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The physical aspects of the manifestation of optical bistability, instabilities, and stochasticity in
strongly nonlinear media in the form of liquid crystals subjected to laser radiation fields are
discussed. The stress is on experimental research. Optical bistability and multistability are
considered for a number of light-induced effects in homogeneous and inhomogeneous liquid
crystals. The special features of these effects in liquids crystals, associated with the field-induced
structural phase transitions, are stressed and the concept of intrinsic (mirrorless) optical
bistability is introduced. General nonlinear systems with optical bistability are considered. An
analysis is made of instabilities and stochasticity manifested in experiments on light-induced
reorientation of liquid crystals in the presence of fields of different origin, giving rise to oscillatory
and chaotic processes in the case of self-modulation of the transmitted light.
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1. INTRODUCTION

1.1 The phenomenon of optical bistability or multista-
bility is a common property of nonlinear optical systems
with feedback and it means that there are two or more stable
states of a system corresponding to different amplitudes or
polarizations of the optical field (see, for example, Refs. 1-3,
5and 11).

Although the first demonstrations of optical bistability
were reported over twenty years ago for active amplifying
systems,'>'% work on this topic became significant only in
the eighties.

The main concepts have now been formulated and a
classification of systems with optical bistability is available
(see, for example, Ref. 1). They are usually divided into
hybrid systems and those with intrinsic optical bistability. In
the former case, the system is subjected not only to an optical
field, but also to a static (electric) field; the dependences of
the parameters of a system on the intensity or polarization of
light are manifested because of an electrical signal (provided
by a detector forming a part of a feedback loop) interacting
with a nonlinear medium and controlling the intensity or
polarization of an optical wave. In the latter case a system is
completely optical and the dependences of the parameters of
a nonlinear medium on the intensity or polarization of light
are due to the direct interaction of light with matter. Some-
times intrinsic bistability is considered in a narrower sense:
only when a feedback in the system is active in the absence of
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mirrors (mirrorless optical bistability—see Ref. 57)."

Optical bistability may be manifested by active amplify-
ing systems as well as by passive (unexcited) systems. The
latter are more interesting from the point of view of applica-
tions (they are simple, compact, and require little power).

Bistability may result from nonlinear absorption,
known as absorption optical bistability, when the imaginary
part of the nonlinear susceptibility is involved, or it may be
due to nonlinear dispersion, which is known as dispersion
optical bistability, when a laser field alters the refractive in-
dex of a medium and the real part of the nonlinear suscepti-
bility is involved. In some cases both optical bistability
mechanisms act simultaneously.

Typical characteristics of systems exhibiting optical
bistability are illustrated in Fig. 1 (Ref. 2). An increase in
the intensity I, of optical radiation incident on a system
results in a continuous increase of the optical intensity of
light I, emerging from the system until [, reaches a criti-
cal value I{, when I, changes abruptly, i.e.,, a system
switches to a different state (Fig. 1la). When /,, is reduced,
the value of I, follows the upper branch of the curve corre-
sponding to this second state of the system down to
I, =1, where I} <I/ , when there is a reverse abrupt
changein I, to thelower branch of the curve, i.e., the sys-
tem returns to the initial (first) state. Between the two criti-
cal points I{, and 7{; the system can be in two stable states
(there are two values of I, ) for a given value of I, i.e.,
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FIG. 1. Typical characteristics of an optically bistable system.” Effective
reduction of a macroscopic feedback can reduce the width of the bistabi-
lity region until it disappears (as shown consecutively in Figs. la—-ic).
Optical bistability { 1) and differential amplification (2) regions are iden-
tified by arrows in Figs. 1a and Ic, respectively.

hysteresis is observed; on both sides of the bistable region a
change in the system is described as switching from one state
to another. Therefore, in systems exhibiting optical bistabi-
lity the state of a system depends on the direction of variation
of the controlling parameter (7, in the present case), i.e.,
these systems exhibit a memory effect. This is due to the
multivalued nature of the regimes which can be established
in a nonlinear optical system. The actual form of a hysteresis
loop? is governed by feedback established in the system
(Fig. 1b); hysteresis may even disappear (Fig. Ic) and the
dependence of 7, on/,, then becomes single-valued. When
the slope of this curve is sufficiently steep, a small change in

\n Tesults in major changes in I, i.e., differential amplifi-
cation takes place (this happens for 87, /867, > 1 in the
switching region in Fig. 1¢). Therefore, in the presence of
two incident beams (one weak 7, and the other strong 7,) it
is possible to alter considerably the transmitted intensity
(I,) by asmall changein /, as is usually done in electronic
transistors. Such optical devices are called transphasors. On
the other hand, if 61, /61, €1asystem ofthiskind actsasa
power limiter. Such operational capabilities can also be uti-
lized in the construction of logic elements (OR, AND, etc.)
so that in principle the complete range of Boolean algebra
operations can be performed. '

Optical bistability based on interference between two or
several light beams requires use of coherent optical fields, so
that laser radiation must be used. No-interference systems
can operate, in principle, also when wide-band light sources
are used, but in the case of purely optical systems it is neces-
sary to employ laser sources in order to provide radiation
power sufficient for the experimental observation of optical
bistability. Moreover, in the case of stimulated processes it is
necessary to overcome the excitation threshold so that once
again laser fields are essential.®

