
From the Editorial Board
Usp. Fiz. Nauk 151, 309 (February 1987)

The article "Fluctuation-dissipation relations. Role of
the finiteness of the correlation time. Quantum generaliza-
tion of Nyquist's formula" by Yu. L. Klimontovich was sub-
mitted for publication in Uspekhi Fizicheskikh Nauk. In
this article it is asserted that the well-known Callen-Welton
formula holds in the quantum region only under conditions
of weak dissipation, while the quantum generalization of
Nyquist's formula in the general case diifers substantially
from the generally accepted derivation in the literature. The
reviewers to whom we sent the article did not agree with Yu.
L. Klimontovich's conclusions. Nevertheless, discussions
(in particular, at seminars) indicate that the questions Yu.
L. Klimontovich addresses are by no means clear to every-
one. Moreover, Yu. L. Klimontovich is not only a well-
known specialist in statistical physics, but he is also the au-
thor of the book "Statistical Physics" (Nauka, Moscow
(1985)), a textbook for physics students. In this book

(Chapter 11, Sec. 5) the quantum generalization of Ny-
quist's formula is also derived in an unusual manner.

In view of this situation we thought it would be appro-
priate to publish Yu. L. Klimontovich's article simulta-
neously with the article by V. L. Ginzburg and L. P. Pi-
taevskii, in which Yu. L. Klimontovich's article is criticized
from the standpoint of the position adopted in the literature.
In addition, this issure of Uspekhi contains an article by V. I.
Tatarskii, which is directly relevant to the problems dis-
cussed. In addition, V. I. Tatarskii, like V. L. Ginzburg and
L. P. Pitaevskii, regards the standard expression for Ny-
quist's quantum formula to be correct.

We believe that the three indicated articles taken to-
gether elucidate quite fully the questions under discussion
and will enable the readers to draw their own conclusions.
The Editorial Board does not propose to have these ques-
tions discussed further in Uspekhi.
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Fluctuation-dissipation relations. Role of the finiteness of the correlation time.
Quantum generalization of Nyquist's formula

Yu. L. Klimontovich

M. V. Lomonosov Moscow State University
Usp. Fiz. Nauk 151, 309-332 (February 1987)

The fluctuation-dissipation relations (FDR) in physical systems are studied at all levels of the
statistical description. The most general FDR are the relations for the fluctuations of many-
body distribution functions. It is pointed out the problem of formulation of FDR is related to
the problem of deriving irreversible equations based on the reversible equations of classical and
quantum mechanics. The FDR are divided into two classes: 1) FDR for fluctuations with
infinite correlation times ("collisionless approximation"), which correspond to infinitely
narrow resonances, and 2) FDR for fluctuations with finite correlation times ("collisional
approximation"). The corresponding spectral densities have finite widths, determined by the
"collision integrals." The fundamental questions about which different viewpoints have been
published in the literature are critically analyzed: 1) the limits of applicability of the Callen-
Welton formula and 2) the quantum generalization of Nyquist's formula for the intensity of a
Langevin source of oscillatory systems. It is shown that the traditional form of the quantum
Nyquist formula, is not well-founded and leads to unphysical consequences. A different
expression, used in the literature, for the quantum Nyquist formula is examined. It is not
universal, but holds in many important cases. Its region of applicability is determined by the
corresponding quantum kinetic equations. The consequences of the two forms of the quantum
Nyquist formula, which can be checked experimentally, are studied. The question of the
formulation of the quantum Nyquist formula is studied as a part of the general problem of
determining the intensity of a Langevin source and the corresponding diffusion coefficient in
quantum systems. It arises, in particular, also in quantum electrodynamics in the calculation of
the Lamb shift (Sec. 12). In this connection two derivations of Bethe's formula for the Lamb
shift are analyzed. It is established that the "subtraction formalism" of quantum
electrodynamics corresponds to the nontraditional form of the quantum Nyquist formula. The
exposition is illustrated with many specific examples.
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1. INTRODUCTION motion based on the equations of mechanics with a random
The first fluctuation-dissipation relation (FDR) was force—Langevin's force, characterizing the role of the mo-

established by Einstein in 1905 in his work on the theory of lecular motion. For a free particle Langevin's equation has
Brownian motion. It has the form D = mykT, and relates tne form
the diffusion coefficient (in momentum space) characteriz- — = i>, — + fv = — / (t) • (1 • 1)
ing the molecular motion of the medium, the coefficient of d< d* m

friction y, and the temperature T. A short time later Lange- The correlation function of the random force is given by the
vin proposed a different method for describing Brownian expression
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</; (0 f} («')> = 6 (t - i'), D = (1.2)

which corresponds to the zeroth-order approximation in the
small parameter rcor/rrel — the ratio of the correlation time
of molecular collisions to the relaxation time rrd = 1/7. In
this approximation the spectral density of the force

- - (/2)w = 2Z) D=mykT (L3)

is independent of the frequency. This means that the noise
attributable to the molecular motion is white noise.

The second relation in (1.3) shows that D plays a dual
role: not only that of a diffusion coefficient, but also that of
the noise intensity in Langevin's equation. Here it is impor-
tant that the definition of both the diffusion coefficient and
the noise intensity is based on Maxwell's distribution for the
velocities of Brownian particles.

In 1928 Nyquist used Langevin's equation

V g = g ( t ) (1-4)

to describe thermal oscillations (Brownian motion) in an
electric circuit. The role of Langevin's force is played by a
random emf, whose spectral density is given by the expres-
sion

fe*). = 2RkT (1.5)

—Nyquist's formula. In (1.4) and (1.5) L, C, and/? are the
inductance, capacitance, and ohmic resistance. The latter
corresponds to m y in formulas (1.2) and (1.3). The spectral
densities of the current and charge are expressed in terms of
the spectral density of the emf:

(**)» 2RkT * -(/2)'"
I1

(1-6)

The one-time moments (variances) are determined by inte-
grating over <y:

</">=^L <<?*> = CAT- (1-7)
a L

The following integrals are employed in the derivation of
these formulas:

da _ . 1 f 2R dm
7*~2Jt~ = ' ~C J coMZfd))!1 2n

(1.8)

To calculate the thermal noise in an electric circuit Ny-
quist could have used Einstein's method also. For this one
must write the corresponding Fokker-Planck equation for
the distribution function f(q,I,t) :

at ,,72

The equilibrium solution of this equation
H(q,, „ /

/ = C exp(

(1.9)

(1-10)

is an example of the Gibbs distribution for an oscillator in a
thermostat. The expressions for the one-time moments

found with the help of this distribution are identical to (1.7).
The spectral densities of the current and charge are cal-

culated by the standard procedure. Namely, together with
(1.9) an equation of the same form for the two-time distribu-
tion function is employed:

f(q,I,t,q',r,t'). ( L I D

With its help the system of equations of the two-time mo-
ments is obtained:

dT

T = t - t '>0 (1.12)

The equation is supplemented with the "initial conditions"
(1.7), which are found with the help of the Gibbs distribu-
tion (1.10). The solution of Eqs. (1.12) yields the formulas
(1.16) and, as a consequence, Nyquist's formula (1 .5 ) .

We have presented the two simplest examples of classi-
cal FDR. Many FDR are studied in statistical physics (see,
for example, Refs. 1-7) in order to describe kinetic, hydro-
dynamic, and diffusion processes in the most diverse sys-
tems.

Additional questions arise in the formulation of FDR
for quantum systems. Indeed, how, for example, should the
classical Nyquist formula (1.5) be formulated in the quan-
tum case? This question was first answered in Nyquist's pa-
per.8 Taking into account the zero-point oscillations Ny-
quist's result consists of the following: one must make the
substitution

^- = kT (1.13)

in the classical formula. Then we arrive at the quantum Ny-
quist formula

(g2)u = 2RkTla. (1-14)

The expression (1.7) for the spectral density of the current
assumes the form

and -4^. d.15)

The operation (1.13) —substitution of the average en-
ergy of a quantum oscillator for the average energy of the
classical oscillator (circuit)—appears to be obvious. There
is, however, another possibility for generalizing the formula
(1.5): the substitution (1.13) is made not at the running
frequency of the spectrum a>, but rather at the characteristic

(1.16)

frequency a>(),
6'7'32 i.e.,

; T 1 »- n H
Kl —»• -7T- «(!)„ Ctll -T

Then the classical Nyquist formula (1.15) assumes the form
. ( 1 -17 )

Thus the spectrum, like in the classical theory, is white noise.
There appears, however, a dependence on the characteristic
frequency a>0 — a parameter in the Hamiltonian in the Gibbs
distribution (1.10).

