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The theory of quantum effects in uniformly accelerated frames of reference and in a homogeneous
gravitational field is discussed. Ways of describing processes of excitation of, and radiation from,
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1. INTRODUCTION

In classical physics, the concept of empty space was
used; physically, this meant a certain spatial region devoid of
particles and fields. Such an empty space can be regarded as
a synonym for the vacuum of classical nonrelativistic phys-
ics. The “absolute space” introduced by Newton that “in its
own nature, without relation to anything external, remains
always similar and immovable,” played the role of an ideal
inertial frame of reference and simultaneously could be re-
garded as the realization of the classical vacuum. Using the
words of Einstein, “the idea of independent existence of
space and time could be expressed as follows: If matter were
to disappear, there would remain only space and time (a
kind of scene on which the physical phenomena unfold)”.'
However, a scene that is completely independent of mat-
ter—absolute space—is a metaphysical category, since it is
not known how physical reality is to be associated with it.
Therefore, in mechanics absolute space was actually re-
placed by practically realized inertial systems, in the first
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place, the astronomical frame of reference (the coordinate
origin in this system is placed at the center of mass of the
solar system, and the axes are directed to “fixed stars”; in
this connection, see, for example, Ref. 2 and the literature
quoted there). With the development of optics, electrody-
namics, and the field concept the ideas of an ether, which
had already been introduced earlier, came to the fore. The
ether was assumed to be a particular substance that fills all
space and through which the electromagnetic excitations
propagate. Ultimately, Lorentz was forced to assume that
the “parts of the ether are not displaced at all relative to each
other. Thus, theether appeared as the embodiment of a space
absolutely at rest.”?

The fate of this immobile ether was, however, the same
as that of Newton’s absolute space; for the ether could not be
given any physical content unless one considers the possibil-
ity of regarding the ether as an inertial frame of reference. In
fact, the special theory of relativity legitimized this point of
view—in the framework of special relativity one can assume
that “the ether does not exist at all. Electromagnetic fields
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are not the states of a certain medium but independently
existing realities that cannot be reduced to anything else and
which, like the atoms of ponderable matter, are not associat-
ed with any carriers.”® Therefore, it was usually accepted
that special relativity had driven the ether out of physics,
and the very word “ether” is not used in the modern litera-
ture. Against this one should not object, since the old con-
cept of the ether was, one may say, discredited. However, the
creation of special relativity by no means led to the disap-
pearance of the notion of empty space or of inertial frames of
reference different from noninertial systems. Einstein actu-
ally attempted to rehabilitate or, rather, reanimate the
expression “ether,” making it more precise. Thus, already in
the speech we have quoted, “Ather und Relativititstheorie,”
given in 1920, he said: ‘““However, closer examination shows
that the special theory of relativity does not require an un-
conditional rejection of the ether. One can accept the exis-
tence of an ether, but one must not worry about ascribing it a
definite state of motion; in other words, abstracting, one
must remove from it the last mechanical property that Lor-
entz left it.” This idea is clarified in the same speech: “With
regard to the mechanical nature of the Lorentz ether, one
could say jokingly that Lorentz left it only one mechanical
property—immobility. To this one may add that the only
change introduced by the special theory of relativity in the
concept of the ether was to deprive the ether of this, its last
mechanical property.”

Of course, the name is not the point. The expression
“ether” was simply replaced by the term ‘“‘vacuum” or
“physical vacuum.” As we have already emphasized, it is not
possible to get by without this concept even in classical phys-
ics, especially when the part played by the gravitational field
is taken into account. It is for this reason, as one can hardly
doubt, that Einstein returned after the creation of the gen-
eral theory of relativity to a discussion of the concept of the
ether.’ Instead of presenting the situation with our own
words, we again return here to the same talk of Einstein,
since what he said there is still perfectly accurate today; si-
multaneously, we achieve historical authenticity. Thus, ac-
cording to general relativity, ‘“‘the metrical properties of the
space-time continuum in the neighborhood of individual
space-time points are different and depend on the matter
distribution outside the considered region. The idea of physi-
cally empty space is definitively eliminated by such space-
time variability of scales and clocks. Accordingly, the recog-
nition of the fact that “empty space” is not homogeneous
and isotropic in the physical respect forces us to describe its
state by means of ten functions—the gravitational potentials
g,..- But then the concept of the ether again acquires a cer-
tain content, which is quite different from the content of the
ether concept in the mechanical theory of light. The ether of
general relativity is a medium that by itself is devoid of al/
mechanical and kinematic properties but at the same time
determines mechanical (and electromagnetic) processes.”
The general conclusion is as follows: “Summarizing, one can
say that the general theory of relativity equips space with
physical properties; thus, in this sense the ether exists. Ac-
cording to the general theory of relativity, space is unthink-
able without the ether; indeed, in such a space not only
would the propagation of light be impossible but there could
not exist scales and clocks and there would not be any space-
time distances in the physical sense of the word.””?
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Thus, although the expression “‘ether” was not re-
tained, the concept of the physical vacuum that replaced it
was already needed in prequantum physics. We believe it is
appropriate to emphasize this circumstance not only in con-
nection with the content of the present paper but also in view
of the currently widespread identification of the physical
vacuum with the physical vacuum of quantum field theory.?
However, the profound changes introduced into the concept
of the physical vacuum by the creation of quantum field the-
ory are in no doubt.® It is important that they already affect
the physical vacuum in inertial frames of reference or, in
other words, in Minkowski space-time, when gy,o = — 1,8

=46, (5j=123) and, in the widespread terminology,

gravitational fields are absent (the meaning of this last asser-
tion is well known—we are speaking of constancy of g,,, ,
i.e.,, homogeneity and isotropy of space-time). Already in
Minkowski space-time the quantum vacuum is, in the gra-
phic expression of I. Ya. Pomeranchuk, a “boiling operator
liquid.” Indeed, defining the vacuum as the lowest energy
state in which all real particles (photons, electron-positron
pairs e e, etc.) are absent, we know that in this state the
fields are by no means zero but fluctuate around zero mean
values; these fluctuations are the zero-point vibrations of the
free fields. For interacting fields, one can speak of virtual
photons, virtual ee™ pairs, etc.

The idea of the zero-point vibrations of the quantum
fields, which is already about 60 years old, is now well
known. Nevertheless, bearing in mind the nature and aim of
the present paper, which is basically intended for nonspecia-
lists, it seems appropriate to recall some elementary facts
and estimates. The energy of a zero-point vibration of the
electromagnetic field corresponding to the “mode” (normal
vibration) with frequency w is* #w/2, and the spectrum of
these vibrations in the interval dw is proportional to #ic dew.
The transition to other inertial systems, i.e., a Lorentz trans-
formation, does not change the spectrum of zero-point vi-
brations (see, for example, Ref. 6), asis necessary. The zero-
point vibrations are perfectly real—they lead to the
appearance of forces between bodies, to a change in the ener-
gy of their interaction. We are speaking here of van der
Waals forces (see Ref. 7 and the literature given there), the
best known being the attraction, already considered in 1948,
between two perfectly conducting plates separated by an
empty gap.® The existence of the zero-point vibrations is un-
doubtedly an exceptionally important and fundamental fea-
ture of quantum theory. It is true that this circumstance in
conjunction with the fact that in the classical and quantum
theories different approaches and methods are often used
leads sometimes to confusion. For example, it is fairly widely
believed that the spontaneous emission of light is due to the
zero-point vibrations of the electromagnetic field, but this is
incorrect.’

The concept and, one may say, content of the physical
vacuum in quantum theory becomes even richer when one
takes into account the interaction between fields, in particu-
lar, between the electromagnetic field and charged particles,
i.e., in a different language, between the electromagnetic and
electron-positron fields). Concretely, this interaction leads
to the existence in the vacuum of virtual electron-positron

(e~e™) pairs, which are continually appearing and being
annihilated. The presence of these pairs immediately enables
us to understand the existence of electric polarization of the
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vacuum and, generally, the influence of the vacuum of exter-
nal electromagnetic fields. In such fields, the vacuum be-
haves like a nonlinear birefringent medium (the birefrin-
gence, i.e., the anisotropy of the optical properties, is
obviously related to the existence of a distinguished direc-
tion—the direction of the external field ). The heuristic rich-
ness of the notion of virtual electron-positron pairs can be
demonstrated by an example. In a strong magnetic field the
vacuum becomes, as we have said, birefringent, though there
is no magnetic activity despite the fact that any medium in an
external magnetic field in general becomes magnetoactive.
The explanation is, obviously, that the vacuum contains the
same number of virtual electrons (e~ ) and positrons (e*).
These particles are rotated by the magnetic field in opposite
directions, and the vacuum is similar to an exceptional medi-
um like an e e™* plasma (with equal concentrations of e~
and e ), which is not magnetoactive but is birefringent.

An electromagnetic field, acting on the vacuum, may
lead to the transformation of virtual e“e™ pairs into real
pairs, i.e., to the creation of electrons and positrons. As ex-
amples of such processes we can take the production of e e ™
pairs when there is scattering of a photon (with frequency
fiv>2mc?, where m is the mass of the electron and positron)
by a Coulomb center or two photons collide. In the latter
case, the reaction threshold is fiw = mc?, where w is the fre-
quency of each of the photons in the center-of-mass system.
Pairs can also be created in an external static electric field E.
In the absence of an external field, the components e~ and
e of a virtual pair are usually at distances [/ =#/
mec = 3.86-10"'! cm. The probability of finding them at a
separation /> /, is suppressed by a factor exp( — ///_.). The
pair creation process takes place fairly strongly if EX E,,
where E, = mc®/el.. The meaning of the expression for E,, is
obvious; for over the distance /. the field E, does work mc?
on an electron (or positron). In fields E € E,, the probability
of pair creation decreases in accordance with the law
exp( — TEy/E).

Before we turn to the direct subject of the present paper,
we make some general remarks about quantum effects in the
gravitational field. We are here speaking exclusively about a
classical gravitational field, described moreover by the equa-
tions of general relativity (and not by some other theory of
the gravitational field not yet excluded in principle). The
neglect of quantum effects is admissible if the characteristic
radius of curvature of space-time is much greater than the
Planck length /, = (G#/c*)"/? = 1.6-107** cm, and there-
fore the effect of vacuum polarization by the gravitational
field can be ignored. Also, we shall not consider space-time
regions on the Planck scales /~/,, t~t, = [, /c, in which the
fluctuations of the gravitational field itself are large. '®!>%

Itis clear that a variable gravitational field can, general-
ly speaking, create particle pairs from the vacuum. Assum-
ing that the gravitational field is weak, we may make some
remarks using a simple language. For example, the threshold
of e~e* pair creation for collision of two gravitons is
fiw = mc?, where  is the graviton frequency. Pair creation
by a variable gravitational field may play an important part
in cosmology.'*"*

We now consider the effect of a constant gravitational
field on virtual e"e™ pairs. If the gravitational field is homo-
geneous, it cannot generate pairs, since the electron and pos-
itron will move in the same direction. Pairs can be created
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only by the tidal effect, i.e., in an inhomogeneous field. If g is
the acceleration of free fall in a gravitational field, and L is
the characteristic scale of its inhomogeneity, then the differ-
ence between the forces that act on e~ and e* is of order
f~mgl. /L, and the condition for creation, determined from
the equation fI, ~ mc?, has the form g/L ~c*/12.
To be specific, we consider the creation of e ~e™ pairs by
a nonrotating (Schwarzschild) black hole with mass M. Ifa
particle of mass m (in the given case, e~ or e™) is to be able
to escape from the neighborhood of a black hole “to infin-
ity,” an energy & >mc> must obviously be expended. This
energy can be obtained if one of the components of the sepa-
rated virtual pair “is created” within the gravitational radius
(atr<r,=2GM /c* = 1.48-10** (M,g) cm = 3M /M, km
or, as one usually says, below the event horizon). This parti-
cle is absorbed by the black hole and thus does work, while
the other component of the pair, using this energy, escapes
from the hole. For the region outside the black hole to which
such escape of the particle is possible, the maximal value of
the quantity g/L which occurs in the condition of creation is
of order ¢*/r%. Therefore, one can expect intense production
by a black hole of particles with a certain mass m only when
rg S 1. = #i/mc. For black holes with large mass, the creation
probability will be exponentially suppressed. For massless
quanta whose frequency at infinity is » the condition of cre-
ation can be obtained if /. is replaced by A /27 = ¢/w. In
other words, a black hole can create particles predominantly
with energy & ~fic/r, = fic’/2GM. Such energy corre-
sponds to a temperature

T,, ~ Eki' ~ he® (2GMEp)™, (1.1)

where kg is Boltzmann’s constant.

These arguments and estimates appear to us as rather
convincing evidence that when allowance is made for the
quantization of the electromagnetic and other fields black
holes must radiate photons and the “quanta’” of these fields.
Of course, this is a quantum effect, as is clear not only from
the essence of the matter but also from the appearance of the
quantum constant # in the expression (1.1) for T, . There
are other ways of justifying this conclusion; this question is
examined more accurately and in more detail in, for exam-
ple, Ref. 16. The conclusion of quantum “‘evaporation” of
black holes was first drawn by Hawking in 1974, and it was
then unexpected. The calculations show that a Schwarzs-
child black hole with mass M radiates as a black body with
temperature

fic3

Ton = BkpGAT

ar
~ 107 52 R. (1.2)
There is no doubt that this result of Hawking was a great
achievement of theoretical physics.

The estimate (1.1) given above agrees with the exact
expression for the temperature (1.2) of the Hawking radi-
ation apart from a factor 1/4.

