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We discuss Yu. L. Klimontovich's objections to the generally accepted derivations of the
fluctuation-dissipation theorem and his proposed additional restrictions on the applicability of
this theorem. We demonstrate that Yu. L. Klimontovich's arguments contradict the basic
principles of statistical physics and hence cannot be correct.

1. Let us recall the problem at hand.
In an electrical circuit described by the equations

d/ d<7 _ r
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and L, C, and R are taken to be constants in the above equa-
tion and hereafter. In thermal equilibrium at temperature T,
the spectral e.m.f. density is determined by the expression
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and consequently
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The notation here corresponds to that of Yu. L. Klimonto-
vich,1 except that he usually replaces/(&»,T) by 2kTta (in
Ref. 2, k = 1; in Ref. 3, the coefficient \/2ir is omitted in
integrals (3) and hence appears in formulae analogous to
( 2 ) ) .

In the classical limit, when fuo^kT, formula (2) takes
the form

= 2RkT (4)

and is called the Nyquist formula (or the classical Nyquist
formula); whereas (2) is known as the quantum generaliza-
tion of the Nyquist formula or the quantum Nyquist for-
mula.
2. In a circuit described by (1) the classical Nyquist formula
is undoubtedly valid (see Ref. 4 for more details). As for the
quantum Nyquist formula (2) , obtained by Nyquist already
in 1928 (albeit without the fua/2 term),5 Yu. L. Klimonto-
vich argues that it is incorrect and should be replaced by the
following:

'2. (5)

In the classical limit (more precisely when fuo04kT) Kli-
montovich's formula obviously reduced to the Nyquist for-
mula (4). But in the quantum regime the difference between
formula (5) and the quantum Nyquist formula (2) can be
arbitrarily large. Indeed, expression (5) does not depend on

the varying frequency co, whereas in the fuo^>kT regime
expression (2) falls off exponentially as the frequency u> in-
creases.*' Obviously, reaching the quantum regime requires
lowering the temperature T and (or) going to higher fre-
quencies u>. We believe that the quantum regime is quite
achievable even under conditions when the quasistationary
equation (1) is valid. In fact, however, no experimental data
are available to test the validity of formula (2). Hence the
question of whether this formula is valid or not cannot yet be
considered irrelevant.

Let us note at the outset that we believe the quantum
Nyquist formula (2) to be absolutely correct, certainly as
long as the assumptions leading to it hold true—above all,
the microscopic (phenomenological) equation (1) must de-
scribe the circuit in question (see also Refs. 2-6).

Formula (2) may be derived by three different meth-
ods: the first may be termed "thermodynamical",3'5'6 the
second employs the fluctuation-dissipation theorem and,
specifically, the Callen-Welton formula7 (see also Refs. 3, 4,
6, and 8); finally, the third method is based on microscopic
arguments and sheds light on the physical nature of the
problem. Yu. L. Klimontovich criticizes the above meth-
ods,' and specifically the first and the second. We shall also
consider these two methods (we omit the microscopic analy-
sis, covered in V. I. Tatarskifs paper4). It is appropriate to
note that Yu. L. Klimontovich's argument goes far beyond
the particular problem of the quantum Nyquist formula. In-
deed, it is claimed in Ref. 1 that in the quantum regime the
Callen-Welton formula is only valid under very strong re-
strictions—equivalent, roughly speaking, to weak dissipa-
tion. At the same time, it is usually held that the Callen-
Welton formula is valid in the presence of strong dissipation
as well, and particularly at any value of resistance R in a
circuit described by ( 1 ) . It is specifically because of this that
the Callen-Welton formula leads to the quantum Nyquist
formula (2).2"4'6 Consequently, Yu. L. Klimontovich's as-
sertion, if correct, would significantly alter statistical phys-
ics, in particular severely restricting the applicability of the
Callen-Welton formula. Accordingly, the editorial board of
Uspekhi Fizicheskikh Nauk deemed it advisable to publish
Yu. L. Klimontovich's paper' in conjunction with our pa-
per, in which we conclude not only that the quantum Ny-
quist formula (2) is valid, but that so is the usual interpreta-
tion of the more general and important Callen-Welton
formula.
3. Let us turn to the "thermodynamic" derivation of the
quantum Nyquist formula (2). The word "thermodynamic"
is in quotation marks because the derivation is only partly
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thermodynamic. More precisely, thermodynamic equilibri-
um assures that for every circuit described by (1) the follow-
ing expression holds