Let us compare the two quantum generalizations of Ny-
quist's formula presented above.

1. The formula (1.14) contains two parameters
("widths") of the line or two corresponding relaxation
times
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To_JL, T(T)_^_. (U8)

The first characterizes the spectrum of zero-point oscilla-
tions, and the second characterizes the thermal motion.
These times are independent of the parameters of the sys-
tem—the parameters in the Hamiltonian, and are in this
sense universal relaxation characteristics. In contrast to this
formula, the formula (1.17) is not universal, since the con-
cept of white noise itself is relative.

2. The transition to the classical approximation (the
condition kT^-fuo} in (1.14) is not completely determined,
since co here is the running frequency of the spectrum, while
the contribution of zero-point oscillations is largest at high
frequencies.

3. Since the zero-point oscillations lead in (1.15) to a
diverging integral, it is necessary to introduce the parameter
<ymax. In so doing, the corresponding contributions ioL ( I 2 )
for the classical oscillator and for the LR circuit equal

(1.19)

We can see that the mean kinetic energy of the classical oscil-
lator in the equilibrium state is a linear function of the dissi-
pative parameter R. The other part of the integral in (1.15),
determined by thermal fluctuations, also depends on R.

This result is inconsistent with the statistical theory,
according to which in the equilibrium state the one-time cor-
relation functions (here ( I 2 ) and ( q 2 ) ) depend only on the
temperature and the parameters in the Hamiltonian. Other-
wise the thermodynamic functions (here ( I 2 ) and ( q 2 ) )
would depend on the nature of the process by which the
equilibrium state is established. A contradiction with the
second law of thermodynamics would then arise.

The use of the quantum Nyquist formula in the form
(1.17) instead of (1.14) does not lead to the indicated diffi-
culties. Indeed, for the classical oscillator and the LR circuit
(a)0 = 0) the average kinetic energy is determined by the
formulas

L (/2>K = AJ0)o, L(I2)LR = kT, (1.20)

and therefore the system is in equilibrium with the thermos-
tat.

4. The formulas (1.14) and (1.17) lead to the fact that
the behavior of the function ( I 2 ) ^ is substantially different
at high and low frequencies.

The difference bet ween the formulas (1.14) and (1.17)
in the calculation of integral characteristics vanishes only
under the condition of an exact resonance (/?->0), when

Re - . (1.21)

Thus the main difficulties associated with the use of the
quantum Nyquist formula (1.14) occur only for a finite
width of the resonance R /L (or finite correlation time
rcor =L/R).

The problem of the formulation of the quantum Ny-
quist formula is part of the general problem of determining
the intensity of Langevin sources and the corresponding dif-
fusion coefficients in quantum systems. In particular, as we

shall see in Sec. 12, it also arises in quantum electrodynamics
in the calculation of the Lamb shift.

In this work we shall analyze the FDR for physical sys-
tems at different levels of the statistical description. The
most general FDR are those for fluctuations of many-body
distribution functions (see Sees. 5 and 6). Their formulation
reveals the relationship between the problem of the formula-
tion of FDR and the problem of the derivation of the irre-
versible equations of the statistical theory based on the rever-
sible equations of classical and quantum mechanics.43'44

It is useful to divide the FDR into two classes: 1) FDR
for fluctuations with infinite correlation times—"collision-
less approximation," which correspond to infinitely narrow
resonances, and 2) FDR for fluctuations with finite correla-
tion times—"collisional approximation." The correspond-
ing spectral densities have finite widths, determined by the
"collision integrals" in the corresponding kinetic equations.

Among FDR of the first class the Callen-Welton for-
mula is the best known. In the quantum theory it relates the
spectral densities of the internal thermodynamic parameters
with the dissipative parts of the corresponding susceptibili-
ties. The second class includes, in particular, the quantum
Nyquist formula (1.17). The collision integral in it deter-
mines the "width" of the white noise.

In the course of the exposition questions about which
there are differing viewpoints in the literature are examined
in detail. They include: 1) the question of the limits of appli-
cability of the Callen-Welton formula and 2) the question of
the quantum generalization of the classical Nyquist formula
(1.5) .

In connection with what was said above, we shall trace
the manner in which the quantum Nyquist formula (1.14) is
established. Two methods are known. The first method is
based on the Callen-Welton formula and will be examined in
Sec. 4. The other method is based on the second law of ther-
modynamics and some additional considerations. It is pre-
cisely this approach that was employed in Nyquist's work.8

We shall examine here a simpler variant, presented in Refs. 9
and 10.

2. THERMODYNAMIC DERIVATION OF THE QUANTUM
NYQUIST FORMULA

Following Refs. 9 and 10, we shall replace the classical
oscillator under study by two complex resistances connected
in series, such that Z(CD) = Z } ( & ) + Z2(w) and, in particu-
lar, / ? = / ? , + R2, The total power evolved in the circuit at
the frequency at due to thermal fluctuations is given by

P = R (/=% = R
| Z c o )

(2.1)

Since the spectral density of the emf according to both the
formula (1.14) and the formula (1.17) is proportional to
R=Ri+R2, the power P is proportional to ( R , + R2)

2

and can therefore be represented as a sum of four contribu-
tions P\ + PI2 + P2l + P2. The second law of thermody-
namics implies the equality PI2 =/3

:i. We write it in the
form

#2 (%!)«. ^ fliQJjK, (2.2)
|Z ( to ) | " - | X ( c o ) P '

This implies that
nm, /«).. (2.3)
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and therefore the ratio of the spectral density of the emf to
the corresponding resistance is independent of the number of
the subsystem (of the numbers 1 and 2). On this basis it is
concluded in Refs. 9 and 10 that the ratio (2.3) is a universal
function of the frequency and the temperature f(a),T). In
our notation f((o,T) = 2kTM . How, then, should the form of
the function f(a>,T) (or kTia ) be determined?

For this, in Refs. 9 and 10 the equality (1 .15) , relating
the average kinetic energy L ( I 2 ) with the as yet unknown
function kT(J , is employed. Since according to (2.3)
kTm =/(<y,r)/2 is a universal function of the frequency and
temperature, to determine it, it is sufficient (?) to study the
particular case of infinitely small damping (/?-»0), when
the substitution (1.21) can be made in the integrand in
(1.15). At the same time the function kTto can be removed
from the integrand at the frequency co = <y(). Finally, em-
ploying the formula ( 1.20) for the average kinetic energy of
an undamped quantum oscillator, we arrive at the conclu-
sion that the function kTw sought at the frequency <u() is
determined by the expression

- f ( (2.4)

To find the form of the function f(co,T) at an arbitrary
frequency, the following step is used in Refs. 9 and 10: since
f(a,T) is a universal function, it can be reconstructed from
the particular result ( 2 . 4 ) , obtained in the approximation of
an infinitely narrow resonance, by making the substitution
w -«•«„. As a result we arrive at the following expression for
the function sought:

/ (co, | = kTa =-7r- /wocth -
2kT

(2.5)

and therefore at the quantum formula (1.14).
The final step made above, however, qualitatively alters

the entire picture. Indeed, the function (2.4) depends only
on the temperature and the parameters in the Hamiltonian
L, C (or &)0), while the function (2.5) depends on the run-
ning frequency of the spectrum a and, therefore, (I~) in
(1 .15) depends on R.

There is no basis for such a radical change. Moreover,
the function (2.4) also satisfies the equality (2.3), since the
frequency &>„ refers to the entire circuit with the total imped-
ance Z(a>). Thus preference cannot be given based on the
equality (2.3) to the quantum generalization of Nyquist's
formula (1.14) over the formula (1.17).