In some cases (laser systems with amplification; stimu-
lated processes with an excitation threshold) a hysteresis

1042 Sov. Phys. Usp. 30 (12), December 1887

curve differs from that shown in Fig. 1: switching to the
upper branch and back again begins from zero value of the
controlled parameter I, (Ref. 70).* However, this distinc-
tion is not of fundamental importance: for example, in the
case of lasers it is determined by the actual nature of the field
dependence of the laser gain. In most cases this dependence
represents a curve with one maximum. In the case of a more
complex dependence (in particular, when the gain curve of a
laser resonator with an active medium and a nonlinearly ab-
sorbing cell has a minimum and a maximum) a hysteresis
loop of a laser system has the standard form expected for a
passive system as shown in Fig. 1 (Ref. 1). This has been
demonstrated experimentally.'*

Any of the systems exhibiting optical bistability and be-
longing to the three classes mentioned above (hybrid, mir-
ror, and mirrorless) can be operated in various regimes:
steady-state, quasisteady (transient) and self-oscillatory
stochastic. All these regimes have been investigated to a
greater or lesser degree, but each time the use of a new non-
linear system reveals new features and different aspects im-
portant in the physical picture of optical bistability and in its
practical applications.

The use of semiconductor materials, in which strong
exciton interactions are utilized,”!'*''* has made a major
difference to the subject. Rapid progress in the technology of
these materials (particularly in the construction of superlat-
tices in the form of multiple quantum well structures—see,
for example, Refs. 108 and 109) has made optically bistable
devices of practical importance. These materials have al-
ready been used in optical triggers with a response (switch-
ing) time of 10~ '2 sec and a switching signal energy of 10 ~'2
J (Ref. 1). These triggers together with the progress made in
the development of fiber waveguides and a realization of sta-
ble nonlinear propagation regimes of picosecond and femto-
second laser pulses (formation of optical solitons) must be
regarded as a major step in the development of ultrafast opti-
cal computers (Ref. 106).> We have in mind not only a new
basis for device construction, but also a new computer archi-
tecture involving parallel data processing."'% The simplest
model of such an optical computer will be constructed in the
next few years' and the important point is not so much the
speed of each component, but the number of components
used in two-dimensional systems operating in parallel.

It thus follows that research on optical bistability in-
volves tackling not only new physical phenomena, but deal-
ing also with interesting applications.

1.2. These two aspects of physics and applications are
manifested fully when the nonlinear medium is a liquid crys-
tal. It is difficult to overestimate the role which liquid crys-
tals have played primarily in the study of a new class of linear
optical phenomena combined under the general name of op-
tical bistability. It is in the case of liquid crystals that we can
carry out a practically complete range of investigations of
optical bistability. The main achievements so far are, firstly,
a detailed investigation of nonsteady and transient optical
bistability regimes in nonlinear Fabry-Perot resonators fol-
lowed by a quantitative comparison of the theory and experi-
ment, first carried out on liquid crystals (Ref. 41). % Second-
ly, true intrinsic optical bistability in the absence of mirrors
has been achieved in liquid crystals.’”*? In addition to the
widely used distributed-feedback systems,’®*' there are also
certain threshold effects specific to liquid crystals'? which in
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terms of the physics of interaction of strong radiation with
matter represent laser-induced phase transitions that do not
involve temperature changes.’* ' Thirdly, liquid crystals
allow us to investigate instabilities and laws governing the
transition to chaos in nonlinear optical systems, and such
studies can be extended also to the polarization characteris-
tics.”®!'"! Tt is particularly important to note that the devel-
opment of these processes can be studied in detail experi-
mentally. This applies, in particular, to such a fundamental
task as the identification of the actual scenario of the transi-
tion to chaos in a real physical process.'* Finally and fourth-
ly, the use of hybrid systems involving the application not
only of optical but also of quasistatic fields to liquid crys-
tals,” as well as changes in the boundary conditions,®*%*
greatly extend the qualitative picture of optical bistability,
reduce the threshold characteristics, and shorten relaxation
times. These last two properties are already being utilized in
phase transparencies of sufficient resolution and response
time for correction of phase fronts of light waves, including
those in the infrared range (see, for example, Ref. 39).

All these investigations are of great interest from the
point of view of physics and they are possible because of
unusual properties of liquid crystals in which strong nonlin-
ear optical effects can appear in optical fields generated by
cw lasers of relatively low power: in some cases the changes
in the refractive index induced by a laser field can reach
values of the order of a few tenths for radiation intensities
not exceeding 100 W/cm’ (Ref. 12). Such a very strong opti-
cal orientational nonlinearity of nematic liquid crystals is
associated with a strong anisotropy of liquid crystal mole-
cules and the collective nature of their interaction with an
external field; this anisotropy has now been thoroughly in-
vestigated (for details see, for example, Refs. 12,90, and 92).

