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The dynamics of a macroscopic oscillator which is interacting with a heat reservoir, which also
consists of oscillators, is analyzed. This problem, which can be solved exactly in its general
form in both the classical and quantum-mechanic cases, is used as an example for a study of
the transition from a purely dynamic description to a statistical description. Since the system
of linear oscillators is not ergodic, an averaging procedure must be regarded as taking an
average over the time or over repeated measurements on a unique dynamic trajectory.
Depending on the nature of the quadratic form of the potential energy, the oscillations of a
macroscopic oscillator can decay in various ways, including exponentially, in the initial stage
of the evolution. After a Poincare cycle, the system returns to its initial state, and the damping
of the oscillations gives way to a growth. The reversibility of the motion means that the
Green's function of the system of oscillators is of odd parity in the time. Equilibrium
fluctuations of a macroscopic oscillator are examined. In the classical case the Callen-Welton
fluctuation-dissipation theorem can be formulated as follows: The derivative of the coordinate
correlation function is proportional to the Green's function of the macroscopic oscillator. In a
description in terms of frequencies, the odd parity of the Green's function gives rise to an
imaginary part of the Fourier transform of this function in the fluctuation-dissipation theorem.
This result is a consequence of the reversibility of the motion in time. The fluctuation-
dissipation theorem is proved for Hamiltonian systems without dissipation, but it also applies
to systems with dissipation. The exact microscopic Green's function is replaced in this case by
the Green's function of a simplified phenomenological description, which explicitly contains
dissipative parameters. In the quantum-mechanical case, the results are analogous. The
classical and quantum-mechanical versions of the Nyquist relation which follow from the
fluctuation-dissipation theorem when the Green's function is approximated by an
exponentially damped sinusoidal oscillation are discussed.
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INTRODUCTION

In contrast with closed systems, which can be described
by a Hamiltonian formalism, unclosed dissipative systems
are described by phenomenological equations of one sort or
another. If the description is carried out at the macroscopic
level, this equation might be, for example, an equation of
motion in which a friction force has been introduced. An
example of phenomenological equations describing a system
at a microscopic level might be kinetic equations. While a
Hamiltonian description is based on "first principles" of
physics, the use of phenomenological equations always in-
volves some additional assumptions, whose validity is limit-

ed." For example, certain theorems which are valid for
Hamiltonian systems break down (e.g., the phase volume
associated with those degrees of freedom in which a dissipa-
tion is introduced is no longer conserved). Dissipative pa-
rameters such as a friction force, an electrical resistance, and
an effective collision rate are introduced in the equations as
parameters describing the interaction of the system of inter-
est with a heat reservoir and with other systems. Fundamen-
tal difficulties arise in a joint analysis of dissipative and
quantum-mechanical phenomena, since a systematic quan-
tum treatment is possible only for Hamiltonian systems.

It would be possible at least in principle to describe
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jo in t ly the system of interest and all the systems which are
in te rac t ing with it ( including the heat reservoir) within a
common Hamiltonian formalism. In a description of this
sort all the dissipative parameters should arise "automati-
cally" in the course of the solution of the problem, and they
should natura l ly be expressed in terms of the parameters of
the complete Hamiltonian. This possibility is usually men-
tioned in the introductory sections of any course in statisti-
cal physics, but only as a potential possibility, which in
reality is not implemented because of insurmountable tech-
nical diff icul t ies .

The present methodological paper is devoted to an anal-
ysis of a simple but nontrivial problem in which that ap-
proach can be implemented. We consider the behavior of a
macroscopic oscillator which is interacting with a heat reser-
voir, which also consists of oscillators, which are interacting
both wi th each other and with the oscillator on which we are
focusing.

Since the problem of a system of coupled oscillators can
be solved exactly in both the classical and quantum-mechan-
ical cases, in this example we can see the transition from a
purely dynamic description based on reversible equations to
a stat ist ical description. A description of both the average
motion of the oscillator and its fluctuations arises in a natu-
ral way. Our system executes a periodic (or nearly periodic)
motion and has a time T(i at which it returns precisely (or
approximate ly) to its initial state (this is the length of the
Poincare cycle). The coefficients of the quadratic form of
the potential energy can be chosen in such a way that in the
in i t i a l ("dissipative") stage of the evolution of the system
(at T< 7"(/2) there is a damping of the oscillations of the
macroscopic oscillator. As / approaches Tn, this damping
gives way to a growth of the oscillations. The particular na-
ture of the damping of the average motion is determined
completely by the spectrum of normal oscillation modes of
the overall system; it does not depend on the particular prob-
abil i ty distribution of the coordinates and velocities of the
oscillators of the reservoir. Those parameters which serve as
"dissipative" parameters in the initial stage of the evolution
are expressed in terms of quantities which are included in the
complete Hamiltonian.

This model casts some light on the meaning of the Cal-
len-Welton fluctuation-dissipation theorem. This theorem is
proved for a Hamiltonian system, without dissipation; it
couples the correlation function of fluctuations with the
Green's funct ion of this Hamiltonian system. In practice,
however, the fluctuation-dissipation theorem is applied to
non-Hamiltonian systems, which are described by phenome-
nological equations (microscopic or macroscopic) which
explicitly contain dissipative parameters. This approach can
be justif ied on the basis that these phenomenological equa-
tions describing the dissipative processes are actually capa-
ble of giving a good description of the behavior of the system,
but only in the initial stage of its evolution, aH < TH/2. These
equations become definitely inapplicable at t~T(>. Fortu-
nately, in the overwhelming majority of physics problems
the time T(, is so long that we are simply not interested in
times comparable to it, and a phenomenological description
using dissipative equations turns out in practice to be extre-
melyaccurate. If, however, we are attempting to reach an
understanding of how dissipative characteristics appear in
the fluctuation-dissipation theorem, despite the circum-

stance that this theorem is a consequence of a purely Hamil-
tonian description, we need to keep these points in mind.

Within the framework of the particular problem with
which we are concerned here, we can also derive a Nyquist
relation corresponding to an oscillatory electric circuit with
a constant resistance. This relation can be found by making a
corresponding assumption regarding the spectrum of nor-
mal oscillation modes of the system of oscillators under con-
sideration.

Finally, in the model which we are considering here we
can derive a quantum-mechanical Nyquist relation in a nat-
ural way from the reversible equations of quantum mechan-
ics.

The problem of an oscillator which is interacting with a
heat reservoir also consisting of oscillators has a characteris-
tic feature which stems from the fact that this system is not
ergodic. Specifically, if we think of our oscillatory system as
consisting of a set of independent normal oscillations, we see
that the energy of each of them is conserved separately. Con-
sequently, as the system evolves it never goes into those parts
of phase space which are incompatible with the initial distri-
bution of the total energy among modes. Essentially the
same difficulty is well known in the theory of equilibrium
thermal radiation, where it is circumvented by incorporat-
ing in the system a negligibly small body which implements
an exchange of energy among different modes. In the present
paper we will take the following approach: In the stage of
forming the initial conditions corresponding to a Gibbs dis-
tribution, i.e., at / < 0, we consider a more complex system,
with additional interactions which make possible an ex-
change of energy among modes. An "expanded" system of
this sort could in principle lead to the establishment of a
Gibbs distribution through the realization of a regime of
"dynamic chaos" in it.2 After the initial conditions (at
t = 0) are fixed, however, these additional interactions are
turned off, and the system becomes purely oscillatory and
linear.

A second distinctive feature which stems from the fact
that the system is not ergodic is that we need to carry out a
temporal rather than statistical averaging. A temporal aver-
aging is more natural in our purely dynamic approach. A
temporal averaging also corresponds to the procedure of
measuring the average values in an experiment. An impor-
tant point is that when measurements are repeated there is
no need, as we will show below, to reformulate the initial
conditions corresponding to a Gibbs distribution: All the
repeated temporal averaging procedures for time-varying
processes can be carried out on a unique dynamic trajectory
which we examine in phase space.

A heat reservoir consisting of oscillators has been stud-
ied at a microscopic level from slightly different standpoints
in many papers. For example, in an analysis of tunneling
from a metastable state it turns out to be extremely impor-
tant to incorporate dissipative effects. Since this phenome-
non is definitely a quantum-mechanical phenomenon, a sys-
tematic analysis of it should be based on a Hamiltonian
formalism. Here a heat reservoir of oscillators turns out to be
an extremely convenient model (see the review by Caldeira
and Leggett3 and the bibliography there). An oscillator
which is interacting with a heat reservoir which also consists
of oscillators was studied in Refs. 4 and 5. We will examine
these studies in more detail a bit further on.
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1. SOLUTION OF THE PROBLEM OF THE MOTION OF A
SYSTEM OF INTERACTING OSCILLATORS

We consider a system of n interacting oscillators with
coordinates q{, ..., qn and masses mt, ..., mn. In the case of
electrical oscillations, 9, would be the charges on capacitors,
and the masses w, would be replaced by inductances L,. The
Lagrangian of the system is2'

q\—T 2 ( 1 . 1 )

The quadratic form of the potential energy C/is positive defi-
nite; this situation corresponds to a stable position of the
equilibrium at the point q, = ... =qn =0. We immediately
assume that the quadratic form of the kinetic energy K is
diagonal; this assumption does not restrict the generality of
the results.31

We turn now to normal coordinates. We know (Ref. 6,
for example) that a transformation of the type

qt ==
v=i

Sivxv, (2.1)

where Siv is a real orthogonal matrix, can put the Lagrang-
ian (1.1) in diagonal form. The orthogonality of Siv means
that we have

v=l

The quadratic form of the kinetic energy remains diagonal
for any choice ofSiv by virtue of (3a. 1) and takes the form

71

K = -J 2 ^iv^iHxvxli — ~2 2 ZV- (4.1)
v=l

The quadratic form of the potential energy is diagonalized if
we take Siv to be a matrix which satisfies one of the equiva-
lent conditions41

n

that we have Av > 0, by virtue of the positive definiteness of
the matrix xijt i.e., by virtue of the stability of the equilibri-
um position q( = 0.

Using (5a.l), we find that the Lagrangian (1.1) takes
the form

L-i (6.1)
v=l

We thus conclude that we have /lv = &>l, where <yv are the
frequencies of the normal oscillations of the system of oscil-
lators.

We can thus find a>2
v, Siv from the original quantities

m^x/j. According to (5c. 1), the inverse is also true: Given
&>2,,S1V, and m,, we can unambiguously reconstruct the origi-
nal matrix x,j:

v=l

Consequently, if we are dealing with an oscillatory system of
a general type, we can always assume that it is given by the
set of quantities m,,a>l.,SiY. This is just what we will be as-
suming below.

