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Some problems of the optics of ultracold neutrons (UCNs) are examined. The possibility is
discussed of designing high-resolution neutron-optical systems, and in particular, a neutron
microscope using UCNs. The problems are analyzed of the specific distortions involving the
appreciable action on the motion of UCNs of the Earth’s gravitational forces. Experiments on
focusing of neutrons are reviewed, the methods of designing neutron-optical systems for UCNs

are presented, and the existing neutron-microscope projects are described.
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1. INTRODUCTION

Neutron optics constitutes one of the essential compo-
nents of neutron physics. Nearly a majority of the studies
performed now in the neutron-research centers involve in
some way the methods or problems of neutron optics. Corre-
spondingly, the bibliography on neutron optics is very exten-
sive.

The monographs of Refs. i-9 have been devoted to the
problems of the physics and optics of slow neutrons, as well
as the neutron-optic methods of studying condensed media.
A set of the fundamental problems of neutron optics is pre-
sented in Ref. 10.

The methods of neutron optics are widely employed in
experiments in which the object of study is the neutron itself.
References 11 and 12 were devoted to these problems; their
publication coincided with the fiftieth anniversary of the dis-
covery of the neutron. The review of Ref. 13 commemorated
the same date. The features of modern neutron-optical in-
struments are examined in Ref. 14.

The reviews listed above involve the physics and optics
of warm and cold neutrons. These are neutrons with veloc-
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ities from several hundred to thousands of meters per second
and wave lengths on a scale of several angstroms to tens of
angstroms.

However, in the past ten-fifteen years a new situation
has arisen in neutron optics'>~"" in connection with the dis-
covery of ultracold neutrons (UCNs). UCNSs are neutrons
having velocities of the order of 10 m/s and less and wave-
lengths from several hundred to thousands of angstroms.
The reviews of Refs. 16-21 have been devoted to the physics
of UCNSs.

One of the remarkable features of UCNs is their ability
to undergo total reflection from the surface of condensed
matter at all angles of incidence. Hence the potentiality has
arisen from the discovery of UCNSs of prolonged confine-
ment of neutrons in closed vessels. This has substantially
influenced the development of neutron optics.

In connection with the problem of storing UCNSs, the
problems have been studied in greater detait of refiection and
refraction of neutron waves, the problem of validity of the
description of the interaction of neutrons with matter has
been analyzed in detail by introducing the optical potential,
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and the features have been studied of the dispersion law of
neutron waves.

The phenomenon of total reflection of UCNs has been
demonstrated in numerous elegant experiments, but it still
has seemed remarkable for a long time, although the physics
of the event has been fully understandable. Despite the lack
of direct experiments, there has been no doubt that the re-
flection of UCNSs is specular. Hence the idea has arisen of
reflective optical elements for UCNs, followed by the pro-
posal to design a neutron microscope.”

Another important distinctive feature of UCN optics
involves the low value of the energy of these neutrons. Hence
their motion becomes appreciably affected by such small
forces as the force of gravity of the Earth, while the trajec-
tory of a neutron is appreciably curved in the gravitational
field. The same happens with a light beam in an optically
inkomogeneous medium. Therefore the analogy naturally
arose with the optics of inhomogeneous media.

Optical problems are mentioned to some extent in all
studies on UCN:s, including those cited above., Among the
original studies pertaining to this problem we must cite Refs.
23 and 24. Reference 25 was devoted to problems of experi-
mental study of the wave optics of UCNSs. The problems that
stand in the path of designing a neutron microscope have
been briefly analyzed.?*?’

The present article is devoted to some problems of the
optics of UCNs, mainly involved with the problem of the
neutron microscope. In the time elapsed since the appear-
ance of the idea of the possibility of this instrument substan-
tial changes have arisen in this field. While 10-12 years ago
this possibility seemed a dream of the distant future, at pres-
ent not only has the image of a simple object in neutron rays
been obtained, but a stage has set in of actual construction of
high-resolution neutron-optic instruments. Along this path-
way specific difficulties have arisen and are being solved,
mainly involving the need of building optical systems in an
optically inhomogeneous medium.

Hence it seems quite opportune to review the current
state of the instrumental optics of UCNs—a new field of
neutron optics.

The theme of this article has dictated in a number of
cases a pure optical approach to presenting a number of
problems, which perhaps is not quite customary for special-
ists in neutron optics. Hence the article begins with a section
devoted to the problem of the relationship between the ordi-
nary quasiclassical solution of the problem of the motion of a
particle in a potential field and the ray approach in optics.

Section 3 briefly presents the fundamental features of
the optics of UCNs. Here we devote major attention to the
problem of the reflection of a neutron wave.

Further, the specific problems involving the action of
the gravitational force of the Earth on the motion of UCNs
are treated.

The subsequent sections are directly devoted to prob-
lems of the instrumental optics of UCNSs. Here the current
state of the problem of the neutron microscope is reviewed.
In particular, the experiments are described on the focusing
of neutrons, in which it has been shown possible to obtain a
neutron image. Some methods are presented of designing
neutron-optical systems, and the existing projects for high-
resolution instruments are described.

In closing, we examine the problems of the expected
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potential of future instruments, with the aim of making some
prognoses on the possible application of a neutron micro-
scope.

2. OPTICS OF A SLOW MASSIVE PARTICLE

Asis known, when one treats the problem of the forma-
tion of an optical image, one must take into account essen-
tially the wave aspects of the problem. On the other hand, a
large number of the problems of instrumental optics can be
solved by the methods of geometric optics. The same situa-
tion exists in the case of neutron optics. As is well known, the
classical dynamics and quantum mechanics of a free particle
enjoy the same relationship as geometric and wave optics.
This analogy is especially pictorial whenever the quasiclassi-
cal approach is valid, i.e., in practically all the problems
treated below. Since we are interested in the problem of
propagation and interference of neutron waves, of course,
we can carry out the entire treatment in pure wave language.
However, the trajectory treatment, just like the ray ap-
proach of geometric optics, often allows one to elucidate the
fundamental features of a phenomenon. Moreover, owing to
the total analogy of ray (geometric) optics and classical dy-
namics, in optical terminology one can describe also the mo-
tion of a ““classical” neutron when the wave features of the
pattern are not of interest to us. This approach looks some-
what artificial, but it proves fruitful in treating optical prob-
lems, since it enables one to use a number of the propositions
of geometric optics in the form of a ready result.

As we know, the stationary Schrédinger equation

VZ‘P—}-i—T[E—V(r)]‘P:O (2.1)

is completely similar to the Helmholtz wave equation

VA 4+ k%4 =0, (2.2)

This is especially clearly seen if we write it in the following
form:

. 2
VY4 k(¥ =0, k=3 [E—V (D], (2.3)
here k(r) is the wave number. Adopting optical terminol-
ogy, we introduce the definition of the refractive index

R (F) = o (2.4)

“BI=v0) "

Then we obtain the following expression from the defin-
ition (2.3) of the wave number k:

v (r)

3 (2.5)

n2(r)=1— zif}hz—i—?lf(r), 7,:—;:—1.

0

We can draw a conclusion from (2.5) that will be essen-
tial below. In the case in which the propagation of the neu-
tron wave is correctly described by introducing the potential

V(r) independent of k, the characteristic dispersion law
holds:

| n? —1 Joc A% (2.6)
Upon substituting the quasiclassical solution
¥ () =%, () exp (iS (), (2.7)

into the Schrodinger equation, we obtain the eikonal equa-
tion for the real part of (2.7):
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(VS) — k2, (2.8)
provided that
VY <R, (2.9)

The condition (2.9) is the condition for applicability of the
quasiclassical approximation. The eikonal equation is the
fundamental equation of geometric optics. In essence almost
all of optics is contained in Eqs. (2.7) and (2.8). Itis natura!
to identify the surface .S = const with the wavefront, the di-
rection of the vector k = VS determines the ray direction,
while the following integral determines the phase:

: kdlz%gpdl. (2.10)

While in comparing the dynamics of a massive particle
and geometric optics one can speak of an analogy (more-
over, one established already by Hamilton), in the optical
formulation of the Schrodinger equation the essence is not a
simple analogy, but the wave nature of the quantum ap-
proach itself. The optical-mechanical analogy is one of the
foundations of this approach. Indeed, the Schrédinger equa-
tion was constructed on the basis of two assumptions: the
validity of the de Broglie hypothesis of the association of a
particle with a certain wave defined by its momentum
A = h /muv, and the Hamiltonian principle

B.‘t, .

5 L(z,y,z, 2, Y, 2) dt = min,
A, 4

(2.11)

here L is the Lagrangian, 4 and B are the initial and final
points of the trajectory, and ¢, and ¢, are respectively the
initial and final time. In the stationary case E = const the
Hamiltonian principle reduces to the principle of least action
of Maupertuis®*:
B, t
== 5 (L+ E) dt = min,

A, h

(2.12)

here E is the toal energy, with £ = 3xp, — L. The time ¢
enters into (2.12) only formally, since after substituting the
expression for E into it, we obtain:

w

B, t,

I= 5 2 px:'r dt:usZ 2 pedzr= 5 p dr = min, (2.13)
A

A, 0 A

here dr is an element of the path along the trajectory. Equa-
tion (2.13) is fully equivalent to the Fermat principle known
in optics:

6Sde=o or 65ndS=0. (2.14)

Here Eq. (2.13) contains more rigorous requirements than
(2.14), since the variation equals zero not only for an extre-
mum, but also when the optical path (the action) is station-
ary, in particular, when an optical image of one of the points
A and B lies between these points.

Thus, to calculate the wave pattern of the field, one
must proceed just as in optics, i.e., superpose the amplitudes
of the waves corresponding to different rays (trajectories),
taking into account the phases, which are defined as { k-dr
along the trajectories.” Here the Kirchhoff diffraction the-
ory is fully applicable.
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Despite the extremely close analogy between ordinary
optics and wave mechanics, there is, nevertheless, one rather
essential difference. In optics the Fermat principle (2.14)
can be written as follows:

B 3 B
I=5ndS:5vidS:c\dt, 8 -0, (2.15)
A A A

It expresses the minimality or stationarity of the time of
propagation of light between the points 4 and B. But in the
case of a massive nonrelativistic particle we have

de:%v-t:dt.

Then we must write (2.14) in the form:
B
8 5 r2dt=0 or

A

B
8 | n2di=.0. (2.16)
A
(This situation has been noted in Ref. 25). Therefore, al-
though the surface of the wave front in the optics of a mas-
sive particle is, as before, the surface of equal phases and the
phase itself is determined by the integral along the ““classical
trajectory,” the time that a classical particle would take in
reaching this surface by different trajectories generally
differs.

Of course, in starting from the outset with the station-
ary Schrédinger equation, we rule the question of the time of
propagation of the wave out of order. We are dealing with a
situation in which only the trajectories of the classical parti-
cles along which we integrate are nonisochronic.

Previously the same situation had been analyzed in con-
nection with the problem of the stability of the interference
pattern in a neutron interferometer in the presence of forces
acting on the neutron.?®*~*! It was found that, if the interfer-
ometer is built to make the phase advance along two arms
the same, but an external force makes the “‘classical” trajec-
tories nonisochronic, then the first variation of the phase
difference with respect to the momentum is very large. Here
theinterference pattern proves highly sensitive to the magni-
tude of the momentum. To observe it, even in the lowest
interference order, one must ensure a very high degree of
monochromatization. On the other hand, with an adjust-
ment corresponding to complete isochronicity, the pattern
in the first order is stationary, even in the presence of a phase
difference in the two arms, and the first variation of the
phase difference with respect to the momentum is zero.
Owing to the considerable effect of the gravitational force on
the motion of UCNS, one must take this phenomenon into
account in designing interferometers for UCNs.

We note that, while in an interferometer the problem is
the interference of two rays, in an optical instrument the
image is formed by interference of an infinite number of rays.
Therefore the isochronicity of rays is apparently a necessary
condition for formation of a stable image in optical systems
for UCN:gs.

In general the effect of the force of gravity and gravita-
tional chromatic aberrations are one of the serious difficul-
ties in instrumental UCN optics.

3. SOME FEATURES OF THE OPTICS OF ULTRACOLD
NEUTRONS (UCNSs)

3.1. The effective (optical) potential

As the definition of the refractive index (2.4) implies,
fixing the potential ¥ (r) completely characterizes an optical
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medium for a particle. Let us examine the possible forms of
potentials that can affect the propagation of a neutron wave.
The specific properties of ultracold neutrons are mani-
fested primarily in the features of their interaction with the
medium. This interaction can be described by introducing
the corresponding effective potential, which is often called
the optical potential. The simplest way to derive the expres-
sion for this potential consists in averaging the microscopic
potential that correctly describes the scattering of a neutron
by the elementary scatterers over the volume of the medium.
The fundamental contribution to neutron scattering comes
from the nuclei. Since the wavelength of slow neutrons is
considerably larger than the dimensions of a nucleus, in cal-
culating the scattering cross-section one can neglect the ex-
tension of the nuclear interaction and introduce into the
treatment a potential that describes a point interaction. This
is the so-called Fermi pseudopotential
h2
2am

V)= BS (r —ro)e (3.1)

The quantity b is called the coherent nuclear scattering
length and is determined from the scattering cross-sections
for slow neutrons o..,, = 4wb ’. The scattering length & is
connected to the amplitude of coherent nuclear forward
scattering f,, by the relationship

b=1lim f, >

k0

The scattering lengths for most nuclei are of the order of
10~ '? cm and are much smaller than the distance between
the nuclei. This is the second circumstance that justifies the
use of the Fermi pseudopotential. For simplicity we shall
consider the nuclei monoisotopic and spin-free. Then the
scattering will be fully coherent. For a medium with a den-
sity V of nuclei the averaging of the pseudopotential over the
volume yields the simple expression:

U=N {1 ()dsr=-2

R 2nm

Nb, (3.2)

This formula is easily generalized to the case in which the
material consists of several elements (isotopes), and the
spins are arbitrary:

h

Uopt = 5 Z Nib; con-
i

(3.3)

Here N, is the density of nuclei of type i, while b, , is their
corresponding scattering length averaged over the spin
states of the neutron and the nucleus.