The field of a Schwarzschild black hole is empty and is a
very important but special example of a gravitational field. It
is clear that creation of various particles and, generally,
quantum effects (in particular, vacuum polarization) will
occur in general in all gravitational fields. Among such
fields, a homogeneous gravitational field constant in time
occupies a distinguished place. In such a field, all physical
processes and phenomena occur in exactly the same way as
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in a uniformly accelerated frame of reference without any
fields—this is the content of the equivalence principle, the
basis of general relativity. How are quantum effects mani-
fested in a homogeneous and constant gravitational field and
how must we formulate the equivalence principle in the
quantum domain? The fact that such a question is meaning-
ful is already clear; for it is sufficient to point out that the
Minkowski vacuum, which is invariant with respect to Lor-
entz transformations, as we have already said, is not invar-
iant on the transition to an accelerated frame of reference.
On the other hand, a homogeneous gravitational field is
clearly distinguished, for in it there are no tidal forces and
therefore e e ™ pairs will not be created.

A large number of studies, to which references will be
given below in Sec. 2.3, has been devoted to the quantization
of various fields in a uniformly accelerated coordinate sys-
tem. We shall already mention here the result obtained by
Unruh in 1976, namely, it was found that a “detector”
(atom, oscillator, etc.) at rest in a uniformly accelerated
frame of reference will be excited in the same way as if it were
in a thermal bath (or a field of thermal radiation) with tem-
perature

T, = ha (2nkge)t, (1.3)

where a is the constant acceleration of the system with re-
spect to an inertial frame.

The expression (1.3) goes over into (1.2) if as accelera-
tion we take the acceleration (“intensity’’ of the gravitation-
al field) characteristic of a black hole—the so-called surface
gravity of the black hole®:

- (1.4)

The excitation of a “detector” at rest in a uniformly
accelerated frame of reference is in some way related to the
quantum radiation of black holes and has attracted much
interest (see, for example, the book of Ref. 19, the reviews of
Refs. 20-22, and the references given in them). The reason
for the excitation of an accelerated “detector” and the na-
ture of the change that this excitation induces in the state of
the quantized field (massive or massless scalar field, electro-
magnetic field, etc.) that interacts with the detector are still
being discussed and, it seems to us, the necessary clarity was
not achieved until recently. Significant progress in under-
standing was reached in 1984 in Ref. 23, in which the excita-
tion of a detector that is moving with uniform acceleration in
Minkowski space was treated in an inertial frame of refer-
ence. It was found that the excitation of a “detector” that,
say, initially is in its ground state in the Minkowski vacuum,
i.e., in the absence of real quanta of the considered field, is
accompanied by emission of a field quantum. Such a pro-
cess—excitation with emission—is somewhat unusual and
requires clarification. It is also necessary to explain the fact
that the “detector” is excited with a thermal distribution
with respect to its levels, the corresponding temperature be-
ing T, = fia/2wkyc. The authors of the present paper point-
ed out that excitation with emission has long been known in
the example of the so-called anomalous Doppler effect. In
the case of an accelerated ““detector,” the situation is analo-
gous and fully comprehensible. The reason for the excita-
tion, characterized precisely by the temperature T, is also
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fairly clear—this result is due to fulfillment of the equiv-
alence principle.

In the present paper we shall consider both these
aspects, and we shall make a number of calculations.® This
in fact is the aim of our paper. To prevent these calculations
from obscuring the essence of the matter, we shall already
note here the following. We shall consider a certain “detec-
tor’—an atom, oscillator, etc.—with discrete levels in three
frames of reference: inertial, uniformly accelerated, and at
rest in a homogeneous gravitational field. It is obvious that if
the detector is in some level J, then the energy E, of this level
in the different frames of reference is different, but the actual
fact of the detector’s being in precisely level i does not de-
pend on the frame of reference. The same applies to the dis-
tribution of an ensemble of identical detectors over their lev-
els. Further, suppose that the considered detector in an
inertial system has a certain constant acceleration a, and that
the velocity of the detector is v = O at the time ¢ = 0. Then in
a uniformly accelerated frame of reference, with accelera-
tion a with respect to the inertial frame, the acceleration of
the detector will always be zero, and its velocity can also be
taken to be zero. For the distribution of the detector over the
levels, it is clear from what we have said that the calculations
“from the point of view” of the inertial or uniformly acceler-
ated frames of reference must lead to the same result. How-
ever, in the given case it was found that in a number of cases
the use of the accelerated frame of reference leads more read-
ily to the goal; in such a system one can more readily, and,
moreover, in more general form, reach the conclusion that
the distribution function of the detector is thermal (Boltz-
mann), and with the temperature (1.3). Similarly, to de-
scribe the behavior of the detector at rest in a homogeneous
gravitational field it is convenient to use a frame of reference
at rest in this field. To show the validity of this, in Sec. 2 we
shall quantize a field in flat space-time (in Minkowski
space) in the inertial and uniformly accelerated frames of
reference, and also in a homogeneous gravitational field.
Then, in Sec. 3, we consider the behavior of a uniformly
accelerated detector and a detector at rest in a homogeneous
gravitational field in frames of reference with respect to
which these detectors are at rest. In Sec. 4, the processes of
excitation and emission of a uniformly accelerated detector
are considered in an inertial frame of reference. In Sec. 5, we
consider the excitation of a detector that is moving in a medi-
um with constant but superluminal velocity, when the
Doppler effect is both normal and anomalous. Finally, in
Sec. 6 we shall discuss the equivalence principle when
allowance is made for quantum phenomena.

2. THE VACUUM IN MINKOWSKI SPACE-TIME TREATED IN
INERTIAL AND UNIFORMLY ACCELERATED FRAMES OF
REFERENCE. THE VACUUM IN A STATIC HOMOGENEOUS
GRAVITATIONAL FIELD

2.1. Quantum field theory iIn an inertial frame of reference

The theory of free (i.e., noninteracting) quantum fields
in Minkowski space has been treated in many textbooks
(see, for example, Refs. 26 and 27). We here recall briefly
only some of the main points of this theory in the simplest
example of a scalar massless field.

We shall assume that we know a certain inertial frame
of reference, and, abstracting somewhat, we can speak of a
realization of Minkowski space, in which we shall work (it
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would be inappropriate to discuss this question at the classi-
cal level in more detail; for the literature, see, for example,
Ref. 2). The position of any particle with respect to this
inertial frame of reference can be characterized by the Carte-
sian coordinates X* = (¢T, X, Y, Z). In these coordinates,
the element of length ds* between two events X* and X*
+ dX* can be expressed in the form (we use notation in
which the Greek indices take the values 0, 1, 2, 3, the Latin
indices 1, 2, 3)

ds? = 1,, dX"dX = —c* dT? + dX® + dY? + dZ% (2.1)

For brevity, we shall sometimes call such an inertial system
an I system, and the Cartesian coordinates X* the coordi-
nates associated with the I system.

In the Minkowski space, the scalar massless field @ is
described by the equation

0__9_ -0, (2.2)

= nuv .
Hoe=n ax* oxv

The general solution of Eq. (2.2) can be expressed in
the form

¢ (X)={ % [Pk (X) ax + Di (X) af], 2.3)

where ®, (X) = ®, (X), k* = (0, /¢,k),0 = c|k|, and

Dy (X) = e~ 10Td, (X) = B2 [(2m)°- 205 ] V2 ™™ (2.4)

are the positive-frequency solutions of Eq. (2.2), and the bar
denotes complex conjugation. One can say that the functions
®, (X) correspond to the negative frequencies — w, . In the
classical theory, a, and a} = @, are complex conjugate
functions; in the quantum theory &, and af = (4, )* are
Hermitian-conjugate operators satisfying the commutation
relations

[ax. af]=axal —af-ax — 8 (k— k'),
(2.5)

{ak, ax]=[af, ag]=0.

The state of a field described by the vector |0; M) in
Hilbert space determined by the relations

cxl0; My =0, (2.6)

is the state with the lowest energy. All the remaining states,
which arise from the action of the operators ¥ on |0; M ),
have a higher energy and describe “excitations’ of the sys-
tem. The state |0; M ), in which there are no excitations, is
called the vacuum. The states |1,; M )=a}|0; M) corre-
spond to single-particle states, for which there is in the Min-
kowski space one quantum of the field ¢ possessing energy
fiw,, and momentum #k and described by the wave function
@, (X) = (0; M |p(X)|1,; M ). The many-particlestates are
interpreted similarly. The operators ajf and &, are called the
operators of creation and annihilation of particles in the
states P, (X).

One can show that the scheme of quantization we have
described and, in particular, the choice of the vacuum are
Poincaré invariant, i.e., do not depend on the particular
choice of the original inertial frame of reference. The vacu-
um |0; M ) is not changed if one uses instead of the plane-
wave expansion (2.4) an expansion with respect to any other
complete system of solutions of Eq. (2.2) provided that
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these solutions are, as before, taken to be positive-frequency
solutions with respect to the time 7 in the inertial frame of
reference. Of course, the solutions themselves can be ex-
pressed in any, not necessarily Cartesian coordinates. The
use of basis solutions that have positive frequency with re-
spect to the time 7 guarantees that the corresponding vacu-
um is the state of the system with lowest energy and, there-
fore, is identical to the Minkowski vacuum |0; M }.”

It is quite a different matter if, using a curvilinear four-
dimensional system of coordinates x* in which x° depends
nonlinearly on X ° = ¢T, we make an expansion with respect
to positive- and negative-frequency solutions with respect to
x°. For such quantization, which corresponds under certain
conditions to quantization in noninertial frames of refer-
ence, the results (in particular, the choice of the vacuum)
are different from those described above corresponding to
quantization in inertial frames of reference. We shall discuss
this in more detail in Sec. 2.3.

2.2. Uniformly accelerated frame of reference and frame of
reference at rest in a homogeneous gravitational field

We now describe the properties of the simplest noniner-
tial frame of reference, namely, a frame that is uniformly
accelerated with respect to an inertial frame. To this end, we
introduce in Minkowski space new coordinates x*
= (7, p.y,z) related to the Cartesian coordinates X
=(cT, X, Y,2Z) by®

cT =pshy, X =pchy, Y=y Z=12z (2.7)

These new coordinates cover the part R, of Minkowski
space in which X > ¢| T |. The two null planes #°* (X = ¢T)
and # (X = — cT) form the boundary of R , . The coordi-
nate lines 77(p,p,z = const) are hyperbolas, the asymptotes
to which are null lines on S#* and #°~ (Fig. 1). Suppose
that along such a coordinate line 1 there moves a certain
particle. For such a particle, the parameter 7 is related to its
proper time 7 by [see (2.9) below] 7=pnc~', and its 4-
velocity #* and 4-acceleration a* in the coordinates X* are

ut == (c ch v, ¢shy, 0, 0), (2.8)

a* = (¢ tshm, ¢ 'chn, 0,0).

In other words, in the inertial frame of reference such a parti-
cle moves with an acceleration directed along the X axis, the

cr
N i
N 4
\\
A

FIG. 1. Minkowski space-time. The curve ¥, is the world line of a uni-
formly accelerated particle moving along the X axis; #°* are the null
planes described by the equations ¢7 F X = 0, which divide the complete
space-time into four regions: R,, R _, T, and T_, in each of which
corresponding Rindler coordinates can be introduced. The uniformly ac-
celerated (A) coordinate system associated with the y, particle covers the
region R .
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magnitude of the acceleration, a=|a,a,|"? = c’p~!, being
constant (uniformly accelerated motion). Charged particles
move, for example, along such trajectories in a homogeneous
constant electric field if their velocity is directed along the
field.”

With such a particle, one can associate a rigid uniformly
accelerated frame of reference. Namely, suppose that the
particle “carries” a standard clock and that to it are attached
three rigid rulers directed along the axes X, Y, and Z. The
rigidity of the rulers means that their length measured in the
frame of reference of the uniformly accelerated particle does
not change with the time. In the considered situation, it is
not difficult to formulate necessary and sufficient conditions
for rigidity of bodies. Indeed, we fix the position X4 of the
particle at the time 7,. Then it is easy to show that the locus
of the points (events) X* simultaneous with X4 from the
point of view of the accelerated observer coincides with the
plane that passes through X 5 and through the “line” p = 0;
this plane is described by the equation % = 7, (see Fig. 1). If
x*(n) are the coordinates of the end of a ruler whose zero
point is fixed at the particle (xf (7)), then its length / is

L=1Mp — po)® + (¥ — y0)® + (32 — 2y

Therefore, if the world lines that describe the beginning and
end of the ruler coincide with the coordinate lines of the time
7, then the length of such a ruler is constant and it is rigid. In
other words, physical rigidity in the considered case is equiv-
alent to “coordinate” rigidity, i.e., constancy of the coordi-
nates p, y, z of the beginning and end of the ruler; the frame of
reference we have introduced is nonrotating.

One can say that the system of coordinates x* is a ca-
nonical realization of a uniformly accelerated frame of refer-
ence in the sense in which the Cartesian system of coordi-
nates X* is associated with the inertial frame of reference.
For brevity, we shall refer to this uniformly accelerated co-
ordinate system as the A system.

We also draw attention here to a fairly important prop-
erty of rigid accelerated moving bodies (rulers, etc.)—dif-
ferent points of them move with different accelerations. To
see this, it is sufficient to consider two points of the body
possessing different coordinates p. The points with larger p
move with smaller acceleration. This leads, in particular, to
the consequence that the maximal length of a rigid acceler-
ated body in the direction opposite to the acceleration, mea-
sured from a chosen point moving with acceleration e, can-
not exceed c’a ' (c®a~'is the distance in the system A from
the hyperbola to the coordinate origin; see Fig. 1). To avoid
confusion, we emphasize that by the acceleration of some
uniformly accelerated frame of reference we always mean
the acceleration a of the particle with which this system is
associated; when considering accelerated bodies (atoms,
etc.), we shall assume that their lengths in the direction de-
termined by the acceleration vectors a are much less than
cta="'.