Equations of motion corresponding to the Lagrangian
(1.1) are

n

TTZ/g^ -f- 2j ^Ij^j ~ ̂ «

We have included external forces F t ( t ) on the right sides of
these equations, so that the corresponding equations become

2 Ktfli = (7.1)

Substituting in ( 2 . 1 ) , and using (5b. 1) and (3.1), we easily
find the enuatinnsfind the equations

Their solution is

zv (t) = xv (0) cos o)v sin wv

v=l

It is easy to verify that these equalities are equivalent by
virtue of the orthogonality conditions (3.1). It can be seen
from (5b. 1) that to find Slv it is sufficient to find the eigen-
vectors and eigenvalues of the matrix gtl = xtt/(.mlml)

l/2,
i.e., to find all the nontrivial solutions of the problem

If we designate the various solutions of this problem by the
index v, we see that after a corresponding normalization of
the solutions <p Jv ) (and, possibly after they are rendered or-
thogonal if there is a degeneracy) we can set 5,v = <p f v > .
Equation (5c. 1) gives a canonical expansion of the matrix
gu in its eigenvectors S,v. From (5a. 1) with v = /j, we see

We now return to the variables q,(t). Substituting (9.1) into
( 2. 1 ) , we find the formula

n

qi (t) = — jyj- 2 ^iv ^v (0) cos wvt + co;la;v (0) sin wvf
mi' v-l

(10.1)

We should eliminate the initial values xv (0) andxv (0) from
this formula, expressing them in terms of q, ( 0 ) , q, • (0). This
can be done by noting that the transformation (2.1) can be
generalized easily with the help of ( 3a. 1 ) :

We then find
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v (0) = (0), iv (0) = (0).

Substituting these expressions into ( 10. 1 ) , and using ( 8b. 1 )
and (2.1 ), we find the following expression for the solution
ofEq. (7.1):

, (t) = 2 [Gi} (t) mfll (0) + Gtt (t)

Here we have introduced

(ov

(11.1)

(12.1)

G,y (0 is the Green's function of the problem (the response
of oscillator ;' to an initial pulse acting on oscillatory).

Let us examine some general properties of the Green's
function G,y(0- It can be seen from its definition, (12.1),
that it is of odd parity in the time. This fundamental property
follows from the reversibility of the motion in time. To find
the reasons for this behavior, we write the quantity <?, given
by (11.1) with FJ = 0 (i.e., this quantity describes the free
motion of an oscillator) in the form qf (t; q", q"). Revers-
ibility in time then means that if we change the signs of the
initial velocities and the direction of time then quantities q,
will remain unchanged: q, ( — t; q", — qe ) = qt (t; q", q").
Figure 1 illustrates this relation for the motion of a single
oscillator. Substituting

into this equality, we find

2 mi\Gii(t)q
a

j + 0^(1)

sumed to be a quadratic function of the coordinates. In this
case, the external stimulus must be quite weak, or else it will
drive the system out of this neighborhood.

It can also be seen from definition (12.1) that we have

Gij(Q) = Q, G i ] ( 0 ) = 0, Gil(0)=&l](ml)-
1 (13.1)

[ the last inequality holds by virtue of (3b. 1) ].
Knowing the function Gtj ( t ) , we can also reconstruct

the matrix x^. Specifically, we easily see that the following
formula5' follows from (12.1) :

x, ,= -/n,w,GM(0). (14.1)

2. AVERAGE MOTION OF A MACROSCOPIC OSCILLATOR
AND COMPARISON OF IT WITH A PHENOMENOLOGICAL
DESCRIPTION BASED ON OHM'S LAW

We start off with the assumption (which we will later
discard) that at — oo < r < 0 there is an ensemble of K> 1
systems of oscillators, each of which is identical to that dis-
cussed above, and each of which interacts with a "grand"
reservoir at the temperature T. We assume that the nature of
this interaction is such that the overall system is ergodic. At
the time t = 0, the coordinates and momenta of the system of
oscillators are then described by a Gibbs distribution. This
statement means, in particular, that if we find the arithmetic
mean of the coordinate or velocity of oscillator / at time t = 0
over all K identical copies of our system and then let K-> oo
we will find values which are close to zero (of the order of
K-"2).

For the time being we understand the averaging oper-
ation (in the first part of this section) to have precisely this
meaning. At time / = 0 we "turn off" the interaction with
the grand reservoir, and we find K systems of oscillators
which are not interacting with each other and which have
initial coordinates <?,•"' (0) and initial velocities q}n) (0) such
that in the limit K-^ oo we find

)-?l (0)= •0,

This equation is satisfied only if the function G,-, (t) is odd:
GJJ ( — t) = — G,j ( t ) . The odd parity of the Green's func-
tion describing the response of a system to an external stimu-
lus which drives it away from its equilibrium position is
found not only in the particular problem with which we are
concerned here but also in the more general case in which the
potential energy of this system is examined in a small neigh-
borhood of the equilibrium point and can therefore be as-

Forward
motion

Retrograde
motion

- - S ?(ia) (0) = ?« (0) =

(the index a = 1, ..., K specifies the particular copy of our
system). For brevity, we say that q,- (0) and q, (0) are ran-
dom quantities with zero mean values, and we refer to the
averaging over the K copies of our system as an "averaging
over thermal fluctuations." Let us assume that a macroscop-
ic oscillator has an index / = 1, tri) = M, q } ( t ) = q ( t ) . We
also introduce the notation Gn(t) =G(t), F t ( t ) =F(t).
We write an expression for q ( t ) , setting / = 1 in (11 .1) , and
singling out the term withy = 1:

^G(t-t')F(t')dt'+g(t). (1 .2)

FIG. 1. Here we have introduced
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q(t) = 2 [rn,q, (0) Gi} (t) + mjq, (0) GtJ(t)
tion on this set comes from the condition7 ,, = 1 ). Con-

(2.2)

for the "noise" component of the motion of the macroscopic
oscillator, which results from the initial conditions and the
external forces associated with the oscillators of the reser-
voir.

We assume that an external force F ( t ) begins to act on
the macroscopic oscillator at the time t = 0, and we assume
that this oscillator acquires an initial velocity g ( 0 ) which is
large in comparison with the fluctuations. In (2.2), all the
quantities q} (0), q} (0) withy = 2,3, ..., « are then random
quantities (in the sense defined above) with zero mean val-
ues. The same is true of the quantity61 #(0). If we are inter-
ested in the mean value of the coordinate, q ( t ) =Q(t) (the
superior bar means an average over thermal fluctuations),
then fory = 2, ..., n we find <?, (0) = 0, qs (0) = 0 after the
averaging; with F}•. = 0 (i.e., the external force is^acting ex-
clusively on the macroscopic oscillator) we find q = 0. The
average motion of the oscillator is thus described by the
expression

Q (t)=Mg(0)G (t)+ \ G ( t — t ' ) F ( t ' ) A t ' . (3.2)
o

Introducing Av =S]V to streamline the equations, we have
n

T A„ = 1 according to (3b. 1), and according to (12.1) we
v= 1

have

(4.2)
v=i

Let us compare expression (3.2), which is written for
the average motion of a macroscopic oscillator and which is
derived from microscopic equations, with the motion de-
scribed by a phenomenological equation of motion of an os-
cillator with a linear friction proportional to the velocity (in
the case of electrical oscillations, this would be Ohm's law).
Assigning an index R to the solution of the phenomenologi-
cal equation, we have

MQR =F (t). (5.2)

The solution of this equation with the same initial condi-
tions, QR (0) = 0, QR (0) = QH, is

<?R (t) = <?0w~' exp ( — ft) sin of

t_
+ —^ ( e x p [ — y ( t — t')][sinM(t — t ' ) ] F ( t ' ) d t ' ,

\ jV/tD J
'J

(6.2)

whereaJ2 = a>\ — y2,andy = R /2M(orR /2L, in the case of
electrical oscillations). We can write solution (6.2)
in the form in (3.2) with the Green's function
(Mc5) ~' exp( — yt) sin cat.

It is clear that in considering an oscillatory system of a
general type we can treat the set of frequencies «,, and the set
of positive numbers^,, as being arbitrary (the only restric-

sequently, Eq. (5.2) generally does not reflect the properties
of an average microscopic motion. In particular, we also
conclude that Ohm's law with a frequency-independent re-
sistance is not a universal consequence of (3.2).

At this point we pose the question in a different way:
What assumptions should we make regarding^,, and <yv if
we wish to make Eq. (5.2) a consequence of the microscopic
analysis?

We begin with the assumption (which we will later dis-
card) that the frequencies <yv are equidistant: &»,. = vll. In
this case, (4.2) is a finite Fourier sum:

We obviously have G(t + 2ir/(l) = G(t); i.e., G(t) is peri-
odic with a repetition period T(t = 2-rr/£l. In particular, we
have GCT0) =G(0) =0. Furthermore, we have G(T,,/
2 + r)= -G(r,/2-r); i.e., the function G(t) is odd
with respect to the middle of the interval (0,7*,,). It follows
from no more than these properties of G(t) that the function
(Maj)~l + exp( — yt) Xsin cot cannot be written in the
form in (4.2). However, a Fourier sum of this form can be
used to approximate (quite accurately if n is large) a func-
tion which on the interval (0,T()) has the form

(t) =
exp( —Yf)3 inc i» —exp[ — Y ( 7 ~ 0 - *

(7.2)

and which is periodically continued in both directions out-
side this interval. Here eo = Ml, and N is an integer. If
yr(>l, then in the initial interval (at t<T(t/2) function
(7.2) is essentially indistinguishable from (My) ~ '
exp( — yt)sin 75t, but it satisfies the necessary conditions of
periodicity and oddness. Function (7.2) on the interval
(0,ro) can also be written in the form

w c h v ^ ) ' 1 . (8.2)

The normalization factor has been chosen in such a way that
the condition GR (0) = M ~ ' holds; this condition must be
satisfied by G(t) .It can be seen from (7.2) and (8.2) that we
have GR (0) = GR (T(t) = 0 (i.e., the periodicity condition
holds) and that G(ro/2 + T) is an odd function (Fig. 2).

The reason for the periodicity of G(t) [or GR (t)} is
that in the absence of external forces our system is conserva-

FIG. 2.
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live and executes a finite motion. In general, it would then
follow that the Poincare theorem7"9 regarding the returns of
a system to its original state will hold arbitrarily accurately.
In the case of an equidistant spectrum, these returns occur at
intervals of the period Tw and the system returns exactly to
its original state.

If, however, the time T0 is extremely large, and the con-
dition yT(,> 1 holds (7"0 is estimated for some simple situa-
tionssi in Refs. 2 and 7) , then we will actually be interested in
only the initial stage of the process which (if the number of
oscillators, n, is sufficiently large) will be essentially indis-
tinguishable from the process described by the solution of
Eq. (5.2).

What should the coefficients A,, be in order to satisfy
the "equality" G ( t ) ~GR ( t ) ! Withw = oo we can satisfy the
exact equality G ( t ) = GR (?) by finding the coefficients AY

from the expansion of function (7.2) in a Fourier series in
sin vi\l. If, on the other hand, n is finite but quite large, we
find a rather good approximation of the function GR (t) by a
finite Fourier sum (this is the best approximation in the
sense of the mean square deviation).