Upon substituting the expression (3.3) that we have
derived for the optical potential into the formula (2.5) for
the refractive index, we directly obtain:

N vy

nt=1—22-: . (3.4)

In the case of monoisotopic composition and spin-free nuclei
for which the summation drops out, one can write Eq. (3.4)
in another way:

,7221_}.2;'\%=1-—k—12-4an.

(3.5)

It makes sense to compare this expression with the well-
known formula of Lax, which holds for waves and scatterers
of any type*’:

k<= k24 C.4nNT (0). (3.6)
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Here f(0) is the amplitude of forward scattering, k' is the
wave number in the medium, k is the wave number in vacuo,
and C is a coefficient that allows for the difference between
the effective (acting) field at the scatterer and the external
coherent field:
¢ effective field
coherent field

Aswesee, Egs. (3.5) and (3.6) coincide under the condition

C =1, f(0) = —b = const. (3.7)

The change in the wave number in the medium leads to
a phase shift of a wave passing through matter as compared
with the phase of a wave propagating in a vacuum. This
phase shift is determined by the relationship

Ap = kd (n —1). (3.8)

Here d is the thickness of the layer of material. At present
this shift can be easily measured with neutron interferome-
ters. The change in the wave number at the phase boundary
leads to refraction of the wave and to appearance of a reflect-
ed wave.

The formula of Lax defines the relationship between the
wave number of the incident wave and the wave propagating
in the medium in the same direction, but it tells nothing
about the amplitude of the reflected and refracted waves
when the original wave is incident at an arbitrary angle. In
this case the corresponding expressions must contain the
scattering amplitude at the given angle f (<) instead of the
amplitude of forward scattering f (0) (see, e.g., Ref. 33). If
one uses the model of the potential of (3.3) with a sharp
boundary to describe the interaction of the neutron with the
medium, the needed relationships will be determined simply
from the condition of continuity at the boundary, and are
fully analogous to the Fresnel formulas.™ Consequently the
potential model is valid only when the conditions are satis-
fied that

f@®)=f0) =—b, C =1

throughout the volume of the material.

Only the S-wave makes a substantial contribution to the
scattering for slow neutrons in general and for ultracold neu-
trons in particular. Therefore the scattering is isotropic and
one can replace f (J) by f(0) in all cases. As is known, at
low neutron energies the scattering amplitude is constant
and a replacement of f (0) by — & is also fully justified. As
regards the magnitude of the Lax coefficient C, apparently
its real part equals unity, while the imaginary part is much
smaller than the real part. A set of problems associated with
this has been discussed in Refs. 20, 23, and 33-35. In general
the rather detailed analysis has shown that the degree of
justification of using the potential of (3.3) is very great. The
possible deviations from this model, if such exist, must lead
to very subtle effects.””**#%3” Hence the characteristic dis-
persion law of (2.6) and (3.4) is valid.

We see from (3.2) that the sign of the potential is deter-
mined by the sign of the scattering length. The scattering
length is the distance between the position of the (point)
nucleus and the point where the wave function of the scat-
tered neutron vanishes. This quantity is directly associated
with the phase shift of the scattered wave with respect to the
incident wave. Nuclei exist in nature having both positive

(3.9)
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and negative scattering lengths (this fact was already noted
by Fermi when experimental data on this question were lack-
ing). However, for most nuclei we have 4> 0, and hence
U >0, while n < 1. For thermal neutrons the deviation of the
refractive index from unity is very small: 10~ °. However, it
can be considerable for neutrons with energy KX U. In the
case in which E < U, the neutron wave cannot propagate in
the material at all, and total (external) reflection occurs at
all angles of incidence. Since here the wave function of the
neutron rapidly decays in the material, the absorption upon
reflection is very small. Precisely these neutrons are those
now called ultracold. Ya. B. Zel’dovich was the first to call
attention to the features of reflection of UCNs in 1959.> The
characteristic magnitude of U for most substances is of the
order of 107 7eV, which is the order of magnitude of the
energy of UCNSs. Since the magnitude of U for a given sub-
stance determines the maximum kinetic energy of a neutron
at which it can penetrate into the substance, it is also often
called the boundary energy for the given substance. It corre-
sponds to the limiting wavelength and the limiting velocity:

N vn; \ 172
a 12 172 —=
( )= (5 — -
1

E Nib; )
(3.10)
One can derive these expressions directly from (3.5) by set-
tingn = 0.
The magnitudes of the limiting energy, velocity, and
wavelength for a number of materials are given in Table I.

2E,
m

ho = =

3.2. Reflection and absorption of UCNs

As we have already mentioned, a number of the most’

essential problems of the reflection of UCNs were treated by
Ya. B. Zel'dovich,'* and then in greater detail by F. L. Sha-
piro.'® The study of I. M. Frank?®* was devoted especially to
the problems of reflection and absorption of ultracold neu-
trons. Following this study, we shall present only some final
results of the theory.

In presenting the expressions for the optical potential
(3.3) and for the refractive index (3.4), we omitted the
problem of absorption of neutrons. One can easily take ab-
sorption into account by assuming the scattering amplitude
b and concomitantly the potential and the square of the re-
fractive index to be complex quantities. Here one can natu-

rally associate the quantity n> with the magnitude of the
dielectric permittivity.>* Then we have

2 ___ — ’ 3a U% 3 U?l

ni=e=g fie’ = (1—22) fi-7, (3.11)
2 _ kY NV . B2 Y

Uﬂ—m'a’ n L-i:m"’ ax "

Hereb 'and b " arethe realand imaginary parts of the scatter-
ing amplitude for the medium. Here we assume in agreement
with experiment that ' = by, where b is the real part of the
scattering amplitude for a single nucleus,> while we have

k (3.12)

4m
Here o is the capture cross-section, and o, is the cross-
section for inelastic scattering that leads to heating of the
neutrons. The quantity v; in (3.11) has been introduced by
analogy with the limiting velocity v, for universality of nota-
tion. Here the refractive index is also complex, and we have

” k
b= U=H(°’c+"n)-

. ’ 1 2 2
n=n' + lﬂ”, n12 — _f»_ +‘_(el —+—€” 1/2,
2o ) (3.13)

ne 2

n )1/2.

— (e e
In neutron optics ¢’ almost always exceeds ¢” in absolute
magnitude. In the rare cases in which 4 <0, we have ¢' > 0,
and an analogy exists with the optics of dielectrics. However,
we usually have 6> 0, and €’ is positive only when the neu-
tron velocity exceeds the limiting velocity. Yet in the case of
reflection of UCNs we havev < v, € = n' — n” <0. This sit-
uation, and specifically the complex character of € and the
negative value of £’ exceeding £” in modulus, is characteris-
tic of the optics of metals.

Neutron optics differs in another substantial feature.
One can show that when two conditions are satisfied, name-
ly, when the angles of incidence and reflection are equal, and
when the dispersion law (2.6) is valid, all the properties of
reflection and refraction of a neutron wave are fully deter-
mined by the component of the momentum k, normal to the
surface.?® Apparently both these conditions are satisfied to
high accuracy.

We can easily carry out the transformation in all the
formulas from # to n, by replacing the value of the velocity
with its component. In this case, upon substituting (3.11)
into (3.13), we obtain

TABLE l. Effective potentials, limiting velocities, and wavelengths for certain materials.*

V]|m A’ lim Vllm A’hm
Material U, meV m/s A Material U, meV m/s A
Nickel-58 380 8.52 462 Boron-free glass 90 4.15 953
306 7.65 517
Nickel 282 7.35 539 Lead 91 4.17 948
208 6.31 627 Magnesium 584 334 1184
Iron 341 8.07 490 Aluminum 54.1 3.21 1232
80 391 1011 Silicon 54 3.21 1231
Beryllium 249 6.91 573 Polyethylene — 8.7 (1.29) (3063)
Graphite 196 6.12 646 Vanadium — 8.8 (1.30) (3047)
Copper 168 5.66 699 Water —14.8 (1.68) (2353)
Heavy water 166 5.63 703 Titanium —48.7 (3.05) (1296)
Carbon
monoxide 101 4.39 901

*Table taken from: V. 1. Lushchikov, Study of the Properties of Ultracold Neutrons (In Russian),
Dissertation for the degree of doctor of physico-mathematical sciences in the form of a scientific

report, Joint Institute for Nuclear Research 3-85-43, Dubna, 1985.
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ni = g {0 — o) + (02— D) +otv3),

(3.14)

i = e () (02— - ot),

here we take the positive value of the root. As a rule, v7 is at
least three orders of magnitude smaller than v, and hence
(v — v3)*> v}, apart from a narrow range of velocities di-
rectly near the threshold. In the reflection of UCNs we find
U, <, and we have the following from (3.14)

4

—_ vg— vt

- 3% .2 2y ¥ 2 .
&% (0§ — V%) v2

n, ny=

If the assumption holds that b = const, i.e.,, o =0, + 0,
obeys a 1/v law, then o(v)v = const, and we have

Then we have

) h?

nt = N[0 (v)v]? ot e v —v
t T Tmr il ' T 2

(3.15)

Here we have n”?» 1", i.e., the wave is strongly attenuated.
This attenuation does not depend on ¥, and mainly involves
reflection rather than absorption. The density of neutrons
declines exponentially with increasing distance from the in-
terface:

P = poexp (— 2knzz) =poexp[-—£}f—L (vZ—v:)‘/%]- (3.16)

We can easily calculate the fraction of absorbed neutrons by
starting with the condition of continuity of the wave func-
tion at the plane interface. One can write the solution simply
by analogy with light. For the amplitude of the reflected
wave the corresponding Fresnel coefficient r is

_ {l—n))—ing

ARiETERTA (3.17)

Evidently the fraction of the neutrons absorbed in the medi-
um is

4ny
(A4 npitny
Using (3.14), we can easily obtain the exact value of . In
the approximation with (v2 — v2)?>v? we have

(3.18)

a=1—|r2=

FRN -
W w2, BN (b
v (g —vz)/? 6wl —u T o wi—v)i/e e

(3.19)

And at the very threshold where (v — v3)* <v? we have

a= 2—‘002—” ) (3.20)
Thus for UCNs the reflection coefficient R = (1 — )
differs from unity by an amount of the scale of n = 5"/
b’'=107". At the very threshold we have R~ 1 — V5, while
it rapidly declines above the threshold. We see that the re-
flection of UCNSs is actually almost total, while we can often
neglect the quantity b ”, of course, apart from those cases in
which we are specially interested in the problem of absorp-
tion.

Let us take up some other features of the total reflec-
tion. We see from (3.16) that the amplitude of the wave
inside the material declines exponentially with increasing
distance from the surface, while the decay constant depends
only on the normal component of the velocity:

N m
V=V %, x=— 002

i (3.20")
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As is known, in the total reflection of bounded light beams
when the wave is penetrating a second medium, the beam is
displaced along the tangential component of the velocity.*®
This displacement becomes greater with greater depth of
penetration of the wave. Of course, this phenomenon occurs
also for waves of a different type. A. A. Seregin®” has called
attention to the fact that this longitudinal displacement must
occur also for neutron reflection.

Perhaps this phenomenon must be considered in de-
signing mirror optical systems of high resolution. The point
is that, owing to the displacement of the beam along the
surface, the image of a point source in a plane mirror ceases
to coincide with the mirror-image point, but becomes a func-
tion of the angle of incidence. Thus the rays from a point
source after reflection form a certain caustic.

One can easily estimate the magnitude of the additional
displacement of the image in the direction of the normal to
the mirror { by starting with the magnitude of the tangential
displacement of the ray given in Ref. 38:

C—-l sind 6 — n?
- T o(sin?@—n2p2

(3.21)

Here ¢ is the angle of incidence, 4 is the wavelength, and # is
the refractive index. Upon substituting the value of n° from
(3.11) and dropping the imaginary part involving absorp-
tion, we obtain:
A v (v?sind 0= vf —uv?)
{= = . 'L(L_FTZ‘W . (3.22)

We can estimate the order of magnitude of ¢. If the
relative deviation of the normal component of the velocity
v, = v cos G from the limiting value v, amounts to 0.03, then
for small & we have { = 104. We see that one must take this
effect into account in a high-resolution optical system.