Having in mind the discussion below (in Sec. 6) of the
equivalence principle in connection with quantum effects in
accelerated frames of reference, we also describe here the
frame of reference at rest in a homogeneous static gravita-
tional field (for a more detailed discussion of this question,
see, for example, Refs. 28-31). We note first of all that the
line element (2.1) takes in the coordinates x* the form
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dS? = g,, da# dz¥ = —p? dn® + dp? + d2? + dy2 (2.9)

It can be assumed that this metric g,,, describes a static ho-
mogeneous gravitational field. Instead of p and 7 one fre-
quently uses the associated coordinates x = p — c¢’a~" and
7 =cna~!, in terms of which the metric (2.9) becomes

ds? = —(1 + c~%az)? ¢® dt? + d2? + dy? + dz2.(2.10)

A body at rest under the influence of certain ‘‘external
forces” at the pointx =0 (p = c2a~') has in this static grav-
itational field a 4-acceleration equal to a. Therefore,

= — ais the acceleration of free fall at this point with re-
spect to the chosen body at rest. In the Newtonian approxi-
mation, when |@ |/c*<1,

—go0 =1 + 2¢-%, 2.11)

where @ is the Newtonian potential. Comparing (2.10) with
(2.11), we see that the metric (2.10) corresponds to the case
of a homogeneous gravitational field in the Newtonian ap-
proximation with potential

¢o=—gr=\glz, r=(2y, 2). (2.12)

With a body at rest at the point (p,y,z) we can associate a
rigid frame of reference in exactly the same way that we did
for the uniformly accelerated particle. We shall call this
frame of reference the frame of reference at rest in the homo-
geneous static gravitational field or, abbreviated, G system.

The significance of the G system is particularly clear in
the case when the static gravitational field is created by a
massive gravitating body. For example, we can consider the
gravitational field near the surface of the Earth, Sun, a neu-
tron star, etc. In a region with dimensions /€L, where L is
the characteristic radius of curvature of the space-time, we
can use the metric (2.10) to describe the gravitational field
of a massive source of this kind, and the G system is distin-
guished by the property that it is at rest relative to the surface
of the massive body (for example, a neutron star).

It is not difficult to introduce coordinates analogous to
(2.7) in the three remaining quadrants of M: R_, T, and
T_ (see Fig. 1). The connection between these coordinates
(which we shall also denote by 7, p,y,z) and the Cartesian
coordinates in all four regions can be written in the form

cT =epshn, X =e¢epchn, . .

Y =y, Z—z } inR;: eX>c|T|
¢T =¢epchm, X =epshn, . .

Y=y Z=12 } in Tg eeT>|X |,

(2.13)

where € = 4+ 1. The coordinates (7, p,y,z) were used by
Rindler,* and they are usually called Rindler coordinates.
To shifts 7— 7 + ¥ in these coordinates there correspond
Lorentz transformations in the Minkowski space of the form

¢T" =cTchy - Xshy, X =c¢Tshy+ Xch

(2.14)

These transformations are symmetry transformations, and
according to Noether’s theorem, a definite conservation law
corresponds to them. In the considered case, the correspond-
ing conserved quantity, which is often called the Rindler
energy (we denote it by K), can be written in the form

V.L.Ginzburgand V. P. Frolov 1078



j-Tpdz

n= const
R

K=K® 4+ KO, K@= (2.15)

where T, is the energy-momentum tensor of the field.

2.3. Quantum fleid theory in a uniformly accelerated frame of
reference

A large number of studies has been devoted to the con-
struction of the quantum theory of physical fields in a uni-
formly accelerated frame of reference; among these, we men-
tion Refs. 18-23 and Refs. 32—45 (some further references
will be given below).

Following the plan of our exposition, we now consider
the main points of quantum field theory in a uniformly accel-
erated frame of reference, taking the example of the scalar
massless field . Let x* = (7, p,,2) be Rindler coordinates
covering the region R, (¢ = + ), their connection with the
Cartesian coordinates being given by (2.13). It is easy to
show that the functions

g () = e~V U q (1),

. Jiy1/2shl/2(:
Usql2)= (f) /_s%em% (9p)

v =0,
’ (2.16)

are solutions of the equation Og = 0 in the region R, . [For
convenience here and below we use the following notation:
z= (y,z) is a two-dimensional vector in the y, z plane,
9=1(9,4.), 2=,y + 4.2, 9= (g, +¢2)"}, K, (£) is a
Macdonald function. ] For real values of vand £ the function
K, (&) is real and satisfies the condition K _,, (£) = K, (£).
Note that in R , the Rindler frequency v is related to the
normal frequency o in the uniformly accelerated (with ac-
celeration @) frame of reference (i.e., to the frequency w
relative to the standard clocks in this system) by
o = gave™ ', It is obvious that the solutions which we have
introduced have positive frequency with respect to the prop-
er time 7 = ecypa~ ' in this frame of reference.

The functions u{;"’ defined by (2.16) in the region R ,
can be extended to the complete Minkowski space M as solu-
tions of the equation Og = 0 by requiring that in R _ these
solutions vanish. Similarly, assuming that #{; ’=0in R,
we can define in M the solutions u; ’.

Using the basis functions that we have introduced—
they form a complete system'”—we can write down an ex-
pansion of the operator @ with respect to them in the form

(Ap (x) = Z \ dv “. dg [u(f(; (2) ZA)‘IN, fu(\s,j(L')l;(\g(;* , (2.17)

F-Lt)

where ;) = ul7 . It is sometimes convenient (and we shall
use this) to denote the set of indices vq by the collective
index J and use the notation

oo

2 = \ dv \ dg. S8, =0(v—v)6(1—q'). (2.18)
J U *
In this notation, (2.17) takes the form
G @)= S S Wl @0 i 05, (2.19)
£

It is easy to see that the operators b (* and b { satisfy the
standard commutation relations for creation and annihila-
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tion operators:
[Z)w) l;(e”)*
[Z (F/ b(E )]

- 6&&’6.}J’v

. (2.20)
09, b =0,

Note that although we have particularized to the scalar
massless field, relations of the form (2.19)-(2.20) also hold
for other boson fields except that @, u$?, and u§* are not
scalar but vector or tensor functions satisfying appropriate
field equations, and the index J contains not only v and q but
also additional quantum numbers (for example, for massless
fields with nonzero spin there is the helicity).

By means of the expansion (2.19) we can show that the
operator K corresponding to the Rindler energy K [see
(2.15)] can be written in the form

N oevdE e,
7

K—=K® - RO K@ — (2.21)

Finally, we define the Rindler vacuum |0; R ) as the state in
which there are no Rindler quanta:

H®)0; Ry=0 (2.22)

The complete Fock space H of the Rindler states arises by
applying the creation operators b (7% of the Rindler parti-
clesto |O; R ).

For points x lying in one of the regions R, (to be specif-
ic, we shall assume, for example, that this is the region R, ),
it is sufficient in the expansion of the operator @(x) to make
a restriction to the terms for which £ has the corresponding
sign ( + ). Accordingly, we can define the state [0; R, ) by
therelations b *’|0; R, ) =0 and construct the Fock space
H'"'by applying the operators b+ *t0|0;R , ). The opera-
tor K’ can be regarded as the Hamiltonian in this state
space. The space H '’ and Hamiltonian K '~ are constructed
similarly. The complete Fock state space H is, as the math-
ematicians say, the tensor product of the spaces H‘*’ and
H'™. Accordingly, we shall sometimes write the Rindler
vacuum |0; R ) in the form {O; R) = |0; R, )|0; R_).

Our systems of functions u{®’, #}® can be expanded
with respect to the plane waves (2.4). The converse is also
true—the plane waves (2.4) can be expressed in the form of
expansions with respect to the Rindler modes. Using these
expansions and the representations (2.13) and (2.17) for
the operator @, we can establish a connection between the
operators &, and &¥, on the one hand, and the operators & {*’
and IAJ}”’*, on the other. This connection has a relatively
complicated form, and we shall not give the explicit expres-
sions here (they can be found, for example, in Ref. 21). We
merely note here that the vacuum |0; M ), which is deter-
mined in the inertial frame of reference by Eqs. (2.6), satis-
fies the equations

(%72 BE) — e~ v/2 o) 105 ATy =0 (2.23)

these holding both for e = 4+ as well as for e= — . To
prove this, it is sufficient to show that the functions

/2 u(\gq)[ . e—ﬂ\‘/'ZE(\.:IE)
when expanded with respect to the plane waves (2.4) con-
tain only positive frequencies with respect to the time T in
the inertial frame of reference (for more details about this,
see Ref. 21).
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Therelation (2.23) shows that the ordinary vacuum |0;
M) in Minkowski space [see (2.6)] is not identical to the
Rindler vacuum |0; R) [see (2.22)]. Moreover, (2.23)
makes it possible to find an expansion of |0; M ) with respect
to a basis of many-particle Rindler states. Namely, one can
show that?'

oo

H Z cse” ™" nyy Royngs RO,

J n;=0

|0; M) =

¢y = (1 — e—?..nv)—i/z.

(2.24)

To describe physically measurable quantities, one con-
siders, in particular, the expectation values of operators that
describe observables in the chosen quantum state. Let Q be
such an operator and consider (Q Y= (M; O|Q |0; M), ie.,
the expectation value of an the Minkowski vacuum. The
usual way of calculating (Q ) s consists of replacing the op-
erator cp, on which Q depends (we assume that Q is a func-
tion of @), by its expansion (2.3) with subsequent use of the
commutation relations (2.5). However, one can also pro-
ceed differently, using a different basis—the Rindler basis;
for this, it is necessary to use the expansion (2.19), the com-
mutation relations (2.20), and the expression (2.24) for |0;
M ). Of course, the results of these two calculations of (Q Y u
are identical. However, let us consider in somewhat more
detail the second method of calculation in the special case
when the operator Q Q (+) of the observable does not de-
pend on the values of the field § (x) outs:de the region R
is obvious that then the observable Q‘*’ depends only on
b ¢+ and b$*’* and does not contain a dependence on
b (- and b {~*. This enables us, after replacement of |0
M ) by theexpression (2.24), to carry out a partial averaging
over the In;; R_) states. As a result of this, the expression
for (Q*),, is reduced to the form'"

(Q(”)M = Sp(+) (PH Q“)).- (2.25)
where
6(+):p0e‘2"1}(+)5 poe_;(‘(‘”/h T (2.26)

where 1?,‘,*’ =fzac"1?‘+’, K™ is the operator of the
(2.21), po= H[l — exp

X ( — 2mv,;)] is a normalization constant, and T,, is given
by

Rindler energy defined by

ha

Ta= 2nkpe

(2.27)
The operation of taking the trace in (2.25) is done in the
space H ).

We emphasize that the appearance of the density matrix
p'*in the problem of calculating the expectation values of
the operator Q “)in the pure state |0; M ) is due to the fact
that the chosen observable Q ‘*)actually depends only on the
states of a distinguished subsystem of the considered com-
plete system. In accordance with the rules of quantum me-
chanics, the state of such a subsystem is described by a den-
sity matrix. Moreover, it follows from the relations (2.26)
and (2.27) that the density matrix p'* itself corresponds to
black-body radiation with temperature 7,.

Thus, as long as we consider the calculation of the val-
ues of local observables that depend only on the field & in the
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region R the result of calculating the vacuum expectation
value for this observable in the Minkowski vacuum agrees
with the result of calculating it in the thermal gas of Rindler
particles (or, it would be better to say, quasiparticles) with
temperature (2.27). If it is borne in mind that the trajector-
ies of the “detectors™ at rest in the uniformly accelerated
frame of reference remain at all times in the region R, we
can expect that the results of measurements made on the
field @ in the uniformly accelerated frame of reference will
lead to the same results as measurements in a corresponding
thermal bath with temperature 7', at rest in this uniformly
accelerated frame of reference. In other words, the Minkow-
ski vacuum in the accelerated frame of reference appears as a
gas of Rindler quanta of the corresponding field heated to
the temperature 7,,. We emphasize that this conclusion,
which is based ultimately on the relation (2.23), is not relat-
ed to the specific form of the considered field and is of a
general nature.

It must be emphasized at once that although the distri-
bution with respect to the “energy” fiw = fivac™' of the
Rindler quanta has a thermal nature in the considered state
the wave functions u!;’ differ significantly from plane
waves. This difference is due to the fact that free quanta in
the Minkowski space move relative to the accelerated frame
of reference with an acceleration, i.e., as if they were acted on
by a force (an inertia force). This has the conse¢quence that
comparison of the thermal gas of the Rindler particles with a
state in a thermal bath is valid only under the additional
stipulation that this thermal bath and its contents are in a
field of external forces (“‘inertia” forces) or, as will be shown
in the following section 2.4, in a homogeneous static gravita-
tional field.

2.4. Vacuum in a static homogeneous gravitational field

The quantization scheme developed in the foregoing
subsection for a uniformly accelerated frame of reference
can be to a large extent transferred formally to the case of
quantum field theory in a static homogeneous gravitational
field. We now briefly describe this theory, leaving aside for
the moment the discussion of more subtle questions of the
formulation of the equivalence principle for quantum phe-
nomena. We shall return to this question in Sec. 6.