We thus write an expansion of function (7.2), ex-
pressed in terms of the variable ~ = t — ( T ( } / 2 ) in the region
\T < T,/2, as a Fourier series of the type in (4.2), but with
infinite n:

that in it the microscopic Green's function can have a given
form:

1 v Av . . / , , . > . - .
-T7 _2j — sln wv* = t- (t) sin tot.

v=l

For this purpose it is sufficient to solve the last equation for
the numbers^,, as was done in the derivation of (9.2) and
then construct some orthogonal matrix S,v for which the
relation 52,. = A,. holds. We can then find the corresponding

matrix x(j from (5d. 1).
An exponential damping law for the oscillation ampli-

tude was found approximately in Refs. 4 and 5 by an ap-
proach which was equivalent to adopting less-restrictive as-
sumptions regarding the form of the matrix xtj. Specifically,
these less-restrictive assumptions reduced to the following
assumptions:

a) The oscillators of the reservoir interact only with the
macroscopic oscillator—not with each other.

b)The so-called "rotating-wave approximation" (Ref.
11, for example), which is equivalent to an averaging meth-
od, is applicable. In the case at hand, this approximation
reduces to the following approximation of the Hamiltonian:

Mia ch (7ZV 2) v~

Multiplying this expansion by sin //llr and integrating over
T from ( — TH/2) to ( T ( , / 2 ) , we easily find the coefficients
Av. Using the equalities w = Nfi, <yv = vfi and introducing
the eigenfrequency (<y( )) of the macroscopic oscillator by
means of the standard equation <y2 = <a<2 — y~, we find, after
some simple manipulations,

V I p' i *"g' \
Zl ( 2m, + 2 j

(9.2)

If the solution of the problem of the motion of an oscil-
lator in a reservoir consisting of a set of other oscillators is to
correspond in its initial stage (at t < TH/2) to the solution of
phenomenological equation (5.2), we thus need to choose
the matrix Sn, in a special way. Alternatively, in accordance
with ( 5 d . l ) , we need to choose a special form for the matrix
Ky. Specifically, according to (9.2) the quantities S2,.,
which determine the coupling of the macroscopic oscillator
with the oscillators of the reservoir must lie on a Lorentzian
resonant curve91 as a function of the frequencies tav.

It follows that phenomenological equation (5.2), in
which the action of the thermostat on the macroscopic oscil-
lator is described by the term RQR (in particular, by Ohm's
law), is not a universal equation. Other laws describing the
damping of the oscillation amplitude C(t) of the macroscop-
ic oscillator would also be consistent with the microscopic
description.10' As an example we might cite the paper by
Razavy,1" in which functions C(t) other than exp( — yt)
were given for a one-dimensional chain of oscillators directly
in terms of the quantities mt and K^ .

Clearly, if some arbitrary amplitude damping law com-
patible with the symmetry conditions which we have men-
tioned is given, and if n is sufficiently large, then we can
indicate a reservoir of oscillators which is of such a nature

PiPj
* (m^n

c) The Wigner-Weisskopf approximation holds (Ref.
11, for example). In this approximation, the solution is
sought immediately in the form of an exponentially damped
sinusoidal oscillation.

From the standpoint of the set of solutions derived in
Refs. 4 and 5, an exponential law is clearly an approximation
which includes in addition to the exact solution of this type,
certain solutions which are close to the exact solution.

If the damping law of the oscillation amplitude is not
exponential, phenomenological equation (5.2) evidently
will no longer hold. Generally speaking, it should be less
accurate than a linear equation of higher order. It is clear
that if we eliminate the variables of the reservoir oscillators
from the system of equations of motion we can generally find
an equation of order 2n for q ( t ) . However, if we require that
the phenomenological equation correspond to a linear oscil-
lator with one degree of freedom, then we necessarily find
(5.2). Nevertheless, that requirement can by no means al-
ways be justified physically.

Even if Eq. (5.2) , which describes an irreversible mo-
tion, holds in the initial region (14 T0/2), the exact equation
which function (7.2) must obey is the following equation, as
is easily verified:

(10.2)

This equation contains derivatives of exclusively even order,
so that it is invariant under the substitution t~> — t and de-
scribes a reversible periodic motion if the coefficients in the
expression for its general solution are chosen appropriately:
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U ® + V ) « g t - i w + V ) ' .

Although Eq. ( 10.2) describes a reversible motion, it expli-
citly contains a dissipative parameter: the resistance"'
R = 2yL.

There is yet another important circumstance to be not-
ed here. If we work from the microscopic equations of mo-
tion, the "dissipative" (in a phenomenological description)
parameter y or the corresponding resistance R — 2yL ap-
pears as a quantity characterizing the potential-energy ma-
trix x,j . Specifically, since the parameter y appears explicitly
in the expression for Av, it therefore also appears in
Slr = (At ) ' 2and thus *,-,-, since this matrix is related to 5,, .
by Eq. ( 5d. 1 ) . In other words, the dissipative parameter y is
contained in the complete Hamiltonian as a parameter of the
interaction of the macroscopic oscillator with the reservoir
oscillators (it unavoidably appears in the expressions
for x,j ) .

In this model, of a reservoir consisting of oscillators, we
can of course find Eq. ( 5.2 ) only under some extremely con-
trived assumptions, which reduce to the validity of (9.2)
The only important point is that Eq. (5.2) for t < T0/2 does
not contradict the exact microscopic equations.

When this problem is approached in other ways, which
are based immediately on irreversible kinetic equations, an
exponential oscillation damping law (and also Ohm's law)
can be derived under other, more natural assumptions (e.g.,
through an appropriate approximation of the collision inte-
gral). Such approaches are of course far more convenient in
practice for dealing with various specific problems, but we
are deliberately avoiding kinetic equations here since our
purpose is to study dissipation on the basis of reversible mi-
croscopic equations.

Finally, we note that we derived (3.2) and (4.2) for the
average motion on the sole basis of the vanishing of the mean
values of the initial coordinates and velocities of the oscilla-
tors of the reservoir; the specific type of probability distribu-
tion of these quantities was of no importance.

In deriving (9.2) we used the assumption that the spec-
trum of normal oscillations is equidistant. We will now ana-
lyze the consequences of giving up that assumption. We as-
sume that the frequencies w ,, co2, ..., a>n are not equidistant
but that their ratios are rational numbers. Each of the fre-
quencies can then be written in the form &>,, = Nv f l , where
the numbers Nv are integers, and fl is the largest frequency
scale at which such a representation is possible. Going back
to (4.2), we see that again in this case we have
G(t + r(l) = G ( t ) , where T0 = 2ir/£l; i.e., G(t) is a periodic
function of period TQ. As in the case of the equidistant spec-
trum, G(t) is odd with respect to the point t = Tn/2. The set
of functions s\n(Nn£lt) is orthogonal on (0,ro), but these
functions do not form a complete system. Incidentally, the
functions sin(vflf) also did not form a complete system,
since their number is finite. The distinction is that in the case
of the equidistant spectrum all the high-frequency harmon-
ics were removed from the complete set of functions, while in
the case of a nonequidistant spectrum some of the low-fre-
quency harmonics are also removed. It is nevertheless clear
that if within the Lorentzian line (9.2) there is a fairly large
number of frequencies av = Nt.Sl, and they are distributed

over the interval (ca -y,a + y) at least approximately uni-
formly, then a function of the type in (7.2) can be represent-
ed extremely accurately by expansion (4.2). To clarify this
point we note that the function (Mco) ~~ \? ~ r l ' ' sin cot can be
represented by the Fourier integral

j -vUI —
—=— sin Mt 2tyco dco

oo

f

= \ eia"ff (cc) dco.
-oo

The integral on the right side of this equation can be approxi-
mated by an integral sum, so that the expansion becomes

(w) dto v) Acov.

Here it is not at all necessary that the frequencies <ov be
chosen equidistant. The only requirements are that in the
region co~S>, which is important for the integration, the con-
dition max A<y ,, <^ y hold and that a sufficiently large number
of points to,, fall in this region. For a nonequidistant arrange-
ment of the frequencies a>v in the case in which the ratios of
the frequencies are rational, we thus see that again there exist
a time T0 after which the system will return exactly to its
initial state.

Finally, if the ratios of the normal frequencies are arbi-
trary, even irrational, they can nevertheless be approximat-
ed arbitrarily accurately by rational numbers. We then re-
turn to the preceding case with this accuracy.

For arbitrary cov we thus find a near-period T0(e) in-
stead of the period of an exact return; this near-period is of
such a nature that the inequality

\G(t+T, (e)) - G (t) |< e

holds for arbitrary /, and after a time T0 the system returns to
its original state within an error of the order of e. Functions
of this sort (Fourier series with arbitrary frequencies) are
called "nearly periodic." The Poincare return theorem7'9

specifically asserts that a finite motion of a conservative sys-
tem is nearly periodic. In the particular case with which we
are concerned in this paper, this assertion reduces to the
assertion that the function G(t) is nearly periodic for arbi-
trary «,. .

We now return to the averaging question, which we dis-
cussed at the beginning of this section of the paper. We dis-
card the assumption that there are K copies of the system.
We assume that at t < 0 our single system of n oscillators
interacts vanishingly weakly with a "grand" reservoir hav-
ing a temperature T. We assume that the nature of this inter-
action is such that the overall system is ergodic (in particu-
lar, because of the interaction with the reservoir, the energies
of the individual normal oscillations are not conserved). In
this case, we know7"9'12"15 that a Gibbs distribution is estab-
lished in the system. We "switch off " the interaction of the
system of oscillators with the grand reservoir at the time
/ = 0. At this time, all the coordinates q, (0) and velocities
q{ (0) have certain values which constitute a specific sample
of the set of random quantities which obey the Gibbs distri-
bution. These quantities are initial values which determine
the subsequent evolution of the system of oscillators. A.t

, this evolution proceeds (we would like to stress this
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point ) in accordance with Eqs. ( 1 1 . 1 ) . At t > 0, we treat the
system of oscillators with indices j > 2 as a reservoir with
respect to the oscillator with index 1 . In the course of the
evolution, the initial values q, (0) and qt (0) are fixed, and it
is not possible to take an average over them. At / > 0, an
average can be taken only over the time. The initial values
qt (0) and g, (0), however, retain a "memory" of the contact
with the reservoir which occurred at t < 0. In particular, this
statement means that the characteristic values of q, (0) and
q, (0) agree with the Gibbs distribution

W (q, q) = JT exp [ -H (q (0), 'q (0))

where , / is a normalization factor, and

( 1 1.2)

is the Hamiltonian expressed in terms of variables referring
to the time / = 0.