Another effect in total reflection was pointed out in Ref.
40. It was found that, if a wave is propagating in an inhomo-
geneous medium, then the reflection law can break down in
certain cases. As applied to neutrons such a situation arises
when the neutron moves with an acceleration (e.g., owing to
the force of gravity) not directed normally to the plane of the
mirror. The same phenomenon arises if the mirror itself
moves with acceleration. The source of the effect is the fact
that the magnitude of the phase change of the wave upon
reflection involves the normal component of the velocity.
Under the stated conditions a phase-shift gradient arises
along the surface of the mirror. The effect increases as one
approaches the total-reflection limit, but it is rather small.
Thus, for amagnitude of the limiting velocity v, = 320 cm/s,
which corresponds to reflection from aluminum, the angle of
incidence 8 = 45° and an acceleration equal to that of free
fall, the difference between the angles of incidence and re-
flection amounts to 10 ° rad if the relative deviation of the
normal velocity from the limiting value is 0.03,and 7 10°
if this deviation amounts to 3 10" *.

3.3. Gravitational and magnetic potentials

Since a neutron possesses mass and a magnetic moment,
the gravitational field of the Earth and an external magnetic
field can affect its motion. Here the gravitational potential is

Ve = mgz. (3.23)
Numerically we have mg =0.98x 10 7 eV/m. Thus the
change in the potential energy of the neutron on rising 1 m is
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of the same order of magnitude as the value of the optical
potential and the energy of the UCN. Therefore, while for
thermal neutrons of energies of the order of 107> eV the
effect of gravitation is practically negligibly small, the action
of the field of the Earth on the motion of UCNs is quite
substantial. From the standpoint of the dynamics of a mas-
sive particle, this action simply reduces to a curvature of the
trajectory. To use optical terminology, one can speak of
curving of the rays, as is usual in the optics of inhomogen-
eous media. Actually, if we substitute into the general
expression (2.5) the value of the gravitational potential
Ve (r) = mgz, we directly obtain:

ne(s) =1 —p2 28 g 2

i — (3.24)

Analogously we can take into account the effect of mag-
netic fields on the motion of the neutron. The potential of
magnetic interaction is

Vinagn = —(pB). (3.25)

The magnitude of the magnetic moment is g = 6.02x 10~ *
eV/T. Hence we see that magnetic fields can exert a substan-
tial influence on the motion of a neutron only at field intensi-
ties of the scale of 1 T. Moreover, a homogeneous field does
not perturb the motion. In contrast, inhomogeneous mag-
netic fields can be used in solving certain optical problems.
In particular, V. V. Vladimirskii proposed in 1960 using
such fields to create magnetic mirrors and traps.'' These
ideas were developed experimentally in Refs. 42-46. There
have been proposals to create magnetic lenses for neu-
trons.*’™° However, owing to the smallness of the magnetic
moment, also in those cases in which the field is not created
intentionally, the magnetic action on a neutron is usually not
large.¥ But the gravitational action is always rather signifi-
cant. Consequently we can assert that the low energy of
UCN:Ss has the result that the optics of UCNs is always the
optics of inhomogeneous media.*'

4. OPTICS OF ULTRACOLD NEUTRONS IN A
GRAVITATIONAL FIELD AS THE OPTICS OF
INHOMOGENEOUS MEDIA

4.1. Geometric optics of UCNs in the presence of
gravitational force

Thus taking into account the effect of the gravitational
field of the Earth on the motion of UCNSs can lead to intro-
ducing a refractive index of the form of (3.24). Proceeding
in this manner, we can at once use all the results already
known from the optics of inhomogeneous media, as has been
done, e.g., in Ref. 52 in analyzing problems of formation of a
neutron image.

It is evident from the form of (3.24) that any optical
system for UCNSs is seemingly immersed in an optically in-
homogeneous medium having dispersion. This form of the
refractive index is characteristic of a rarefied plasma with a
linearly varying density”

n? (o, 2)=1— Or (,z) .
%

4.1

Herew, (z) = 2e (mN(z)/m)"'? is the so-called plasma fre-
quency, and N(z) = N, z. The optics of a linear plasma layer
has been studied, although the problem of designing an opti-
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cal system in such a medium has apparently not arisen.

An extensive literature has been devoted to the prob-
lems of optics of inhomogeneous media. We shall point out
here only the monographs of L. M. Brekhovskikh® and Yu.
A. Kravtsov and Yu. 1. Orlov.>?

Having attributed a refractive index to the vacuum, we
have proceeded rather formally, although perhaps this pro-
cedure can be justified rigorously enough also in pure wave
language by treating the interference of the secondary waves
scattered by the varying potential.

However, in geometric optics the microscopic nature of
the refractive index is not at all essential since, just as in
classical mechanics, we can forget the wave nature of matter.

4.2. Field of applicability of the trajectory approach. Caustic
of a point monochromatic UCN source

Let a point monochromatic UCN source lie at the point
z = 0 of infinite space. All the neutrons leaving the source
move in the gravitational field of the Earth along parabolas.
Evidently the region of space occupied by the trajectories of
the neutrons is bounded by a certain surface, or caustic.

Generally one terms the envelope of a family of rays as
the caustic.”’ The caustic is a surface on which a singularity
exists. Near the caustic the rays become closer, and they
intersect on the caustic itself. Hence the number of rays pass-
ing through each point of space varies jumpwise on the caus-
tic. An increase in the amplitude of the wave arises from the
intersection of the rays. If one calculates the amplitude by
the methods of geometric optics, then on the caustic the am-
plitude will have an infinite value, which indicates the inap-
plicability of geometric optics in this region. Nevertheless an
increase in the amplitude, i.e., focusing of the field on the
caustic, actually does take place.

One usually attributes an extra phase shift to the wave
upon reflection of the ray from a caustic. Upon contact with
a nonsingular caustic a phase shift arises of — 7/2. Upon
passing through a three-dimensional focus the phase shift is

-

The concentration of rays near a caustic leads to a con-
siderable role of interference phenomena near the caustic
surface, and this eliminates the divergence of the field ampli-
tude. Near the caustic, in the so-called caustic region, an
interference pattern arises in space. The characteristic scale
A from the region of the caustic shadow to the first interfer-
ence maximum should apparently be considered to be an
estimate of the dimensions of the region of inapplicability of
geometric optics.

Returning to the problem of the caustic of a point UCN
source, or what is the same, of the region of applicability of
the trajectory approach to the optics of UCNs, we shall for-
mulate the problem in optical language. As before, we shall
introduce the refractive index n* = 1 — (2g/v7)z, where v is
the initial velocity of the UCNs. Owing to the monochroma-
ticity of the source we have 2g/1" = const = a. Thus we have
n” = 1 — az, which is a more compressed way of writing Eq.
(4.1) for the refractive index in a linear plasma layer. The
problem of the caustic in a linear layer is well known in op-
tics.™*=*7 In this case the equation of the caustic has the form

(4.2)

while the caustic is a paraboloid of rotation with its vertex at
z=H = 1/a, where n* = 0 (Fig. 1).

n

ap® =4 (I — az),
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FIG. 1. Trajectories of UCNss in the gravitational field of the Earth. The
rays from a source in a linear plasma layer have the same form.

The distance from the caustic to the first interference
maximum can be calculated exactly for this case. Recently
M. Berry has analyzed this problem in connection with the
problem that we have examined®® and found that

A= (5 )" ~2.5.10% cm.
Here, as above, m is the mass of a neutron, and g is the
acceleration of free fall.

One can solve this same problem quite qualitatively by
identifying the concept of the region of applicability of the
trajectory approach with the width of the caustic zone. At
present a rather clear heuristic approach to the formulation
of sufficient conditions for applicability of the method of
geometric optics has been formulated.**>°

The fundamental idea of this approach is to introduce
around the ray a certain volume or tube within which wave
phenomena are already substantial. By analogy with the
concept of Fresnel zones, the authors have called this the
Fresnel volume. When an observation point lies far from the
caustic, the Fresnel volumes of two rays, of which ray | has
arrived directly from the source to the observation point,
while ray 2 has been reflected from a caustic, are strongly
separated in space (Fig. 2a). As the observation point ap-
proaches the caustic, a substantial overlap of the Fresnel
volumes sets in. According to Ref. 59, this implies the inap-
plicability of the geometric-optic approach (Fig. 2b). Sim-
ple geometric constructions show™**®! that the difference
of eikonals along the rays 1 and 2 near a simple caustic is

FIG. 2. Fresnel volumes of rays near a caustic. a—Point of observation
sufficiently remote from the caustic. b—Point of observation close to the
caustic.
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Sp= I — o [ g B2 | Ix |92, P=2n|K . (43

Here !/, is the distance along the normal from the caustic, 1,
is the refractive index at the caustic, K, = [K ..., — K.
cos 8| is a quantity determining the relative curvature of the
ray and the caustic. K, is the curvature of the normal
cross-section of the caustic in the direction of the ray. K.,
the curvature of the ray at the point of contact, and & is the
angle between the normal to the caustic and the principal
normal to the ray.

We shall assume that a correct estimate of the width ol
the caustic zone is the dimension / , such that the difference
in phase advances along the rays 1 and 2 (without allowing
for the phase shift at the caustic) is #. Then we¢ have
4/3k, B'"*13¥* =7, where k, is the wave number at the
source, and

3-/ 3/2 - - —~ 23—y
1N=(%) BUs —1.7TA, A kg2 pie,

Is

(4.4)

Since the refractive index depends only on Z, all the rays lic
in planes passing through the origin of coordinates and
& = 0. It remains to determine the relative curvature of the
ray and the caustic. We can obtain the equation of the ray
either from geometric-optical considerations or trom cle-
mentary mechanics. Writing the equations of the ray and the
caustic in the explicit forms

z= —l— — —"Z—z for the caustic,

z:ctge-p—é—:i%g for the ray (2
and performing simple calculations, we obtain

A=(2%g_)“3z6-10-4 cm, (4.6)
while the width of the caustic zone is /. = 1.77

A=10.6x10"* cm. This result is very close to the cxact
result obtained specifically for this case by M. Berry.

4.3. Limit of applicability of the geometric-optic approach at
low UCN energies

Let us examine the problem of the applicability of gco-
metric optics to the case of very small energies of UCNs
existing in a gravitational field. In the upward motion of a
neutron, its wavelength increases as it slows. Evidently the
conditions for applicability of geometric optics break down
when the wave number varies on its own scale in an altitude
drop of the order of the wave length. Let this occur in an
altitude drop Az = /. Upon setting / = v2/2g~A — #1/1u: |
we obtain

1= ga) "

This is the same value as the one that characterizes the inter-
ference pattern near the caustic. We can easily estimate the
order of magnitude of the corresponding energy:

2
e=mgl==(%g’)”3zo.6-1o-tz ev. (4.7)

This problem has been treated in greater detail in Refs, 62
and 63, where the problem was analyzed of storing UCNs of
extremely small energies in a plane. A more accurate quan-
tum-mechanical calculation yields close-lying values for the
linear constant / and the energy constant ¢ of the probicm.
Thus the energy limit of applicability of the trajectory
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approach to optical calculations for UCNSs in the gravita-
tional field of the Earth amounts to about 10~ "2 eV.

In concluding hereby the treatment of the general prob-
lems of the optics of a very slow neutron wave, we shall turn
more directly to problems of instrumental optics. However,
the optical aspects of the effect of the gravitational force on a
neutron will lie at the center of our attention also further on,
since precisely this effect creates the greatest difficulties in
the practical optics of UCNs.

5. INSTRUMENTAL OPTICS OF VERY SLOW NEUTRONS

5.1. The current state of studies on the optics of very slow
neutrons

The possibility of focusing UCNs was already men-
tioned in the first study of F. L. Shapiro and his associates
reporting the discovery of UCNs. In Ref. 91 F. L. Shapiro
noted that perhaps traps for UCNs will be useful as a source
for neutron microscopy. The problem of designing a mirror
neutron microscope (NM) using UCNs was discussed more
concretely by I. M. Frank.?? At that time the very phenome-
non of total reflection of neutrons from a phase boundary at
all angles of incidence still seemed quite unusual. It seemed
highly attractive to use this remarkable property to con-
struct a reflecting optical system—in the first stage simply a
concave mirror—and thus obtain an image “in neutron
rays.” This study also pointed out a substantial difficulty on
the path of creating such an optical instrument involving the
appreciable effect on the motion of UCNs of the gravitation-
al force of the Earth.

Several years later A. Steyerl and G. Schiitz proposed to
use a new optical element for this purpose—a zone mirror,
i.e., a concave mirror with a zone phase structure.®® Here,
for a certain range of neutron wavelengths the gravitational
chromatism is compensated by the intrinsic chromatism of
the zone mirror. In 1979 N. T. Kashukeev and N. F. Chikov
first obtained a neutron-optical image of a slit with two-di-
mensional focusing.®® In this experiment the neutrons, prop-
agating between two horizontal plane mirrors, were focused
by a cylindrical mirror with a vertical generator. With this
experimental arrangement the problem of gravitational dis-
tortions was naturally eliminated.