Werecall that the metric of a homogeneous gravitation-
al field in the coordinates x = (7, p,y,z) associated with the
G system has the form (2.9). To construct the quantum
theory of the scalar field in this system we use an expansion
of the field operator @(x) of the form

¢ (2) == j{odv 5 dq (tnq (Z) Cyq - v () €1a), (2.28)
o
where
@) =07 )= (1) B e (1 i)
Kiv(gp), v>0. (2.29)

and the operators of creation ¢¥, and annihilation ¢, satisfy
the standard commutation relations. We define the vacuum
|0; B ) in the homogeneous gravitational field by the condi-

tions
Coq |03 BY=0 (2.30)
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Formally, such a scheme of quantization does not differ
in any way, except for the obvious change of notation
bl el b * =%, |0, R,)—~|0; B), from the
scheme of quantization in the uniformly accelerated frame
of reference. We note however that the problem of quantiza-
tion in a homogeneous gravitational field, like that of the
realization of a G system, acquires a real physical signifi-
cance in the case where there is a massive body generating
such a field. Then the metric (2.9) describes the gravitation-
al field outside this body (for p > pg; if p = p,, is the equation
of the boundary of the body). Of course, in a real situation in
which the body has a large but finite size the metric (2.9) is
approximate, valid in a region with scale / € L, where L is the
characteristic radius of curvature of the space-time. Within
the body, the metric will already have a different form. Be-
cause of the change of the metric and the boundary condi-
tions, the wave functions #_, (x) used to expand the operator
@ (x) are different and, in general, not identical to (2.29). It
is important, however, that if the field is static it is still mean-
ingful to make an expansion of the form (2.28) using posi-
tive- and negative-frequency functions with respect to the
“time” 7. The state |0; B ) defined in a static gravitational
field of general form by the relations (2.23) has become
known as the Boulware vacuum. For this state, the energy of
the quantized field calculated with allowance for the work of
the gravitational field is minimal. (Boulware himself consid-
ered such vacuum states in the description of quantum ef-
fects in the gravitational field of static black holes.****). For
more details of the definition and properties of the vacuum in
a static gravitational field, see Refs. 15 and 16 and the litera-
ture cited there; see also Ref. 49.

We emphasize especially that in the case when the static
gravitational field is generated by a static massive body
space-time regions different from R, are absent (Fig. 2).
Therefore, there is no need to introduce additional solutions
[like ;1. Such (additional) regions in space-time arise
when the massive body generating the gravitational field is
unstable and its contraction (collapse) results in the forma-
tion of a black hole. The question of the definition of the
vacuum in the gravitational field of a black hole has been
investigated frequently and in detail in the literature (a de-
tailed exposition of this question and references to the corre-
sponding studies can be found, for example, in Refs. 16, 21,
and 50).

To conclude this section, we note that the complete

N

FIG. 2. The space-time in a frame of reference at rest in a homogeneous
static gravitational field (G system). The region occupied by the matter
that creates the gravitational field (0<p<p,) is hatched.
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state space in a static homogeneous gravitational field is gen-
erated, as usual, by applying the creation operators é¥, to the
vacuum |0; B ). One can also consider different mixed states.
An example of this kind is the state described by the density
matrix

b= 08" exp [ — 3 hosele, (ko)1 (2.31)
where w; = |g|v,c™"is the frequency of mode J measured in
a G system in which the acceleration of free fall is g. This
distribution describes an equilibrium gas of black-body radi-
ation from scalar massless particles, and the arbitrary pa-
rameter & is the temperature of this gas measured in the G
system. We recall that the local temperature 8,,. of an equi-
librium radiation gas in a static gravitational field depends
on the position in such a way that 8,,, (x) |goo(x)|"/? is con-
stant. Therefore, to fix the value of this temperature we must
specify the point at which it is considered. In our case, thisis
the coordinate originx = p — ¢?|g| ™' = O of the system, i.e.,
@ is the temperature at this point. We note that in the special
case when € =T, the density matrix (2.31) is equal to
(2.26) if wesetg= —a,é, =b§*’, &% = b{+'* The state
in the homogeneous static gravitational field described by
such a density matrix is called the Hartle-Hawking “vacu-
um” and denoted by |0; H ).'*’ In the case of a homogeneous
fielda = c*p~ ', and therefore insuch astate |0; H ) the equa-
lity 8, (x) = T,,, holds not only at the origin of the G
system but also in the entire space.

3. DETECTORS AT REST IN A UNIFORMLY ACCELERATED
FRAME OF REFERENCE AND IN A STATIC HOMOGENEOUS
GRAVITATIONAL FIELD

3.1. Model description of a detector

Hitherto, our attention has been concentrated on the
description of the state of the quantized field. The different
descriptions of the same physical state (in particular, the
Minkowski space vacuum |0; M )) in different frames of ref-
erence warrant study in their own right, but they acquire real
physical interest in connection with the problem of the inter-
action of accelerated bodies (“‘detectors”) with the corre-
sponding quantized field. A specific feature of such prob-
lems (in what follows, we shall have in mind, unless stated
otherwise, only uniformly accelerated detectors) is that to
describe the state of the bodies it is convenient to use a uni-
formly accelerated frame of reference, whereas to describe
the vacuum of the quantized field with which the body inter-
acts it is more convenient to use an inertial frame of refer-
ence. Of course, if we are calculating any invariant quantities
the result will not depend on the choice of the particular
frame of reference. Ultimately, the choice of such a system is
a question of convenience. Specifically, if we are interested in
the way in which the state of a body changes as a result of
interaction with the field it is convenient to consider the pro-
cess in the uniformly accelerated frame of reference. The
change in the state of the radiation field is more readily de-
scribed in the inertial frame of reference.

In the present section, we consider the behavior of a
uniformly accelerated ‘“detector’ and the behavior of a ““de-
tector™ at rest in a homogeneous static gravitational field. By
“detector” we shall (as is usual) understand a body (*‘sys-
tem”’) with internal degrees of freedom such that the inter-
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action with the quantized field changes the state of these
internal degrees of freedom. In principle, the role of the de-
tector could be played by molecules, atoms, etc. Initially,
however, we shall not specify any particular realization of

the detectors but will describe certain general features of |
their behavior, deferring to the end of the section the consi- *

deration of the possibility of using as such detectors real
physical objects (ions, elementary particles, etc.). Since the
question of the behavior of a uniformly accelerated detector
has often (beginning with Unruh’s paper'®) and in detail
been considered in the literature (see, for example, Refs. 19-
22 and the references given there), we shall give here the
necessary results only briefly.

Suppose the body that we regard as a detector is initially
at rest in an inertial frame of reference, has a set of discrete
energy levels, and is in some stationary state |/). Of course, if
this is not the ground state and the nonmoving detector in-
teracts with the quantized field, then transitions are possible
and a strictly stationary state is impossible. For the moment,
we shall not consider these processes, making the assump-
tion that the interaction of the detector with the field is weak,
and formally we set the coupling constant characterizing
this interaction equal to zero. In other words, we describe
initially the state of the detector, and we then take into ac-
count its interaction with the field as a perturbation. We now
put the detector into a state of uniformly accelerated (with
acceleration a) motion. If the acceleration takes place adia-
batically, levels different from / are not excited, and the sys-
tem will still remain in the state |/). Since the detector moves
with an acceleration, an external force must obviously act on
it and deform it to a certain degree. In general, the wave
functions that describe the stationary state will also be de-
formed, and the energy levels of the detector will themselves
change. However, we shall assume that the levels remain
discrete—in the uniformly accelerated frame of reference
that we consider below and in which the detector is at rest,
they correspond to the Rindler energies E,, and the wave
functions |i) in this state are characterized by the time de-
pendence exp( — iE;7/#i) = exp( — ig;n7), where &, = cE,
/#a,r is the proper time in the uniformly accelerated frame,
and 17 = a7/c is the Rindler time. With regard to the spatial
behavior of the detector wave functions, we shall merely
make the assumption that the dimensions of the detector are
much less than ¢?a~! and, accordingly, the wave functions
are significantly nonzero only in a certain neighborhood of
the world line p = p, = c¢’a™"', whose scale / (in the self-
frame) satisfies the condition / <cla™ .

Let K §*’ be the Hamiltonian that describes the evolu-
tion of the noninteracting detector with variation of the

Rindler time 7; then
K15 = &;1i).

(3.1)

Under the condition that the states of the detector are or-
thogonal and form a complete system, i.e.,

(i]jy =8, gm =1, (3.2)
this Hamiltonian can be described in the form
K =3 e,ln (il (3.3)

i
We define d * and ;i,- as operators of creation and annihila-
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tion of the detector state |7), setting

d1d;= iy, (3.4)

and then the detector Hamiltonian (3.3) in the employed
second-quantization representation can be expressed in the
form (see, for example, Ref. 53)

. oA
K = E_ g, d™ d; .
1

(3.5)

In the absence of interaction of the uniformly acceler-
ated detector with the quantized field, its behavior is trivial:
Ifinitially it was in the state |i), then it always remains in this
state. The same is true of the stationary (including the vacu-
um) states of the quantized field. Inclusion of an interaction
between the detector and the field changes the situation
qualitatively; for the state |i)|0; M ) of the complete system
(detector plus radiation field) will not in general be an eigen-
state for the complete (with allowance for the interaction)
Hamiltonian. In the detector transitions take place from lev-
el tolevel (the detector “detects” field quanta), and the state
of the radiation field changes.

3.2. Interaction of an accelerated detector with the vacuum.
Description in a uniformly accelerated frame of reference

We consider the simplest case when the interaction of
the quantized scalar massless field @ with the detector is
described by the following addition to the action:

S;= | (—g (@)209 @ V* (2) ¥ (2) dex, (3.6)
where
¥ (1) = d,¥, (x) e ",
T (3.7)

V(@) =3 iV, () e,
x = ( p.y,z), A is the coupling constant, and ¥, (x) = (x|i)
is the wave function of the detector in the state [i).

Note that the wave functions ¥,(x) are significantly
nonzero only in a small neighborhood of the world line
X=X, = (c%a', 0, 0), and therefore the integration in
(3.6) is effectively over this region. It is convenient to ex-
pand @(7,x) in a Taylor series of the form

A b 1 a ~
QO X)= ) 7 Ax4 .. AXQy,. ., (1), (3.8)
=0
wherea, = 1,2, 3,
~ FY: ~
Pay...a, (M) = (m ¢ (M, x))x=x0 ) (3.9)
AX® = X7 —X{. (3.10)

If we substitute the expansion (3.8) in (3.6), we obtain

Sy=— 5 k,dl).

5 . 1 . ,

Ki=—2.2 2 2 expl—ile;—eq)u)
1=0 1,j a ...

X D ""cﬁa‘...ul(n) dtd;, (3.11)

where
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AX"W, () ¥ (x). (3.12)

Dot = S dp Sdzszxar
0

The operator K , is the interaction Hamiltonian in the uni-
formly accelerated frame. The terms of the sum with
I=0,1, ... correspond to the contribution of the monopole,
dipole, and higher terms of the multipole expansion of the
interaction Hamiltonian. One can show that in the case
when the inequalities |e; — &, | €1 are satisfied the main con-
tribution to the detector transition amplitude is, in general,
made by the monopole term,

Kjo=— k2 exp[—i(e;—e)n] Do () did;.  (3.13)
Of course, in the case of interaction with the transverse mag-
netic field the main term will usually be the dipole term in
the expansion of the interaction Hamiltonian (in this case,
the monopole term vanishes).

Using the standard perturbation theory in the interac-
tion representation, we can readily show that in the frame-
work of the monopole approximation (3.13) the amplitude
A, _ 5 for transition of the system from the state /)7 ) (|4}
and |7 ) are the initial states of the detector and the field) to
the state (f|{F|({f| and {(F | are final states of the detector
and the field) during the complete time of “operation” of the
detector has the form

Ajpaip= —i b1 g h)e TEM D (Flo (D) dy. (3.14)

Averaging |4, | over all the final states of the radiation
field and taking into account the condition of completeness
of these states,

;1F><F|:1, (3.15)
we obtain the following expression for the probability W/_,
of transition of the detector from the initial state / to the final
state f:

Wiay =h dn { dwh o 2o expl—i (e —e) (1—1)]

X G, (', 0Dy 3 (3.16)

where G,(7,7') = (I|@(7)@(7’)|I). In the more general
case in which the initial state is described by some density
matrix g, the expression (3.16) for the transition probabili-
ties is unchanged except for the difference that

Gy, ') =Sp (P () ¢ (Y ))-

In the special case with which we must deal in what follows
G, (n,m') =g,(n—7'), i.e., the function G, depends only
on the difference 7 — 7', and in place of the total probability
W !_, weintroduce the probability W i~ of transition of the
detector in unit proper time 7 = cna— ! One can show (see,
for example, Ref. 19) that if A = A, = const then

(3.17)

awl,, |
wf_.,z—di—f 221Dy [P (8, —e)). (3.18)
where
FI (s):%h‘2 \ e~ &g (n) dn. (3.19)

Y
— oo

The spectral distribution function F*(¢) is completely deter-
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mined by the state of the radiation field, whereas the matrix
elements |Dj;|*> depend only on the structure and properties
of the detector. We can similarly obtain an expression for the
probability of detector transitions in unit proper time analo-
gous to (3.18) in the case when the main contribution is
made by the terms of the multipole expansion (3.11) of or-
der ] and the transitions associated with the lower multipoles
are suppressed.

The spectral function FM(g) corresponding to uni-
formly accelerated motion of the detector in the vacuum |0;
M ) can be obtained using either the picture of Rindler quan-
ta, i.e., by making the calculations in the A system) or by the
more usual method in which the calculations are made in an
inertial system (I system). Let us compare these methods.