For the analysis below it is convenient to express the
Hamiltonian in terms of the normal coordinates x,.. We ob-
viously have

ii
0)1. (12.2)

In the limit n -» oo, the spectrum of normal frequencies be-
comes far more dense. Let us examine a group of K > 1 nor-
mal oscillations with approximately equal frequencies
<y,.,<&>,.2 < ... <'y,^' which are such that the relation
&>V A. — <yV| <7o holds, where y() is some given resolving pow-
er. l21 Frequencies which differ from each other by less than
Ya will not be distinguishable experimentally. The circum-
stance that the quantities xV| (0), ..., xv / t (0), x,.t (0)
x,, (0) constitute a sample of a normally distributed set
obeying the distribution

a
W (x (0), x (0)) = ̂  exp { - -Jjr 2 [-4 (0) + wjz"v (0)]}

(13.2)

means that when K is sufficiently large the arithmetic mean

values I here v — K ~' V 1

*v (0) =B -j- S *va (0) « 0, iv (0) —1- S iVa (0) « 0
0=1 0=1

(14a.2)

are small. In other words, in absolute value they are much
smaller than the characteristic values of each of the terms
(£r) l / 2 /<yv and ( k T ) ] / 2 , respectively. The mean square val-
ues of the initial coordinates and velocities over the same
sample are approximately equal to the mean square values
determined by distribution (13.2); i.e.,

a=l

K

Relations (14.2) are consequences of the law of large
numbers in probability theory (in the limit A"— oo, these re-

lations hold within an error of the order of AT ' ' 2 ) . At t > 0,
an averaging over time leads, by virtue of relations (14.2), to
mean values and variances of the dynamic variables which
correspond to Gibbs distribution.

We turn now to the process of measuring the mean \a\-
ue q ( t ) = Q. In a real experiment, we impart an additional
initial momentum MQti to the macroscopic oscillator at
t = 0, so that the initial conditions on the motion of the sys-
tem of oscillators are, according to (10.1),

i (0) = -
v=l

and

(15.2)
v=l

for/V 1, or

v=l

for / = 1. Here qn is the initial velocity of the macroscopic
oscillator, where the additional initial momentum MQ(i has
been taken into account.

The subsequent motion of the macroscopic oscillator
occurs in accordance with ( 1 1 . 1 ) , in which the contribution
from the initial momentum MQH has been singled out:

q (t) = 71/<?0G (t) + \q, (0) Gu (t) + q, (0) G, , (t)] .

(16.2)

The second term is the noise component of the motion,
which is unrelated to the initial momentum MQH. Let us
assume, for example, that the spectrum of the system of os-
cillators is Lorentzian, so that under the condition t^T0/2
the function G(t) represents an exponentially damped oscil-
lation. (As will be seen below, this assumption is not manda-
tory. All that is required is that in the initial stage of the
evolution there exists a characteristic relaxation time; the
damping law for the oscillation amplitude need not be expo-
nential.) Under the condition t^>y~] (but still under the
condition t <Ta/2) the first term in (16.2) is damped, in
contrast with the second term. In other words, the regular
response to the initial momentum "drowns" in the noise.
After this stage, we return (from the macroscopic stand-
point) to the original position, as it was just before the time
t = 0, before the initial momentum MQH had been imparted
to the system. We can thus "repeat the experiment," being in
the same initial state (the same from the macroscopic stand-
point). In other words, we can again impart to the macro-
scopic oscillator at a time / , > Y ~ ' ( but t , <^ T',,/2 ) the same
momentum, MQ0. Equivalently, at the time f , the
macroscopic oscillator is subjected to a force
F,(0 =MQ(,S(t - r , ) . According to (11.1) , at t>ti we
then have

(14b.2) q(t) =

+

'•(t-t,)

•] \qt (0) t (t) + g, (0) GtL(t)] .
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first term here is exponentially small and can be ignored; we
thus write

q(t) = MQ0G (t - f,) + S m, (q, (0) Glt (t) + q, (0) Gl} (t)].
j=l

(17.2)

At / — f | ^>Y ' tne first term here is also damped, and we
again cannot distinguish the state of the macroscopic oscilla-
tor from the initial state. At a time f 2 > ?, + y~ ' (but t2 < T()/
2 ) we can then repeat the experiment "under the same initial
conditions," imparting a momentum MQ(, to the
macroscopic oscillator [i.e., we can apply a force
F , ( t) = MQ08 ( t — t2 ) ] . As a result, at t > 1 2 we have

q (t) = MQ0G (t - 12) + 2 m, lq} (0)Gu(t) + q, (0) Glt (t)} .
;=i

(18.2)

This procedure can be repeated A"> 1 times (under the con-
dition Ky~]^T(}/2). The second terms in (16.2), (17.2),
(18.2), etc., are identical; they differ only in the values of
their argument t. In this sense they are not a random noise,
since in principle they could be predicted on the basis of a
necessary finite number of measurements. What we are in-
terested in, however, is the average response, over all the
experiments, of the macroscopic oscillator to the momen-
tum imparted to it, MQH. We will accordingly compare and
average the coordinate values which are equidistant from the
time at which the corresponding experiment begins. In other
words, we are interested in a mean value of the type

Q (t) = q (t, + t) + q (t2 + t) + • - - + q (tK + t) ]

roscopic standpoint) initial conditions. In the following
section of this paper we examine equilibrium fluctuations in
a case in which there is no ordered motion of any sort of the
macroscopic oscillator, and its motion is caused exclusively
by the interaction with the oscillators of the reservoir. In this
case, no particular time is distinguished from other times
from the macroscopic standpoint, and an averaging can be
carried out over the time. For example, the mean value of the
coordinate or of any other quantity/U) which depends on
only one time can be found from the formula131

J < P
=? = •£• }1(t)At. (20a.2)

If we are instead interested in the mean values of quantities
which depend on two times, e.g., correlations of the type

f ( t ^ ) < p ( t 2 ) , we take a sliding average over the time with a
fixed value of the temporal shift of the arguments:

T.

i = fi/lp(T). (20b.2)

3. EQUILIBRIUM FLUCTUATIONS; DISCUSSION OF THE
FLUCTUATION-DISSIPATION THEOREM AND THE NYQUIST
RELATION

Now that we have examined the average motion of the
oscillators, we turn to the fluctuations in this motion. We
restrict the discussion here to equilibrium fluctuations, for
which the mean values of the coordinate and momentum of
the macroscopic oscillator are zero. To calculate the equilib-
rium fluctuations in the coordinate q(t) = #, (t ) of the mac-
roscopic oscillator, it is most convenient to use ( 10. 1 ) with

K

\-l V (19.2)

(here /„ =0 for a = 0). The functions Gy(?a + t) and
GJJ (t,, + t) consist of terms of the type sin(wv? + a>vta )
and cos(<yv? -f- <«,.?„ ). Since the times at which the repeated
measurements are begun /„ are totally unmatched with the
periods 2ir/ct)Y , however, the phase shifts cov ta can be regard-
ed as random. In this case, however, as we know quite well
(Ref. 16, for example), the mean value of a sum of harmonic
oscillations with random phases of the type

(K S sinuvta , (K -fl)-1 2 coscov«a
a=o

tends toward zero as K ~ l / 2 as K increases. Consequently,
during the averaging procedure the second term in ( 19.2) is
of order K ~ ' /2, and at large values of A" it becomes negligibly
small in comparison with MQ0G(t).

Accordingly, despite the fact that the "interference"
[the second term in (16.2)] is not random, its role in the
averaging procedure is reduced, as in the "buildup" of a use-
ful signal against a noisy background. As we have seen, this
interference is cancelled by the introduction of an element of
randomness in the choice of the point at which the next ex-
periment is begun.

We have examined a procedure for averaging time-
varying processes in a situation in which repeated measure-
ments should be carried out under identical (from the mac-
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, v t . (1.3)
v=l

We recall that *,, (0) and xv (0) are fixed numbers here — a
specific sample of a set of random numbers which obey a
Gibbs distribution and therefore satisfy conditions ( 14a.2)
and (14b.2). The time average is evidently q = 0 [in the
sense of ( 20a. 2 ) ] . We now consider the correlation function

Substituting (1.3) into this expression, we find some mean
values which can be calculated easily:

cos wvf cos c»u (t -\- T) = sin wvt sina^ (t + T)

1 c
VT,

(3.3)
cos Mvt sin w,, (t + T) = — sin o>vi cos o^, (t + T)

s= -jj- ovll sin COVT

(note the minus sign in one of the expressions on the second
line). As a result we find

= JW S ^v[4(0) + ̂
v=l v

(4.3)

We now need to relate the quantities x\, (0) and x*. (0) to the
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temperature. For this purpose we call on Eq. (14b.2). We
assume that when the spectrum of normal oscillations is suf-
ficiently dense the quantities S]r = Ay and cosa>,.r are
smooth functions of the index v. The quantities xv (0) and
xv (0), on the other hand, may be greatly different from each
other, even at adjacent indices v, by virtue of their "origin."

Let us consider a group of terms in (4.3) with approxi-
mately equal indices v, chosen in such a way that we have
<y,.+ K — <yv </,„ where 7,, is the given resolution (which

may correspond to the actual resolution of a spectrum ana-
lyzer in an experiment). In this case, taking the smoothly
varying quantities through the summation sign, we find

|v-vd<K/2

V cos O)VT

Using expressions (14b.2), which are based on the law of
large numbers and which express the sum which appears
here in terms of the temperature, we find

2k
IV-V.KA72

(in writing the last expression, we have again written
KS2

]r cos a)v T/ct)2
r as a sum). Substituting the value found

for the partial sum J into (4.3), we find

(5.3)

This expression could have been derived from (1.3) in a
far simpler way, by assuming that xv (0) and xv (0) are ran-
dom quantities obeying a Gibbs distribution. That approach,
however, would require preparing initial conditions for the
system of oscillators many times and taking an average over
a set of initial conditions. The more complicated derivation
which we have gone through here had the goal of showing
that the time scale for the establishment of a Gibbs distribu-
tion is unimportant in the derivation of expression (5.3) for
the correlation function. In view of the demonstrated equiv-
alence of these two logically different methods of deriving
(5.3), in the analysis of a quantum-mechanical fluctuation-
dissipation theorem below we will use the second method,
which is the shorter one. We will not carry out a preliminary
summation over the group of frequencies of normal oscilla-
tions, although that approach would also be possible in the
quantum-mechanical case.

We turn now to an analysis of (5.3). Each normal oscil-
lation contributes to Bq (T) and vice versa: The fluctuation
spectrum consists exclusively of the frequencies of normal
oscillations. Let us compare (5.3) with expression (4.2) for
the Green's function of this system. Differentiating (5.3)
with respect to T, we find

kTfl«M=-T5- - sin COVT,

which in turn, along with (4.2), leads to an important rela-
tion between Bq (T) and G(r):

Equation (6.3) is a particular case of the classical (not
quantum-mechanical) fluctuation-dissipation theorem
(FDT),'2-13Jf>J7 which relates fluctuations (more precisely,
the correlation function of the coordinate) to the Green's
function of this system, i.e., to the function G ( t ) , which de-
termines the response of a macroscopic oscillator which is
interacting with a reservoir to an external stimulus. Signifi-
cantly, none of the quantities &>,., Av is explicitly present in
(6.3). Accordingly, we can find Bq(r) without knowing
them; it is sufficient to determine G(t), e.g., by imparting to
the oscillator an initial momentum MQ(, and using the for-
mula

G ( t ) = Q(t)
MQa

The quantity q2 = Bq (0) can also be expressed in terms of
the Green's function G(t). Since G(t) is odd with respect to
the point t = TH/2, we can find the following expression,
which holds for finite Tn:

(7.3)

This expression simplifies in the limiting case y( )->oo, in
which the process becomes irreversible. In that case we have

oo

= kT j' G (t) dt. (7a.3)

Bq (t) = -kTG (T). (6.3)

It is not difficult to see that this expression follows from
(6.3) under the condition Bq ( oo ) = 0. In general, on the
other hand, when expression (7.3) holds, the correlation
function Bq(r) does not fall off to zero; furthermore, we
have 5, (T1,,) = Bq(Q).