At the same time the theoretical study of the problem
continued. Reference 52 discussed certain wave features of
the optics of UCNSs. In particular, the question was raised of
the formation by a neutron wave of an optical image in the
case in which the perturbing action of the gravitational field
of the Earth exerts an appreciable influence. Attention was
called to the fact that the propagation of a neutron wave in a
potential field can be described by introducing a refractive
index that depends on the velocity and coordinates. Thus a
full analogy arose with the propagation of light in an optical-
ly inhomogeneous medium showing dispersion. The validity
of the Fermi principle in an optically inhomogeneous medi-
um implies the possibility of forming an image with neutron
waves. The discussion of this problem was continued in Ref.
51, which noted that the result of Ref. 52 is to some extent
trivial, since it is implied by the optical-mechanical analogy
of Hamilton. However, the optical approach to the dynamics
of a massive particle, usual in electron optics, was new for
neutron optics and proved highly productive. The descrip-
tion of the motion of a neutron in the gravitational field of
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FIG. 3. Zone mirror for UCNs.***

the Earth by introducing the refractive index enabled find-
ing methods of calculating optical systems for UCNS. It is
especially simple to do this in the paraxial approximation.®’

In 1980 G. Schiitz, A. Steyerl, and W. Mampe demon-
strated the possibility of three-dimensional focusing of
UCNS5.%¢ Using the zone mirror proposed in Ref. 64, they
obtained the image of a slit with a magnification of 6 X (Fig.
3). At the same time a definite progress was achieved in
focusing of neutrons faster than ultracold—the so-called
very cold neutrons. Experiments were performed at Greno-
ble with neutrons having velocities of the order of 200 m/s
and a wavelength about 20 A. Lenses®” and a zone plate®®
have been used as the optical element (Fig. 4). The optical
strength of the focusing elements for such neutrons is small.
Hence it was necessary to use an instrument with a length of
the order of 10 m. An analysis of the possibilities of using
optical elements of different types in a neutron microscope
has been presented in Refs. 26 and 27. Besides mirrors,
lenses, and Fresnel plates, the possibility was discussed of
using also magnetic lenses.*’*° It was concluded that it was
preferable to use mirror optics in the microscope, since a
mirror is the only optical element possessing no intrinsic
chromatism, although, of course, the difficulties involving
gravitational distortions remain.

Two new ways were proposed for diminishing the gravi-
tational aberrations.”®?” In particular, it was proposed to
compensate the gravitational force of the Earth with a mag-
netic field by placing the optical system in an inhomogen-
eous magnetic field. This problem was discussed in greater
detail in Ref. 69. Below we shall describe a neutron micro-

Image

Width 50 zm Width 73 um
Monochromator | i |
\ ©
\ \ L il _[ a7 . Detector
\ Quartz Zone
prism plate

FIG. 4. Focusing of VCNs by a zone plate.”
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FIG. 5. Multimirror optical instrument for UCNs.” /—neutron guide;
2—auxiliary mirror; 3—slit object; 4—concave mirror; S—plane mirrors;
6—analyzing slit; 7—neutron guide of the detector; §—detector; 9—
vacuum chamber.

scope project based on this idea. The second way consisted in
proposing the use of a relatively complex multimirror opti-
cal system in which the mirrors lie at different heights and
are characterized by differing dispersions.

The idea of a multimirror optical system has been devel-
oped. An instrument based on this principle has been built,
and the image of a slit with a low magnification has been
obtained with it’® (Fig. 5). A similar principle was used to
build a neutron microscope with a magnification of 50X and
tests of it have been reported in Refs. 25 and 71.

5.2. Optical elements for very slow neutrons

Let us examine the fundamental properties of optical
elements that can be used in principle in a neutron micro-
scope. It is natural to start this examination with a refractive
lens. Let the material of the lens have a coherent scattering
length b. Then the refractive index of the lens is

Nby1/2 v\ 1/2
_ __j2 7 . .90
n— (1 12— ) = ( . ) .

Here v, is the limiting velocity of neutrons for this material.
As we know from optics, the focal length of the lens is

1
f= (n— 1) (R'—RzY) *

(5.1

(5.2)

Here R, and R, are the radii of curvature of the two surfaces
of the lens. Since usually we have 5> 0and n < 1, a converg-
ing lens having a minimal value of the focal length will be

doubly concave. Upon assuming that R, <0 and
R, = —R,, we have
R
I=2t—1" -3

For simplicity we shall expand (5.1) in a series omitting
terms of the order of (v,/v)®, which is valid for v > 2v, to an
accuracy better than 0.01:
2
n=1— ;T‘; . (5.4)
Upon substituting (5.4) into (5.3), we obtain

. v?
j=Rv—g. (5.5)
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Hence we see that a neutron lens has very strong chroma-
tism, with focv? oc 1/4 2,

One can also estimate the maximum relative aperture of
a neutron lens. Evidently the maximum possible dimension
of the aperture diaphragm is the diameter of the lens. Hence
the relative aperture cannot exceed 2R /f = 2v} /v°. We see
that not only does the focal length increase with increasing
velocity of the neutron, but also, generally the relative aper-
ture decreases. Thus the numerical aperture of a focusing
lens in the instrument used for seeking the electric charge of
the neutron®” amounted to only 4 X 10™*. Moreover, at low
neutron velocities the use of lenses is restricted by the in-
creased absorption.

Another optical element suitable in principle for focus-
ing VCNs” is the zone plate. The question of using it, in
particular, in connection with the problem of the neutron
microscope, was studied in Ref. 72. The focal length is deter-
mined in this case by the expression

foh (5.6)
ML ’
Here M is the number of zones of the plate and r,,; is the
radius of the largest zone. As we can easily see, a zone plate
has chromatism, which is inherent in all diffraction instru-
ments, with fo 1/4. In practice the maximum dimension of
the plate is determined by the smallest possible distance be-
tween neighboring zones: 6 = ry, /2M. Here the magnitude
of the relative aperture is

1_ 27‘1\1_&
=. (5.7)

Ff

The scale of the quantity § attainable with modern technolo-
gy is about 1 um. For VCNs with velocities v = 15 m/s
(A =260 on), we obtain a relative aperture of 1:40,

Thus zone plates also possess appreciable dispersion,
and at the current level of technology also a small relative
aperture.

In contrast to lenses and zone plates, mirror optical ele-
ments per se are completely achromatic and have no funda-
mental restrictions on relative aperture. Chromatism of the
instrument as a whole can arise only from gravitational dis-
tortions. However, one should speak in this case rather of the
chromatism of the medium, which exists in any method of
focusing, than of the chromatism of the optical element it-
self. The complicated aberrations that arise must be correct-
ed for the system as a whole.

When one uses mirrors with total reflection at all angles
of incidence, naturally restrictions arise on the magnitude of
the velocity of the neutrons employed. This circumstance
restricts both the possible resolution and the intensity. The
largest value of the limiting velocity among the substances
used as coatings for neutron mirrors is possessed by the iso-
tope **Ni. For it we have v, = 7.6 m/s, A = 520 A. The range
of velocities can be extended by going to optics with inclined-
incidence mirrors or using multilayer interference coatings,
the so-called supermirrors.” "

5.3. An ideal optical element for neutrons in the presence of
gravitational force

Thus, apparently mirror optics is most suitable for de-
signing high-quality optical systems for UCNs. The methods
of calculation and the technology of production of mirror
objectives are rather well developed for light. The difference
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of UCNSs consists in the shorter wavelength and the substan-
tial effect on them of gravitational forces, and this presents a
fundamental difficulty.

The description of the motion of a neutron by introduc-
ing the refractive index simplifies the theoretical analysis of
the problem. However, it yields no ready recipes, since, ap-
parently, there was no necessity earlier to face the need of
immersing an optical system in an inhomogeneous medium
with dispersion.

Let us illustrate the optical properties of such a medi-
um. We shall assume that an ideal optical element is re-
moved from the medium into a vacuum. Let us assume the
refractive index of the medium at the interface to be unity.
Let our optical element with its optical axis along the z axis
focus the rays from a point source (Fig. 6). The converging
spherical wave through the boundary plane z = O enters our
layerwise-inhomogeneous medium. We shall denote the ra-
dius of curvature of the front at the coordinate origin as R.
We shall assume that the value of R is much smaller than the
maximum height of rise v°/2g, i.e., that the curvature of the
rays is small. The characteristic dimensionless parameter of
the problem is the quantity £ = gR /v°, £ < 1. We shall per-
form the calculations in the first order in £&. We can easily
determine that a ray that has entered the medium at the
angle 8 to thezaxis intersectsit at the heightz' = R[1 — (£ /
2 cos® 0) ]. The essential point is that rays entering the medi-
um even at an arbitrarily small angle intersect the optical
axis below the initial center of curvature of the front. That is,
the paraxial focus is shifted with respect to the point z = R.
Its position is:

E R
F=R(1—7)=R(1—‘§—v;). (5.8)

The magnitude of the gravitational displacement AF = gR 2/
20° depends quadratically on the velocity. This is one of the
manifestations of gravitational chromatism. An arbitrary
ray entering the medium at the angle 8 to the z axis intersects
it below the paraxial focus, with the distance from the point
of intersection to the focus being:

FIG. 6. Propagation of a convergent spherical wave front in a medium
having a “‘gravitational’ refractive index.
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(;:F——z’:ETRthG, (5.9)

while the angle of the ray with the z axis at its point of inter-
section is determined from the condition:

sina =sing (1 + §). (5.10)

We can easily derive from (5.9) and (5.10) the equation of
the tangent to the ray at the point of intersection with the z
axis:

p=(F—5)1— 5w,

3 T=1tgo.

(5.11)
Solving (5.11) simultaneously with the equation dp/dr = 0,
we obtain the equation of the caustic®:

8 v?

pta= o g (F—2)

(5.12)

We note that our introduction of the interface at z =0
played a purely auxiliary role, since the geometry of the rays
was determined by the refraction of the rays throughout the
medium for z > 0, while refraction at the phase boundary was
absent. Thus, even for monochromatic neutrons the medium
gives rise to aberrations, in particular spherical aberration.
Moreover, owing to the disperison of the medium, both the
position of the focus and the magnitude of the spherical aber-
ration depend on the velocity (wavelength) of the neutron.
Therefore, in the design of optical instruments using very
slow neutrons, two fundamental and generally coupled
problems arise. First, one must achromatize the system, and
second, one must learn to operate with appreciable aper-
tures, for which one has to correct the system for the funda-
mental aberrations by allowing for the properties of the me-
dium.

5.4. Design of optical systems in an inhomogeneous medium
in the paraxial approximation

The fundamental characteristics of an optical system,
such as the location of the image, the focal length, the loca-
tion of the principal planes, etc., can be determined by using
the small-angle approximation, i.e., the paraxial approxima-
tion. Owing to the chromatism of the medium, all these
quantities generally must depend on the velocity. In certain
cases one can achromatize the system. Here one must distin-
guish achromatization of location, in which the location of
the image plane is stationary, and achromatization of magni-
fication, in which the ratio of angles is preserved for a ray
near the object and near the image plane. We emphasize that
as yet we are speaking only of small angles.

For paraxial calculation of neutron-optical systems, it
is useful to employ the matrix method well known in op-
tics.”® Its generalization to the case of a layerwise-inhomo-
geneous medium offers no difficulties.’’ The essence of the
method consists in the following. Any ray in an optical sys-
tem having axial symmetry can be described by the coordi-
nates Z, y, and V, where Z is the coordinate of an arbitrary
point on the optical axis, which coincides with the z axis, y is
the displacement of the ray from the optical axis in a plane
passing through the point Z, and ¥V = ni, where n is the
refractive index and + is the angle of the ray with the z axis.
In the paraxial approximation all the angles entering the
calculation are small enough that the odd trigonometric
functions of these angles can be considered equal to the an-
gles themselves. The regions of space having different refrac-
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tive indices are separated by certain separation planes. The
problem of the form of these surfaces is not treated, and the
surface is characterized by its paraxial radius of curvature.
In a homogeneous medium the ray propagates rectilinearly
between the separation surfaces, and in refraction and reflec-
tion the relation is linear between the angles of incidence and
refraction (or reflection). The linear relation of the coordi-
nates is the fundamental distinctive feature of the paraxial
approximation. Therefore every elementary change in the
coordinates of the ray can be characterized by an elementary
matrix of dimensionality 2 X 2, so that

(vi) =3 (%)

where the subscripts 1 and 2 pertain to certain planes in front
of and behind the element ofir;gerest tous. Here}he matrices
for displacement 7, reflection R, and refraction F are written
as follows:

N ;o . 1 0 . 1 0
i R P B
(5.14)

Here n is the refractive index, 7 is the radius of curvature of
the reflective or refractive surface (the sign involves the di-
rection of convexity), the subscripts | and 2 in the refractive
matrix pertain to the refractive indices on the different sides
of the surface, and 7 = |Z, — Z,| is the change in the coordi-
nate upon displacement.

The transformation of the coordinates performed by
the system as a whole also has the form of (5.13), but here
the mattrix M of the system is the result of successive multi-
plication of all the elementary matrices, while the order of
multiplication corresponds to the order of change of the co-
ordinates y and v of the ray passing through the system. The
matrix of the system fully defines its optical properties.
When the optical system is immersed in an inhomogeneous
medium, only the displacement matrix is subjected to modi-
fication. We can easily derive by direct calculation that the
matrix for displacement through ¥ thinlayers having refrac-
tive indices n, differs from 7 in (5.14) only in the replace-
ment of the quantity z /# by the sum £ (¢, /n; ). For a medi-
um having a smooth inhomogeneity we can naturally go
from summation to integration. Hence the form of the dis-
placement matrix is:

(5.13)

%:(‘ﬂ, 7o {4 (5.15)

0 1
In the case of a gravitational force acting on the neutron, the
refractive index is determined from (3.24). Then we have

w? 28Z, \1/2 2824 \1/2
]

(5.16)

Thus, in this case also we can easily obtain the characteristic
matrix of a system consisting of any number of optical ele-
ments.