T), (6)

where f(a>,T) is some universal function of at and T, i.e. a
function independent of the parameters L, C, and./?. In order
to derive (6), Refs. 3, 6, and 9 consider two open-ended
circuit "branches" 1 and 2 with impedances Z, and Z2 and
resistances R, = Re{Z,} and R2 = Re{Z2}. Connecting the
two branches in series produces a single closed circuit with
parameters Z = Z, + Z2 and R = Rt + R2. In thermody-
namic equilibrium fluctuating e.m.f. %?, and %', occurring in
branches 1 and 2, lead to liberation of heat with spectral
power

P = R (/2)M = R •

where

pu = - 2 (CO) |

are heats liberated respectively in branch 2 due to e.m.f. fluc-
tuations / / , (in branch 1) and in branch 1 due to e.m.f.
fluctuations ^%. In thermal equilibriumP12 = P2\ and hence

(7)

This result is obtained more rigorously in Ref. 9 and is cited
without opposition in Ref. 1 (see formula (2 .3 ) ) . Since the
branch parameters are arbitrary, i.e., (7) is true for any pa-
rameters of branches 1 and 2 and cannot depend on these
parameters. Consequently, in equilibrium any circuit de-
scribed by ( 1 ) exhibits ( t ' 2 ) , , /R =f(co,T), where/(<u,D is
a universal function possibly dependent on co and T. Expres-
sion (6) is thus derived.

The average electric energy in the circuit is
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where expression (6) is employed in an obvious fashion;
analogously, we may proceed from the expression for the
average magnetic energy K = LI2/2 to reach the same con-
clusion.

Since the function f(co,T) is universal, it may be deter-
mined by considering any circuit. It is most convenient
to treat a weakly damped circuit, where 7? /
L < ( 7 _ C ) ~ I / 2 = &>„. Asaresult,thefunction/(ca(,,r) nwybe
taken outside the integral in (8), and the integral then re-
duces to 1/4 (see Refs. 3 and 6), whence U =f(co(i,T)/4. On
the other hand, we know, that in an arbitrarily weakly
damped circuit (oscillator) with intrinsic frequency co the
average values

where we drop the subscript zero in &>0 since the intrinsic
frequency is arbitrary. Consequently, f(co,T) = fe
coth(fe/2A-r) and we obtain the quantum Nyquist for-
mula. Evidently, the second part of the derivation—where

expression (8') is employed — is not thermodynamic but
rather uses quantum statistics.

Yu. L. Klimontovich's arguments against the above
conclusion reduce to the following ( see Ref. 1 , paragraph 2 ) :
the function /(&>(„ 7") = ficoa coih(fua0/2kT) "also satisfies
the equality" (7), "since the frequency co0 corresponds to
the entire circuit with total impendance Z(o>)". However,
we see no grounds for such a conclusion, since precisely from
(7) it follows that the function f(a>, T) is independent of all
circuit parameters, including the intrinsic frequency can of a
two-branch circuit (here we speak of an intrinsic frequency
given R , = R2 = 0). Allowing the quantities ( "S\ 2 ),„ to de-
pend on the frequency a>0 is also completely unacceptable on
physical grounds. Indeed, how can the electrical noise of
resistances 7?, and R2 of branches 1 and 2 depend on the
intrinsic frequency o>0 of the entire circuit, which is deter-
mined by the self-inductances and capacitances of both
branches? By the way, let us note that the branch impen-
dances Z, and Z, for given R , and R2 do not uniquely deter-
mine the self-inductances and capacitances L , 2 and C, 2