As we know, the FDT is proved under extremely gen-
eral assumptions for Hamiltonian systems of an arbitrary
type. It essentially reflects the fact that the quantum-
mechanical dynamics of a system is^determined by the evolu-
tion operator U(t) = exp( — i t H / f i ) , while the Gibbs
distribution is ^specified by the statistical operator
p(T) =exp( -H /k D.We thus have/5 ( - ifi/kt) = U ( t ) .
This operator equation generates a series of fluctuation-dis-
sipation relations,18 one of which, in the classical limit,
is (6.3).

It should be noted, however, that while the left side of
(6.3) does indeed describe equilibrium fluctuations the right
side of this relation describes not a dissipation but a purely
dynamic response of a Hamiltonian system to an external
stimulus.I4)

The FDT, however, is usually applied to dissipative,
rather than Hamiltonian, systems. The Green's function of a
Hamiltonian system, which appears in the FDT on its right
side, is accordingly replaced by aphenomenological Green's
function, which does not meet the restrictions which follow
from the reversibility of the initial equations, A replacement
of this sort can be justified if the phenomenological, non-
Hamiltonian description of the macroscopic process reflects
the nature of the average motion well, so that a satisfactory
approximation of the microscopic Green's function of the
Hamiltonian system is found in the initial (dissipative) stage
of the evolution. It can thus be assumed that at / < T()/2 the
phenomenological equations make it possible to find accu-
rately a microscopic function G(t) for which the FDT holds.
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Such a construction makes it possible to extend an FDT,
which holds for Hamiltonian systems to non-Hamiltonian
(dissipative) systems, and it justifies the second part of the
name of this theorem. It is in this stage that the parameters
which, in the complete Hamiltonian of this system and in its
exact Green's function, describe the interaction of a macro-
scopic object with a reservoir are expressed in terms of pa-
rameters describing dissipation. To avoid a logical contra-
diction with the initial reversible equations from which the
FDT was derived it is sufficient simply to note that such a
replacement is legitimate only in the initial stage of the evo-
lution of the system.

It should be kept in mind that since the correlation
function Bq (T) is an even function by definition, the func-
tion Bq (T) is odd. Also present on the right side of (6.3) is
the Green's function G(t), which is odd (by virtue of the
reversibility of the equations of motion). Let us examine
how we would formulate an FDT in terms of frequencies,
rather than times, and, in particular, the consequence of the
condition that both sides of (6.3) are odd. We introduce the
spectral decompositions

Bq (T) = • f <t> (co) eicot do>,
— CO

OO

=JL ^ G(co)eiMfdco,
— 00

OO

= -|- \ e-to*G(t)dt.

(8.3)

(9a.3)

(9b.3)

Although the functions B ( T ) and G(t) are periodic and are
decomposed in Fourier series we will use more general and
more convenient representations in the form of Fourier inte-
grals, bearing in mind that the functions <t>(ft>) and G(co)
may be of the form of a sum of <5-functions.

Let us examine some general properties of the functions
4>(<a) andG(co). Since B* = B and G * = G, the following
conditions hold on the real co axis, i.e., for co* — co:

cD*(o)) = cD( — o)), G*(co) = G( —co).

It follows from the parity and positive definiteness (Ref. 16,
for example) of the correlation function Bq(r) that we have

0> (-co) = cl> (co) = CD* (to) ̂  0.

The odd parity of G(t) implies that G(co) is odd, so that
we Jiave - G(co) = G( -co) = G*(co). We thus have
Re (/(&)) =0and

G (co) = z l m G (co) for co* = co. (10.3)

Substituting in decompositions (8.3) and (6.3), we find a
spectral form of the classical FDT:

The appearance of an imaginary part of G(co) in (11.3) fol-
lows from (10.3), i.e., from the odd parity of G(t) and thus
from the reversibility of the equations of motion. The FDT,
however, can be written in the form of either the first or the
second equation in (11.3); the first of these equations does
not contain the symbol "Im." However, this observation ap-
plies only to the exact formulation of the FDT, in which the
Green's function which is the solution of the reversible equa-

tions of motions appears on its right side. If we instead re-
place the exact Green's function G ( t ) by some approxima-
tion GR ( t ) , which is not necessarily an odd function, then
the FDT should be used only in the form of the second equa-
tion in (11.3). This conclusion follows from the circum-
stance that the imaginary part of a Fourier transform of an
arbitrary real function is always an odd function.

The Green's function G(t) is frequently replaced by a
so-called retarded Green's function

i at

We define its spectral density Grct (co) by the relations
<» 00

Gret (t) = ~ j eiw'Gret (co) dco, Grct (co) = \ e~ >«"G (t) dt
-oo o

(13.3)

[note the difference in numerical factors in (9.3) and
(13.3)]. In contrast with G(co), the function Gr" (co) has
both real and imaginary parts. Making use of the odd parity
of G(t), we find from (13.3)

oo

Im Gret (to) = — f sin cotG (t) dt
o

= —-j-\ s i nco iG( i )d i= ImG(co ) , (14.3)
- oo

i.e., the imaginary parts of the functions G(co) and Gret (ft>)
are the same in the case co* = co. At the same time, the real
part of the function Gret (co),

oo

ReGr c t(co)= f cosa>tG(t)dt (15.3)

is nonzero. Using the familiar equality
00

1 (" sin co'( , ,
cos Kit — — -v —; dco

Jl J CO — CO
- oo

(the bar through the integral sign means the Cauchy princi-
pal value), we can rewrite (15.3) as a Hilbert transforma-
tion (or dispersion relation):

ReGre ImGr e t (co ') dco'. (16.3)

Returning to the spectral formulation of the FDT and using
(14.3), we can write (11.3) in the more common form

cp(co) = — — ImGret (co). (17.3)

In the quantum-mechanical case, the general formula-
tion of the FDT for one degree of freedom is (Refs. 12, 16,
and 17, for example)

where
. , . Bco .1 ficoI (co, t) = -5- cth

(18.3)

(19.3)2 2kT

is the mean energy of an oscillator with a resonant frequency
co, including the contribution from zero-point oscillations,
fao/2. Since we have 9(co,T) ~kT at kT^-fuo, we see that
(17.3) is the classical limit of (18.3). The transition from
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the classical FDT to its quantum-mechanical formulation
can be carried out formally by making the replacement

kT- ZkT
(20.3)

We turn now to the Nyquist relation, which we can use
to find the spectral densities of fluctuations in the current or
the emf in quasisteady electric circuits. This relation can be
found as a particular case of the FDT under certain addi-
tional specific assumptions which are not necessary in the
general case.

The Nyquist relation asserts that the spectral density of
the fluctuating emf which arises across a resistance R at tem-
perature T is

(21.3)

regardless of the type of electric circuit of which this resis-
tance is a part.151

We can find the Nyquist relation without going beyond
the model which we have been examining here, if we assume
that the generalized coordinates q, are the charges on corre-
sponding capacitors, while the velocities qt are currents. We
seek the spectral density of the equilibrium fluctuations of
the charge q ( t ) of a macroscopic oscillator (an oscillating
circuit). It is clear that since the Nyquist relation contains
the resistance R we can derive it only if we assume that the
spectrum of normal oscillations has a Lorentzian shape. As
we will show below, such a spectrum leads in the initial,
dissipative stage of the evolution to phenomenological equa-
tion (5 .2) , which corresponds to Ohm's law with a frequen-
cy-independent resistance.

We write (5.3) for the charge correlation function as

2 °v cos COVT,
v=l

kTAv

(below we will use notation corresponding to an electric cir-
cuit). Substituting expression (9.2) for the coefficients^,, in
here, we find the following expression, in whose numerator
we have substituted 2y = R /L:

0>v _ 2kTli
Q ~ nL"- (to*

th (T7V2) _
_r,l.a}2-l-4l>Sm2 0»(

The quantity 4>r/fl is the spectral density of the charge fluc-
tuations. Since the current is 7 = q, the spectral density of its
fluctuations, g/ (<yv ), is co2

v gq (&> , . ) ; i.e.,

, , 2kTR ..
K, (oiv) - - r th

Phenomenological equation (5.2), which corresponds (in
the limit j'Ti,— oo ) to this expression, can be associated with
an electric circuit consisting of a series connection of an in-
ductance L, a capacitance C, and a resistance R in a "ring."
The electrical impedance Z of such a circuit is
Z = R + id)L — (i/coC). The current / and the
emf ?? are related by ?? = Z/; we then find
g,_ (&>, . ) = \Z(a) ,. ) :g/ ( & > , . ) for the spectral densities. Since
we have \Z(a>v ) |2 = (L /&>,. )•[ (co2. — «o)2 + ^Y'^- ] > we

find for g, ( < u r ) [assuming tanh (yTi}/2 ) = 1]

This expression differs from Nyquist relation (21.3), given
above, only in the index v, which specifies that normal fre-

quency which determines the spectral density of the noise in
the given frequency interval. It is clear, however, that if the
measurement instrument cannot resolve the individual nor-
mal frequencies, so that many normal oscillations always fall
in its bandwidth A&>, such an instrument cannot distinguish
a signal with a continuous spectrum from one with a discrete
spectrum. Formally, this argument reduces to the assertion
that the following approximation of an integral by an inte-
gral sum holds very well:

Under these conditions, the index v in the expression derived
here can be discarded, and the expression becomes identical
to the Nyquist relation.

We now wish to compare Nyquist relation (21.3) with
FDT (17.3). We see that the former is a particular case of
the latter under certain additional assumptions regarding
the spectrum of normal oscillations. These additional as-
sumptions essentially justify the introduction of a frequency-
independent electrical resistance R, and the Nyquist relation
applies specifically to this case. Yet another distinction be-
tween the FDT and the Nyquist relation stems from the cir-
cumstance that a necessary condition for the applicability of
the latter is that the phenomenological equation correspond
to the model of a linear system with one degree of freedom
(an oscillator with a friction R Q R ), while the FDT also ap-
plies to far more general phenomenological models which
incorporate the possible appearance of new degrees of free-
dom at high frequencies. Long before quantum-mechanical
effects come into play (see the following section of this pa-
per), the Nyquist relation may thus become inapplicable be-
cause of such effects as a breakdown of the quasisteady ap-
proximation, a skin effect, or the appearance of parasitic
capacitances and inductances. In none of these cases can the
Nyquist relation be used to calculate the noise, while the
FDT can always be used for this purpose.

It might appear that the following argument could be
cited to justify the universality of the Nyquist relation: That
relation is derived from extremely general considerations re-
garding detailed balance (Refs. 16 and 17, for example), so
that the particular model on the basis of which it is derived
would be unimportant. However, the fact is that even before
we call upon the considerations of detailed balance we make
the implicit assumption that Ohm's law with a frequency-
independent resistance holds. If this law does hold, then we
can derive the Nyquist relation. If, however, Ohm's law in
this form is not called upon in this derivation in the Nyquist
relation, then it is not possible to justify the latter relation. In
this case the Nyquist relation yields to a more general rela-
tion: the FDT.