We emphasize that the ideas presented above hold only
for a layerwise inhomogeneous medium in which the refrac-
tive index depends only on the one coordinate Z, and the
optical axis lies along it, in other words, for a vertical ar-
rangement of the instrument.

Owing to the dependence of the refractive index on v?,
this same quantity entered into Eq. (5.16), simply replacing
some linear dimension in the ordinary case of a homogen-
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eous medium. Since linear dimensions always enter into all
the relationships determining the properties of the system,
replacing them with a quantity of the type of (5.16) causes
all the parameters of the instrument to depend on the veloc-
ity of the neutron. Let us give two simple examples. First of
all, let us calculate in the paraxial approximation the loca-
tion of the focus for a concave mirror focusing UCNSs. Let a
parallel beam of UCNs be incident vertically downward on a
concave mirror or radius R lying at the height z = 0. In de-
fining the focal length for light, we would have to obtain the
value f = R /2. Now we shall obtain this same value, but not
for the linear dimension, but for the effective displacement T’
as defined by Eq. (5.16) with Z, = 0. Upon solving the equa-

tion
)]

R vt
7=T:.—<?[1—(1_
for Z under the assumption that z €v?/2g, we obtain
R gR?

2T 8

As it should, the focus for neutrons lies below the light focus,
and its location depends on the velocity. We note that the
distance that we have calculated from the mirror to the focal
point generally does not coincide with the focal length. De-
fining the latter as the distance from the focus to the point of
intersection of the primary parallel rays and the tangents to
the rays at the focus, we obtain

2gz
ve

Z—f, = (5.17)

2
Fn=R_gR

o (5.18)

The reason for the difference is the curvilinearity of the rays.
The change in the magnitude of the focal length leads to a
gravitational variation in the optical magnification.

Now let us calculate the magnification of a concave mir-
ror. As before, let the source lie above the mirror. We denote
the distance from the source to the mirror by a. In the case of
light the result is: k, = [1 — (2a/R)] ™", where k, is the
optical magnification. Now, instead of the linear dimension
a, the expression for the magnification again contains the
value of the effective displacement. In the same approxima-
tions we obtain

e — 1
D7 4 —(2a/R) (14 (ga/2v?)]

(5.19)

We see that both the difference of the result from the optical
value and the magnitude of the chromatism of magnification
sharply increase near the valuea = R /2, i.e., at large magni-
fications. The chromatism of magnification of neutron-opti-
cal systems for UCNSs apparently constitutes a considerable
difficulty on the path of designing systems of large magnifi-
cation and good resolution.

5.5. Achromatization of optical systems

In most cases chromatic aberrations are manifested
even in systems with small apertures. The method of parax-
ial calculation presented above is quite suitable for analyzing
them. In some cases this method enables one to some extent
to achromatize the instrument. We shall illustrate this fact.
Let the system consist of a certain number of reflective ele-
ments. To determine the characteristic matrix we must write
down all the elementary matrices for displacement and re-
flection, and then multiply them. Here the first matrix will
be the displacement matrix from the last reflecting surface
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before the image plane, and the next will be the displacement
matrix from the object to the first reflecting surface:

M-—( b

0 1)xM2><...xM,(1 "). (5.20)

01

Here a is the first segment of the system, and b is the last
segment. Then we have

g (3 7)<

Here M’ is the matrix obtained by multiplying all the matri-
ces, starting with the second one. Let us neglect for now the
gravitational force, i.e., go over to the ordinary optics of
homogeneous media. We shall denote the elements of the
matrix M with unprimed letters, and those of the matrix M
with primed letters. We denote also the case of no gravitation
with the subscript zero. Then we have

= (g2 po)={o 1)=& nf)- (521)
We recall that
(32):(33 2 x (7)) (5.22)

where the subscripts 1 and 2 pertain to certain planes. Let us
make plane 1 coincide with the plane of the source, and plane
2 with the image plane. If the source lies on the optical axis,
then its image must also be on the axis. Here we have
¥, =y, = 0. The condition y, = 0 implies that B, = 0. But
we obtain from (5.21) that B, = B, + D (b. Hence the loca-
tion of the image is determined by the equation

By
5 (5.23)

[
As is known, the optical magnification of the system is
k = n, sin #,/n, sin ¢,, or in the paraxial approximation,
LA £
nyty Vs ©
Thus we obtain from (5.22) and (5.24) and the condition
=0

(5.24)

1 1
"=, =T

(5.25)
Now we shall take into account the force of gravity by re-
placing all the linear dimensions by the effective displace-
ments of (5.16) that correspond to them. Moreover, we
should take into account the fact that the refractive index in
the sites where the mirrors lie is not unity, while the corre-
sponding reflection matrices contain quantities of the type
2n, (z)/r;. The location of the image will be determined by
an expression of the type of (5.23), which in this case is
converted into an equation in b. Formally the expression for
the magnification does not change. Thus we have

B

o (5.26)

y k:%.

Now the elements of the matrix M ' are functions of the veloc-
ity. Apparently, decreasing the chromatic distortions is fa-
vored by decreasing the linear dimensions of the system. If
all the linear dimensions satisfy the condition /; €v°/g, then
we can expand the refractive index and the corresponding
quantities 7; in a series. We obtain

”g +. (5.27)

(Dz(l)g +.

o+ Fl(l)g+

[vH (l

D+ £y (5.28)
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(i = 1,2, ...), where the coefficierits £, and ®, have the di-
mensions of distance to the jth power. If we neglect terms of
the order of g2/v%, then the.condition for achromatization
with respect to magnification reduces to the equation
®, = 0. The quantity 7, in the same approximation has the
form T, =b [1+ (B + b)(g/v3)], where 8 also has the
dimensions of distance and is determined by the location of
the last mirror. Thus the location of the image is determined
by the equation :

B’ b) g7 By4-(F 2
Ty o[t )= - e
Solving (5.29) for b and equating the term with g/v” to zero,
we obtain the condition for achromatization with respect to
location. Of course, the validity. of neglecting the higher
terms in (5.27) and (5:28) must be analyzed sufficiently
thoroughly. A multielement system contains a sufficient
number of parameters, and sometimes one can achromatize
the system by taking the highér orders into account. In par-
ticular, the telescopic system consisting of two concave mir-
rors and additional plane mirrors that was employed in Ref.
70 and is shown in Fig. 5, was achromatlzed with respect to
location. ‘

In some cases one can obtain conditions that enable si-
multaneous differential achromatization in the first order in
g/v?, both in location and in magnification. Thus, for the
simple two-mirror system consisting of two concave mirrors
with radii of curvature R, and R, (Fig. 7), achromatization
with respect to location in the first order in g/v? is achieved
in a telescopic geometry when the source lies at the focus of
the first mirrora = R, /2. In this same approximation achro-
matization of magnification will be achieved if simulta-
neously the following condition is satisfied:

(5.29)

R, 1+ a) =0d, (5.30)

Here = R,/R |, and d is the distance between mirrors.
Here the location of the image L and the optical magnifica-
tion k coincide with the same quantities for light. We note
that coincidence of the values of the magnification for neu-
trons and for light does not imply coincidence of the aper-
ture angles in the image plane, since in the neutron case the
gravitational force leads to a certain difference in the refrac-
tive index in the image plane from that in the plane of the
source.

FIG. 7. An optical system for UCNs achromatic in the first order.
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Another case of simultaneous achromatization in the
first order in location and in magnitude has been presented
in a recently published paper.”' The fundamental difference
in the instrument described in this study consists in employ-
ing the distinctive properties of the parabola of travel that
are manifested when the neutrons pass through an apogee on
their path.

Let us examine how the properties of a focusing concave
mirror are altered in this case (Fig. 8). Let the neutron
source lie on the axis of the mirror of radius R at the height a.
We shall assume that the source is rather close to the focus,
so that the neutrons after reflection from the mirror pass
through the apogee of the parabolic trajectory before they
cross the axis at the image point. Let us put the coordinate
origin at the vertex of the mirror. We shall determine the
location of the image by again using the matrix method. To
do this, we shall introduce an auxiliary plane at the height ¢
from the mirror. Let this plane lie above the image of the
source, but below the apogee.

We must supplement our matrix apparatus with a ma-
trix that describes the displacement of the ray with respect to
the axis between the two crossings of the plane ¢. We can
easily convince ourselves that this matrix is the matrix

bo(t Tn0m9),
0 1

The matrix A is the matrix for displacement by the amount
7 = (2v*/g)n(c), and it does not alter the variable . Actu-
ally the absolute value of ¥is determined by the magnitude
of the angle made by the trajectory with the vertical axis and
the value of the refractive index, and it changes only upon
reflection. The sign of ¥is determined by whether the trajec-
tory approaches the axis or departs from it.

Let us denote by & the segment from the plane C to the
image. Then we can easily calculate the matrix of the system

(5.31)

a=R/2

"]

FIG. 8. Properties of a concave mirror in focusing UCNs. The location of
the image coincides with the source when the point source is placed at the
“light”” focus.
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L

. 1 7 s Ty A B -
M= (g 1) w=(5 ). (5.32)
Here the elements of the matrix ]\/;{ are written as:
A2+ T,
B oTyt 70 (1— 22, (5.33)
o _i [ Ta
C' = R D =1 -

As before, the value of b is determined by an equation of the
form of (5.29). Upon substituting into it the expressions for
the displacements 7" and the refractive index n(c), we obtain
that, when ¢ =R /2, the relationship holds that
b—c=a=R/2.

Hence, in the case in which the source lies at the point of
the light focus, its location exactly coincides with the loca-
tion of the image without depending on the velocity. That is,
achromatization in location occurs in all orders.

Chromatism of magnification remains considerable
here, since the quantity D’ that determines the magnifica-
tion, as before, is determined by Eq. (5.19). One can easily
see that when the value @ = R /2 is substituted into (5.19),
only terms depending on g and v remain in the denominator.

In the neutron microscope described in Ref. 71, the
chromatism of magnification is compensated in the first or-
der by introducing a second, convex mirror. Here one can
maintain the achromatization of location, but indeed now
only in the first order. We shall return again to describing
this instrument somewhat later in Sec. 6.1.

As a rule, it is difficult or impossible to achieve com-
plete achromatization in all orders simultaneously in loca-
tion and in magnification. In this regard it is useful to exam-
ine how the chromatism of location and that of
magnification influence the resolution of the instrument.

Let the system have the magnification &, entrance aper-
ture 6, and position of the image plane L, where L is mea-
sured, e.g., from the last mirror. The quantities & and L are
given for a certain value of velocity of the neutrons. If the
source is not monochromatic, then for the existing range of
velocities, both the magnification and the location of the im-
age lie in a certain range of values & + Ak, L + AL.

Let us examine the role of the chromatism of location.
The dimension of the image spot from a point source placed
on the axis will be determined by the exit aperture angle &
and the chromatic spread of the image plane

2AL.0
P

AR, —2AL-tg 0 ~ 2AL. ¢ =

We have assumed that € /9 = k, neglecting the small differ-
ence in the refractive indices in the plane of the object and
the image. Then the resolution in the object plane will be &
times smaller than the dimension of the spot in the image
plane. It is defined as: §;, = 2AL-0 /k *. We can easily esti-
mate the resolution at the edge of the field. In this case a ray
proceeding to an edge point of the image lying at a distance d
from the axis makes the angle with the axis @ = d /L. Then
the dimension of the scattering spot in the image plane at the
edge of the field amounts to k ; = dAL /L, while the resolu-
tion in the plane of the objectis §; = dAL /kL. If the dimen-
sion of the image is considered fixed, then, as we see, the
resolution at the edge of the object is improved with increas-
ing magnification as 1/k, but as 1/k * at the center of the
object.
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Now let us examine the distortions associated with the
chromatic difference of magnification. Evidently these dis-
tortions are absent in the center of the field, where the dis-
placement from the axis is zero. The central point is focused
into a point on the axis, regardless of the value of the magni-
fication. The greatest distortions will arise for a point most
remote from the axis. The dimension of the scattering spot
from this point amounts to AR, = d 'Ak, while the resolu-
tion in the object plane is 8, =d 'Ak /k, where d ' is the di-
mension of the field in the object plane. Thus, for a fixed
value of the dimension of the field in the object plane, the
resolution increases with increasing magnification as 1/k.
Usually the dimension of the field must decrease with in-
creasing magnification in inverse proportion to the magnifi-
cation, since in practice the dimension of the image field is
apparently restricted, e.g., by the design of the detector.
Therefore the resolution improves in practice with increas-
ing magnification as 1/k 2.

The conclusion suggests itself from what we have said
that, instead of achromatizing the system, one should simply
increase as much as possible the magnitude of the optical
magnification, which will lead to improving the resolution.
This would actually be so if one could fix the values of Ak
and AL with increasing magnification. Unfortunately this
does not happen. Actually the value of the magnification is
determined by Eq. (5.26). This means that large magnifica-
tion corresponds to a small value of the quantity D '. Hence
the first term D in the expansion (5.27)of D' in terms of g/
v* is also small. This directly implies that the relative contri-
bution of the higher terms in g/v? in the expression for D’
increases with increasing k. Here the chromatism of magni-
fication increases. We have already faced this situation in
treating the chromatic aberrations of a single concave mirror
[see (5.19)].