(see, for instance, Ref. 3, Ch. 13). Furthermore, in the
ftco^kT regime, how can the noise fail to decrease as the
frequency co increases in view of (5)?*' Finally, let us note
that the cited derivation of the universality off(co, T) is quite
analogous to the derivation of KirchhofTs law stating that in
thermal equilibrium the relation between the emissivity of a
body and its absorptivity is universal (see Ref. 8, §63, and
Refs. 9 and 10). We do not know whether the corresponding
derivation of KirchhofFs law was challenged in the 19th cen-
tury, but no such objections appear in contemporary litera-
ture and KirchhofFs law itself is certainly valid. We believe
that the same can be said about expression (6) with its uni-
versal function f(co,T).

In all, despite our sincere efforts, we have discovered no
"hidden reefs" to "sink" the "thermodynamic" derivation
of the quantum Nyquist formula ( 2 ) . This derivation is fully
described above, and the reader himself may judge its per-
suasiveness. It remains to be said that the validity of the
"thermodynamic" derivation is further supported by the
fact that the same result (i.e., the quantum Nyquist formula
( 2 ) ) is obtained by the other two previously mentioned
methods. Consequently all these methods are mutually con-
sistent and reinforce each other. In particular, as was noted
in Ref. 3, to a certain extend the "thermodynamical" deriva-
tion may be viewed as a proof of the Callen-Welton formula,
including the case of strong dissipation, of course. The Cal-
len-Welton formula is so important, however, that its deri-
vation and applicability warrant a separate discussion.
4. Let us consider a certain physical quantity x that charac-
terizes some body (system), with its quantum-mechanical
average value x being zero in the absence of an external per-
turbing interaction. If an interaction described by a perturb-
ing force/is turned on, then xlo = a(co)f, where we use the
Fourier components of x and/and a(co) = a'(co) + ia" (co)
is some generalized susceptibility (see Ref. 8, 123 for more
detail). In thermodynamic equilibrium at a temperature T
the fluctuations of quantity x are due to the imaginary part
a" of susceptibility a — this is the fluctuation-dissipation
theorem or the Callen-Welton formula:

cth . (9)
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A derivation of this relation is presented in Ref. 8, § 124,
among others. Taking an electrical circuit as an example, we
choose the current / to represent the quantity x, with
/,„ = ^la/Z(oj) = ia> f ia/Z(a) whereZ(ta) is the aforesaid
impedance of the circuit. Evidently in this case the gen-
eralized susceptibility a(co) =ico/Z((a), and a" = Im{a}
= coR /\Z 2, R = Re{Z}. Hence from the Callen-Welton

formula (9) we immediately obtain the quantum Nyquist
formula (2) (see Ref. 2, § 78 for more detail).

Yu. L. Klimontovich proceeds from the correct expres-
sions (4.1)-(4.3)" to write down the Callen-Welton for-
mula (2.6) which differs from (9) only in his choice of a
tensor atj for the scalar a ((2.6) reduces to (9) for the iso-
tropic case, when a,-,- = aS/j). However, he considers the
formulae (4.1)-(4.3) to be approximations corresponding
to the "condition of an infinitely narrow resonance for every
n-m transition", whereas in fact we are dealing with funda-
mental principles of quantum statistical physics, rather than
some "condition".

Indeed, in quantum statistical physics we consider sys-
tems described by Hermitian Hamiltonian operators con-
fined to an arbitrarily large but finite volume. According to
well-known theorems, the energy eigenfunctions of such sys-
tems are real and form a discrete spectrum. It is precisely
these energy levels En that determine the transition frequen-
cies conm = (En — Em )/fi. If such transition frequencies are
taken to be "resonances", then these "resonances" are by
definition "infinitely narrow". In any case, the introduction
of the term "resonance" in this context is misleading. The
energy levels of a macroscopic body as a whole (and we are
discussing precisely such levels) are spaced extremely close
together, so that no real experiment can uncover the reso-
nant properties of these transitions (unless some additional
selection rules separate certain groups of levels).