Another "derivation" of the quantum Nyquist formula
in the form (1.14) is based on the Callen-Welton formula,
which relates the spectral density of an arbitrary internal
parameter X to the imaginary part of the corresponding sus-
ceptibility tensor (see, for example, Sec. 124 in Ref. 1):

(2.6)
U \"'l |JL" 2kT*

We shall see in Sec. 4 that the derivation of Nyquist's
formula (1.14) from the quantum Callen-Welton formula is
not well-founded. Here we merely point out that the integral
of (2.6) over the frequency determining the one-time corre-
lation function (x^j) in the state of thermal equilibrium,
depends only on the temperature and the parameters in the
Hamiltonian, but not on the dissipative parameters, for ex-
ample, the resistance R in the calculation of the correlation
functions { I 2 } and ( q 2 ) .

This discrepancy between the consequences of the

quantum Nyquist formula and the derivations of the statisti-
cal theory of the equilibrium state have long attracted inves-
tigators. Thus G. S. Gorelik in his paper" "Some applica-
tions of the second law of thermodynamics to electric
fluctuations" showed for the example of an RC circuit that
the mean-square fluctuations of the charge, i.e., the quantity
(q2}, cannot depend in the equilibrium state on the resis-
tance R. A year later V. L. Ginzburg published a paper9

entitled "Some questions in the theory of electrical fluctu-
ations." In it the author wrote: "The results presented (the
fact that (q2) is independent of R), obtained in Ref. 3 (in our
case Ref. 11), are completely paradoxical, since they are
purely classical and contradict the quantum Nyquist for-
mula [here (1 .14)] , while it appears that in their derivation
no classical assumptions were made." This viewpoint has
not changed over the years (see Ref. 10).

Thus far attention has been devoted primarily to the
oscillatory circuit. Let us examine some consequences to
which the two quantum generalizations of Nyquist's formu-
las lead for dissipative, but not oscillatory systems. We shall
begin with the LR circuit, when C = oo and, therefore,
&>„ = 0. The expression for ( I 2 ) is identical in this case with
the classical expression [see (1.20) ]. The situation changes
completely when the quantum Nyquist formula (1.14) is
used. Indeed, in this case

2R/L
•kT0

(2'7)

The last formula implies that the average kinetic energy is
not equal to kT. Moreover, it depends on the resistance R.

To emphasize even more strongly the difference
between the results (2.7) and (1.20), we shall write down
the corresponding formulas for separate charged particles.
Consider a rectilinear cylindrical conductor of length / and
with a transverse cross section S. Then the quantities L and
R are defined as follows:

D ml R (9 81# = -^nr-v, and -T--V; ^-*>
ml

where e and m are the electron charge and mass, « is the
average electron density, and v is the electron-phonon colli-
sion frequency. Let us go over from L ( I 2 ) to the average
kinetic energy of an electron. From (1.20) we have

"=("')_ l 3 .„ (2.9)
~1 A' 2 hl>

N is the total number of particles in the sample. From (2.7)
we obtain a different result:

du (2.10)

Here, as in (2.3), the contribution of zero-point oscillations
can be separated out. The corresponding integral diverges
logarithmically [ compare with (1.19) ]. Moreover, the aver-
age kinetic energy of the electron in the equilibrium state
depends on the collision frequency v.

To enlarge the class of "quantum Nyquist formulas" we
shall study the motion of an electron in a thermal electro-
magnetic field. For this, it would seem natural to proceed as
follows.

We define the spectral density of Langevin's force,
equivalent to the action of a thermal electromagnetic field
(taking into account the isotropy of the motion), as follows:
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Planck's formula is used here for the function pm .
We denote by y(<y ) = 2e2<y2/3mc3 the coefficient of ra-

diation friction. Then the expression for the spectral density
of Langevin's force (per component) can be represented in
the form of the quantum Nyquist formula (1.14) taking into
account the frequency dependence of the coefficient of fric-
tion:

In the dipole approximation (the condition
me2, equivalent to the inequality y ( < y ) < ^ < w ) Langevin's
equation assumes the form

(2.13)

The operator y is the radiation friction operator. With its
help we find an expression for the spectral density of the
particle velocity

to2 + 7s (to)
(2.14)

This result is unsatisfactory for the same reason as the for-
mulas (2.7) and (2.10). Indeed, Eq. (2.14) gives for the
average kinetic energy of the electron the expression [unlike
(2.10) the factor l/N does not occur here since there is only
one particle]

m (»»>
- 3 f" T }

,,T dm

This implies that the equality

(2.15)

(2.16)

which is the condition for equilibrium between the noninter-
acting particles and the field, holds only in the zeroth-order
approximation in the parameter fty/kT. We shall return to a
discussion of this equation.

For the RC circuit the quantum Nyquist formula
(1.14) leads to the equality

T<9'> =
l IRC kT <"Kl /„ -s—- (2.17)

and therefore the average potential energy depends not only
on the temperature, but also on the resistance R.

Let us summarize the discussion up to this point.
The quantum Nyquist formula in the form (1.14) is

attractive due to its "universality"—the existence of charac-
teristic correlation times (1.18) which are independent of
the parameters of the system. However, first of all, the "ther-
modynamic derivation" of this formula is not convincing
and, second, the consequences of the formula (1.14) are in-
consistent with the statistical theory of the equilibrium state.

The quantum Nyquist formula in the form (1.17) is
not, of course, universal. The determination of the condi-
tions under which it is applicable is part of the general prob-
lem of substantiating Langevin's equations for quantum sys-
tems. The foundation for this, as will be demonstrated using
concrete examples, are the kinetic equations. We point out
only that the formula (1.17) agrees with the equality (2.3),

expressing the second law of thermodynamics, and does not
lead to unphysical consequences.

The relation between the quantum Nyquist formula
and the Callen-Welton formula will be examined in Sees. 4—
6. We shall see that there are no foundations for regarding
the Nyquist formula as following from the Callen-Welton
formula. Moreover, these formulas refer to two limiting
cases: the Callen-Welton formula corresponds to the case of
infinitely narrow resonances, when the "collision frequen-
cies" approach zero, whereas the Nyquist formula (1.17)
refers to white noise. This means that the correlation time of
the noise is much shorter than all characteristic times in the
problem. However, we shall first define more clearly the
concepts of dissipative and nondissipative characteristics.

3. NONDISSIPATIVE AND DISSIPATIVE CHARACTERISTICS

It was asserted above that in the equilibrium state the
one-time correlation functions are independent of the dissi-
pative characteristics. Let us try to define more clearly the
concepts of nondissipative and dissipative characteristics of
an arbitrary equilibrium system. The possibility of introduc-
ing two different types of characteristics is a result of the
dual role of the interaction of particles and fields in macro-
scopic systems.

A wide class of systems of particles is described by a
Hamiltonian in which the potential energy is determined by
the interaction potential for pairs of particles 4>(r). Then the
thermodynamic functions—the average energy, the pres-
sure, the one-time moments of additive functions of dynamic
variables (particle density, charge, current, etc.)—are de-
termined by the one-particle/, and two-particle/2 distribu-
tion functions.

In the equilibrium state, in the absence of external
fields, the function/,(/•) = 1, while/2 and the correspond-
ing correlation function g2 depend only on the modulus of
the distance between the particles. Correspondingly the spa-
tial Fourier components are even functions of the wave vec-
tor, i.e.,/2(A:) =/2( - *) andg2(A:) =g2( - k).

The functions/2( r \ ) and gz(|r ) and the thermody-
namic functions determined by them are nondissipative
characteristics of the system. The contribution of interac-
tions to them can be arbitrarily large, i.e., there is no general
requirement that the interaction be small.