5.6. The nonparaxial case. An aplanat for UCNs®

Setting aside for now the problem of gravitational chro-
matism, let us discuss the problem of the possibility of using
large entrance apertures in neutron-optical systems. The im-
portance of this problem is evident. First, the limiting theo-
retical resolution of the instrument is associated with the
numerical aperture. Second, the statistical potentialities of
the instrument improve with increasing aperture, i.e., col-
lecting power. It is precisely the statistics that can limit the
resolution when one employs UCNs.

Asis known, an optical system makes possible the sharp
imaging of a small region near the axis of a plane perpendicu-
lar to the optical axis, i.e., is aplanatic, if the so-called sine
condition is satisfied:

nyy; sin a; = nyy, sin a,,

(5.34)

Here n, a, and y are respectively the refractive indices, angles
of the ray to the axis, and displacement with respect to the
axis. The subscripts pertain to the object plane and the image
plane. Asis known from geometric optics, one can complete-
ly achieve axial stigmatism using one aspheric refractive or
reflective surface, i.e., rid the system of spherical aberrations
in all orders and achieve a sharp image of a point lying on the
axis. One can obtain aplanatism by using two aspheric sur-
faces. Here the system becomes free from coma.'” These
conclusions are universal in character and are not restricted
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2
FIG. 9. On the design of an aplanatic mirror pair for UCNs.

to the case of homogeneous media.”” This implies that one
can design a special aplanat even in the case of UCNs in the
presence of gravitational force.

The numerical methods of calculating an aplanatic mir-
ror pair known in technical optics can be easily modified for
the case of an inhomogeneous medium having a refractive
index of the form of (3.24). For example, it is convenient to
use the method given in Ref. 78. Let us explain the principle
of calculation.

Let the optical system (the objective) contain two re-
flecting surfaces. We can easily determine from a paraxial
calculation the mutual arrangement and the paraxial radii of
the mirrors so that the system will have a given magnifica-
tion. Moreover, in this calculation one must determine the
location of the source and of the image plane. Our problem
consists in finding surfaces such that a ray leaving the source
at an arbitrary angle @, arrives at the image point O’ while
satisfying the sine condition. Let the refractive index be uni-
ty at the source point, with the acceleration of free fall g
directed along the Oz axis. Let.us assume that the ray leaves
the axial point O of the source at the angle «,. This ray (the
neutron) intersects the surface of the first mirror at some
point N, at the height y, from the axis (Fig. 9). Let us as-
sume that the displacement of the point ¥, along the axis
with respect to the vertex.S, of the mirror is Z,. Of course the
quantities y, and Z, are not arbitrary, but must satisfy the
equation of a parabola for the ray that we have chosen. For
the initial ray that we have chosen in this way, there is only
one ray which passes through the image point O’ and satis-
fies the sine condition

2¢ | 00" | (172 .
—-——bz——) S1N Oo.

sina,:k(1+ (5.35)

This ray leaves the second mirror at the point N, having the
coordinates y, and Z,. The coordinates of this point must
also satisfy the condition of a parabola for the exit ray. Thus,
we have only two free parameters in the choice of the reflec-
tion points N, and N,—the ray coordinates as calculated
along the chosen rays. This coordinate can be, e.g., the dis-
placement along the ray or the time of flight. Upon fixing the
points N, and N,, we have also determined the velocity of the
neutron at these points, which depends only on the initial
velocity and the height z. Between the points ¥, and N, the
neutron also moves in a parabola with the known initial ve-
locity

ve= [1? 4 2g (| OS, | — z)I"% (5.36)

If we know the velocities of the neutron at the points of inter-
section with the mirror, we can easily calculate also the angle
of the trajectory with respect to the optical axis at these
points, since only the axial component of the velocity varies
during the motion. Thus we now know the values of the
angles a,, and a,,—the initial angle before reflection from
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the first mirror and the final angle after reflection from the
second mirror, as well as the angles @, and a,,—the initial
and final angles of the intermediate rate. It remains to use the
law of reflection to determine the angles of the normals to the
surfaces of the mirrors at the points of reflection:

_ _Gost0a
’

Qo1+ 11
Yl = '_'2_'_ .

V2 = (5.37)

Now we can calculate the equations of the surfaces of the
mirrors, Let us specify them in the form
' =4y} + By + Ciyt 4 Doyt
2° = Ayt + Bayy + Coys + D,y

(5.38)

The odd powers of y are lacking owing to the axial symmetry
of the problem. Then the tangents of the angles of the normal
are

((ll;; =2A,y,+ 4By} + 6C,yt + 8D,y’,
/ (5.39)
g_yz = 24,3y, + 4Bay; + 6Cay5 + 8Dyy;.

tgy, =

tgy. =

We note that the coefficients 4, and 4, in (5.38) and (5.39)
determine the curvature of the mirrors near the z axis, while
the paraxial radii of curvature were fixed by the conditions
of the problem. We have

1 1
ALZW, T (5.40)
Here R, and R, are the paraxial radii of the mirrors. Thus we
have derived the two equations (5.39) for one ray and can
determine the two coefficients in the expansion (5.38).
Upon fixing N rays at N heights, we can determine N coeffi-
cients in addition to A4, and 4,, which are known from the
conditions of the problem.

One can easily perform the calculations by the iteration
method, while assuming the surfaces of the mirrors to be

plane in the initial approximation.

6. A NEUTRON MICROSCOPE USING ULTRACOLD
NEUTRONS

6.1. A two-mirror achromatic microscope

Recently a neutron microscope with a magnification of
50X has been tested at the Laue-Langevin Institute at Gre-
noble.”" The instrument was constructed so that the neu-
trons after reflection in the first parabolic mirror pass
through the apogee of the parabola of flight before they
reach the second spherical mirror (Fig. 10). Here the mir-
rors were arranged to achromatize the system in the first
order. The problem of achromatizing such a system was dis-
cussed in Sec. 5.5.

The numerical aperture of the instrument amounted to
A = 0.32. As the authors report, the dominating role in re-
stricting the resolution is played by the higher-order gravita-
tional chromatism, which amounts to several millimeters in
the image plane for neutrons with velocities in the range
from 5.5 to 6.7 m/s. The geometric aberrations, such as the
spherical aberration and the coma, amount to values of the
order of | mm. That is, they restrict the resolution to a value
of the scale of 20 um in the object plane.

The test experiment consisted in scanning the field of
view with a slit moving in the object plane. Here the dimen-
sion of the analyzing slit (1.06 mm) exceeded the magnitude
of the calculated field of view of 0.35X%0.35 mm-. All the
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FIG. 10. Neutron microscope.”’

neutrons that entered the image plane were recorded by the
detector, whose dimensions limited the dimension of the
field.

The experimentally obtained dependence of the count-
ing rate on the position of the slit agrees with the calculated
dependence. Apparently the studies with this instrument
will be continued in the near future after installation in this
same reactor of a UCN source having an intensity exceeding
that previously existing by more than a hundredfold.

6.2. A neutron microscope with an aplanat

Although the problem of chromatism was partially
solved in the apparatus described above, owing to the large
dimensions of the instrument, it is precisely the chromatism
that still presents the main problem. The geometric aberra-
tions of the first mirror, including the gravitational aberra-
tions, introduce smaller distortions, and their role is hardly
discussed. On the other hand, in Sec. 5.6 we have treated the
possibility of creating an aplanatic system for monochro-
matic waves, but without treating the problem of chroma-
tism. Naturally the problem arises of the possibility of de-
signing a microscope with an aplanatic objective without
special measures for achromatization. One of the useful
measures is miniaturization of the whole system. In particu-
lar, the dimension of the microscope, as in an ordinary opti-
cal instrument, can amount to a value of the order of 10-15
cm or even smaller as compared with the almost two-meter
dimensions of the Laue-Langevin Institute microscope.

A two-mirror objective was designed by the method de-
scribed in Sec. 5.6 for investigating this problem. The calcu-
lation was performed for four rays, and hence, five coeffi-
cients of the expansion (5.38) were determined. The focal
length of the objective amounted to 2.8 mm, the magnifica-
tion was 25 X, and the numerical aperture 4 = 0.5. The ob-
jective was calculated for neutrons with a velocity of 6 m/s
(4 =660 A). A very simple design of the microscope was
chosen in which the objective projects the object into the
detector plane.
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A trajectory calculation was performed throughout the
entire range of working angles for several points of an ex-
tended object with transverse dimensions of 0.6 mm. The
resolution was taken to be the maximum dimension of the
diffuse spot in the detector plane divided by the magnifica-
tion. The calculation was performed for a certain range of
wavelengths. In particular, when UCNs with wavelengths
from 630 to 690 A were used, the calculated resolutions at
the center and at the edge of the field amounted respectively
to 1.36 and 2.8 um. When the spectral range was extended
within the range 610-720 A, the resolution deteriorated to
the values of 2.2 and 3.9 um.

It is interesting to note that the special form of the mir-
rors, which is optimal for parabolic rays, makes this objec-
tive more suitable for UCNs than for light. The resolution
for light has a value that varies over the field in the range
from 5.6 to 12 um.

Apparently one can assert that the aplanatic objective is
suitable for building a simple neutron microscope with a re-
solution of several micrometers using neutrons with wave-
lengths lying over a rather broad range. A defect of the in-
strument is the need for preparing aspheric mirrors with
optical accuracy, which presents certain technological diffi-
culties.

6.3. Microscope with magnetic compensation of the force of
gravity. Fundamental problems

One could completely solve the problem of gravitation-
al chromatism and higher-order gravitational aberrations if
one could compensate the force of the Earth’s gravity with a
magnetic field acting on the magnetic moment of the neu-
tron. This idea was first expressed in Refs. 26 and 27 and
developed in Ref. 69. As will be shown below, it is impossible
to neutralize completely the force action on the neutronin an
extended region of space. However, if the optical part of the
microscope consists simply of an objective that projects the
object into the detector plane, then one can try to compen-
sate the force of gravity in the region of the objective. Here
the neutrons leaving the objective again enter the region of
action of gravitation. It is important to analyze what are the
consequences of this.

We see from the expression (5.26) for the optical mag-
nification 1/D ' in the presence of gravitational force that the
magnitude of the optical magnification is completely deter-
mined by the matrix M ', and the geometry of the last seg-
ment does not enter directly into the expression for the mag-
nification. Conversely, the chromatism of location is
determined by the properties of the entire system, including
the last displacement. This implies that, if one has an ideal
objective that forms a spherical converging wave from a
point source, then the system as a whole will not have chro-
matic aberrations of magnification, but the circumstance
that the gravitational force is acting on the neutrons on the
path along the last segment gives rise to chromatism of loca-
tion, and as a consequence, to gravitational spherical aberra-
tion. This hypothetical case has been treated above in Sec.
5.3. One can easily see that the radius of curvature of the
initial front is the magnitude of the last segment L of our
single-objective microscope in the absence of gravitational
force. For neutrons of velocity v the location of the image
planeis displaced downward by the amount gL 2/2v>. For the
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range of velocities from v, to v, the scatter in location of
image planes will amount to

Now it is easy to estimate the limiting magnification,
which arises from the distortions on the last segment. Let the
quantity L amount to 15 cm, the magnification to 50 X, the
range of velocities from 4 to 7 m/s, and the entrance aperture
angle to 6 = 45°. Upon using the results of Sec. 5.5, we find
that the limiting resolution in the center of the field amounts
tod, = 2AL0 /k? = 1 um. To estimate the resolution at the
edge of the field, let us fix the dimensions of the image detec-
tor. If the diameter of the detector is, e.g., 1.5 cm, then the
resolution at the edge of the field will amount to ~ 1.5 ym.
As we see, the last segment does not introduce excessively
large distortions, even when one uses a broad velocity spec-
trum. It remains to solve the problem of the “ideal” objec-
tive. Let us examine in greater detail the idea of magnetic
compensation of the gravitational force.”**”* In an inho-
mogeneous magnetic field the force acting on the neutron is
F = V(uB), where p is the magnetic moment of a neutron.
The condition for complete compensation of the gravitation-
al force has the form

V (uB) + mgk = 0. (6.1

Here k is a unit vector along the z axis. Of course, the condi-
tion (6.1) can be satisfied only for a definite polarization of
the neutrons.

When very slow neutrons are passing through a region
containing a magnetic field, usually the condition of adiaba-
ticity is very well fulfilled. That is, the direction of the mag-
netic moment ““tracks” the direction of the field, while the
projection of the magnetic moment of the neutron on the
direction of the induction vector is conserved. Here Eq.
(6.1)isrewrittenas: uV|B | + mgk = 0, or in the cylindrical
system of coordinates:

" OJEI = mg, (6.2)
a1 RB|
7 =0. (6.3)

Substitution of numerical values into (6.2) yieids the re-
quired value of the gradient J |B |/dz = 1.7 107* T/cm.