To be sure, the existence of definite (sharp) energy lev-
els of zero width is used in many other derivations. The usual
partition function that determines the thermodynamic
quantities of a system,

Z = Ve-^/ r (10)
/(

also presupposes the existence of such levels and is employed
in statistical physics without any stipulation of "infinitely
narrow resonances".
5. The categorical character of the above statements may
appear excessive. The notion of the "width of a level" and
the "theory of spectral linewidth" are common usage. But
the true nature of the "finite linewidth" should be properly
understood. It is an approximate concept or, more precisely,
it is a concept used to describe approximately the properties
of a system with a continuous or quasicontinuous (read
"very dense") spectrum in terms of a discrete spectrum,
which is helpful for a certain class of appropriately formulat-
ed problems.

Consider a simple example: the excited state of some
atom. Then, neglecting completely the interaction of the
atom with a transverse electromagnetic field, we have a sys-
tem of discrete levels of negative energy (as usual the ener-
gies of more and more highly excited states En -»0). Consid-
er one such state, say E,(0). It would contribute a term
exp( — E°/T) to the partition function (10), and a sharp
resonance fuolo = E\0> — E^ as the system is excited by

light from its ground state, and so forth. Now consider the
possible radiation of light by the atom. This implies taking
into account the interaction of the atom with a transverse
electromagnetic field (the longitudinal field and, specifical-
ly, the Coulomb field of the nucleus have already been taken
into account when solving for the energy levels of the atom
treated as a "mechanical subsystem" that does not interact
with a transverse field). But the energy levels of the "me-
chanical subsystem" (an particularly the level E \m are no
longer energy eigenvalues of the full system: atom + trans-
verse electromagnetic field. The corresponding wavefunc-
tion VI/,IO) is also no longer an eigenfunction of the full sys-
tem—this is the reason for light radiation, i.e., a transition to
a different state. An analogous process occurs in nuclear
decay and so forth. Since the initial state 1 (which has energy
E J0) and wavefunction ^j0' if we neglect interaction with a
transverse field) is quasistationary, it may to some extent be
characterized by a complex energy E, = E 5°' — Hry/2 and
wavefunction

Uf ^ 0—iEit/h a- V'/2*> ~ i-E1,0^/'' / | 1 \f 1 ^ ' c i ' — e r / c . I.!1,)

The substitution E J0) -^Et may be employed in expressions
for the dielectric permittivity of the system, in the spectral
linewidth theory, and so forth. In addition, ify<^E |0>, the y-
functions that occur in certain expressions are replaced by
Lorentzians:

(12)

In quantum statistics the derivation of the fluctuation-
dissipation theorem considers a full (closed) system, con-
fined to an arbitrarily large but finite volume (taking into
account the transverse electromagnetic field is equivalent to
placing the system inside a large "resonator" with ideally
reflecting walls). In these conditions the energy levels of the
system En are discrete, albeit very densely spaced—the larg-
er the resonator volume, the closer together are the levels.
The energy interval of the order of the level width /of indi-
vidual subsystems of the total system usually accomodates
an enormous number of discrete levels E,,. Each of them
makes a 5-function contribution to «"(«), it is just these
levels that contribute to the partition function (10) and ap-
pear on the left in Eqs. (4.1) and (4.2) used to prove the
Callen-Welton formula.