As an example we shall present the well-known expres-
sion for the average kinetic energy of a particle, interacting
arbitrarily strongly with its environment. In the classical
theory the average kinetic energy is independent of the inter-
action and is completely determined by the temperature. In
the quantum theory, however, the average kinetic energy is
determined by the equality (see Sec. 33 in Ref. 1 and Sec. 67
inRef. 12)

fi'n
(3.1)

where « is the average density of atoms.
Thus in the quantum theory the interaction affects the

magnitude of the average kinetic energy. This contribution,
however, unlike the quantum contribution to the formula
(2.15), which is a consequence of the quantum Nyquist for-
mula (1.14), is determined by the nondissipative function

r\).
In the nonequilibrium state the function g2(k,p,p',t),
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which depends now on the particle momenta also, is com-
plex. Its real part determines the nondissipative characteris-
tics, while the imaginary part determines the dissipative
characteristics (Sec. 58 in Ref. 12). The latter include the
collision integrals, in terms of which the kinetic coefficients,
in particular, the electrical resistance R, are expressed. The
function Img2(k,p,p',t) determines the relaxation to equilib-
rium. In the equilibrium state, however, Img2 = 0. As a con-
sequence the collision integrals also vanish.

Naturally the two-time characteristics and the corre-
sponding spectral densities depend on the function Img2 in
the equilibrium state also. In the transition to the one-time
moments, however, the dependence on the dissipative char-
acteristics is lost.

As another example we shall examine the FDR for a
completely ionized Coulomb plasma [see, for example,
(74.3) in Ref. 12]:

_ 8jl line (CD, fc) 1 ., uo
— --

1m a,, (10) = ~ 2 (A'.')nm (Xj)r,,nb (<" — "nm) (/m ~ /")

(4.2)

The dielectric permittivity of the plasma

e (co, ft) = 1 + S Hjf " V

A + 0, (3.3)

can be studied for complex frequencies also.
With the help of (3.2) and (3.3) we find by integrating

over at the spatial spectral density of fluctuations of the field
[see (75.5) in Ref. 12):

We can see that the spectral density (3.4) is determined
by the function e (0,/c), which is identical to the real part of
the function £(co,k) at zero frequency, and by the dielectric
permittivity at the imaginary frequency e(i-2irlkT /k,k).
The formula (3.3) implies that in the equilibrium state,
when f(p) is the Maxwell distribution, the function
Im£(i2irkT /fi,k) = 0. As a result the spectral density (3.4)
is expressed entirely in terms of the real part of the dielectric
permittivity, i.e., in terms of the nondissipative characteris-
tic.

4. THERMODYNAMIC FORM OF THE FDR. CALLEN-WELTON
FORMULA

The Callen-Welton formula relates the spectral density
of an arbitrary internal parameters, with the imaginary part
of the susceptibility tensor a^ . We impose below the restric-
tion <zy = a,, . The spectral density is given by the formula
[see Sec. 124 in Ref. 1 and (10.4.21) in Ref. 6]

(4-D

The second expression, which is necessary in order to estab-
lish the Callen-Welton formula, determines the imaginary
part of the tensor a,y(&>) [see Sec. 124 in Ref. 1 and
(10.4.1 l ) i n Ref. 6]:

We shall employ an equality which holds for the Gibb's dis-
tribution:

6 (to — tonm) -f—j5 = 6 (to -
1m i n

IT^T. (4-3)

The Callen-Welton formula (2.6) follows from ( 4. 1 ) - ( 4. 3 ) .
Thus the possibility of going over from (4.1) and (4.2)

to the Callen-Welton formula is linked with the presence of
the functions 8(a> — &>„,„ ), corresponding to the condition
of an infinitely narrow resonance for every transition n — m,
in (4.1 ) and (4.2). We shall regard 8 functions as limits of
distributions with a resonance width A (for example, the
function ( l/jr)A/[ (a —conm )2 + A2] in the limit A — 0).

The transition to 8 functions is justified in the presence
of "broad" functions (l/2)&y,,m coth(/Z£o,,m/&r), whose
widths are characterized by two parameters kT /fi= T^ ' and
a)nm . Let us return to the question of the derivation of the
quantum Nyquist formula ( 1.14). It is based on the follow-
ing (see, for example Sec. 78 in Ref. 4). In the formula (2.6),
which is regarded as universal, it is assumed that the func-
tion Ima(o)) is proportional to R /\Z(a>) |2 for arbitrary val-
ues of R. But, in this case, the equality (4.3) breaks down
and therefore the expressions (4. 1 ) and (4.2) no longer re-
duce to the Callen-Welton formula (2.6). We also note that
the integral over the frequencies <y, calculated with the help
of the Callen-Welton formula (2.6), yields the following
expression for the one-time correlation function of the fluc-
tuations of an arbitrary internal parameter*:

We can see that the one-time correlation function depends
only on the temperature and the parameters in the Hamilto-
nian.

Thus the formula (2.6) is obtained by comparing the
expressions (4.1) and (4.2), which separately determine the
spectral density of the fluctuations, and the imaginary part
of the corresponding susceptibility. It is obvious that dissipa-
tion already appears in the formula (4.1), since it cannot
arise merely as a result of the algebraic transformation of the
expression (4.1) (with the help of (4.2)) into the Callen-
Welton formula (2.6).

The formula (4.1), leading to the Callen-Welton for-
mula, is thereby itself an example of a fluctuation-dissipa-
tion relation. There then arises the question: what is the dis-
sipative factor in the formula (4.1)? The answer to this
question is given in the next section.

5. KINETIC FORM OF THE FLUCTUATION-DISSIPATION
RELATIONS

To calculate the kinetic fluctuations (fluctuations in
the distribution functions) it is necessary to have more gen-
eral FDR, relating the spectral densities of the fluctuations
of distribution functions with the imaginary parts of the cor-
responding susceptibilities. The most general relations of
this type are FDR for many-body distribution functions,
whose evolution to the equilibrium state is described by the
corresponding kinetic equations. I3J4>15'7 These FDR, of
course, are extremely complicated for direct application, but
they are very convenient as a point of departure in going over
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to the description employing simpler distribution functions.
We note first of all that the spectral density of an arbi-

trary internal parameter, appearing, in particular, in the
Callen-Welton formula, can be expressed in terms of the
spectral density of the fluctuations of the many-body distri-
bution function (density matrix in the quantum theory):

(X,X,)a = 2 S (*.)nm (X*)">'». (6/»»6/n.-.)«- < 5' l >
mil TiiTni

Thus the problem can be reduced to the calculation of the
spectral density of the fluctuations SfN and 8fnm . This can be
done as follows.7'15

In the classical theory for a system of N particles one
can introduce two distribution functions in a 6Ar-dimension-
al phase space X:

X(t) is a 6JV-dimensional vector of the coordinates and mo-
menta of the constituent particles of the system.

In an incomplete description the first of the functions
(5.2) is random. The second determines the average distri-
bution with respect to the Gibbs ensemble. The one-time
correlation function of the fluctions 8fN =f% —fN, i.e., the
quantity

(6fK (x, t) 6/jv (x't)) = 6 (x — x') fK (x, ()-/w (*, t) ft, (x1, t),

(5.3)
is a measure of the incompleteness of the statistical descrip-
tion.

In the quantum theory two corresponding density ma-
trices are introduced. In the equilibrium state the spectral
density of the many-body density matrix is defined by the
expression 6'7'15

(6/nm6/n,m,)co = «6 (to — tonm) 8nni6mm, (/

It can be rewritten in the form of an FDR:

i (co)cth - - ,

if the following susceptibility is introduced:

At /w\ __ 6ttn.6mm.(/m-/n)
Anmntmt (U>) - K(u-unm + i A) '

Q

(5.4)

(5.5)

(5 .6)

To go over from the FDR (5.5) to the Callen-Welton
formula (2.6) the expression (5.5) must be substituted into
(5.1) and summed over «,,/«,. In so doing the imaginary
part of the tensor Imay (ca) is expressed in terms of (5.6):

Imau(o)) = S S (Xt)nm(X1)n,mJmAnmn>mi(<a). (5.7)
nm u\m\

We note two more consequences of the FDR ( 5.4) . The
integral over the frequencies in ( 5 .4 ) [ or ( 5 . 5 ) ] leads to the
following expression for the one-time correlation function:

<6/nm (t) 6/*,m, (t)> = ~ ^nn^mm, (/m + In) — 6nfiAiim,/n/mi-

(5 .8 )

The second term on the right side ensures that the equalities
^n^fnn = ° and 2B|5/M|B] =0. The one-time correlation
function (5.8) is independent of the dissipative characteris-
tics.