Since the world line of the detector motion, described
by the equation x = x, = const, lies entirely in R _, to calcu-
late Gy, (1,7') = (0; M |@(n)@(n')|0; M ) we can use the
relation (2.25). Substituting the expansion (2.17) for @, we
find

Gu(n, W)= 2 [{exp [iv (n—n")[ n,+exp [—iv(n—n')]

X (n;+1)}U; ()21, (3.20)
where
75 = SPeay (P05 B = n, = [exp (2mv) — 1]
h -1
:(exp k;a _1) (3.21)

are the mean population numbers of the Rindler particles in
mode J. The relation (3.20),shows, in particular, that G,
(n, 7"} actually depends only on the difference 7 — %'. Sub-
stituting (3.20) in (3.19) and making some simple manipu-
lations, we find

F¥(e)=Ta (le]) [8(e) me+-8(—e) (mey+ 1)1, (3.22)
where
L2 (e]) = v;G(v—lal)lUJ(Xo)l
=B U (ko) 240 = o fel- (3.23)

The last equation is obtained by direct calculation of the
integral for the wave functions (2.16). It is interesting to
note that for a scalar massless field I'}' (the phase space in
the frame of reference with acceleration a) is equal to I, the
phase space in a thermal bath with temperature 6 = T, at
rest in the inertial frame. This result is not universal; it does
not hold for a scalar massless field in a space-time different
from 2 and 4 dimensions, and also for other fields even in 4-
dimensional space.***’

In other words, the probability of transitions of the uni-
formly accelerated detector from level i to level f in unit
proper time 7 is proportional to the number density n 2w, Of
the Rindler quanta with energy fiAw,, = #i(w, — @,) and to
the “phase space” I' of the Rindler particles with this ener-
gy at the point x, on the detector world line (we recall that in
the accelerated frame the detector is at rest at the point
X =Xg).

The spectral function F M(g) for other boson fields
has a form analogous to (3.22), while for Fermi fields 7,
is replaced by 7L = [exp(2me) + 117" = [exp(#w/
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kgT,) + 1]~ (see, for example, Ref. 22). The explicit
expression for the phase space '} depends, of course, on the
type of field.

The expression (3.22) for the spectral distribution
can be obtained by making the calculations in the I frame.
It is sufficient to note that Gy (%, 7') is equal to the
value of the positive-frequency function G, (x,x") = (0;
M |p(x)@(x")|0; M ) calculated for points x and x’ lying on
the detector world line. Using the explicit expression for
Gy (X, X') in Cartesian coordinates,

Gy(X,X') = {4n2 he~* [ (X, — X)) (Xo— X3)
+iE (T =TI,

where § > 0 is an infinitesimally small correction, going over
to the Rindler coordinates, and substituting the detector
equation of motion p = p, = c’a™!, y = z = 0, we obtain

(3.24)

2
Gu(M, M)=gn(n—1n)= —1—;‘:—275 sh2 [% (ﬂ—ﬂ'—ig)].
(3.25)

The integral in (3.19) can be readily calculated. The func-
tion gy (77) is periodic (with period 27i) in the complex 7
plane. Integrating the function exp( — i£%)gy (%) around a
closed contour containing the straight lines C, and C, (Fig.
3), and calculating the integral by means of the residues, we
obtain an expression for FM(¢) that is identical to (3.22).

It is an interesting fact that in a space-time with an odd
number of dimensions d + 1 (d is the number of spatial di-
mensions) the element of phase space " for bosons con-
tains the factor [exp(27e) — 1][exp(27e) +1]~" and
FM(¢) takes a form similar to the spectral function for fer-
mions.*? Similarly, in the case of fermions in these spaces an
additional factor [exp(27e) + 1][exp(2me) — 1]~ ! arises
in Y (Ref. 22). Of course, no real change of the statistics
occurs in these cases.”® (On the connection of this effect with
the absence of Huygens’s principle in spaces with an odd
number of dimensions, see Ref. 55.)

We point out a further feature of the ““‘thermal gas” of
Rindler quanta corresponding to the vacuum |0; M ). It is
that in the system there is a distinguished direction (the di-
rection of the acceleration vector a). This has the conse-
quence that the distribution of the Rindler quanta is aniso-
tropic. This anisotropy may be manifested, in particular, in
the fact that the probabilities of detector transitions of dipole
type will, in general, depend on the orientation of the detec-
tor relative to the acceleration vector.*®*”*' In the discussed
monopole case, the anistropy will not, of course, be manifest-
ed.

We now note the following general property of the tran-
sition probabilities w} , that follows from the representation
(3.22) for the spectral function, namely, the transition prob-
ability w}' ; and the probability of the reverse transition,
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wj ,, are connected by

w?I f FT\! (es— _
it 1—e) 9 M R (@i —wy)
(3.26)

This relation is known as the principle of detailed balance. It
means, in particular, that if the distribution of the uniformly
accelerated detector with respect to the levels is described by
an equilibrium thermal density matrix with temperature T,
(“internal degrees of freedom of the detector heated to tem-
perature T, >*), then such a state of a detector when coupled
toa quantized field in the state |0; M ) will not be changed. It
is assumed here, of course, that we can ignore the back reac-
tion on the detector of the changes that it makes in the state
of the field. In the case we consider, such an assumption is
sensible and can be justified, since the field quanta created
when the detector transitions occur propagate freely and es-
cape to infinity (this process is described in more detail in
Sec. 4).

The relation (3.26) also means that a thermal density
matrix with temperature 7, describes the state of the detec-
tor after the establishment of the equilibrium which arises as
aresult of prolonged motion with constant acceleration dur-
ing which the detector interacts with the vacuum |0; M ).
This final equilibrium state does not depend on the chosen
initial state. The characteristic time Ar of establishment in
the A system of a thermal distribution of the detector with
respect to the levels is of order

A (c2/a)?

e (3.27)

AT ~

where A3|D|? is the characteristic value of the transition
matrix elements A 5| Dy |* (the “cross section” of the detec-
tor). '

We emphasize that the principle of detailed balance
(3.26) has auniversal nature. It is satisfied not only for fields
of different types but is also independent of the multipolarity
of the interaction Hamiltonian K, [see (3.11)]. Ultimately,
this relation is a consequence of the thermal nature of the
density matrix p'*’ (2.26) describing the distribution of the
Rindler quanta in the R, region which corresponds to the
vacuum |0; M ). It is universal to the extent that the conclu-
sion of a thermal nature of the density matrix p'*’ is univer-
sal. This universality, like the fulfillment in the general case
of the principle of detailed balance in the case of uniformly
accelerated motion, can be established particularly easily if
the treatment is made in the uniformly accelerated frame of
reference. It is here that the advantages mentioned above of
such a description for these problems are, in particular, man-
ifested.

We emphasize once more that, of course, when we cal-
culate quantities that are invariant (that do not depend on
the frame of reference) we can use all frames of reference. In
particular, we could obtain the relation (3.26) by making all
the calculations in the inertial frame of reference. However,
the occurrence each time of relations of the type (3.26) in
the different variants of the theory would appear as rather
remarkably fortuitous. But when the treatment is made in
the uniformly accelerated frame the appearance of such rela-
tions is, as was emphasized above, rather natural.
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3.3. Behavior of a detector at rest In a static homogeneous
gravitational field

To describe the interaction of a detector at rest in a
static homogeneous gravitational field with the quantized
field @ we can use methods that to a large degree are analo-
gous to the ones employed to describe a uniformly acceler-
ated detector. Therefore, omitting the details, we shall dwell
only on some basic points.

We shall consider a detector of the same form as in Sec.
3.1, assuming this time that it is adiabatically introduced
into a static gravitational field and placed at the point
X = X,, at which the acceleration of free fall is g. We shall
assume that the levels of this detector are discrete; they cor-
respond to the energy (calculated with allowance for the
work of the gravitational forces) E,, so that the wave func-
tions |7) in this relation are characterized by a time depen-
denceexp( — iE;7/#) = exp( — ig;n), where ris the proper
time in the G system in which the detector is at rest, £,

= cE,;/gfiand 9 = grc™ . In this case, the detector Hamil-
tonian K 5+’ in the second-quantization representation has
the previous form (3.5).

Suppose the interaction of the detector with the quan-
tized field § is described by the expression (3.6). Then in the
monopole approximation the probability of transition of the
detector in unit proper time 7 from level / to level fis given by
the expressions (3.18)—(3.19), where

gm) = <<]> (M Xo)cE(O, Xg)). (3.28)

The expectation value in (3.28) is calculated with respect to
the state of the quantized field. We denote by 71, = (¢*¢,)
the mean number of “Boulware” quanta in the mode u, for
this state. If 7, depends only on the energy v of these quanta
(A, = A,), then for the spectral function F(¢), which occurs
in the expression (3.18) for the transition probability w,_ ,
we can obtain a representation analogous to (3.22)—(3.23):

F(e)="Tg (le]) [0 () nc + 6 (—e) (e + 1)), (3.29)
where
Ty (Ief) =c#? | [Ujnia (xo)|2dg (3.30)

and e~ "’”Um (x) are the wave functions of the mode with
quantum numbers vq of the scalar field in the given external
static gravitational field.

We apply this expression to the case when the detector
is at rest in the static homogeneous gravitational field and
the quantized field is in its ground state described by the
Boulware vacuum |0; B ). For this state, we obviously have
A2 = 0 and

FB(e) =8 (—e)Tg (] &) (3.31)

If the detector was in the ground state, it will not be excited.
This becomes obvious if one notes that for ground state / the
energy differences ¢, — ¢; are always positive (if i%f ). This
result is valid for any static (not necessarily homogeneous)
gravitational field provided one chooses the vacuum |0; B ).

As a different example we consider the behavior of the
detector in the static gravitational field in the case when
there is an equilibrium gas of black-body radiation with tem-
perature 8 (measured in the G system). This state is de-
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scribed by the density matrix (2.31), and for it
52 = [exp (2nfe) — 11"t ={exp [ho (kp0)™11— 1}, (3.32)

where w = ¢ '|g|e, B = fi|g| Quk zc0) 7.

For the transition probabilities of the detector interact-
ing with this thermal gas the principle of detailed balance
holds,

o

2f — exp [F (0, — o) (kp8)™],
wf_.i

w

(3.33)

and the distribution with respect to the levels of such a detec-
tor will after a time become the Boltzmann distribution with
the same temperature ¢ as the local temperature of the am-
bient gas at the point at which the detector is at rest. There-
fore, such a detector in an arbitrary static gravitational field
can, in particular, play the role of a thermometer measuring
the local temperature 8 (x) of the gas, this temperature
being described in the equilibrium state by the relation
Broe (X) = B,|g,, (x)|~'/?, where 6, is a constant.*®

In the case we consider of a homogeneous gravitational
field, the wave functions u ,, of the scalar field are described
by the expression (2.29), and for the spectral function
(3.29) we have

Fo (e) = A£0 ¢ (exp (2ne) — 1171,

3 (3.34)

where8 = #|g|/2mk yc6 = T, /6. Obviously, for the state |0;
H ) (the Hartle-Hawking vacuum), for which 8 = 1, this
spectral function is identical to the spectral function F™(g)
described by the relations (3.22)—(3.23). In other words, a
detector at rest in a static homogeneous gravitational field at
a point at which the acceleration of free fall is g behaves in
the case of interaction with the quantized field in the state |0;
H ) in exactly the same way as an analogous detector moving
with acceleration a = — g in ordinary Minkowski space
provided that the quantized field in this space is in the vacu-
um state [0; M ).

For the convenience of the readers, the different vacu-
um states used in the present paper are compared in Table 1.
Summarizing the arguments given above, we can say that the
detectors at rest in the I, A, and G systems detect the M, R,
and G quanta, respectively.

3.4. Elementary particles in the role of detectors

Naturally, the question arises of whether we can under
real conditions observe excitation of an accelerated ““detec-
tor” and also whether this problem is of interest in any phys-
ical investigations. We note first of all that it follows from
Eq. (1.3) for temperature T, that a temperature of 1°K cor-
responds to the huge acceleration g, = 2.4-10%? cm/sec?.
It is easy to show that in the case of motion of a macroscopic
body with such acceleration the work done by the accelerat-
ing force on the constituent particles of the body over the
characteristic distance of the order of the distance between
the particles greatly exceeds the characteristic interaction
energy of the particles.'® Therefore, it is evidently impossi-
ble to impart to a macroscopic body such an acceleration
without destroying it. The possibility of observing the effects
in which we are interested is just as problematic for acceler-
ated ions. It appears that the most realistic objects for use as
accelerated detectors are elementary particles.** First of all,
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TABLE L

Region in which

Definition of positive-
frequency solutions or
connection with other

Conditions under
which the detector
does not detect
‘“quanta” in the

Vacuum Notation vacuum is defined states chosen vacuum
Minkowski 10; M) Minkowski space exp( —ioT), Tis the Detector at rest in the
time in the I system I system (lis an inertial
frame of reference)
Rindler [0, R) R region of Min- exp( — ivy), r=1nc/a Detector at rest in the
kowski space (see is the time in the A A system (A is a uni-
Fig. 1) system, a is the accel- formly accelerated
eration of the A system frame of reference}
Boulware |0; B) Static homogeneous exp( — ivy), T =nc/g Detector at rest in the
gravitational field is the time in the G G system (G is the
system, g is the accel- frame of reference at
eration of free fall in rest in a static gravita-
the G system tional field)
Hartle- |0; H) Static homogeneous The state corresponds Detector at rest in a
Hawking gravitational field to equilibrium thermal freely falling frame of

(with temperature
T, = fig/2mkgc) distri-
bution of the B quanta

in the G system

(g is the acceleration
tion of free fall in the G
system}

reference

Note. In a homogeneous gravitational field the behavior of detectors in the vacuum state |0; B ) in the G system is identical to the behavior of the same de-
tectors in the vacuum state |0; R ) in the A system. Detectors that are identical as regards their structure and state of motion behave in exactly the same
way in the vacuum state |0; M ) in the A system in Minkowski space and in the vacuum state |0; H ) in the G system in the homogeneous gravitational field.

we must explain how elementary particles, which in a certain
sense are structureless, can play the part of detectors, i.e.,
bodies for which one characteristically requires the presence
of different internal states. The point is that the motion of
such a particle is characterized not only by momentum or
acceleration but also by a complete set of quantum numbers,
for example, the quantum number s, that determines the
projection of the spin of the particle onto a certain axis z. If
such a particle moves under the influence of an external
force with a constant fixed acceleration, then it can addition-
ally execute a uniform motion with transverse momentum p,
in the direction perpendicular to the acceleration. At the
same time, the particle may have different spin orientations,
etc. These additional degrees of freedom, characterized by
the values of 5, and p,, can in a certain sense be regarded as
“internal,” and one can study the distribution of the particle
with respect to the energy levels corresponding to these de-
grees of freedom. It is in this sense that elementary particles
can be used as “detectors.”