4. QUANTUM-MECHANICAL FLUCTUATION-DISSIPATION
THEOREM AND THE NYQUIST RELATION

In this section we examine the question of incorporating
quantum-mechanical fluctuations in our problem. One re-
sult of the analysis below is the derivation of a quantum-
mechanical Nyquist relation, which some time ago was the
subject of some debate, I9~22 which has flared up again. :3-:4-12

For the quantum-mechanical study of this problem, we
could use one of the many equivalent formulations of quan-
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turn mechanics. We will use here a formalism which is close
to the classical formalism and which is based on the repre-
sentation of quantum mechanics in the phase space of co-
ordinates and momenta (the Wigner-function formalism.).
In this formalism, one introduces, in place of the coordinate
operation x and the momentum operator fr, the c-number
variables x and w, which have the properties of random
quantities; the state vector | ̂ ) is replaced by the quasiproba-
bilistic Wigner function W(x,n), which plays the role of a
joint probability density of random values of the coordinates
and momenta. The quantum-mechanical expectation values
of any functions of the operators (i/>\f(x,Tr) \ifi) is made ex-
actly equal to the expectation values calculated with the help
of the quasiprobabilistic Wigner function by introducing the
functions /w (X,TT), the "Weyl symbols" of the operator
/ (X,TT) , which are selected in a special way for each operator
/ (X,TT), in such a way that the following equality holds:

(x, n)W(x, n)AxAn, (1.4)

We refer the reader who is interested in the subtleties of this
formalism to the specialized reviews25"27 and the mono-
graph by de Groot and Suttorp,28 in which this formalism is
used systematically. In the present review we offer only an
elementary derivation of the basic expression, (1.4), and of
the quantities which appear in it. We will not go into a de-
tailed discussion of the physical content of this representa-
tion.

We denote by \x) the eigenfunctions of the operator x
(i.e., Jc|X|) = jc, x , ) ) , which form an orthonormal
( ( x t \x2) = S(xt - x2)) and complete ($\x)Ax(x\ = 1) ba-
sis. We denote by f(x,ir) the operator representing some
physical quantity and we denote by \if>) the state vector of
the quantum-mechanical system ((if>\if>} = 1), so that
(x\it>) = if>(x) and (if>\x) = ifi*(x) are wave functions in the
coordinate representation. The expectation value of/(x,jr)
in the state \ifi) is defined by

(/) = fy | / (x, n) | ty}.

We will now go through a chain of simple identity transfor-
mations which lead to representation (1.4). We have

(i,-y=-i j exp - d n ,

- j j Wxl)Axl{xl\f(x,n)\x^dxs(xt\^
~ oo

and x2=x-( | /2) (cbc,ajc2Setting x,=x
= dxdg), we write

Finally, substituting in
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we find

x ete5

We now introduce two functions: the quasiprobability den-
sity or Wigner function

(2.4)

and the Weyl/w (X,TT) of the operator/ (X,JT),

fw(x, n)« (3.4)

[The correspondence between/ (x,ir) and/w (x,tr) is some-
times denoted by/(^,;5-) ->/w (x,ir).] The last equality for
{/) then takes the form indicated above, in (1.4).

The function W(x,ir) which depends quadratically on
if>, i.e., on the state of the system, is an analog of the joint
probability density for random c-number values of the coor-
dinate and the momentum. The function /w (x,ir) is called
the "Weyl symbol" of the operator f ( x , i f ) and represents
this operator in the phase space (x,ir). Equation (1.4) can be
discussed in terms of probability theory as an averaging of
the function/w (x,ir) of random c-number coordinates and
momenta over the probability density W(x,-rr). The Wigner
function actually has many properties characteristic of a
probability density and allows [with the help of ( 1. 4) ] an
exact calculation of quantum-mechanical expectation val-
ues. In particular,

W(x,

W(x, n)da:= |

are the actual probability densities of the coordinate and the
momentum.

On the other hand, the probabilistic interpretation of
the function W is not perfect. The primary reasons are the
two following properties of this function:

1. In certain parts of the (x,ir) plane, W can take on
negative values.

2. If (f) = (il>\fW)=$$f^(x,ir)W(x,ir)<lxAiris
the mean value of the quantity/, then its mean square value
(/2) = {^| f21 rf>) is given by an expression of the same type:

</*>= j j/5,(*. n) W (x, it) Ax An.

However, iff2'(x,ir) depends on both of the variables x,w
thenwehave/S2V(/w))2 .

For a harmonic oscillator with a resonant frequency cav,
the function W(x,ir) is known for any excited state
|H>(H(xv,S-v) |n> =fe t>v(n + i) |«> (Ref. 25, for exam-
ple):
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(4.4)

Here v specifies both the resonant frequency and the phase
variables of the vth normal oscillation, and

// (xv, a^-f^r^L). (5.4)

The Laguerre polynomials L,, (x) in (4.4) are determined
by the generating function

specifically, Lu(x) = 1, L,(;c) = l —

(6.4)

= 1
— 2x + ( x / 2 2 ) , ...). As can be seen from (4.4), at n > 1 the

functions W,, (XY,TTY ) can take on negative values.
If the oscillator is in one of the pure states \n), then any

mean values of its parameters can be found with the help of
(1.4), provided that we first use (3.4) to find the Weyl sym-
bol of the corresponding operator.

What we are interested in, however, is another problem.
After contact with a ("grand") reservoir which existed at
/ < 0 (this point was discussed in more detail earlier) each of
the normal oscillators is in a mixed state, of such a nature
that its probability to be in the wth excited state \n) is deter-
mined by the Gibbs distribution

pn = (1—e~ MV ) e~" MV . (7.4)

The mixed state of the vth oscillator is described by the equi-
librium Wigner function

(8.4)

This function can be found by substituting (4.4) and (7.4)
into (8.4), and (6.4) can be used for the summation. After
some simple calculations we find the equilibrium Wigner
function of the vth normal oscillation:

Wv(xv,

(9'4)

where

6K, 7') = -^Lct.li-^- (10.4)

is the mean energy of an oscillator with resonant frequency
&»,, at the temperature T (the energy of the zero-point oscil-
lations is included).

Distribution (9.4) is Gaussian and is determined com-
pletely by the mean values and second moments of the quan-
tities x,,, TT,,:

0((ov, T)

0, <nv> = 0,

<>=: e(o>v, T),
(11.4)

Here the angle brackets refer to an averaging over quantum-
mechanical fluctuations, while the superior bar refers to an
averaging over thermal fluctuations. Equilibrium Wigner
function (9.4) thus offers a simultaneous and common de-

scription of both the quantum-mechanical and thermal fluc-
tuations of the coordinate and momentum of the oscillator.

It can be shown that distribution (9.4) is a steady-state
distribution, i.e., does not vary over time (proving this asser-
tion would require use of the quantum-mechanical Liouville
equation, which we will not reproduce here).

We turn now to the correlation functions of the fluctu-
ations. To calculate them we need information on the state of
the system at two different but otherwise arbitrary times. It
is thus not sufficient to know simply the Wigner function
corresponding to one time. We will accordingly use Heisen-
berg equations of motion for the operators xv and frv:

At

v, n v ) , v ] = n v ( t ) . (12.4)

It is easy to verify that a solution of these equations is

,rv (t) = xv (0) cos cov« + ^5L sin o)vi,

nv (t) — jiv (0) cos wv£ — covzv(0) sincov£.

We are interested in the coordinate correlation function. Us-
ing ( 13.4), we can easily calculate the operator correspond-
ing to this function:

Bv (tit y = -|- [zv ({,) xv (tz) + xv (tz) xv (tt)}

COS «v

s inw v ( ( 1 + t2). (14.4)

We should now take an average of this expression. In
the formalism which we are using, one associates with the
initial values of the operators, frv (0), i, (0), and combina-
tions thereof, some random numbers which are their Weyl
symbols. Their probability distribution is described by
Wigner function ( 9.4 ) . Accordingly, we should first find the
Weyl symbols of the operators in ( 14.4), so that we can sub-
stitute them, along with (9. 4) , into (1 .4) .

The Weyl symbol of the operator F(xY ) is equal to
F(xv ), as is easily verified: Using definition (3.4), we can
write (omitting the index v)

= j p (a: —J-

In precisely the same way it can be proved that we have
F(W)^-F(TT) (the proof involves transforming to a basis of
the eigenvectors of the momentum operator). We are left
with the problem of finding the Weyl symbol of the operator
xrr + fix (for brevity, we will omit the index v and the argu-
ment t = 0 from the intermediate calculations). By defini-
tion we have
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x-%) (*— I)]

Using

<*,!/• (n)|*2> - F ( -ih Jj-) 6 (ri)!^.,,-,,,

we find161

*v (0) nv (0) + nv (0) iv (0) -*- — 2ihx \ 6' (|)

= 2*v(0)nv(0) .

d£

To find now the correlation function of the fluctuations of
the coordinate of oscillator v, it is sufficient to replace the
operators *f(0), x?.(0) and Jcv (0)jrv (0) + ir,.(0)Jc,.(0) in
(14.4) by their Weyl symbols xj(0) , jrj,(0) and
2xv ( 0 ) TT,, ( 0 ) , which are, according to ( 9.4 ) , Gaussian ran-
dom numbers, and to take an average over this Gaussian
distribution. The result is of course given by ( 1 1.4); for the
correlation function of the coordinate, 5,. (/,,?,), we find

-cos WVT, T = f , — f. (15.4)

If we had first taken an average over the time t = ( t , + t2)/2
at a fixed r in (14.4), we would have found the functional
dependence Bv ~cos<yv r. A time dependence of the type
cos <avr is thus determined exclusively by the dynamics of
this system, while the numerical coefficient in (15.4) de-
pends on the relation between the quantum-mechanical and
thermal fluctuations.

Correlation function (15.4) has been derived for a nor-
mal oscillation, i.e., for an isolated oscillator, which is not
coupled with anything else. As can be seen from (15.4), the
mean square value of the fluctuations of the coordinate of
such an oscillator is determined by the quantity 9(o)r,T),
i.e., by the energy of the oscillator at its own resonant
frequency.

We turn now to the fluctuations of the coordinate of a
macroscopic oscillator which is interacting with the system
of the (n — 1) other oscillators. The operator representing
the coordinate of the macroscopic oscillator, q, ( t ) , is related
to the operators xv (0 by

(16.4)
v= 1

We first note that all the results referring to the average mo-
tion of a classical macroscopic oscillator can be transferred
without any changes to the average motion of the quantum-
mechanical oscillator. This conclusion follows from the cir-
cumstance that after we take an average over any quantum
state the Heisenberg equations of motion of a linear oscilla-
tor become the corresponding classical equations. This is a
consequence of the general Ehrenfest theorem for motion in
a quadratic potential. Consequently, all the results derived
for the average motion of a classical macroscopic oscillator
remain valid in the quantum-mechanical case.

