> 1 the spectral density of the radiation essentially
does not depend on the number of collisions of the particle
with atoms of the medium, i.e., in this case there is a suppres-
sion of the radiation (bremsstrahlung in an amorphous me-
dium, and coherent radiation in a crystal) from fast particles
in a thin layer of matter. Note that Eq. (6.17b) differs from
the corresponding formulas (4.7) and (6.7) which describe
the suppression of radiation in a thick layer of amorphous or
crystalline material. Equations (4.7) and (6.7) depend sub-
stantially onT,E,andco(%"LP ~~($}'c~Ta1/2/E), where-
as in (6.17b) these dependences are essentially absent.

In Fig. 12 we have given the dependence on the target
thickness T of the radiation spectrum from ultrarelativistic
electrons in a thin layer (T4.1) of amorphous and crystalline
material. The calculations were carried out by means of Eq.
(6.16) on the assumption that the beam enters a silicon crys-
tal at an angle i/> = 0.5 mrad to the (111) axis (curve 1) and
a disoriented crystal (amorphous medium, curve 2).

These results show that in interaction of particles with a
crystal more favorable conditions can be created for study of
the suppression of radiation from relativistic-particles in a
thin layer of matter than in the interaction with an amor-
phous target. Specifically, the suppression of coherent radi-
ation appears at smaller values of T and E and in a larger

range of frequencies <a than does the suppression of brems-
strahlung.

We have discussed up to now the case in which the an-
gles of incidence of particles onto the crystal are large in
comparison with the critical channeling angle. However, the
equations (6.17) can be used also for ^5 if/c. It is required
only that the condition T^lbe satisfied. The average values
of the square of the angle of scattering of the particle by the
crystal in this case are equal in order of magnitude to $.52>S3

Here the formulas (6.17), which are valid for T</, differ
substantially from the formulas for the radiation spectrum
of channeled particles in the case 7>/. In the latter case the
radiation spectrum will depend on T and a (%"ch~ Ta>\ see
Refs. 17 and 67), whereas for T< / these dependences do not
occur.

We mention in conclusion that the condition T<gl can
be satisfied in a number of experiments similar to those car-
ried out in recent years in study of the radiation of channeled
particles of ultrahigh energies in thin crystals.68"70. For this
it is required only that one consider radiation in crystals
thinner than the crystals used in the experiments of Refs. 68-
70 and that one investigate the radiation at lower frequencies
than the characteristic frequencies of channeled-particle ra-
diation; in the experiments of Refs. 68-70 the principal at-
tention was devoted to study of the radiation at these charac-
teristic frequencies. In particular, in channeling of positrons
with E — 20 GeV through a silicon crystal of thickness
T= 100/zm (the conditions of the experiments of Refs. 68
and 70) the requirement T<£l is satisfied in the frequency
region a S 5 MeV. However, with use of thinner crystals the
frequency region in which the condition T</ is satisfied is
extended.

We mention in conclusion that at the present time ex-
tensive studies are being carried out on the interaction of
relativistic particles with crystals also from the experimental
point of view. The data obtained are in qualitative agreement
with the results set forth in the present review. We note some
of these results.

The measured orientation dependences of the angular
distributions of particles scattered by a crystal indicate that
over a wide range of angles of incidence of particles on a
crystal relative to crystallographic axes which are closely
packed with atoms, scattering occurs mainly along the azi-
muthal angle (Fig. 13), and that the average values of the

Electrons Positrons

Si <///>

FIG. 12. Spectral density of radiation of high-energy electrons (de/da>)in
a thin layer of crystalline (1) and amorphous (2) material as functions of
the target thickness.

T*?. f. ... ^^ 1\. ..
/mrad

FIG. 13. Angular distributions of electrons and positrons with energy 1
GeV scattered in a silicon crystal of thickness 185 ̂ m for various values of
the angles of incidence \fi of the particles onto the crystal with respect to
the < 110) axis.71 The points are the direction to the axis.
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particle-scattering angles in the crystal are substantially
greater than the average scattering angles in an amorphous
medium.71'72

The orientation dependences of the spectral and polar-
ization characteristics of the radiation indicate that in pas-
sage of ultrarelativistic electrons and positrons through
crystals, conditions can be created in which correlations ap-
pear between successive collisions of a particle with atomic
strings, and also conditions in which there are no correla-
tions. 5'68-70'73-75 The former of these possibilities is realized
in passage of particles through a crystal along closely packed
atomic strings of crystallographic planes and shows up in the
existence of sharp peaks in the spectral and angular distribu-
tions of the radiation. A typical example of spectral distribu-
tions of radiation in this case is shown in Fig. 14, parts
E and F.