As simplest cases we note that, as the calculations of
Ref. 57 show, the motion of an electron in the vacuum |0; M )
under the influence of a constant homogeneous electric field
of intensity E is accompanied by “thermal” (with tempera-
ture 7,z = #ia(E)/2mkge, a(E) = eE /m,) excitation of
the “energy levels” corresponding to its motion in the direc-
tion at right angles to the field. If along the electric field E
there is also a magnetic field H, so that the energy levels
corresponding to the transverse motion of the electrons are
quantized, then accelerated motion of the electron will be
accompanied by thermal [with temperature 7', , ] excita-
tion of the corresponding Landau levels. '*’ A thermal distri-
bution over the levels also arises for the energy levels corre-
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sponding to interaction of the spin of an accelerated electron
with a magnetic field.**

The estimates show>>® that the “thermal” corrections
which arise from uniformly accelerated motion of electrons
at the energies of the existing accelerators or ones under con-
struction could in principle lead to observable effects. The
main obstacle is the length of the time during which the
“thermal equilibrium” is established. We note that whereas
the characteristic time 7., of establishment of thermal equi-
librium over the levels of the accelerated detector measured
in the uniformly accelerated frame in which it is at rest ap-
preciably exceeds ¢/a (a is the acceleration), the time mea-
sured in the laboratory (inertial) frame is of order AT,
~ca~ 'exp(req a/c); see (2.35). The exponential nature of
this dependence has the consequence that with increasing
Teq the value of AT, becomes so great that observation in
the inertial frame of reference of the process of establishment
of equilibrium in the case of electrons accelerated in linear
accelerators becomes effectively impossible.

Estimates show**® that the situation is much more fa-
vorable in the case of ring accelerators. We note that for
motion of an electron in such an accelerator the motion is not
uniformly accelerated, since the acceleration of constant
magnitude constantly changes its direction. There have been
studies (among which we mention those of Refs. 33 and 60—
64) in which the interaction of a detector moving uniformly
in a circle with a quantized field has been analyzed. It was
found that although the probabilities of transitions of such a
detector no longer satisfy the principle of detailed balance,
so that the equilibrium distribution of the detector over the
levels will not be thermal, many of the features of uniformly
accelerated motion remain. Estimates show>> that, for ex-
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ample, for the ring accelerator SPEAR at Stanford for elec-
trons with energy ~4 GeV the time of establishment of equi-
librium in the case of interaction of the electron spin with the
quantized field is of order 10 min and that these effects are in
principle measurable. These effects of interaction of an elec-
tron with a vacuum could explain the observed depolariza-
tion of electron beams (for more detail about this, see Refs.
33 and 60).

It goes without saying that we do not at all regard it as
necessary to test specially the results presented above relat-
ing to excitation of a uniformly accelerated detector. From
the experimental point of view, only the opposite formula-
tion of the problem is of interest—it is possible that in certain
cases the formula obtained for 7, and other expressions may
be suitable for the analysis and interpretation of experiments
already made and future experiments.

4. EXCITATION OF AND RADIATION FROM A UNIFORMLY
ACCELERATED DETECTOR. DESCRIPTION IN AN INERTIAL
FRAME OF REFERENCE

Thus, a uniformly accelerated detector interacting with
the quantized field  in the state |0; M ) and described in the
uniformly accelerated frame in which it is at rest behaves in
the same way as if it were surrounded by an equilibrium
thermal gas of Rindler quanta with temperature 7,. More-
over, the excitation of the detector is accompanied by the
absorption of a Rindler quantum from the thermal “bath,”
and the transition to a lower energy level is accompanied by
emission of a Rindler quantum. What will then be “‘seen” by
an observer at rest in the inertial frame? An answer to this
question was given in Ref. 23 and is as follows. In the absence
of real quanta (the state |0; M )) and for the description in
the inertial system transition of the detector to either a high-
er or a lower level will be accompanied by emission of a
quantum of the field @, i.e., in the electromagnetic case by
emission of a real photon.

To see this, we consider the simplest variant of a mono-
pole detector possessing just two levels: an ““upper” one
(state |z ) ) and a “lower” one (state |/ ) ), and we assume that
the difference of the Rindler energies of these levels is
Ae = ¢, — g,. We shall also assume that D, = D, =0 [see
(3.13)]; then, denoting D = D,, = D,,, we write the Hamil-
tonian (3.13) of the interaction of such a detector with the
quantized field in the form

Kpo= — i (Deitendtd, - De-idendzdy) ¢ (). (4.1)

Let |W),, be the initial (before the detector is switched
on) state of the total system, i.e., of the detector and the
radiation field. Then the final state | V), of this system that
arises from the chosen initial state as a result of interaction of
the detector with the radiation field can be expressed in the
interaction representation that we employ in the form

[Whowt = W — 127 | Ko dn| Wy (4.2)

Here as earlier in Sec. 3.2, we ignore the contributions of
higher order in A. (The conditions under which this is possi-
ble were discussed in Sec. 3.2). We apply the relation (4.2)
for cases when the detector before the switching on of the
interaction was in one of the states (/ or ¢), and the state of
the field was the vacuum state |0; M ). We denote these states
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by
[ W0 = 105 MY | 1)y [ ¥e00m = 105 M) | 2).

Then by means of the relations (4.1) and (4.2) we obtain

| %oodout = | ¥orohn -+ iDsjdakfs &) | 1 M) | 5), (4.3)

where s = /ort and 5 = ¢ or /, respectively; here, D, = D, D,
= _B,

o (k)= A7 [ . () eisean®y (X (), (4.4)
Ag; = Ag, Ae, = — Ag, and X¥ = X*(7) is the equation of
the detector’s world line. The relations (4.3) confirm what
we said above. The elementary process associated with tran-
sition of the detector from the state ¢ to the state /, like the
reverse process (/—1), is accompanied in the inertial frame
by emission of field quanta. Of course, it cannot be other-
wise, since in the state |0; M ) there are no free quanta and
they can only be emitted by the detector.

The mean number density of the quanta of the field

with momentum k emitted as a result of the process is
;s (k) = out (Ws.ola‘takllpsm)out - |D|2'fs (k) Iz' (45)

In the case A = const, the functions f; (k) can be calcu-
lated explicitly. If we denote

oo

F o= | exp(—ten+i]k| o7 () — kX (n))dn,  (4.6)
then
fs ) = st F (6 — de,). (4.7)

To calculate the integral (4.6), it is convenient to introduce
the notation

by =y +EHVE thyy=k, k|, %, =k ca™t, (4.8)

and we then have

F(k; e)=exp(—ieng) | exp[—ie(n—1)
+in, sh(n—mn9)ldy

= 2exp(—ieng) exp (7 ) Kre (1) (4.9)
The obtained expression enables us, in particular, to show
that

nik) p-2mAE

) (4.10)

We note that the function F(k;e), and therefore 7 (k),
does not in fact depend on the momentum vector k of the
quantum but only on k. The situation here is completely
analogous to that which obtains in the case of radiation of a
uniformly accelerated electric charge, for which the spectral
energy density of the radiation depends only on &, (for more
detail about this, see, for example, Ref. 59). This feature is
due to the invariance of the problem under shifts with re-
spect to the Rindler time 7. As in the case of the radiation of
auniformly accelerated charge, we can conclude on the basis
of (4.9) that the radiation with a given value of the wave
number is formed in a definite section of the detector’s tra-
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jectory; this is called the “formation zone” or the ‘“‘coher-
ence interval,” and its position (the parameter 7,) is deter-
mined by the ratio &, /k,.

As was already noted in Sec. 3.2, in the case of pro-
longed motion of the detector reverse transitions begin to
play a part, and the conditions of applicability of the consid-
ered approximation (the first order in ) are violated. In the
simplest case of the two-level detector, these processes admit
a fairly complete description. However, we shall not dwell
on this in more detail and merely restrict ourselves to consid-
ering the limiting case when as a result of interaction of the
detector with the quantized field the detector attains a state
of equilibrium (which, as we have shown, is a thermal one
for a uniformly accelerated detector) with distribution over
the levels / and ¢ characterized by the probabilities ( popula-
tions)

w; = [1 + exp (—2nAg)l-, wy = exp (—2nAe) w,. (4.11)

The mean number density of quanta with momentum k radi-
ated by such a detector is

n,(k) = n; (k) w4 ng (k) w,

= IPE o (nAe)t K ise (1) 12

Girhe | K| (4.12)

We recall once more (see Sec. 3.2) that, by assumption, the
radiation escapes freely “to infinity”’ and does not have a
back reaction on the detector.

5. EXCITATION OF AND RADIATION FROM AN
ACCELERATED DETECTOR AND THE ANOMALOUS
DOPPLER EFFECT. SOME ADDITIONAL COMMENTS

The circumstance that an accelerated detector in an in-
ertial frame of reference radiates a field quantum not only in
the case of transitions from upper to lower levels but also
when the reverse transitions associated with its excitation
occur seems somewhat unusual and warrants a more de-
tailed discussion. This applies particularly to the case when
the detector is initially in its lowest energy level. In this con-
nection, the present authors pointed out in Ref. 24 that actu-
ally analogous processes of radiation by a detector when it is
excited have long been known and discussed, in particular in
the study of the anomalous Doppler effect.®®

Let us briefly recall the essence of this effect. (A more
detailed discussion of it and corresponding references to the
literature can be found in the book of Ref. 5, Chaps. 6and 7.)
Suppose a two-level detector (lower level / and upper level t)
moving with constant velocity v in a medium with refractive
index n{(®) (vn> c¢) radiates a photon with momentum #k*

= (#w/c, #ik), ik = #fiwon/c. To derive the conditions under
which such radiation is possible, it is convenient to use the
energy-momentum conservation law, writing it in the form

(5.1
(5.2)

pY — hiw = pl,
P = (Eict = [(my+m,) e+ pilV%, ),
where p/ is the 4-momentum of the detector before (i = 1)

and after (i = 2) the radiation: Squaring Eq. (5.1), we can
obtain

—Ae (2m0+m,—|—~m2)=2—€2‘—hw(1— i—ncosﬁ)

h2w?
C‘Z

+ (n2-—1), (5.3)
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«Cherenkov
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Region of Region of
normal %  anomalous
Doppler effect &, Doppler effect v
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FIG. 4. Normal and anomalous Doppler effect. The figure shows the
regions of the normal and anomalous Doppler effect in the case of motion
of a particle with velocity v in a medium with refractive index (vn/c> 1,
cosdl, = ¢/vn, ¥, is the opening angle of the Cherenkov cone).

wherev = p,¢/E,, k'v = kv cosd, and Ae = (m, — m,)c? is
the change in the energy of the detector measured in its
frame of reference. In the approximation in which m, , €m,
and the recoil is negligibly small (#w/myc?<1), we obtain
from (5.3)

hm:—Ae(i—i—:)uz(i———i—ncosﬁ)_i.

.

(53.4)

We denote by 9, the Cherenkov angle determined by the
condition cosd, = ¢/vn. It follows from the relation (5.4)
that in the region of the normal Doppler effect we have
Ae <Ofor ¢ > J,and, therefore, £, = ¢,,£, = €, <€, 1.e., the
emission of photons propagating outside the Cherenkov
cone is associated with transition of the detector from the
level ¢ to level /. For photons emitted by the detector within
the Cherenkov cone (i <1,), the situation is different,
Ae>0, £, =¢, £, =€, i.e, such emission is accompanied
by excitation of the detector. The regions of the normal and
anomalous Doppler effect are shown (for a nondispersive
medium) in Fig. 4. Of course, the energy conservation law is
not violated here, since for motion with constant velocity
under these conditions a force must act on the body, and its
work covers the necessary energy loss.

Thus, for motion with constant velocity v > ¢/n in a me-
dium a detector that was initially in the ground state (|/))
begins to be excited due to its interaction with the quantized
electromagnetic field, and at the same time it radiates real
photons, i.e., to a certain degree it behaves like an acceler-
ated detector. We emphasize that in both cases in which we
are considering excitation from the ground level the effect
has a purely quantum nature. A classical oscillator or other
classical system under analogous conditions, i.e., in the
ground state for motion with constant velocity v>c¢/n in a
medium or with constant acceleration in a vacuum, is not
excited. For further details of the interaction of a uniformly
accelerated oscillator with the electromagnetic field, see
Refs. 38 and 40.

In the same way as was done for the anomalous Doppler
effect, we can, using the energy-momentum conservation
laws, obtain conditions for radiation from a uniformly accel-
erated detector in vacuum. To make the treatment more spe-
cific, we assume that the detector as a whole possesses an
electric charge Q and that its acceleration is due to a constant
homogeneous electric field E directed along the X axis acting
on this charge. Of course, under these conditions the detec-
tor is a source of electromagnetic radiation associated with
the accelerated motion of the charge. We shall not here con-
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sider this radiation but concentrate our attention on the radi-
ation associated with the transitions of the detector from
state | tostate 2. We can even assume that the detector serves
for detection of only a scalar massless field and, therefore, in
the absence of transitions scalar radiation does not arise.