We turn now to a calculation of the correlation function
for fluctuations in the coordinate of the macroscopic oscilla-
tqr. From (16.4) we have

(*„ t2) = ~- z) + ft , (t,)]

(17.4)

Before we average this expression, we note that in the case
v^/z the operators xv(1 ,),&,, (f/) act in different state
spaces and are thus averaged independently:

As was shown above [see ( 1 1.4) ], the equilibrium expecta-
tion values are {*,. > = 0. Consequently, when we average
(17.4) we should retain only the term with v=^i\ using
(14,4) and (15.4), we then find

= -jf S sr e ("v,
v=l v

) cos COVT. (18.4)

As in the classical case, the function Bq(r) is periodic (or
nearly periodic). This property reflects the reversibility of
the initial equations. In the limiting case fev 4,kT we find
the classical expression (5.3) from ( 18.4).

From ( 18.4) we can construct a quantum-mechanical
formulation of the fluctuation-dissipation theorem (FDT).
As above, we introduce decompositions of Bq(r) and
<7ret (0 in Fourier integrals:

v=l

Using the identity F(co,.)S(co,, ±a>) = F(-iro})8(cov ±co)
and also making use of the circumstance that the function
F(&>,,) = a>~ ' cth(fi(ov/2kT) is of even parity with respect
loa)v, we find

—} 519i;7' / '

V=l

(19.4)

As was mentioned above, the Green's function of the system
of oscillators refers to the average motion, so that in quan-
tum theory it is the same as that given by the classical expres-

sion found above, (4.2): G(t) = — Y —— sin covt. We use
A/,.= i <av

the imaginary part of the decomposition in a Fourier integral
of the retarded function Gret (t) = 6(t)G(t):

ImGret (<o) = — sin <ot-ir S —^ ' J M *-> (ov
0 v=l

n

v=l

Since u>~ 1S (a> + «,.)= — £y~'5(<u + &> v )
o),7 lS(ca — a>v) = a>~}8(a> — w v ) , we have

and
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(20.4).

Comparing (19.4) and (20.4) we find a quantum-mechani-
cal FDT:

0>(co) = —£

(21.4)

Equality (21.4) holds for arbitrary co. If co^ ±cov, then
both sides of this equality are zero, while if co = ± co,. we
have an equality of nonzero quantities: generalized func-
tions. As usual, such an equality should be understood as the
equality of integrals of the two sides, after they have first
been multiplied by some smooth function. In physical mea-
surements, the role of this function is played by the frequen-
cy characteristic of a filter, which always has a finite band-
width A&>. In a real experiment, therefore, with a given Aw
which satisfies the condition Aw> TV '» it is not possible to
answer the question of whether this spectrum is continuous
or discrete, since many discrete frequencies wv fall simulta-
neously in the filter bandwidth Aw. There is accordingly no
need to make a special point of taking the limit of a contin-
uous spectrum (correspondingly, taking the limit T()-> oo ),
since these situations are indistinguishable from the experi-
mental standpoint. Consequently, expression (21.4) is iden-
tically applicable in the two situations: before and after the
limit r(1— oo is taken.

We might also note that the total measurement time r<>
and the bandwidth Aw are related by r()Aw~ 1, so that the
condition T^Aw^ 1 leads to the condition T04T0; i.e., a mea-
surement can always be carried out in the initial ("dissipa-
tive") stage of the evolution of the system.

We turn now to the quantum-mechanical Nyquist rela-
tion. Clearly, we can find such a relation by transforming
from the general formulation of the FDT if we assume that
the spectrum of normal oscillations is determined by (9.2),
which corresponds to an exponential decay of the oscilla-
tions of a macroscopic oscillator. In this case, (18.4) takes
the form ( we are substituting 2y = R /L )

__ fi HR , MT0\ (ovcth(«(ov/2M') IV>A\
- n I*™ \ 2 I ((02

v-co2,)a + 4Y2co*v
1 (^-*>

lfyT0 > 1 we can assume thl -2—2- 1=1. Furthermore, in this

case we have fl^y, and a very large number of discrete fre-
quencies, separated by distances ft, fit in the resonant
linewidth 7. In this case, even near the maximum of the reso-
nance curve, i.e., at cov ~w(), we can approximate the sum
24>v cos wv r very accurately by an integral; this approxima-
tion becomes especially accurate far from the resonance. Ac-
cordingly, using the notation Aw = H, we can write

?t
#«( t )= S ^vCOSOVC

v-l

Hereg, (w) = —— is the spectral density of the charge fluc-

tuations, i.e., the contribution of a unit frequency in terval to
the mean square value of the fluctuations. Expression (22.4)
thus gives us the following expression for the spectral den-
sity of charge fluctuations:

/ % hR
(co2 (23.4)

In this expression we are no longer writing the index v,
which distinguishes the various normal frequencies, since it
has been shown that the summation over all w, in (22.4) and
the integration over the variable w in (23.4) lead to identical
values of Bq (T) or f.

The spectral density of the current I = q can be found
by multiplying the right side of (23.4) by or:
gi(co) = co'gq (co). Proceeding as we did above in the deriva-
tion of the classical Nyquist relation, we transform to the
spectral density of the emf: g, (co) = |Z(w)|2g, ( w ) , where
Z 2 = (L /co)2 [ (co2 — WQ )2 + 4^2w2 ]. As a result we find

the quantum-mechanical Nyquist relation

srK ( 2 4 - 4 >
As was already mentioned, a quantum-mechanical formula-
tion of the FDT can be found from the classical formulation
through replacement (20.3), i.e., through the replacement

Precisely the same replacement converts the classical Ny-
quist relation into the quantum-mechanical relation (22.4) ;
this is the approach taken in the original study by Nyquist . I 7 )

In the debate23'24 over the quantum-mechanical Ny-
quist relation, which we mentioned earlier, the possibility of
the alternative replacement

6(0)0, 7')=- (26.4)

S <PV
-cTC05 gq (co) cos COT dco;

was discussed, where COH is the resonant frequency of the
macroscopic oscillator. This expression differs substantially
from (25.4), since in it the equivalent temperature is inde-
pendent of the frequency, in contradiction of (25.4) . The
result is a very different asymptotic behavior of the noise at
high frequencies. Replacement (26.4) is actually valid for an
isolated oscillator with an infinitely large quality factor, as
can be seen from expression (15.4). The oscillations of such
an oscillator, however, are not damped (its correlation func-
tion is proportional to cos w,,r). If we instead consider an
oscillator which is interacting with other oscillators and is
therefore capable of transferring energy to them, i.e., if we
are dealing with a damped oscillator with a finite quality
factor, then—as can be seen from (18.4) and (22.4)—its
noise is caused specifically by the contributions from the
normal oscillations at other frequencies, w,. ^<y(), each of
which has an "equivalent temperature" corresponding to its
own normal frequency, according to (26.4). As a result we
find (25.4), where the "equivalent temperature" turns out
to depend on the frequency.

That replacement (26.4) holds only in the single case of
an oscillator of infinite quality factor and cannot be correct
in general is clear from the following simple observation:
The same replacement kT^Q(co,T) sends the classical
FDT into the quantum-mechanical FDT, regardless of the
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particular system to which the FDT is applied. In particular,
the system might be, instead of an oscillating circuit, a sys-
tem in which there is no special frequency o)0 at all or a
system in which there are several such special frequencies. In
all these cases, the meaning of <y(1 in expression (26.4) would
be completely unclear.181

Let us go back to the question of the mean kinetic (or
magnetic) energy of a macroscopic oscillator. The momen-
tum operator;?, which is the canonical conjugate of q{ is
expressed in terms of 77,, by the following formula, as is easily
verified:

Pl= (27.4)
v=l

Making use of the independence of frv and frti with v^fi
along with ( 1 1 .4 ) , we then find the mean square value of this
operator to be

= M v, T).

The mean kinetic energy is therefore
n

/ J ( \ — {P') — 1 V AQ(w T)
\"v— 2/Vf — 2 ^-J v ^ V I ''

v=l

In the classical limit, with faov <^kT, we have #(&>,,, T) zzk
n

and from (28.4) we find, using the equality Av = 1,

(29.4)

This result agrees with the theorem of uniform distribution
of energy among the degrees of freedom. Expression (28.4)
could also be derived from the classical expression (29.4) by
again using replacement (25.4), if we first introduce a factor

1 = £ A, in the expression (K ) = kT/2.

In the quantum-mechanical case, as we see from (28.4),
the expectation value of the kinetic energy does depend on
the relation among the various^,.. In the case of Lorentzian
spectrum, for example, it would also depend on the resis-
tance R. The same conclusion is reached by a direct calcula-
tion on the interaction of a charged oscillator with a thermal
electromagnetic field, which was carried out in Ref. 30.

The last topic which we will take up in connection with
the debate regarding the quantum-mechanical Nyquist rela-
tion deals with the analysis of those arguments which have
been advanced regarding the question of whether the dissi-
pative parameter R can or cannot appear in the expression
for the mean square value of the fluctuations of the charge
and the current. It might appear that since R does not enter
the Hamiltonian of the oscillator, Hn = (L/2/2) + (q2/
2C), the resistance would not be contained in the Gibbs dis-
tribution for the oscillator, ff~exp( — H0/kT)_, so that it
therefore could not appear in the expressions for 7 2,q2. How-
ever, we can use the Gibbs distribution exp( — HH/kT) for
an isolated oscillator only if its interaction with the reservoir
is so weak that it affects only the distribution of the values of
its energy, without broadening its infinitely narrow resonant
curve (Ref. 14, for example). If we instead wish to incorpo-
rate a finite width of the resonance curve then we should
examine not an isolated oscillator, which in this case is not

itself described by a Hamiltonian, but an oscillator which is
interacting with a reservoir. In other words, we should use a
Gibbs distribution for the overall system.

As has been mentioned repeatedly, however, the quan-
tity R is contained in the total Hamiltonian. In the classical
case, if the spectrum of normal oscillations is Lorentzian, so
that a resistance R can be introduced, it nevertheless drops
out of the final expressions for q2 and I2. T.his result, how-
ever, is not a consequence of any fundamental factor but
somewhat "fortuitous." It is a simple matter to construct a
phenomenological model with another spectrum of normal
oscillations, for which the dissipative parameters no longer
drop out of the classical formulas for q2 and 72. The Lorent-
zian model of the spectrum has the disadvantage that the
envelope of the corresponding Green's function is not differ-
entiable at the origin; i.e., it allows an arbitrarily fast re-
sponse to an external stimulus. Even a slight alteration of
this model, e.g., the replacement of the phenomenological
Green's function (in the limit yT0-> oo )

(30.4)

(28.4) by another phenomenological model (also in the limit

jl/co Y 7
(3L4)

where Y > y, both erases the discrepancy when the quan-
tum-mechanical Nyquist relation is used191 and gives rise to
dissipative parameters y and y' not only in the quantum-
mechanical expressions [as has also been shown for model
(30.4) ] but also in the classical expressions for20' q2 and 72.
On the other hand, functions (30.4) and (31.4) are essen-
tially indistinguishable outside the region t<(yy')~L2.
Consequently, the disappearance ofR from the expressions
for q2 and 7 2 in the case in which the classical Nyquist rela-
tion is applicable is not a "crude feature"; it ceases as soon as
the conditions for the applicability of this expression cease to
hold. In particular, even upon a very slight deviation from
Ohm's law, or when we go from the classical Nyquist rela-
tion to the quantum relation, R appears in the expressions
for q2 and 7 2. It is quite possible that there will be deviations
from the Nyquist relation (as a result of the appearance of
frequency dispersion, for example); such deviations will not
contradict the FDT. However, the corrections to the Ny-
quist relation which were discussed in Ref. 3 1 are of a differ-
ent nature and are based on an incorrect interpretation of the
FDT. This theorem is an exact relation between the noise
spectrum and the response of this system, which in general
must be calculated in the first order of a time-dependent
quantum-mechanical perturbation theory (Ref. 12, for ex-
ample). If one instead uses some other approximation for
the response, the equality of the quantities appearing in the
FDT will be disrupted. This is precisely how the FDT and
the Nyquist relation which follows from it were "refined" in
Ref. 31 (the Wigner-Weisskopf approximation was used in-
stead of perturbation theory).