The second possibility is realized in motion at a small
angle to one of the crystallographic axes but far from crystal-
lographic planes which are closely packed with atoms (see
Fig. 14, Part B). In this case in the low-frequency region the
radiation substantially exceeds the radiation of a particle in
an amorphous medium, but there are no sharp peaks in the
radiation spectrum. There are also experimental indications
of the existence of the suppression of coherent radiation of
fast particles at atomic strings of a crystal in the low-fre-
quency region (Fig. 14B and Fig. 15).

It must be mentioned, however, that we are speaking
only of qualitative agreement of the results mentioned
above, and also of many other experiments, with the results
of the theory which has been set forth. This is due to the fact
that the experiments, as a rule, have been carried out with
certain additional restrictions which are complicated to take
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FIG. 14. Spectral density of radiation as a function of y-ray energy for
various regions of the polar angles il> of entry of 10-GeV positrons into a
silicon crystal relative to its {111 > axis.74The crystal thickness is 113/*m.
The limits of the angular regions in/<rad are shown in the plots. We have
selected positrons entering the crystal near the (110) plane (a) and near
the (112) plane (b) .
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FIG. 15. Radiation spectrum of 4.5-GeV electrons entering a diamond
crystal of thickness 1.7 mm at an angle ̂  = 0.52 mrad to the < 100) axis.76

into account in a quantitative theoretical analysis. For exam-
ple, the orientation dependence of the average scattering an-
gles of electrons in a crystal was measured72 under the condi-
tion that the particle radiate a photon in passing through the
crystal, whereas in passing through a thin crystal most of the
particles of the incident beam pass through the target with-
out radiation. In the experiments of Refs. 71, 72, 74, and 76
the disorientation of the crystallographic axes with respect
to the incident beam was accomplished within one of the
crystallographic planes, so that in disorientation by relative-
ly large angles (1/1 of the order of several critical channeling
angles if>c) the particles can execute both random and regu-
lar motion relative to atomic strings.

This arrangement of the experiments is due to the fact
that the principal attention up to the present time has been
devoted to study of the interaction of particles with crystals
under conditions of channeling (both axial and planar chan-
neling) and no special experiments have been set up to study
the interaction of superbarrier particles with crystals. The
fact is, as we have shown above, that in the interaction of
superbarrier particles with atomic strings many important
and interesting effects should appear at ultrahigh energies.
In addition, in recent years experimental data have appeared
which indicate that even in passage of ultrahigh-energy elec-
trons through crystals along crystallographic axes there is
very rapid dechanneling of particles, i.e., the transition of the
particles from subbarrier to superbarrier states (for elec-
trons with 1 GeV traversing a silicon crystal the dechannel-
ing length is several tens of microns77'78), and therefore in
passage of electrons through crystals whose thickness ex-
ceeds the dechanneling length the contribution of superbar-
rier particles to physical processes can be not only signifi-
cant, but also dominant. For these reasons it is desirable to
carry out goal-oriented experiments on study of the features
of the interaction of superbarrier particles with atomic
strings of a crystal. Such experiments are required both for a
quantitative check of the theory and for discovery of the
conditions under which superbarrier particles will play a
dominant role in interactions.

"The idea of a semibare electron was introduced by E. L. Feinberg" in
studying the evolution in time of the state vector of the (electron +
photon )system after scattering of an electron by an atom at a large angle.

2'Here and in what follows it is assumed for simplicity that £ is close to
unity.

"The influence of the polarization of the medium on the radiation of a fast
particle in an amorphous medium was first established by Ter-
Mikaelyan.36

4lThis formula differs by the factor in front of the sine function from the
corresponding formula of Ref. 2 (see the review in Ref. 17).
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"For £ = 1 a similar result has been obtained recently63 by means of the
kinetic-equation method.

6>This condition corresponds to smallness of the transverse displacement
of the radiating particle in the coherence length W, in comparison with
the radiated wave length /I.35
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