In the considered case, the energy-momentum conser-
vation law can be written in the form

Py = PR ke, (5.5)
where
P} =pt + ¥,
bi+49q (5.6)
gi'=QF» XY, F,,=E(8,8,—6.6);
where &, is the ordinary Kronecker delta,

fik* = (fiw=1|k|,#k) is the 4-momentum of the radiated
quantum, and p/ and X* are the 4-momentum and coordi-
nate (in the inertial system) of the detector before (i = 1)
and after (/ = 2) the emission. [ The expression for p# is giv-
enin (5.2).] It follows from (5.5) that

—Ae @mytmy-my) - 2ot Ay — BguAg”

hoy = 2F, (1 —wy cos $ec1) '

(5.7)

where Ag¢” =¢5 — g%, v, =p,c/E,, v,k=uv,(w/c) cos S,
Ag = (m, — m,)c*. If the emission is to be accompanied by
excitation of the detector (Ae>0), the numerator on the
right-hand side of (5.7) must be positive. In the approxima-
tion m, , €my, fiw/myc® €1 this condition has the form

Ae < pPAg, (my+ m) ™t == QEAX, (5.8)

where AX is the distance between the positions of the detec-
tor before and after the time of emission, measured in the
inertial frame in which the detector is at rest before emission
of the quantum. Of course, in this frame the relation (5.8)
can be obtained directly from such considerations. In the
initial state (before the emission) the detector energy is
(my + m,)c?, while in the final state it is (my+ m,)[c?
+ (v%/2)] and the potential energy of the detector in the
field has changed by — QEAX and a quantum with energy
fiw has appeared. The momentum of the detector was initial-
ly zero; at the end it is (m, + m,)v, and the momentum of
the quantum is 7k = #ic~'wkk ~'. The energy of the quan-
tum is #iw = 0 for v=0, and (m, — m,)c*=Ae = QEAX.
This in fact is the threshold for radiation, since fiw > O when
Ae <« QEAX.

The condition (5.8) means that the energy needed for
emission of a quantum and excitation of the detector is taken
from the electric field that accelerates the detector.

The cases considered above of uniform motion in a me-
dium with velocity v > ¢/n and uniformly accelerated mo-
tion in a vacuum are, of course, only special cases of motion
of the detector in which it can be excited from the ground
state with emission of a quantum. Such an effect also occurs
in the case of motion with arbitrary (variable in direction or
magnitude) acceleration. As an interesting special example,
we mention the already quoted case of motion of a detector
with constant speed in a circle, which was considered in
Refs. 61 and 62.

There is a further class of phenomena, namely, radi-
ation from moving macroscopic polarized bodies, related to
the radiation from a moving detector. From the microscopic
point of view, any body is a system with many levels. Polariz-
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ability of a body means that under the influence of an exter-
nal electric field, say, the body acquires a certain dipole mo-
ment. In the general case, we are considering the interaction
of a body with a field, in particular, a zero field. Therefore, if
in the initial state the body is in the lowest level (for example,
at temperature T" = 0) and there is no radiation, then in the
case of superluminal motion in a medium or accelerationin a
vacuum excitations will arise in the body and the corre-
sponding radiation will also appear. In other words, a mac-
roscopic body can be regarded as a detector, with all the
consequences that flow from this. However, in this case fix-
ing the state of the body (the detector) is difficult and in
general one will only be able to observe the radiation corre-
sponding to it. A well-known example of a phenomenon of
this kind is the quantum radiation from accelerated “‘mir-
rors” (i.e., bodies with infinitely large polarizability'*; for
the radiation from accelerated bodies with finite polarizabil-
ity, see Ref. 66). The quantum radiation from a neutral po-
larizable particle moving uniformly with velocity v > ¢/nina
medium, considered in Ref. 67, is also analogous to the
anomalous Doppler effect. The quantum radiation from an
absorbing cylindrical body rotating around its symmetry
axis, described in Refs. 68 and 69, is similar to the excitation
and emission from a detector in circular motion.*"** We note
that interest may also attach to the class of problems with
motion of a detector or a polarizable body with acceleration
not only in vacuum but also in a medium under conditions
when the velocity of the detector exceeds the velocity of light
in this medium, v>c/n. Combination of the anomalous
Doppler effect and acceleration may change the equilibrium
distribution over the levels and lead, in particular, to the
appearance of population inversion. It may also be impor-
tant that the features of motion in a medium are also mani-
fested in the case when a source (detector) moves in a vacu-
um gap or channel in a medium or near a medium (for more
details, see Ref. 5). Such a situation is particularly impor-
tant under conditions when a detector moving in a con-
densed medium may break up or be strongly decelerated
(obviously, both these effects are absent in the case of mo-
tion in an empty gap or channel or in vacuum near a medi-
um). The excitation of a detector with emission of a *“pho-
ton” and the quantum radiation from a polarizable body are
also possible in the case of motion with constant subluminal
velocity v < ¢/n in a medium but under the condition that the
refractive index of the medium changes along the direction
of the motion due to a change of # in space and (or) time.™
This quantum effect is a particular analog of the well-known
effect of transition radiation.>”!

6. THE EQUIVALENCE PRINCIPLE IN THE QUANTUM DOMAIN
AND THE “THERMAL NATURE” OF THE VACUUMIN A
UNIFORMLY ACCELERATED FRAME OF REFERENCE

In the discussion and comparison of the behavior of
detectors at rest in a uniformly accelerated frame of refer-
ence and in a static homogeneous gravitational field (Sec.
3), we came right up against the question of the applicability
of the equivalence principle to phenomena for which their
quantum nature is important. In this section, we shall dis-
cuss in detail this important question.

The equivalence principle, the basis of the general theo-
ry of relativity, was first formulated by Einstein in Ref. 72
published in 1907, and it was the first step in the creation of
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general relativity. In it, in particular, he wrote: “Let us con-
sider two frames of reference =, and 2,. Suppose 2, moves
with acceleration in the direction of its X axis and suppose its
acceleration (constant in time) is equal to 7. Suppose that X,
is at rest but is in a homogeneous gravitational field that
imparts to all bodies the acceleration — ¥ along the X axis.

It is well known that with respect to Z, the physical
laws do not differ from the laws referred to =,; this is due to
the fact that in a gravitational field all bodies are accelerated
in the same manner. Therefore, at the present state of our
knowledge there are no grounds for believing that the frames
of reference 2, and 2, differ in any respect from one another,
and in what follows we shall assume the complete physical
equivalence of a gravitational field and a corresponding ac-
celeration of the frame of reference.

This assumption extends the relativity principle to the
case of uniformly accelerated rectilinear motion of the frame
of reference. The heuristic value of this assumption is that it
enables us to replace a homogeneous gravitational field by a
uniformly accelerated frame of reference, which to a certain
degree is amenable to theoretical treatment.”

There is reflected here the transition from the previous-
ly known and experimentally directly verified assertion (of-
ten called the “weak equivalence principle”) of the equiv-
alence of the laws of mechanics in a uniformly accelerated
frame of reference and in a frame of reference at rest in a
homogeneous static gravitational field to the general re-
quirement of the equivalence of all physical phenomena in
these systems (which makes up the content of the so-called
Einstein equivalence principle). This transition was the nec-
essary link that enabled Einstein to construct general relativ-
ity, in which gravity is described by the metric tensor g,
alone. Einstein frequently emphasized the heuristic value of
the equivalence principle in his subsequent work too. For
example, in 1911 he wrote”: “As long as we restrict our-
selves to purely mechanical phenomena for which Newton’s
mechanics is valid, we are assured of the equivalence of the
systems K and K '.'>> However, our idea will be sufficiently
deep only if the systems K and K " are equivalent with respect
to all physical phenomena, i.e., if the laws of nature in the
system K are completely identical to the laws of nature in the
system K '. Assuming this, we obtain a principle that has
great heuristic value if it is indeed correct.” To avoid the
confusion that is encountered often, we also emphasize that
one cannot in any way reduce gravitation to kinematics, i.e.,
to the choice of some accelerated frame of reference. Ein-
stein emphasized this already before the completion of gen-
eral relativity in 1915. For example, in the already quoted
paper of 1911 he wrote” “Of course, it is not possible to
replace an arbitrary gravitational field by a state of motion of
the system without a gravitational field any more than one
can transform all points of an arbitrarily moving medium to
rest by means of a relativistic transformation.”

Of course, like any other physical principle, the equiv-
alence principle requires proper experimental verification.
In fact, the testing of the weak equivalence principle with the
greatest possible accuracy for bodies of different chemical
composition makes it possible to draw certain conclusions
about the accuracy with which the Einstein equivalence
principle is satisfied (for more details about this, see Ref. 74
and the literature given in it).

It is obvious that at the time when Einstein first formu-
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FIG. 5. A detector D, attached to a transparent box ( “Einstein lift”’) and
moving with it with uniform acceleration a in the vacuum |0; M ) in Min-
kowski space-time is excited (Fig. 5, A); an analogous detector D at rest
near acold (7 = 0) “neutron star” (state of the field |0; B ) ) is not excited
(Fig. 5, G).

lated the equivalence principle he was mainly concerned
with the laws of classical physics, although his formulation
admits obvious extension to quantum physical laws. The
question of whether or not the equivalence principle holds
for the description of phenomena for which their quantum
nature is important is by no means trivial. This can be seen
by comparing the behavior of a detector that is uniformly
accelerated in an inertial frame of reference (and, therefore,
is at rest in the uniformly accelerated frame) with the behav-
ior of a detector at rest in a homogeneous gravitational field,
say, near the surface of a cold (7 = 0) neutron star (Fig. 5).
The behavior of such detectors is different; for in the first
case the detector is excited from the ground state, while in
the second it remains in the ground state (see Table I in Sec.
3.3). This difference is also obviously preserved in the case
when the acceleration of free fall g in the gravitational field
and the acceleration of the motion of the detector with re-
spect to the I system in Minkowski space, a, are related by
g = — a. But it is precisely the identity of all the physical
laws in the A system (uniformly accelerated frame with ac-
celeration a) and in the G system (frame of reference at rest
in a homogeneous gravitational field g = — a) that is the
content of the equivalence principle.

How can we reconcile the different behaviors of the de-
tectors at rest in the A and G systems with the equivalence
principle and do we not have here a violation of the principle
for quantum phenomena? To avoid confusion, we answer
immediately that the equivalence principle is satisfied for the
considered phenomena. With regard to the particular ques-
tion of the behavior of the detectors at rest in the A and G
systems, the apparent contradiction is due, not to violation
of the equivalence principle, but to an insufficiently accurate
use of it. It is another matter that the equivalence principle in
the quantum domain needs to be verified, generally speak-
ing, to the same extent as in the classical domain. Ultimately,
here too experiment will play the decisive role. We merely
note that at the present time there are no indications of
invalidity of the equivalence principle.

The identity of the laws of physics in the frames of refer-
ence A and G that we discussed in the formulation given
above of the Einstein relativity principle means in particular
that the time evolution of the physical objects in these frames
of reference A and G will be the same, but provided that the
initial and boundary conditions in them are specified in the
same way. (In this respect, the equivalence principle is anal-
ogous, for example, to the relativity principle, which guaran-
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tees the same evolution in time of the physical objects in
different inertial frames of reference only when the initial
and boundary conditions in these systems are chosen appro-
priately.“”) In this connection, see, for example, the discus-
sion of the question of the radiation from a moving electron
in an accelerated frame of reference and in a homogeneous
static gravitational field.”” Neglect of this circumstance
could lead, and in a number of cases has actually led, to a
seeming contradiction with the equivalence principle.

In the case in which we are interested, the physical sys-
tem (object) consists of a detector and a quantized field,
with which it interacts. Therefore, the comparison of the
behavior of the detectors in the A and G systems must be
done in a way that ensures identical initial and boundary
conditions for not only the detectors but also the quantized
field. It was this last condition that was violated when,
choosing the vacuum state |0; M ) as the initial state of the
quantized field in the A system, we chose, without particular
grounds (although at first glance it did seem natural) the
initial state |0; B ) for the field in the G system (see Table I).

To illustrate the validity of the equivalence principle for
these quantum phenomena, we consider the following
thought experiment. Suppose that in an I system there are at
rest two isolated “boxes” with specular walls, i.e., ones that
completely reflect the field quanta, in each of which thereis a
detector that is fixed (“‘suspended”) relative to them. In
order to ensure the same choice of the initial states, we as-
sume that in both “boxes” the state of the quantized field is
the vacuum state, i.e., there are no real quanta (“photons”)
with which the detectors may interact, and that the detectors
themselves are in the ground state.

It is obvious that as long as the ““boxes” are at rest the
detectors in them are not excited. We now set one of the
“boxes” into a state of uniformly accelerated (with accelera-
tion a) motion and place the other in a homogeneous gravi-
tational field at a point at which the acceleration of free fall is
g = — a (Fig. 6). Of course, in both cases the transition of
the system to the new state is associated with application to it
of forces that depend on the time. Moreover, in the case of
motion with variable acceleration of the specular walls of the
“box”’ quantum radiation can occur (see, for example, Ref.
19). However, if the process occurs sufficiently slowly (““ad-
iabatically”), so that for its description we can use the adia-
batic approximation, then it can be shown that the detectors
will still be in the ground state (in the one case, this is the
state with the lowest Rindler energy; in the other, it is the
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FIG. 6. Before the opening of the “doors” the identical detectors D, and
D at rest in insulated boxes, one of which moves with uniform accelera-
tion a (Fig. 6, A) while the other is at rest in a homogeneous gravitational
field (at a point at which the acceleration of free fall is g = — a, as in Fig.
6, G), behave in the same way and are not excited.
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state with the lowest energy when allowance is made for the
work of the gravitational forces). With regard to the states of
the quantized field, the state within the “box” at restin the A
system is identical to the Rindler vacuum |0; R ), while the
state within the “box” at rest in the G system is identical to
the Boulware vacuum |0; B ).'” Asaresult of the interaction
with the quantized field the detectors will behave in the same
way in the two cases—they will not be excited (see Table I in
Sec. 3.3), in agreement with the equivalence principle. At
the same time, as we see, the state of the field within the
accelerated “box” is not at all identical to the vacuum state
|0; M) in the surrounding Minkowski space. Therefore, if
the insulation of the “box” is destroyed, for example, by
opening a “door” in its wall, the state of the field within the
box, i.e., the state |0; R ), will begin to be readjusted, and
ultimately it will be changed in such a way as to come into
equilibrium with the surrounding state |0; M ). Of course, in
this process real field quanta may be radiated, but we shall
assume as before that they escape to infinity and do not
change the state of the field within the “box.” As a result of
the change of the state in the accelerated “box,” the detector
in the A system begins to be excited, whereas in the G system
the detector still remains unexcited even after the opening of
a “door” in the “box” (the “box” is placed near a cold,
T = 0, neutron star, so that the state of the quantized field
outside is |0; B ), i.e., the same as inside; see above).