SUMMARY

It of course cannot be claimed that the very simple mod-
el which we have discussed here offers a general description
of various physical phenomena. The purpose in analyzing
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this model has been a different one: Since this model is exact-
ly solvable at the level of reversible microscopic equations, it
can be used as an example to cast light on the logical relation-
ship among different methods for describing dissipative pro-
cesses and to refine those prerequisites which are required
here.

In summarizing this paper we would like to point out
the following. From the standpoint of the microscopic rever-
sible equations, a dissipative process may be thought of as
just the initial stage of a periodic (or nearly periodic) motion
of the overall system, although this initial stage is "infinitely
long." The transition to irreversible motion is made by let-
ting the return time T(> go to infinity; to do this, we also need
to increase the total number of oscillators in the reservoir.

The nature of the average motion of a macroscopic ob-
ject does not depend on the particular probability distribu-
tion of the coordinates and velocities of the reservoir parti-
cles; it is determined exclusively by the nature of the
spectrum of the normal oscillations of the system. In the
initial (dissipative) stage there may be a damping of the os-
cillations of the macroscopic oscillator, which then gives
way to a growth of these oscillations. Even in the dissipative
stage, however, the average motion does not necessarily
obey the usual equation for damped oscillations with a fric-
tion force proportional to the velocity (or with a voltage
drop proportional to the current). The parameters which
describe the dissipation of the energy in the initial stage of
the motion of the system, in particular, the resistance, are
expressed in terms of the parameters of the total Hamilto-
nian of the system.

Turning now to equilibrium fluctuations of a macro-
scopic oscillator, we note that the most general description
of these fluctuations within the framework of the second
statistical moments is given by the Callen-Welton fluctu-
ation-dissipation theorem. At high temperatures, where
quantum-mechanical effects are unimportant, this theorem
can be formulated as the assertion that the derivative of the
correlation function of the fluctuations of the coordinate is
proportional to the microscopic Green's function, which, by
virtue of the time reversibility of the equations of motion, is
an odd function of the time.

We should point out that the FDT is proved for Hamil-
tonian systems, which have no dissipation at all. In applica-
tions of the FDT, however, the Green's function of the mi-
croscopic equations of motion (which usually cannot be
found, because of the complexity of the problem) is replaced
by a Green's function determined for the initial stage of the
evolution of this system through a solution of phenomeno-
logical equations (macroscopic or microscopic) which give
an approximate description of the average motion and which
do contain dissipative parameters which have been intro-
duced in them. It is in this stage of the replacement of the
Green's function in the FDT that dissipative parameters ap-
pear.

The Nyquist relation follows from the FDT in the case
in which it is possible to ignore frequency dispersion and in
which the average motion in the dissipative stage of the evo-
lution can be described by means of a friction proportional to
the velocity (or to the current). At the level of a microscopic
description, in the model which we have discussed here, this
situation corresponds to a special (Lorentzian) shape of the
spectrum of normal oscillations.2"

Corresponding results can be found in the quantum-
mechanical case. Here the exact solution of the model prob-
lem which we have been discussing leads to a result which
was in fact pointed out by Nyquist: A quantum-mechanical
fluctuation-dissipation theorem and a quantum-mechanical
Nyquist relation can be found (in spectral form) from the
corresponding classical relations by replacing the tempera-
ture by the average energy of a quantum-mechanical oscilla-
tor whose resonant frequency is equal to the frequency in
which we are interested in the fluctuation spectrum (the in-
stantaneous frequency).

I wish to thank V. L. Ginzburg, D. A. Kirzhnits, V. I.
Man'ko, and L. P. Pitaevski! for reading the manuscript and
for several useful pieces of advice and critical comments. I
am indebted to Yu. L. Klimontovich for the discussions
which stimulated interest in the topic of this paper. Al-
though we have not been able to reconcile our views regard-
ing the quantum-mechanical Nyquist relation, it can be
hoped that our discussions have promoted a clearer presen-
tation of the material here. Several useful pieces of advice
and comments were offered by the participants of a seminar
on statistical radiophysics led by S. M. Rytov, in which this
paper was presented. I would particularly like to thank S. M.
Rytov, who read the manuscript carefully and who offered
many useful comments regarding the essential points of this
paper.

"Prigogine's recent book' expresses exactly the opposite point of view:
that physics must be based on equations which explicitly incorporate the
fundamental irreversibility of processes. It is doubtful that such a radi-
cal change in the fundamental principles of physics is necessary.

•'In the number labeling an equation, the digit following the decimal
point is the section number.

"In general (with nonorthogonal curvilinear coordinates or in the pres-
ence of mutual inductance coefficients), the quadratic form of K may
not be diagonal. In such a case, it can be put in the form in (1 .1 ) ; as a
result, (/will also be altered. Since f/is taken in the form of a quadratic
form of a general type, however, this transformation of it is not impor-
tant.

4'Throughout this paper, the summation sign is always written out expli-
citly, since the summation index appears more than two times in many
places [e.g., in (5c . l ) ] . Consequently, the repetition of an index in an
equation [as on the right side of (5a . l ) ] does not imply a summation.

"It should be kept in mind that the quantity xu/m, is the square of the so-
called partial frequency of oscillator /, i.e., the square of its frequency
when the other oscillators of the system are fixed at their equilibrium
positions. The square of the eigenfrequency of oscillatorj is given by the

expression flf = ^ (x^/m,). Consequently, in order to find ilj with
j - i

the help of (14.1), for example, we need to know all the functions
G, , ( r ) .

wWe might also deal with the more general case 9(0)^0. In that case,
however, the mean values of the coordinates of all the oscillators of the
reservoir would also be nonzero, since the coupling of the oscillators
means that a deflection of a macroscopic oscillator causes displacements
of the other oscillators also. To avoid complicating the calculations, we
will restrict the discussion to the case <?(0) = 0.

7lThe orthogonal matrix 51,-,. can be specified by the following procedure:
Its first row, S, = (5, ,,5^,..., 5,,, ), is an arbitrary unit vector. Its sec-
ond row is an arbitrary unit vector S, which is orthogonal to S,, etc. Its
last row is determined unambiguously by all the preceeding rows, as the
unit vector which is orthogonal with respect to S,, ..., S,, _. , . Conse-
quently, the first row and thus the numbers^, can be specified arbitrar-
ily.

"'According to the estimate in Ref. 7, the duration of the Poincare cycle
for one mode of neon at room temperature and atmospheric pressure is
of the order of exp( 10") s, while the lifetime of the universe is "only" of
the order of exp(40) s.

'"This type of interaction between an oscillator which we have singled out
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and oscillators of a reservoir (in the limit n — <x ) occurs in the following
mechanical model: A semi-infinite stretched string is attached to oscilla-
tor No. 1 in the direction perpendicular to its displacements." The
quantum-mechanical problem corresponding to this model was solved
in Ref. 34.

""In this case, of course, Eq. (5.2) will no longer hold.
'"Equation (10.2) is formally equivalent to the system of equations of

motion for two interacting oscillators, one having a negative mass and a
negative potential energy.

12'Here, in contrast with the discussion above, K is the number of normal
oscillations of approximately the same frequency which have been com-
bined into a single group.

' "To simplify the arguments here, it is convenient to choose the averaging
time Tu equal to the length of the Poincare cycle, although this choice is
not mandatory.

""The Green's function G(t) which enters the FDT doubles as the re-
sponse of a system to an instantaneous initial momentum (ashock) and
the response function for a continuously acting external force. Accord-
ingly, in the formulation of an FDT it is not at ajl necessary, although
this is usually done, to add an additional term — Fq to the initial Hamil-
tonian H. All that is required in order to introduce this term is to excite
oscillations in a system which has previously been in its equilibrium
position. However, the same could be done with the help of appropri-
ately chosen initial conditions. The FDT therefore applies not only to a
system with a Hamiltonian H — Fq but also to a system with a Hamilto-
nian H.

'5lThe spectral density gf (ca) is denned here in such a way that the mean
square value of the fluctuating emf is equal to an integral over positive
frequencies:

'=i ; (to) dco.

The same comment applies to the spectral charge densityg, (ta) and the
spectral current density g, (a).

'"'In the three examples considered here, it turns out that the Weyl symbol
of the operator is found from the operator itself through the substitu-
tions J7,, — 77,., *,. -.*,.. In general, on the other hand, this is not the case.
For example we have

"'Nyquist's paper29 dealt for the most part with a justification of classical
formula (21.3). Nyquist concluded his paper by pointing out that he
had made use of an equipartition law, which stated that the total energy
per degree of freedom is kT. He wrote that if we instead take the energy
per degree of freedom to be

hv ( eAV/ftT _ l}-lf

where h is Planck's constant (Nyquist did not include the energy of
zero-point oscillations here), the expression for the emf in the frequency
interval dv would become

E% dv = 4*vfcv dv («hv"'T-l)-1.

Nyquist wrote that in an interval of frequencies and temperatures in
which the experimental data are valid (he was thinking of the paper by
Johnson, which was printed just before Nyquist's own paper), this
expression is indistinguishable from that derived on the basis of energy
equipartition.

'"'When (26.4) is used, the quantity g, (ca) in the corresponding Nyquist
relation would depend not only on R but also on the values of the reac-
tive parameters L and C, which determine coa. In other words, the noise
emf would depend not only on the properties of the noisy element of the
circuit but also on precisely to what it was connected.

'"'The divergences which stem from the use of the quantum-mechanical
Nyquist relation are consequences of the zero-point oscillations, which
are not detected in measurements. For this reason, the divergences are
eliminated after the quantity fea/2 is subtracted from 8(co,T).

-">As can be seen easily by substituting (31.4) into (7a. 3) .

2 "As we know, under actual conditions both Ohm's law and the Nyquist
relation hold very well. This circumstance means that exponential
damping is not only an exact solution in some extremely particular
model (as in the present paper) but also a good approximation in a far
more general formulation of the problem. Since we have not considered
approximate solutions here, the question of the reason for such a broad
applicability of the Nyquist relation remains outside the scope of this
paper.
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