Of course, one cannot actually attain exact fulfillment
of (6.2) and (6.3) throughout the entire region of space.
However, these equations can be compatible at a certain
point. Therefore the following approximate conditions can
hold for a certain extended region of space:

IIBl _m o1 B | 8| B |

az o ap gz °
Reference 69 treated in this regard a field produced by a
current-carrying loop. Figure 11 reproduces a diagram from
this study showing the values of B, d |B |/dz, and 8 |B |/dp
from a loop of unit radius through which a unit current is
flowing for different values of p and z. We see that the curves
ford | B |/dpintersect the axis of abscissasin the regionz =~ 0.6
and for different values of p, so that the values of the radial
gradient for small values of p are small also at a certain finite
distance from the point z = 0.6. At the same time we see that
intheregion 0.5 <z < 0.7 and p < 0.2 the value of the vertical
gradient varies weakly, while its absolute value substantially
exceeds the value of the radial gradient. Thus the conditions

< (6.4)

A. |. Frank 126




B, rel. units

‘. rel. units

i

FIG. 11. The magnetic field and field gradient from
a current-bearing loop of unit radius. a—Magni-
tude of the field for different heights z referred to

O
sa

(6.4) can be fulfilled to a certain degree of accuracy. Both
the problem of the constancy of dB /3z in space and the prob-
lem of the smallness of 3B /dp involve the ratio of the dimen-
sions of the region of space where the stated conditions must
be satisfied to the dimensions of the loop. We note that the
magnitude of the current to create the needed field gradient
at the point z = 0.6 increases in proportion to the square of
the radius of the loop. If we use a current-bearing ring as the
magnetic system, then to compensate the gravitational force
by a factor of 40 in a region of space of volume 2 2 X 2 cm”,
the radius of the winding must be 40 cm, and the value of the
current 500 kA. Hence we see that it is difficult to compen-
sate fully the gravitational force throughout the volume of
an optical system. Conversely, it is quite possible to shield
the objective effectively from the perturbing action of gravi-
tation. Estimates of the distortions that arise if the gravita-
tional force is not compensated on the last segment were
given above. One must view these estimates as upper limits,
since for a real system a considerable, though not total, com-
pensation will exist also in this region.

Now let us turn to the problem of the spherical aberra-
tion of a wave from an initially spherical front propagating in
the gravitational field. The source of this aberration was dis-
cussed in Sec. 5.3. Asis known from optics, when a lens has
spherical aberration the phase of the waves arriving at the
focal point depends on the distance from the axis to the exit
point of the ray from the lens. We can assume to a certain
degree of approximation that a region of the lens corre-
sponding to the first Fresnel zone participates in formation
of the image. Here the Fresnel zone is determined by the
condition that the eikonals of all the rays from this zone of
the lens to the focus differ by no more than 4 /2. We can
determine the effective Fresnel zone for the case studied
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the plane of the loop. b—Vertical field gradient as a
function of the height z for different distances p
from the axis. c—Radial field gradient as a function
of the height z for different distances p from the
axis.

above. We shall assume that a small objective has been cor-
rected for the ordinary aberrations, while the gravitational
force in the region where the objective lies is fully compen-
sated. If the source is a point source, then the objective forms
a convergent spherical wave. As this wave propagates, the
properties of the “medium” vary as the compensating action
of the magnetic field weakens. We shall assume that the com-
pensation disappears abruptly at a certain plane. Let us lo-
cate the origin of coordinates at the point of intersection of
the optical axis with this plane. As we can easily see, this is
the formulation of the conditions with which the problem of
the caustic was treated in Sec. 5.3 (see Fig. 6).

Let us calculate the change in phase on the path from
our separation plane z = 0 through which the spherical front
passes to a certain plane z = y. In the quasiclassical approxi-
mation we have

{
D=2 5 v2 de.

0

(6.5)

Going from integration with respect to z over to integration
with respect to z, we obtain

%
L T P W
® [ 5 (v2—2gz) (v?cos? —2gz)1/2 *
0

(6.6)

Here @ is the initial polar angle of the trajectory and v is the
velocity of the neutron. Taking into account the initial phase
distribution at z = 0 and integrating, we obtain the follow-
ing, apart from terms of the order of £ > = (gk /v°)%

_ 3gR x—R g x> —R?*(1—cos 0)?]
D=k (145 04) { +R+

cos 0 2v2 cos?® 0

_ glr*—R*(1—cos?0)]
vicos O

. (6.7)
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Here R is the radius of curvature of the front at the origin of
coordinates, and & is the wave number. We shall determine
the location of the focus in the paraxial approximation from
the condition of stationarity of the phase at the focus (the
Fermat principle) in the limit of small angles 6, i.e.,

A I

él_.nol 89 |y=F

Differentiating (6.7) at @ = O and setting y = F, we ob-

tain
1 gF*
F—R+4525=0. (6.8)
Solving (6.8) for F, we obtain with an accuracy up to £ %
— gR?
F=R—%5. (6.9)

This is the same value as obtained earlier from pure geomet-
ric considerations in (5.8). Substituting y = F into (6.7),
we can easily calculate the difference in the phase changes
along the trajectories for two rays: with an arbitrary initial
angle and with 6 = 0. In the small-# approximation we ob-
tain:

AD = [® (8) — D (0)] |ymr = 2kR X 01 (6.10)

This is the phase difference of the two rays entering the im-
age plane. An essential point is that, strictly speaking, only
one ray, which had been propagating exactly along the axis,
passes through the focal point. Actually, as we saw above,
the ray having an arbitrary initial angle crosses the z axis
below the focus—this is spherical aberration. Hence this ray
will cross the plane z = F at a certain distance A7 from the
focal point, which lies on the z axis and which is the point of
observation in our case. Evidently, from simple consider-
ations (Fig. 12), in order to take into account the phase at
the observation point, one must subtract the quantity & 'A/
from the phase advance up to the plane z = F. Here we have
Al = Arsin a, and a is the angle the trajectory makes with
the z axis in the z = F plane:

A¢" =k Arsin o = (k' Ar), (6.11)

(The problem of the phase of the wave at an observation
point lying near the classical trajectory has been discussed in
Ref. 78.)

We obtain the following expression from Eq. (5.11) for
the tangent to the ray near the focus:

ER

Arzp],:j~=—-2—tg3a=:§vi;tg3a. (6.12)

Generally the quantities £’ and a differ from k£ and 6, but

n=7

FIG. 12. On the determination of the phase of an arbitrary ray at the focal
point.
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these differences are on the scale of £. We can neglect them
since the quantity Ar itself is of the order of £R. Thus we
obtain to the accuracy of £ * that the additional phase shift is

Ay =kbrsinf=£1 tgr0sinom B0 2 (6.13)

The total phase difference at the observation point (at
the focus) between the two rays with initial angles of & and
8 = 0 will be determined from (6.10) and (6.13):

—_@d ' . gR 64 _3 gR
Ap=' (8)—D (0)_kRv_2(2e*—T)_7kR-v,—ei.

(6.14)

Thus we see that the gravitational spherical aberration

in principle imposes certain restrictions on the possible lim-

its of resolution of the instrument. If the exit pupil of the

objective is smaller than the dimension of the “‘gravitation-

al” Fresnel zone, then the limiting resolution is determined,
as usual, by the expression

0.61\

Sy ——.

A

Here A is the wavelength, 4 is the numerical aperture,
A=siné,,,, whered, . istheaperture angle. In the oppo-
site case the magnitude of the aperture angle is restricted by
the dimension of the effective exit pupil—the dimension ob-
tained above for the Fresnel zone. Exactly the same situation
exists in ordinary optics in the presence of spherical aberra-
tion. Geometric estimates of the field at the focus of the lens
in the presence of spherical aberration are treated, e.g., in
Ref. 53.

Now let us estimate the dimensions of the Fresnel zone
for a case that seems realistic from the standpoint of the
possibility of designing a neutron microscope. As before, let
the distance to the image plane be R = 15 cm. Let the neu-
tron velocity be v = 6 m/s, which corresponds to a value of
the wave vector k = 0.95 % 10°cm ™. Let us determine from
(6.14) the value of the angle for which Ap = 7. We obtain
6 = 0.137 rad. Hence the radius of the first Fresnel zone is

pr = Rtg0 =~ 2cm.

Thus we see that, for an objective with dimensions char-
acteristic of an ordinary optical microscope, the gravitation-
al distortions on the last segment of flight do not lead to
fundamental restrictions of resolution, even in the total ab-
sence of magnetic compensation in this region. Simulta-
neously we can conclude that the trajectory calculation is
fully valid when estimating the resolving power of a neutron
microscope up to resolutions comparable with the wave-
length.

6.4. Microscope with magnetic compensation of the force of
gravity. Possible construction

To estimate the possible resolution of a neutron micro-
scope we have performed a trajectory calculation of the re-
solving power of a simple microscope with magnetic com-
pensation of the gravitational force in the region of the

objective.
The optical system of the instrument consisted only of

the objective, which projected the object into the image
plane (the detector plane) (Fig. 13). Apparently it is not
very essential which of the possible schemes of a mirror ob-
jective is chosen for this case. An objective was chosen very
similar to that described in Sec. 6.2. The objective consisted
of two aspheric mirrors with equal paraxial radii of 8.442
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FIG. 13. Possible design of a neutron microscope with magnetic compen-
sation of the gravitational field. /—objective (/" and /" are possible var-
iants of mirror objectives); 2—object; 3—coil of superconductive magnet;
4—image plane, in which the sensitive layer of the detector is placed; 5—
fiber light guide; 6—light amplifier; 7—magnetic shielding; §—hinged
mirror; 9—ocular.

mm. The objective was designed in such a way that in the
absence of gravitation it yielded an aplanatic image of a
plane object in a plane separated from it by the distance 15
cm with an optical magnification of 50X . The numerical
aperture was 4 = 0.5. The maximum distance of the extreme
ray from the axis inside the objective was about 3.5 mm, and
1.5 mm in the exit beam. A current-bearing loop of diameter
1 m was taken as the magnetic system in this model. To make
the axial induction gradient at the height z = 0.6 R equal to
the required value of 1.7 107 % T/cm, the current in the
loop must amount to 8.23 X 10° A. If one uses a supercon-
ductive winding with a current density of 10* A/cm? to cre-
ate the needed induction, then the winding must have a
cross-section of the scale of 90-100 cm®. We can expect, as
was verified by calculation, that the pattern of induction gra-
dients from the rectangular winding of cross-section about
10 X 10 cm” practically does not differ from that obtained for
a thin coil.

The exact calculation of the trajectory of motion of a
particle in a field inhomogeneous in two coordinates is a
rather difficult problem. Therefore several assumptions sim-
plifying the problem were made.

Since the magnitude of the maximal deviation of the
trajectory of the neutron from the axis amounted to only
7% 10~ in units of the radius, the radial dependence of the
quantity d |B |/8z was neglected in calculating the vertical
force (see Fig. 11b). The dependence of d |B |/dz on z was
described by a step function whose value was tabulated at an
appropriate number of points. The radial gradient was ap-
proximated by the function

2|8
ok =0 (41+ Bo).

(6.15)
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Here the coefficients 4, and B, were also tabulated.

Under the assumption that the velocities of the neu-
trons lie in the range 4.6-6 m/s (range of wavelengths 660
880 A ), while the dimension of the detector is 1.5 1.5 cm?,
it was found that the resolution at the center of the field is of
the scale of the wavelength, while at the edge of the field it
amounts to 0.3 um. Of course, one must not attribute too
much value to the absolute values of the obtained resolution.
One must treat them as estimates of the maximum possible
resolution. Nevertheless we can state with assurance that
neutron-microscope designs with magnetic compensation in
the region of the objective have great potentialities.

6.5. The neutron microscope and the problem of the intensity
of UCNs

In 1973 in a now classic study, ‘“Ultracold Neu-
trons,” '® F. L. Shapiro mentioned the neutron microscope
as one of the distinct potentialities of the use of UCNs. Actu-
ally, at that relatively recent time, the very statement of such
a possibility in the future seemed rather bold. And even now,
after the passage of more than a decade, the opinion that the
neutron microscope belongs to the distant future is wide-
spread. The basis for this is the very low counting rate in the
optical experiments on UCNs performed up to now. The
point is that instruments were used in these experiments
with a small numerical aperture, and hence with a small
collecting power, and further, they were installed at relative-
ly weak UCN sources. As an example we point out an experi-
ment in which a multimirror achromatic system was used’’
that had a collecting power of the order of 102 (in the sense
of the fraction of the solid angle in units of 277). As is now
clear, it is quite practical to employ objectives with a numeri-
cal aperture of the order of 0.5-0.6 having a collecting power
of 0.1-0.2.

An important second factor is the rather fast progress in
the technology of UCN sources (Fig. 14). It is interesting to
estimate the potentialities of today and the near future from
the standpoint of realistic neutron-microscope projects.

The best UCN source now existing®® has a flux density
of UCNs of f = 1.2 X 10° n/cm®s with a density of thermal
flux at the bottom of the channel of F, = 6 X 10"’ n/cm’s. A
simple copy of such a source at a high-flux reactor such as

w4k / n/cm2s

. 1 1
7963 7377 7875 7980 7.913,‘7

FIG. 14. Increase in the flux densities of exisitng UCN sources.
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the HFR at the Laue-Langevin Institute at Grenoble or the
PIK reactor being built at the Leningrad Institute of Nu-
clear Physics will yield an increase in flux by an order of
magnitude. Perhaps by using a number of design features
one can increase the yield again by a factor of two or three.