An interesting question is the following: How can we
explain in the inertial frame of reference the difference of the
final state within the accelerated “‘box” (before the “door”
in it is opened) from the initial state |0; M )? The answer to
this question reduces to the following. In the process of ac-
celeration, the specular walls of the “box” move with vari-
able acceleration with respect to the I system and, therefore,
are a source of quantum radiation (see, for example, Ref.
19). If the accelerations of the front and rear walls were
equal, the radiation fluxes from them within the box would
exactly cancel each other. However, since the box is rigid,
the front (in the direction of acceleration) wall of it always
moves with smaller acceleration then the back wall, and
therefore such compensation of their radiation does not oc-
cur. As a result, the state of the quantized field within the
box will be different from [0; M ). This process in relation to
the analogous problem of the behavior of detectors in the
gravitational field of a black hole is considered in detail in
Ref. 76.

As another example illustrating the fulfillment of the
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FIG. 7. The detector D, (atrestinthe A system) and the detector D (at
rest in the G system ) also behave in the same way (are excited) if the walls
of the insulated “boxes” in which they are placed are heated to the same
temperature 7.
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equivalence principle, we consider the following modifica-
tion of the thought experiment described above. Namely, we
shall assume thatasaand g = — aincrease so does the tem-
perature of the walls of both “boxes,” this occurring, more-
over, in such a way that the equation T = T,=#a/2wkyzc
holds (Fig. 7). For the systems within these “boxes,” the
“boxes” are essentially thermal baths, and accordingly the
detectors in both “boxes” (in the final state, i.e., uniformly
accelerated and at rest in the gravitational field) will be ex-
cited and measure the temperature 7,. The equivalence
principle is again satisfied. If the “doors” of the “‘boxes” are
opened, then, in contrast to the case considered above, the
state of the field within the uniformly accelerated box (it is
described by the thermal density matrix for the Rindler
quanta with temperature T, ) will be in equilibrium with the
ambient quantized field in the state |0; M ). Atthe same time,
for the state of the field within the “box”” at rest near the cold
(T = 0) neutron star the equilibrium will be disturbed after
the opening of the “door.” Equilibrium near the surface of
the star is possible if outside the ‘“box” there is an equilibri-
um thermal gas of “photons” provided the temperature of
this gas at the point at which the “box” is placed is equal to
the temperature T, of the “box” walls. In other words, for
equilibrium to hold the state of the quantized field outside
the box must be identical to the Hartle-Hawking vacuum |0;
H).

In the cases considered above, it was assumed that the
walls of the “box” ensure complete insulation from the sur-
rounding world.'® These boundary conditions make it pos-
sible to guarantee identity of the states of the quantized field
within the “boxes.” Of course, nothing is changed if the
walls of the “boxes’ are made completely transparent for the
quantized field provided appropriate states for these fields
outside the ““boxes” are chosen. In particular, in this sense
the Minkowski vacuum |0; M ) in the A system corresponds
to the Hartle-Hawking vacuum |0; H ) in the G system. Simi-
larly, the Rindler vacuum |0; R ) in the A system corre-
sponds to the Boulware vacuum |0; B ) in the G system (see
Table I). For such a choice of the states, the behavior of
detectors at rest or having the same motion with respect to
the two frames of reference will be the same, as required by
the equivalence principle.'”’

We shall not consider in detail all possible forms of mo-
tion of the detectors but limit ourselves to one example. Sup-
pose a detector in a box with transparent walls moves iner-
tially, i.e., uniformly and rectilinearly in an I system in the
vacuum |0; M ), while another detector in the vacuum |0; H )
falls freely in a homogeneous gravitational field (Fig. 8a).
Then in neither the first nor the second case will the detector
be excited from the ground state. Some other variants of
behavior of the detector for different choices of the state of
its motion and (or) for other vacuum states are shown in
Figs. 8b—8d. In each of these cases, the detectors in the A and
G systems have the same behavior.

Thus, in the simple thought experiments considered
above the equivalence principle is satisfied. Of course, we
have described only schematically how this occurs. The
complete mathematically rigorous proof of our arguments is
by no means simple and would require lengthy calculations.
Such an analysis, made moreover in different frames of refer-
ence and permitting clarification of the “mechanism” of ful-
fillment of the equivalence principle as applied in different
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FIG. 8. Figures 8a, 8b, 8c, and 8d show different types of motion of the
detectors D, and Dg with respect to the corresponding (A and G) frames
of reference for different but corresponding (‘‘matched”) choices of the
vacuum states; the behaviors of such detectors are then identical. Detec-
tors D, and Dg are not excited in the situations shown in Fig. 8a (free fall
of adetector, the states |0; M) and |0; H ) ) and in Fig. 8d (detectors at rest
in the A and G systems, states |0; R ) and |0;B ) ). The detectors D, and
D, are excited in the situations shown in Fig. 8b (detectors moving freely,
states |0; R ) and |0; B )) and in Fig. 8c (detectors at rest in the A and G
systems, states [0; M ) and |0; H )). Of course, the situation shown in Fig.
8¢ (A) isidentical to the one shown in Fig. 5 (A). Similarly, the situations
shown in Fig. 8d (G) and Fig. 5 (G) are identical.

physical situations, is undoubtedly important and helpful.
There is, however, another side to the question, namely, the
great heuristic value of the equivalence principle, which Ein-
stein so strongly emphasized, in particular, in the quotations
given earlier. If one adopts this principle, regarding it as
valid, then it becomes possible to connect phenomena that
occur in a uniformly accelerated frame of reference with
phenomena in a homogeneous static gravitational field.>
Below, as an illustration, we show how the equivalence prin-
ciple can lead to the conclusion that the vacuum |0; M ) con-
sidered in a uniformly accelerated frame of reference A has a
thermal nature (see also Refs. 21 and 78).

To this end, we consider a gas of “photons” (or any
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other quanta, which, for simplicity, we shall also call “pho-
tons”) in a homogeneous static gravitational field. It is well
known that if there is even a very small interaction between
the “photons” equilibrium will be established in such a sys-
tem after a certain time has elapsed; moreover, the equilibri-
um distribution will be described by the thermal density ma-
trix Py [see (2.31)]1?" (see, for example, Ref. 56; a more
rigorous proof is given in Ref. 79). The following question
arises: What additional properties of the considered state
distinguish the parameter value S = #a/27k g6 (6=T,,
B =1), for which the considered state is identical to the
Hartle-Hawking vacuum in a static homogeneous field?

We consider in more detail the properties of the equilib-
rium gas. To this end, we introduce the function

GB(x, =)= Sp [pot (2) ¢ (z')]

=§J] [uy (@) uy (2') 13 + uy (2) uy (&) (05 1)1,
6.1)

the analog in the considered case of the positive-frequency
function (3.26). The quantities n% are determined by the
relation (3.32). This function G?(x,x') can be calculated
explicitly, and it has the form®

GB(z, 2')= 1 ! sh (/B) ) (6.2)

8n%pp’ Pshi ch(A/B)—chim—m' —i
where

=(T|1 oY, 2)7 x _(T], p/ y/ /)
chh =1[p* +p 4+ (y —¥')* + (2 — 2')"} (200") "

By means of this function, we can calculate the energy-mo-
mentum tensor for the considered gas of scalar massless
quanta. We shall not go into the details of the calculation;
the final result is

he Pi—1

(TV ren __ "°°

ot “1az0 e ¢

(6.3)

Oy — 4636y). (6.4)

We now note that for all B #1 this tensor depends es-
sentially on p, and the energy-momentum distribution de-
scribed by it is manifestly inhomogeneous. This is not re-
markable, since, as we have already noted, the local
temperature of this thermal gas depends on the position.
What may surprise is a different fact: For £ = 1, the tensor
(6.4) vanishes, and the energy-momentum distribution de-
scribed by it becomes completely homogeneous. The expres-
sions for the energy-momentum tensors of other quantized
fields possess a similar property.

How can one explain this, at first glance, strange behav-
ior of (T}, )™"? The equilibrium thermal gas at rest in the G
frame of reference is in an external static gravitational field.
The effect of this external field leads to a change in the wave
functions that describe the motion of the particles of the gas,
and this, in its turn, has the consequernce that the values of
the local observables (for example, (7', )"") depend on the
characteristics of the field. This effect is well known as vacu-
um polarization by an external field. Because of the symme-
try of the problem in the considered case the contribution to
the energy-momentum tensor describing the vacuum polar-
ization,

(T3 vt == (T om0 = — g (G5 —40380), (6.5

has the same tensor structure as the contribution determined
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by the temperature,

(T = pd 144032 (O —45%5,)), (6.6)
but opposite sign. This makes possible the complete mutual
canceling of these contributions for a certain value of the
parameter 8. This property distinguishes the parameter val-
ue B =1, i.e,, the symmetry of the state described by the
density matrix p, is higher for the value =T, (8=1)
than for all other values of this parameter. In particular,
going over, for example, from Rindler to Cartesian coordi-
nates, one can show that the function G ! (X,X ') is identical
to (3.24), and thus show that for # = 1 this function, which
describes the physical properties of the system, is invariant
with respect to Poincaré transformations. The state uniquely
distinguished by this property is the Hartle-Hawking vacu-
um |0; H ). If in accordance with the equivalence principle
we now require the analogeus property of Poincaré invar-
iance to hold for the state corresponding to |0; H ) in the A
system we find that the vacuum |0; M ) in Minkowski space
is singled out by this requirement.

According to the equivalence principle, all physical ob-
servables in the A system for this chosen initial state [0; M )
of the quantized field must be identical to the analogous
physical observables in the G system for the state |0; H ). If
we bear in mind that this last describes an equilibrium ther-
mal gas with temperature 7,, we may conclude that in a
uniformly accelerated frame of reference the Minkowski
vacuum |0; M ) behaves like a thermal equilibrium gas with
temperature 7, _,.

7. CONCLUDING REMARKS

We make some further remarks of a general nature con-
cerning the overall physical significance of the questions
considered in the present paper.

After the creation of the general theory of relativity
(1915) and quantum mechanics (1925-1927), the problem
naturally arose of constructing a theory that unifies them
and permits the description of both quantum and classical
phenomena with allowance for the gravitational interaction.
This problem is still not completely solved at the present
time; it is indeed, the most important problem in theoretical
physics.

Work on this problem began with discussion of general
questions of the quantization of the gravitational field as well
as of the simplest quantum-gravitational effects. As an ex-
ample of the latter we can take graviton-graviton scattering.
The quantum effects in gravity were shown to be small for
scales appreciably exceeding the Planck scales (in the case of
length, we obviously have here the Planck length /, ~ 10~
cm).

At the end of the sixties and beginning of the seventies,
one can say that a new stage of development commenced in
the quantum theory of gravity. On the one hand, it was re-
cognized that the theory of gravity is a gauge field theory
with all the consequences that flow from this. In particular,
one can use the quantization formalism developed for such
theories. In the framework of gauge theories one can also
attempt to unify gravity with other fields with a view to cre-
ating variants of a unified field theory (the currently most
popular candidate is supergravity, and more recently the
theory of strings and superstrings has become popular). On
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the other hand, interest arose in quantum effects in strong
classical gravitational fields in connection with the discus-
sion of the part played by quantum effects in the early stages
in the evolution of the universe and in the gravitational field
of black holes. In 1974, Hawking showed that when quanti-
zation of the fields is taken into account black holes radiate
quanta of these fields with a thermal spectrum. This estab-
lished a remarkable connection between the theory of gravi-
tation, quantum theory, and thermodynamics already for
the example of a static gravitational field. As was shown by
Unruh (1976), this connection is also in essence preserved in
the limit of a homogeneous gravitational field, and alsoin a
uniformly accelerated frame of reference. This last result is
rather natural in view of the equivalence principle.

These questions of quantum effects in uniformly accel-
erated frames of reference and in a homogeneous gravita-
tional field could, evidently, have been clarified long ago—
after the creation of the theory of gravitation and quantum
field theory. But as has already happened more than once in
physics, this occurred only after a different and more com-
plicated problem had been solved—that of quantum effects
in the gravitational field of a black hole. It is possible that the
problem of the connection between gravity, quantization,
and thermodynamics has a fundamental significance that
goes beyond the framework of just the quantum theory of
gravity and may be important for the further development of
physics.

By virtue of what we have said, it is clear that the prob-
lem of quantization and the “‘choice” of the vacuum in a
homogeneous gravitational field and in an accelerated frame
of reference has great importance, at least methodologically.
Wetherefore hope that there is a justification for the publica-
tion of the present paper devoted to detailed consideration of
quantum theory in uniformly accelerated frames of refer-
ence and in a homogeneous gravitational field, as well as
analysis of the equivalence principle in the quantum domain.
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