The second result follows directly from (5.6): the real
part of the susceptibility at zero frequency

in the equilibrium state, when/m >/„ for En >Em , is posi-
tive.

In the formulas (5.4)-(5.9)n and m are complete sets
of quantum numbers of a system of N particles. Based on
them it is possible to go over to the single-particle descrip-
tion. Then, for example, the form of the expressions (5.4)
and (5.5) remains the same, but the expression for the sus-
ceptibility (5.6) is replaced by the following expression:

Compared with the expression (5.6), here there is a factor of
l/N, since the single-particle distribution functions are col-
lective variables of additive type. In going over to the single-
particle description n, m are sets of quantum numbers for
separate particles.

An example is the FDR for a rarefied gas in the Boltz-
mann approximation

(S/plP;6/P2p;)co=ftIm,4(w, Pi, p(, p2, p;)cth ~. (5.11)

The imaginary part of the corresponding susceptibility is de-
termined by the formula

n (2nS)6 ,
— -p2,

>
i — Pa)

x5(p;-p;)5 (co— L(£PI-£P.)

£)-/, (p,)). (5.12)

t , ,
\!

(5.9)

We shall return, finally, to the question of the condi-
tions of admissibility of the approximation of infinitely nar-
row resonances (A->0), which is employed not only in the
derivation of the Callen-Welton formula (2.6), but also in
the derivation of the FDR (5.5) for fluctuations of many-
body distribution functions (5.5).

The canonical Gibbs distribution /„ is established
owing to the interaction of the system under study with a
thermostat. We denote the corresponding relaxation time as
rrel . The Liouville equation does not describe this of estab-
lishing the Gibbs distribution process. It is reversible, since
its solution is determined by the solution of the equations of
dynamics, and the spread in the initial conditions — the ini-
tial distribution — merely moves about the phase space with
the volume remaining constant (Liouville's theorem). For
the same reason the entropy of the system also remains con-
stant as a function of time.

The description of the relaxation process at the level of
many-body distribution functions requires the correspond-
ing kinetic equations, which take into account the incom-
pleteness of the description of the system under study. An
equation of this type was first derived by M. A. Leontovich
for a Boltzmann gas.13 The incompleteness of the descrip-
tion in this case is actually attributable to the use (explicit or
implicit) of the condition that the initial small-scale (with
correlation times much shorter than the mean free-flight
time) correlations become weaker. 7J2'14'18 Other forms of
the kinetic equations for many-body distribution functions
are also available.6'7' '4 Here the canonical Gibbs distribution
is determined from the condition that the corresponding col-
lision integral /„ vanishes.

The time rrel characterizes the relaxation to the equilib-
rium state. Once equilibrium is achieved the canonical dis-
tribution, naturally, is independent of rrel . For the fluctu-
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ations <5/v and 8fnm , however, this is no longer so.
Indeed, it is possible to separate small-scale fluctu-

ations, for which rcor <^rrel, and large-scale fluctuations, for
which rcor Z rre,. The collision integrals in the kinetic equa-
tions are determined by the small-scale fluctuations, since
the condition that the starting correlations become weaker
can be employed only for them. Large-scale (kinetic) fluctu-
ations, however, are calculated based on the kinetic equa-
tions themselves.5~7-12'16

The finiteness of the relaxation time Trd determines a
lower limit for A. Employing the inequalities introduced in
Sec. 4 we arrive at the double inequality

kT (5.13)

The inequality on the right indicates that only the small-
scale fluctuations are included, while the inequality on the
left makes it possible to go over to the "infinitely narrow
resonance approximation," i.e., to introduce the function
<5(<y — conm ). Since the condition rcor <rre] separates a re-
gion of fluctuations for whose calculation "collisions" do
not play an important role, in this sense the fluctuation-dissi-
pation relations presented in Sees. 4 and 5 refer to the "colli-
sionless region." The term "collisionless approximation" is
widely employed in plasma theory. 7J2J9 In the case of a gas
this corresponds to the approximation of free-molecular
flow (see Ref. 7, Sec. 7 of Chap. 9).

The fluctuation-dissipation relations for the one- and
two-particle distribution functions are of greatest practical
value. In particular, according to the formula (5.1) the spec-
tral density of the additive internal parameters (the current
and charge in the case of an electrical circuit) are related to
the spectral density of the fluctuations by the one-particle
distribution function.

The inequalities (5.13) remain in force in going over to
the description based on the one-particle distribution func-
tions. Here a),,m are the transition frequencies for an individ-
ual atom taking into account the renormalization owing to
the effect of the medium, and rrc| is the relaxation time deter-
mined by the collision integrals in the corresponding kinetic
equations for the one-particle distribution functions.

In the classical description the lefthand inequality of
(5.13) always holds. The Callen-Welton formula in this case
has the form

and holds for an arbitrary width of the resonance.
Let us return to the question posed at the end of the

preceding section. We can now give an answer to it. Indeed,
the dissipative factor in the FDR (5.14) for the spectral den-
sity of an TV-particle distribution function and therefore in
the formulas (4.1) and (2.6) also is the function
S(ci) — co,,m ). Its "width" is characterized by the times of the
small-scale — "collisionless" — fluctuations, which, in turn,
determine the "collision integrals" in the corresponding ki-
netic equations.

If the function d(a> —a,,m ) in (5.4) and (4.1) is re-
placed, for example, by a Lorentz line of width A, then the
result of the calculation will depend substantially on the
stage at which the passage to the limit A -» 0 is performed. In
deriving the FDR the limit was taken in the final expres-
sions. If, however, the quantity A is set equal identically to

zero in the starting equations, then they will become reversi-
ble and it will no longer be possible to derive the FDR.

The parameter A separates the region of small-scale—
"collisionless"—fluctuations. One of the conditions for de-
riving the FDR is the condition of partial weakening of the
starting correlations. Another factor is also important: the
one-time correlation function, which is a measure of the in-
completeness of the statistical description, must differ from
zero.1'12'15 Thus the question of the formulation of FDR is
closely linked with the problem of irreversibility.43'44

6. FDR FOR FLUCTUATIONS WITH FINITE CORRELATION
TIMES

The separation of fluctuations into small-scale—"colli-
sionless"—and large-scale [the choice of the parameter A
satisfying the inequalities (5.13)] is linked with the intro-
duction of infinitely small scales of time and length.7'I7J2

We begin with the formulation of FDR for fluctuations
of many-body distribution functions (density matrices), but
this time for collision region. We denote by SInm the opera-
tor corresponding to the linearized collision integral. Then
the expression for the spectral density of the fluctuations will
be determined by the expression

<Onm-H6/nn
i (Im ~T~ fnf*

(6.1)

It goes over into (5.4) under the substitutions 81 nm -> A and
A^O.

The spectral density (6.1) can be determined by two
methods: by solving the equation for the two-time correla-
tion function with the "initial" (at t = t ') condition (5.8)
[in the classical theory — with the condition (5.3)] or by
solving the corresponding Langevin equation

<J/nm> = 0.

The spectral density of the Langevin source equals

(6.2)

The expression (6.1) can be rewritten in the form of an
FDR:

(6.4)

by introducing the corresponding susceptibility [compare
with (5.10)]

1
(co —<an m+i6/n m;

(6.5)

Because of the finiteness of the width of the resonance
there is now no basis for employing the equality (5.3) in
order to reduce the FDR (6.4) to the form (5.5) and corre-
spondingly to the formula (2.6).

It has already been pointed out that the classical expres-
sion (5.14) remains valid also for a finite correlation time of
the fluctuations (for a finite width of the resonance). The
proof for a plasma is given, for example, in Sec. 64 of Ref. 12.
It can also be taken over to the case of arbitrary internal
parameters.