Let us adopt for estimates a magnitude of the UCN flux
density of 2 < 10* n/cm?s, which is close to the published
data of the corresponding projects.*”*® Let us estimate the
“statistical” resolution at such a source. The count in a time
T from an elementry region of the object will be

N = fTQE®s2,

Here & is the linear dimension of the element, fis the flux,
is the solid angle employed, which is determined by the aper-
ture, and & is the efficiency of the detector. Let N = 100.
Such statistics suffices not only to record the count, i.e., dis-
tinguish “black” from “white,” but also to attribute a certain
gradation in brightness to all elements. (We are assuming as
yet that the background over the time of measurement is
rather small.) We shall assume that one can employ a solid
angle O = 0.2. A reasonable estimate of the efficiency of the
UCN detector is & = 0.8. Then with a counting time
T =10°s (10 days), we find that § = 1.77 X 10" * cm. If we
employ magnetic compensation, then we must use polarized
neutrons, which will increase the estimate to 2.5 gm. Un-
doubtedly we must treat this value as an estimate, but we
should consider the result of this estimate to be the practical-
ity of microscope projects with a resolution of the order of a
micrometer, even in the very near future.

Turning to the longer view, we can state with a certain
degree of assurance that even more intense UCN sources are
possible, in particular, with pulsed neutron sources at mod-
ern accelerators.®® Also the “inner’ reserve in the construc-
tion of optical systems themselves is not bad. If it were possi-
ble to go from UCNSs to faster neutrons, then the intensity
would increase correspondingly. We recall that the intensity
increases as the cube of the velocity of the neutrons em-
ployed. Therefore a shift, say, to multilayer mirrors with a
limiting velocity of reflection of 15 m/s, which already seems
now quite realistic, will yield a gain in intensity of almost an
order of magnitude.

6.6. Proposed possibilities of the neutron microscope

It seems opportune to try to elucidate the most essential
features of the neutron microscope based on very slow neu-
trons that determine its potentialities of application.

As is known, the neutron-optical properties of a medi-
um depend substantially on its nuclear (chemical) composi-
tion. In fact, the refractive index for a neutron wave is deter-
mined by Eq. (3.4),

3 Ny

nt=1—22—.
a

Here b, is the scattering length for the nuclei of different
types, and N, is the density of the corresponding nuclei. One
of the features of neutron optics is the lack of a monotonic
dependence of the scattering length on the atomic number or
nuclear charge, as occurs, e.g., for x-rays. Consequently sub-
stantial differences exist in the refractive indices, not only
for adjacent chemical elements, but also often for adjacent
isotopes of a single element. The coefficients of reflection
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and transmission of neutrons are associated with the value of
the refractive index. Therefore substances with differing but
similar chemical composition can sometimes differ substan-
tially in their neutron-optical properties. This difference can
consist in the value of the limiting energy or the value of the
refractive index. The value of the limiting energy can vary
from element to element severalfold, while remaining, as a
rule, of the order of 10~7 eV. This means that, for UCNs
having an energy of this same order of magnitude, the mag-
nitudes of the coefficient of reflection can differ substantially
for substances of differing chemical composition. Therefore
a neutron microscope with UCNs can show chemical con-
trast. This situation had been pointed out earlier.?**"*7! In
an ordinary microscope design the chemical contrast rapidly
declines with increasing neutron energy, since in this case
the material becomes almost completely transparent. Here
the refractive index in (3.4) approaches unity, although its
difference from unity is still quite substantial for very cold
neutrons with energies exceeding the limiting energy sever-
alfold. In this range of energies, it is not so much the coeffi-
cient of reflection, which is very small here, that depends on
the chemical composition, as the phase of the neutron wave
that has passed through the specimen [see (3.8)]. Appar-
ently, when one uses very cold neutrons (VCNs), one can
obtain chemical contrast only when one can apply to the
neutron microscope one of the phase-contrast schemes
known in ordinary optics. The difficulty consists in the fact
that the application of the known phase-contrast schemes to
a projecting neutron microscope substantially lowers the
collecting power of the instrument. Nevertheless we can
hope that a phase-contrast neutron microscope can be built.
An essential feature of a future neutron microscope is iso-
tope sensitivity, or isotope contrast. Apparently the circum-
stance that will have the greatest practical significance will
be the fact that the two stable isotopes of hydrogen have
strongly differing (even in sign) values of the coherent scat-
tering length. For hydrogen 6 = — 3.741, while for deuter-
ium b = 6.674 in units of 10~ ' cm. Therefore ordinary and
deuterated materials strongly differ in their limiting ener-
gies, or what is the same thing, in their values of the mean
scattering length. Thus, for ordinary and heavy water the
values of the mean scattering length are: 6 = 1.68 and 19.14
Fm. Upon deuteration, also more complicated organic mate-
rials change appreciably in neutron-optical properties. In
this regard we can hope that it will be possible in neutron-
microscopic study to use the method of an optical deuterium
marker.”” The negative scattering length of the proton dis-
tinguishes hydrogen from most other elements entering into
organic materials. This has the result that materials rather
similar in composition can differ appreciably in their neu-
tron-optical properties owing to differing hydrogen content.
This situation is illustrated by Table II, for which the data
are taken from Ref. 90. All of this gives grounds for assum-
ing that a neutron microscope can be especially useful in
biological studies.

As regards the resolution of the instrument, setting
aside the problem of the statistical potentialities of the
sources, we shall assume it to be limited by the wavelength.
Then, when one uses UCNs the resolution can be of the order
of 600-800 A, while upon going to VCNis it is severalfold
better. Thus, in resolution the neutron microscope can occu-
py an intermediate niche between the ordinary and the elec-
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TABLE II. Refractive indices of certain amino-acid residues for neutrons with three

velocities. *
Number Refractive index
of ex-
Amino acid Chemical :\:lde“gh\ v=3m/s v=20m/s v=50m/s
composition d{?f:" Ordi- | Deuter- | Ordi- | Deuter- Ordi- | Deuter-
o nary jated nary | ated nary ated
Glycine C,NOH, 1 0,692] 0,408 |0,9836| 0,9736 | 0,99739 | 0,69958
Alanine C,NOH, 1 0,8011 0,642 [0,9887 1 0,9815 | 0,99821 | (,99706
Valine C,NOH, 1 |0,890] 0,803 |0,9934] 09888 | 0,99895 | 0,99822
Leucine CNOHy; | 1 |0,913] 0842 |0,9948| 0,9909 | 0,99916 | 0,99853
Phenvlalanine CgNOII 1 0,770 0,701 [0,9872| 0,9840 | 0,99796 | 0,99745
) Y C,NO,H, 2 0,733 0,577 [0,9854| 0,9789 | 0,99768 | 0,99666
Tyrosine CiNOoHy | 2 0,702 0,563 |0,9840| 0,9784 | 0,99746 | 0,99658
Tryptophan C,NO;H, | 1 |0,570] 0,375 [0,9787| 0.972% | 0,99662 | 0,99569
Aspartic acid
Glutamic acid | C;NO,11g 1 0,738 0,564 }0,9857| 0,9785 | 0,99772 | 0,99659
?‘;}rr”e‘oemne C,NOH, | 2 |0,743| 0,363 |0,9859| 0.9725 | 0,99776 | 0,90504
. C,NO,H. 2 0,806 0,557 [0,9890| 0,9782 | 0,99825 | 0,99654
Asparagine CoN.O-Hg | 3 (0,699 1,169 [0,9839| 0,9692 | 0,99744 | 0,99513
Glutamine CiN,0.Hg | 3 |0.812| 0,441 [0.9893| 0,9745 | 0,99829 | 0.99506
Lysine CgN,OH 4 4 0,905| 0,890 [0,9943] 0,9794 | 0,99910 | 0,99674
Arginine C¢N,0Hy; | 6 |0,785|Imaginary{ 0,9879| 0,9659 | 0,99808 | 0,99462
Histidine CeN,OHg 5 | 1,5 ]0,639| 0,471 |0,9813] 0,9754 | 0,99703 | 0,99610
Methionine C;NOTI, 1 0,891 0,820 |0,9935] 0,9837 | 0,99897 | 0,99836
*The values of the refractive index in the deuterated case correspond to the case in which
all the exchangeable hydrogen atoms have been exchanged for deuterium with the solvent.

tron microscope, at the same time possessing substantially
new qualities.

The question of the choice of the range of neutron ener-
gies most suitable to use in microscopy will be solved in time,
starting with practical considerations. Both UCNs and
VCNs have their advantages and defects from this stand-
point. When one goes to faster neutrons the chemical con-
trast diminishes and it becomes impossible to use mirrors
with total reflection at normal incidence. However, as we
have already pointed out, here the intensity increases as the
cube of the velocity, while the wavelength decreases, which
enables one to obtain better resolution.

7. CONCLUSION

In closing the discussion of the problem of the neutron
microscope, we wish to present some results. Apparently as
the chief result of recent time one should view the change in
the psychology of physicists concerned with this and related
problems. From being a matter for the distant future, the
problem of the neutron microscope has now been brought
into the rank of practical problems.

A certain progress exists in the theoretical and compu-
tational sphere. The ways have been outlined for correcting
gravitational aberrations. More or less realistic microscope
projects have been appearing, with which one will be able to
obtain images of objects with a resolution characteristic of
light microscopes.

However, on the experimental level the advances have
been considerably more modest. The fundamental results
here are: focusing of very cold neutrons has been carried out
by using a lens and a zone plate. Here the resolution was of
the order of 50 um at a wavelength of 20 A. There is an
experiment on two-dimensional focusing of UCNs with a
resolution on the scale of 1 mm. Three experiments have
been performed on three-dimensional focusing of UCNs us-
ing a zone mirror, a multimirror instrument, and the neu-
tron microscope at Grenoble. A magnified image of a slit was
observed, with magnification ranging from 1.375X to 50X.
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A physically more essential characteristic is the resolution of
the instrument. In the stated experiments the resolution,
strictly speaking, was not measured, although apparently it
was no poorer than 100 um at a wavelength of 600-800 A.
The image was analyzed by scanning the detector with a
movable slit in the image plane or in the object plane.

Of course, it is substantially more advantageous to de-
sign optical experiments by using some type of position-sen-
sitive detector, rather than in a scanning geometry.

The numerical aperture in the experiments with VCNs
amounted to only 4 107%, so that the obtained resolution
exceeds the wave limit of this instrument in total by an order
of magnitude. In the experiments with UCNs the numerical
aperture was of the order of 0.2-0.3. The existing or project-
ed UCN sources already enable one to operate with resolu-
tions of the order several micrometers under the condition of
increasing the collecting power of the instrument, i.e., the
numerical aperture, and using a position-sensitive detector.
Thus the problem of building instruments with a resolution
of the order of the light microscope is actually a problem for
today.

A second problem to be solved consists in seeking prac-
tical methods of achieving chemical and isotope contrasts in
neutron-optical instruments. At present this problem is of
independent interest, and one can set up the appropriate ex-
periments even with instruments of lower resolution, but
possessing sufficient aperture. There are as yet no experi-
ments directed toward solving this problem.

In closing I wish to thank my colleagues S. S. Arzu-
manov, A. N. Strepetov, and S. V. Masalovich, with whom [
have had the satisfaction of collaborating in the field of in-
strumental neutron optics of UCNs, which is the topic of this
article. Of course, all the fundamental problems treated in
this paper have been discussed with them. I thank I. M.
Frank for numerous and fruitful discussions, and also P. A.
Krupchitskil, who took on himself the labor of reading the
manuscript and making a set of highly useful remarks.

I take the opportuity of acknowledging S. T. Belyaev
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FIG. 15. Image of an object recorded in neutron “light.” The dark regions
correspond to a nickel coating.

and L. I. Gurevich for supporting the work.

* k%

During the time of preparing this manuscript for publi-
cation several studies have appeared in print on the problem
of the neutron microscope or directly bearing on it. A brief
review of their content is given below.

An important event is the startup of two intense UCN
sources at Grenoble®® and Leningrad.”® The creation of
these sources enables performing studies on the practical op-
tics of UCNs on a completely new level. In Sec. 6.1 the pro-
posal was expressed of continuing the studies with the NM
described in Ref. 71 at a new source. Reference 94 has re-
ported the concrete plans of research with this instrument.
The same study reported an experiment on focusing VCNs
with a velocity of 10-13 m/s in a mirror optical instrument
with a multilayer interference coating, or supermirror. A
resolution of 230 um was obtained in the image plane.

Reference 95 has reported on an experiment performed
by a group from the I. V. Kurchatov Institute of Atomic
Energy using the LIYaF source.”® This experiment em-
ployed an image detector based on a scintillator sensitized to
UCN:Ss, with subsequent amplification of the light and re-
cording on photofilm. Here for the first time all the elements
of a neutron microscope were present: an object illuminated
with neutrons, an optical system forming an image in the
detector plane, and a detector visualizing the image. The
achromatic instrument was used whose design was discussed
in Sec. 5.5 and which is shown in Fig. 7. A two-dimensional
image was obtained of a cross-shaped diaphragm and of a
more complex object prepared by photolithography. A thin-
layer (2000 A) nickel pattern was deposited on a silicon
substrate, and its image in neutron rays is shown in Fig. 15.
Thus the existence of neutron contrast in UCN optics was
demonstrated. The resolution of the instrument is no poorer
than 100 gm.

A study®® has also appeared that discusses the possibili-
ties of neutron-microscopic investigations in biology.

""This is true if the trajectory does not pass through a focus and is not
reflected from a caustic. In the converse case one must take into account
an additional caustic phase shift.
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