The inconsistency of Yu. L. Klimontovich's argument
is most apparent in the example of an oscillatory circuit.
Certainly the resonance in an oscillatory circuit with a finite
resistance has a finite width. But this does not imply that a
microscopic examination of the circuit would reveal no defi-
nite energy levels, that the partition function (10) is incor-
rect for it and that the circuit is thereby exempt from the
second law of thermodynamics. And certainly it would be
inconsistent to claim that the notion of discrete energy levels
applies to an oscillatory circuit in all cases except the deriva-
tion of the Callen-Welton formula. Meanwhile Yu. L. Kli-
montovich apparently believes that if a system does not ex-
hibit a well-defined resonance, no connection whatever
between fluctuations and susceptibility can be established
for it.

Although not immediately related to this discussion, it
should be stressed that knowing the "width" of a level y does
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not imply knowing the exact energy levels E,,. In general,
calculating the quantity y is insufficient for the calculation
of corrections to the partition function due to interaction of
atoms with a transverse field.
6. Furthermore, let us note that the modification of the Ny-
quist formula suggested by Yu. L. Klimontovich directly
contradicts black-body radiation laws. In fact, these laws
together with the aforementioned KirchhofFs law lead to a
completely unambiguous derivation of formulae for the cor-
relation functions of random electromagnetic field sources,
which are equivalent to the Callen-Welton formula.1' Any
modification of these formulae implies failure of the black-
body radiation laws. As for the assertion that the usual the-
ory leads to Plank's formula only in the case of weak damp-
ing, it is based on a misunderstanding one needs only to carry
out accurately the calculations cited in Ref. 11).

Transformations of the type (4.3) occur very frequent-
ly in modern statistical physics. For instance, they are neces-
sary to establish the analytic properties of Green's functions
(see, for example, Ref. 2, Ch. 4). If we accept Yu. L. Kli-
montovich's argument, all these properties which form the
basis for employing quantum field theory techniques in sta-
tistical physics would prove incorrect—the entire edifice of
modern statistical physics would crumble. We shall produce
only a single example. The transformation (4.3) is used to
determine the properties of the dynamical form factor
a(io,q) which describes neutron scattering in a liquid. It is
precisely this transformation that leads to the relation

a (—co, q) = 0 (ID,

(see Ref. 2, formula (86.14)). But this relation is a direct
consequence of the principle of detailed balance, the validity
of which is hardly in doubt.
7. In sum, the Callen-Welton formula is an exact relation of
statistical physics. On the other hand, the correlation func-
tions and generalized susceptibilities that enter into the for-
mula can in most cases be calculated only approximately.
Thus it may turn out that their approximate nature leads to
only approximate agreement with the Callen-Welton for-
mula (see also Ref. 4). The magnitude of the deviation from
these relations can serve as a measure of the applicability of
the approximations. We believe that this is the proper frame-
work for discussing the problem in terms of kinetic equa-
tions, as is done in Yu. L. Klimontovich's paper. As Yu. L.

Klimontovich himself justly observes, kinetic equations are
only approximate, and hence the results obtained from ki-
netic equations may deviate from exact relations, which, of
course, does not cast doubt on the relations themselves.

In his paper1 Yu. L. Klimontovich addresses, in addi-
tion to the quantum Nyquist formula and the Callen-Welton
formula, a number of more or less related questions. We
hope the above discussion demonstrates that the criticism of
the quantum Nyquist formula and the Callen-Welton for-
mula presented in Ref. 1 in unfounded. It is then unneces-
sary to address the other questions discussed by Yu. L. Kli-
montovich.

In conclusion we would like to thank Yu. S. Barash and
V. I. Tatarskii for their perusal of this paper and their com-
ments on it.

*Authors' note: In our paper, "Quantum Nyquist for-
mula and the applicability ranges of the Callen-Welton for-
mula (comments on Yu. L. Klimontovich's paper)" (pub-
lished in Uspekhi, February 1987, Vol. 30, No. 2) in
passages [marked by asterisks] on page 168 and on page
169, we, of course, mean the frequency dependence only of
those parts of Eqs. (2) and (5) that depend on temperature.
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