We shall examine some examples of FDR for fluctu-
ations with a finite correlation time.
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6.1. FDR for a Boltzmann gas165 "

In calculating the fluctuations of the one-particle den-
sity matrix in a Boltzmann gas the operator 81 nm is replaced
by the operator SIp , which is determined by the structure of
the linearized quantum Boltzmann collision integral. The
spectral density of the fluctuations 8fpp. is determined by the
expression

(6/P1p;6/P2p;)» ~ -/f Re a>-(Ep -Ep.

x !&W 6 (p, _ Pt) 6 (pi - pi) (f (pt) + f (pi)).

(6.6)
It can be represented in the form of an FDR:

(6/p1pia/p,p=). = ftIm^(p1, pi, ft, pi, (o)iig±£gil,

(6.7)
by introducing the susceptibility [compare with (5.12)]

p,, p..,
m-l(E

| — Pi)

-/(p,)). (6-8)

It is now no longer possible to write the FDR (6.7) in the
form (5.11) because of the finiteness of the width of the
resonance.

The FDR (6.7), unlike (5.11), can also be employed
for nonequilibrium states. Based on it, a fluctuation repre-
sentation of the Boltzmann collision integral can be con-
structed.7-17 The fluctuation representation of the collision
integrals is usually employed only within the framework of
perturbation theory or the polarization approximation.6-7'19

6.2. Planck's formula

In calculating the distribution of thermal radiation in a
cavity the finiteness of the correlation time of the fluctu-
ations is determined by the dissipative boundary conditions.
We shall take this into account by introducing the effective
conductivity, y = ^TTCT is the corresponding decay constant.
We shall ignore here the dependence of y on the frequency
and wave number. The classical expression for the spatial-
temporal spectral density of the field fluctuations has the
form [(3.12), Chap. 14ofRef. 7]

kT, <ah = ck. (6.9)

In the quantum case, following Planck, we replace kTby the
average energy of the k th oscillator with frequency <ak

[ compare with (1.16)]:

IrT IT fi(0ji . [ f»»ll (6.10)Kl -+HJ<ali— 2 CUI 2kT .

The formulas (6.9) and (6.10) imply that in the quan-
tum case the one-time correlation function is also indepen-
dent of y. This is natural, since the correlation function
(SE)2

k is a nondissipative characteristic (see Sec. 3).
The transition from (6.9) and (6.10) to Planck's for-

mula can be made only in the zeroth-order approximation in
the parameter fiy/kT (exact resonance), when the substitu-
tion

can be made [compare with ( 1.21 ) ]. Under this condition
integration over k yields Planck's formula.

If we do not follow Planck and instead of the substitu-
tion (6.10) take, like in ( 1 . 1 3 ) , the limit k T-+ k Tm , then the
one-time correlation function (SE) I will depend on y and
we shall arrive at the same difficulties as for the Nyquist
formula (1.14).

So, there exist two types of fluctuation-dissipation rela-
tions. The first type includes the Callen-Welton formula
(2.6 ), the FDR ( 5.5 ) , and the more specific FDR for fluctu-
ations of one-particle distribution functions, for example,
( 5. 1 1 ) for the Boltzmann gas. In all these cases the inequal-
ities (5.13) hold. They make it possible to take into account
only the small-scale fluctuations and to use the resonance
conditions for which the inequality (4.3) holds. It is speci-
fied in concrete cases.

The fluctuation-dissipation relations of the second kind
occur for long-lived correlations, for which the correlation
times Tcor are comparable to rrel . These could be fluctuations
of the distribution functions in the kinetic theory, fluctu-
ations of local hydrodynamic and thermodynamic functions
in hydrodynamics, and fluctuations of the current and
charge in electrical circuits. These FDR also include Ny-
quist's formula. In addition, the quantum variants of Ny-
quist's formula (1.14) and (1.17) are not equivalent. We
shall see which of the two expressions does the statistical
theory yield. We shall do this using the example of a system
of atoms interacting with an electromagnetic field. The lat-
ter will play here the role of a thermostat.

7. FDR FOR A SYSTEM OF TWO-LEVEL ATOMS

The kinetic equation — the equation of balance of the
populations of the energy levels of molecules with two quan-
tum states — was first proposed in 1916 in A. Einstein's fa-
mous paper.

Let us examine the collision integral taking into ac-
count all transitions between discrete levels [see (2.1),
Chap. 19inRef. 7]:

= 2 [£"1F

(7.1)

where B "m and A "m are Einstein coefficients. The spectral
density of the field fluctuations in the equilibrium state

= Ant^HLkT... (7-2)

differs only by a factor of 4w2 from Planck's function /?„ .
The derivation of the kinetic equation for the function /„
employs the inequalities (5.13). This gives a basis for separ-
ating in the collision integral (7.1) the resonance contribu-
tions at the frequencies a> = a>nm .

The calculation of the kinetic fluctuations for a system
of two-level atoms6'7 yields the following expression for the
spatial-temporal spectral density of the current fluctuations:

2Vnm

It can be written in the form of an FDR:
(7.3)

(7.4)
VCD* - ji!<i>|6 (to2 — col) (6.11) by introducing the conductivity a(a>).

162 Sov. Phys. Usp. 30 (2), February 1987 Yu. L Klimontovich 162



Let us compare the FDR (7.4) with the quantum gen-
eralizations (1.14) and (1.17) of the classical Nyquist for-
mula. The quantities SI and a in (7.4) correspond to the emf
% and the resistance R, while the transition frequency a)nm

corresponds to the characteristic frequency of the circuit co0.
We can see that the FDR (7.4) has the structure of ( 1.17)
and not that of (1.14).

The two-level atom approximation corresponds to one
of the two limiting cases. The other corresponds to the model
of quantum atomic oscillators. It corresponds more directly
to the model of an oscillatory circuit.

8. SYSTEM OF QUANTUM ATOMIC OSCILLATORS.
DIFFUSION COEFFICIENT. QUANTUM NYQUIST FORMULA

Let us return to the kinetic equation with the collision
integral (7.1). We shall employ it for the system of one-
dimensional quantum atomic oscillators with the character-
istic frequency &>„. With the help of (7. 1 ) we find

Y-»--r •

(8-D

here we introduce the following notation for the coefficient
of radiation friction

^= 3mc3 '

Using the expression (8.1), we shall write the equation for
the average energy as follows

conMfl. (8.3)

Here there are two convenient forms of this equation:

Qt °

In the second case the expression for the quantum diffusion
coefficient

D -.-= v (<•)„) kTn. (8.5)

is used. It can be regarded as the quantum generalization of
Einstein's formula for the diffusion coefficient in the classi-
cal Fokker-Planck equation (1.9). We shall study the rela-
tionship of this equation to the quantum equation for the
function/,, with the collision integral (8.1).

Namely, we shall replace the equation for the function
/„ (t) by the effective Fokker-Planck equation for the energy
distribution function f(E,t). We write this equation in the
form

oo
df (E, t) n d / Of \ d f

(8.6)
and we determine the diffusion coefficient from the condi-
tion that the equation for the average energy

<£>=

coincide with the exact equation (8.4). As a result we obtain
the expression (8.5) for the diffusion coefficient. Finally, we
can go over from (8.6) to the Fokker-Planck equation for
the current and charge distribution function f(q,I,t). Mak-
ing the substitution

we arrive at the Fokker-Planck equation (1.9) with the
quantum diffusion coefficient

and, as a consequence, to the quantum Nyquist formula
(1.17) for the spectral density of the emf in the correspond-
ing Langevin equation. The conditions for the applicability
of the Fokker-Planck equation (1.9) with the quantum dif-
fusion coefficient are discussed, for example, in Ref. 30 in an
analysis of the quantum properties of high-£? macroscopic
resonators.

9. QUANTUM NYQUIST FORMULA FOR A PLASMA
CLASSICAL OSCILLATOR

In Sees. 7 and 8 the characteristic frequencies a>ab and
co0 are characteristic of individual atoms. Let us examine an
example in which the characteristic frequency is a character-
istic of the system as a whole. The plasma classical oscillator
with a Langmuir frequency for the plasma electrons coe will
serve as an example.

Langevin's equations for the charged particles of the
plasma are very complicated owing to the nonlinearity of the
kinetic equations. It is possible, however, to derive a model
Fokker-Planck equation for the distribution function of col-
lective variables also taking into account the quantum ef-
fects. We proceed as follows.

We define the coefficient of friction in terms of the effec-
tive collision frequency v, and the diffusion coefficient by the
formula

D = mv/creff. (9.1)

Here 7^ is the effective temperature,

_eff ~
dcod&6(B»— I a

The spectral density of the fluctuations of the field and the
dielectric permittivity taking quantum effects into account,
are determined by the well-known formulas (3.2) and (3.3).
The expressions (3.2) and (9.2) imply that in the classical
limit, when fi->Q, the effective (quantum) temperature is
TeS = T. The formula (9.2) can be regarded as a conse-
quence of Einstein's relation Dv Vj —At for a plasma. A'7J9

Langevin's equation for a plasma oscillator with a char-
acteristic frequency a)e = (4ire2n/m)[/2 is identical in form
to ( 1.4). Here the spectral density of the random emf is de-
termined by the expression ( TeK = Tla )

= 2RkTm 2R BeCth-s^-. (9.3)

It corresponds to the quantum Nyquist formula (1.17), in
which the characteristic frequency a>0 is determined by the
characteristic frequency of the electron oscillations in the
plasma.

10. NYQUIST FORMULA FOR A CIRCUIT WITH NONLINEAR
FRICTION

The calculation of the fluctuations in nonlinear systems
has been of interest for a long time.21"28 For a circuit with a
nonlinear resistance the problem reduces to the solution of
the Fokker-Planck equation with higher order derivatives.22

Thus, for example, when the resistance is a quadratic func-
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tion of the current, terms with third and fourth order deriva-
tives appear in the equation for the distribution function
f(I,q,t). At the same time, however, the theory does not de-
termine uniquely the coefficients in front of the higher-order
derivatives. In these coefficients a constant which is unrelat-
ed to the dissipative characteristics of the circuit remains
undetermined. For a quadratic nonlinearity, by suitably
choosing this constant, the coefficients in front of the third
and fourth derivatives can be made to vanish and the equa-
tion for the function/(I,q,t) can thereby be reduced to the
standard Fokker-Planck equation.

So, the Fokker-Planck equation can be employed for
calculating the fluctuations in a circuit with a nonlinear re-
sistance under the condition that the function R (I) is even
(Sec. 9 of Chap. 4 in Ref. 6). We shall employ this possibility
to extend Einstein's and Nyquist's formulas to the case of a
nonlinear circuit.

We shall write Langevin's equations for the current and
charge in the form [compare with (1.3)]

d/ J_ dD(I)
2 dl

g(/ , t); (10.1)

R (I) is an even function of the current. For a quadratic non-
linearity

fl(7) = /| + -5l«L. (10-2)

R, is the nonlinear resistance in units of LI2/kT. The ran-
dom emf, equivalent to the action on the circuit of randomly
moving charges, now depends not only on the time, but also
on the current strength. It is represented in the form
D l / 2 ( I ) y ( t ) , where D(I) is an as yet unknown intensity of
the noise. y ( t ) is a random source, determined by the two
first moments:

( y ( t ) } = 0 , (y (t) y (t')) = 2d (*-*')• (10.3)

The additional term - ( l/2)dD /dl on the left side of Eq.
( 10. 1 ) for / is introducted in order to simplify the Fokker-
Planck equation and put it into a form corresponding to the
general structure of kinetic equations. It has the following
form:

(10.4)
The function £>(/) is found from the condition that the solu-
tion ofEq. (9.4) in the equilibrium state should also have the
form ( 1.10). As a result we arrive at the following expres-
sion for the diffusion coefficient, taking into account both
the quantum effects and the nonlinear dependence of the
resistance on the current:

/)(/) = fl(/)-L»wl,oth-^- — fl(/)*rB,. (10.5)

As for linear circuits, the one-time correlation func-
tions of the fluctuations of the current and charge ( I 2 ) and
(q2) in the equilibrium state depend only on the temperature
and nondissipative parameters L and C.

In the particular case of an LR circuit (1/C-»0,
a 0 _> o ) , which corresponds to the motion of a free Bro wnian
particle in a medium with nonlinear friction, the quantum
effects become insignificant and the formula (9.4) assumes
the form

D(I)=R(I)kT. (10.6)

The transition from (10.5) to (10.6) corresponds to the
zeroth-order approximation in the parameter fia>0/kT. An-
other limiting case, when the parameter -fKt>0/kTis large and
therefore the contribution of zero-point oscillations pre-
dominates is interesting. This situation occurs in lasers.

11. POWER DEPENDENCE OF THE SPECTRAL WIDTH OF
OSCILLATIONS OF CLASSICAL AND QUANTUM
OSCILLATORS

In a classical oscillator of the Thompson type the source
of noise is not only the thermal motion of charges in the
circuit, but also the shot noise of the anodic current.26"28 In
quantum oscillators shot noise is caused by the discreteness
(atomic structure) of the working medium.6'7 It can be tak-
en into account by introducing random sources of polariza-
tion into the field equations. Here we shall examine the effect
of the thermal noise (taking into account quantum effects
and dissipative nonlinearity) on the spectrum of oscillations
in classical and quantum oscillators.

The spectral line of an oscillator has a structure which is
characterized by at least two parameters: the width of the
spectrum of fluctuations of the amplitude and the diffusion
coefficient of the phase. So as not to complicate the analysis
and reveal as simply as possible the role of quantum effects
and dissipative nonlinearity, we shall employ an approxi-
mate description of the spectrum by introducing an effective
Lorentz line. The line width in this case is determined by the
equations for the energy in the first-moment approximation
(Chaps. 4 and 11 in Ref. 6, Chaps. 12 and 22 in Ref. 7).

The Fokker-Planck equation for the distribution func-
tion of the energy of the oscillations in the oscillator f(E,t),
taking into account the energy dependence of the diffusion
coefficient, can be written in the form [compare with
(4.10.3) in Ref. 6 and (1.8), Chap. 12 in Ref. 7]

dt

The diffusion coefficient is defined by the expression
(11.2)

Compared with (8.5) here we introduce the nonlinear fric-
tion (7-»7 + bE) with the nonlinearity coefficient b, which
corresponds to R , in (10.2). The quantity a is given by

a = Y-a0; (1L3)

a0 characterizes the feedback. At the generation threshold
a0 = y and a = 0. In the absence of feedback (a0 = 0, a = y)
Eqs. (11.1) and (11.2) imply that the equilibrium solution
of Eq. (11.1) is identical to the equilibrium energy distribu-
tion for a quantum oscillator with the characteristic frequen-
cy w0.

With the help of Eq. (11.1) the following expression is
obtained for the distribution of the average energy over the
spectrum6'7

« - - - < * > . (1L4)

Here the half-width of the spectrum A is determined by the
formula

(11.5)

164 Sov. Phys. Usp. 30 (2), February 1987 Yu. L Klimontovich 164



where

(11.6)

is the quantum diffusion coefficient of a linear system [iden-
tical to (8.5)] .

In the equilibrium state the average energy <£> = kT(ao

and

In the regime with developed oscillations, but with a quite
small nonlinearity (b {E)/y<^\) the quantity A is deter-
mined by the expression

/. = D = ~kTl(>° (11.8)

and decreases as the intensity of the oscillations increases. In
particular, in the quantum limit (ficj^kT) Eq. (11.8) im-
plies the well-known formula of Schawlow-Townes for the
width of the spectrum (see Refs. 23 and 32, Chap. 11 in Ref.
6). (A comparison with the formulas of Haken and Lax is
also given there.) The formula (11.5) implies that as the
energy of the oscillations increases further saturation sets in
(the line width A -+ Db /2y).

12. QUANTUM NYQUIST FORMULA AND THE LAMB SHIFT

Interest in the theory of Brownian motion in quantum
systems has increased strongly in recent years (see, for ex-
ample, Refs. 29-31). In Ref. 31 the quantum Nyquist for-
mula (1.14) is used to explain the results of experimental
studies of voltage fluctuations in Josephson junctions. These
data are apparently still inadequate to make an unequivocal
choice between the two expressions (1.14) and (1.17).

We shall show that the Lamb shift—the shift in the lev-
els of the hydrogen atom owing to the effect of vacuum (in
the approximation 7"=0) fluctuations of the electromag-
netic field—is a "judge." The Lamb shift was first discov-
ered in Ref. 33.

There are two methods for calculating the Lamb shift.
One method is based on the "subtraction formalism" of
quantum electrodynamics. The first calculation was carried
out by Bethe34 (see Refs. 35-38). The second method, which
at first glance appears to be less formal, was proposed by
Welton—one of the authors of the Callen-Welton formula—
in Ref. 39. This method is presented in textbooks.40'4'

We shall show that these two methods of calculation are
actually based on two different quantum Nyquist formulas:
the formula (1.14) in Welton's method and the formula
(1.17) in the "subtraction formalism" of quantum electro-
dynamics. Both methods, however, yield the same Bethe for-
mula for the shift of the levels. What is going on? We shall see
that Welton's method is not systematic and preference must
be given to the "subtraction formalism" and therefore the
quantum Nyquist formula in the form (1.17).

Welton's method is based on the use of Langevin's
equation (2.13) to calculate the fluctuations in the motion of
the electron in the ground state of the hydrogen atom. The
agreement of the result with Bethe's formula turns out to be
accidental here, since in the determination of the energy shift
only the change in the potential energy owing to the fluctu-
ation displacement of the electron is taken into account. In-
clusion of the velocity fluctuations, determining the change

in the kinetic energy of the electron, however, substantially
changes the entire picture.

Indeed, consider the formula (2.15), determining the
fluctuation contribution of the kinetic energy. At T = 0 the
integral over co diverges as co2. Since the existence of fluctu-
ations of the electron-positron vacuum is not taken into ac-
count, we cut-off the region of the integration by the condi-
tion co<com^ =mc2/fi. Employing the notation y(co) for
the coefficient of radiation friction at the frequency co,
a = e2/fic for the fine-structure constant, and E0 = me4/2fr
for the ground state energy of the hydrogen atom (or the
ionization energy), we arrive at the result

1 1 1
3 2jr ct

(12.1)

This result is unsatisfactory in two respects. First, the aver-
age kinetic energy at -(T = 0 does not equal zero and depends
on the dissipative characteristic 7(aimax ) . Second, there is an
enormopus difference between the temperature of the parti-
cle (l /3)/?2(y2) and the temperature of the field (here
T = 0). This is obviously inconsistent with the experimental
data.

Both deficiencies of the calculation by Welton's method
vanish when the appropriate kinetic equation for the elec-
tron velocity distribution function f(p,t) is used to find the
average kinetic energy of the electron in the presence of in-
teractions with the fluctuation field.6'42 In the state of equi-
librium/(/>) is the Maxwell distribution, so that the equality
(2.16) also holds in quantum theory, i.e., there is no differ-
ence between the temperatures of the electrons and of the
field. It is important that the components of the spectral
density (SE8E)ok for only those values of co and k for which
the laws of conservation of energy and momentum of the
particles and of the field quanta play a role in the collision
integral in establishing the equilibrium distribution. These
conditions do not hold for the Langevin equations (2.13)
and (2.12). This is one of the reasons that Welton's method
is unsystematic. The second reason is that the classical mod-
el of the motion of an electron in an atom, which forms the
foundation of the calculation, is inadequate.

The width and shift of atomic levels due to the fluctu-
ation of the electromagnetic field can be calculated by using
the corresponding system of kinetic equations for the diag-
onal and nondiagonal density matrices /„ (t) and
fnm (f)-6 '7 '4 2 The collision integral /„ (t) in the equation for
the function /„ (t) in the approximation of stationary atoms
is determined by the expression (7.1 ).

To calculate the shift in the level we shall employ the
expression (9.2.8) from Ref. 6

(12.2)

It defines not the complete, but rather only the induced con-
tribution of fluctuations of the field (the full expression will
be presented below). The induced contribution is determin-
ing only in the calculation of the quadratic Stark effect in an
external field.

If Planck's distribution is employed in the expression
(12.2) in the calculation of the level shift, which corre-
sponds to the use of the quantum Nyquist formula (1.14)
[seeEqs. (2.13) and (2.12)], then a power-law divergence
appears in the integration overo>. To derive Bethe's formula
the expression (7.2), i.e., the spectral density only at the
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transition frequencies, must be used in (12.2) for the spec-
tral density of the field. Indeed, it is this function that enters
into the collision integral (7.1), determining the relaxation
to the equilibrium distribution in the presence of interac-
tions with the fluctuation field.

Thus, based on the structure of the collision integral
(7.1), in calculating the level shift we shall employ the spec-
tral density (SESE)m only at the transition frequencies u>n^n.
This is equivalent to the introduction of noise (here—fluctu-
ations of the electromagnetic field) based on the quantum
Nyquist formula (1.17), and not (1.14).

We recall that the formula (12.2) determines only the
induced contribution to the shift in the energy level. With
the help of the kinetic equation for the nondiagonal density
matrix fnm ( t ) , in the calculation of the level shift not only
the induced but also the spontaneous transitions can be tak-
en into account (see Chap. 9 in Ref. 6). Taking into account
spontaneous transitions leads to the substitution (we assume
at the outset co = &>„ ,„ ) [see (9.4.7) in Ref. 6]

(12.3)

At T= Othe right side equals 4/z&>3,i,,/c
3, if«n|n >0, and zero

if <»„,„ <0. As a result, after substituting (12.3) into (12.2)
and integrating over a> we arrive at Bethe's formula

|2f,i3w

3SV-IY-.W/. "Vn,anr
 (12'4)

In summing over «,, in the argument of the logarithm we
made the substitution con^n — {«„,„}. Since the quantity
\\l>n (0) \2 differs from zero only for the S state, (taking into
account the fact that <«„,„) ~En/fi) Bethe's formula (12.4)
can be represented in the form4'

A ri 8 a3 2n2 (125)

\E0\ is the energy of the ground state of the hydrogen atom, a
is the fine-structure constant, and n is the principal quantum
number. Taking into account some additional factors leads
to a refinement of Bethe's formula.35"38

13. CONCLUSIONS

Thus we have given a brief review of fluctuation-dissi-
pation relations for different physical systems at all levels of
the statistical description. The most general relations, as we
saw, are FDR for many-body distribution functions. They
are too complicated to be used directly, but they are conven-
ient starting points in the formulation of simpler FDR.

It was shown using many examples that of the two
methods, based respectively on the kinetic equations and on
Langevin's equations, the first method must be given prefer-
ence. In addition, based on the kinetic equations it is possible
to establish the applicability of Langevin's equations and to
determine, in particular, the spectral densities of the Lange-
vin sources. In this method the fundamental difficulties to
which, for example, the quantum Nyquist formula (1.14)
leads, do not arise.

Not all questions, of course, were included in this re-
view. Thus the kinetic equations with retardation—equa-

tions of the non-Markovian type—were practically not ex-
amined. They include equations with radiation friction. An
example of such equations is the kinetic equation for the
nondiagonal density matrix of the system atoms + electro-
magnetic field. The effects of retardation appear in the spec-
tral-frequency dependence of both the dissipative (for exam-
ple, line widths) and nondissipative (forexample, frequency
or energy shifts) characteristics.

Fluctuation dissipation relations are widely employed
also in nonequilibrium statistical theory, in particular, in the
construction of the kinetic equations themselves. In so doing
the conditions for the validity of the corresponding FDR are
also established. The validity of the FDR obtained is con-
firmed indirectly by the "efficiency" of the equations so ob-
tained."
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