Although a strong optical nonlinearity of liquid crystals
is characterized by a fairly slow response and the main ad-
vantages of the use of liquid crystals are related to identifica-
tion of the physical picture of optical bistability, applications
of liquid crystals are also of interest.”” We have mentioned
already hybrid systems which are at present most promising
for practical purposes.’ Moreover, in many cases (in var-
ious technological processes, during prolonged monitoring
of the operation of various devices, in construction of sensors
of prolonged cumulative effects, etc.) one frequently re-
quires systems with long response times whose properties
(for example, transmission) vary slowly. Systems of this
kind are being developed actively in molecular electronics.*
Liquid crystals may become very valuable materials for the
construction of optical devices characterized by a high im-
munity to brief external perturbations and by a dynamic
memory representing the capability of accumulation of cer-
tain effects from one pulse to another.

Our review will be concerned mainly with the physical
aspects of the use of liquid crystals in investigations of opti-
cal bistability and various instabilities that arise due to light-
induced effects in liquid crystals. A clearer idea of the phys-
ical problems to be tackled can be gained from our
introductory section (Sec. 2), which follows.

2. PHYSICAL DESCRIPTION OF DISPERSION OPTICAL
BISTABILITY

Since in the majority of cases liquid crystals exhibit dis-
persion optical bistability, it will be useful to preface the
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main text with a short summary of the data on the operation
of the simplest bistable device demonstrating dispersion bi-
stability, which is a Fabry—Perot resonator filled with an
optically transparent medium characterized by a nonlinear
refractive index.? Feedback is established by repeated reflec-
tion of light from mirrors (d is the distance between the
mirrors and R is the reflection coefficient) inside the resona-
tor; the refractive index of the medium filling the resonator is
n = n, + n,I, where I is the intensity of light inside the reso-
nator.®

2.1. Steady-state case

We shall now write the standard formula for the intensi-
ty I, of light transmitted by a system of interest to us and
we shall supplement it by a phase shift due to the nonlinear-
ity of the medium.

The simplest calculation method which can be used as
the first approximation is based on a procedure adopted in
linear optics when the optical field at the exit from a resona-
tor is regarded as a sum of a series for field amplitudes due to
successive transits of light across the nonlinear medium be-
cause of multiple reflections by the resonator mirrors.”

In this case the relationship between the incident (/)
and transmitted (I, = GI) intensities is described by the
usual expression

()

R |
z)

I =1,G" (1—{—Fsin2——
where F=4R/(1—R)};, G=nyo(1—R)/(1+R);
S = (drnd /A) + (ban,d /) I=D, + ©,1; O, represents
the initial phase shift from a resonance of the transmission
by a Fabry—Perot resonator; 4 is the wavelength of light.

Since @ depends on I, Eq. (1) establishes an implicit
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FIG. 2. Graphical solution of Eq. (1) and of the expression T'= 1,
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outt 0 »
giving rise to optical bistability (explanations in text)."”
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relationship between I and I,,. The solution of Eq. (1) should
be made graphically and this can be used to reveal various
regimes of operation of a nonlinear Fabry—Perot resona-
tOr.lG’”

In fact, the points of intersection of straight lines in
Fig. 2a, representing an equation for the transmission
T=1,,/I,= GII ; ', with a curve representing Eq. (1) de-
scribe operating regimes of such a resonator. At low values
of I, there isonly one solution (point 4); at higher values of
I, we can have three solutions (points B, C, and D). The
dependence of T on I, is demonstrated in Fig. 2b as a bistable
characteristic of a resonator which is the dependence of I
on I, and is shown in Fig. 2c.

We shall now analyze in greater detail the conditions
for the appearance of various regimes in the case when ® €1
(on the assumption that n, >0 and ¢, <0).»

Introducing /,=x, and /=x, we can readily reduce Eq.
(1) to

x0=1{1+F[%(¢)O+¢)ZI)]Z} G. 2)

out

The right-hand side of Eq. (2) is a function of x, i.e,, it is
Sf(x), and Eq. (2) describes the dependence y = f(x). This
dependence is represented in Fig. 3, where x,, are found
from the equation df /dx = 0:

Ty, = [ — 20, F (P2 — 12F4)1/2] (3D,)"1.
Several cases can now be distinguished.
a) When there are two unequal solutions of Eq. (2), a

Fabry-Perot resonator exhibits optical bistability. The criti-
cal values of the light intensities I§ and I at which the

y=r@

FIG. 3. a) Graphical solution of Eq. (2) shown in the (x, y) plane. b)
Three-dimensional pattern of solutions obtained for different values of &,
<0: | D, | < Doy < |Pozl; for each value of @, this solution is repre-

sented by the point of intersection of the y = f{x) and y = x,, lines in the

(x, y) plane.
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bistability is observed, i.e., at which hysteresis appears (Fig.
2), are found from the conditions x, = f(x, ), representing
an upward jump, and x, = f(x, ), representing a downward
jump. These values of I, naturally depend on ®, subject to
the condition |®y| > 12/F.

We shall now quote some numerical estimates for the
case when a liquid crystal is the nonlinear medium in a Fa-
bry~Perot resonator. For example, if R ~0.9, &, = — 0.15,
A = 0.5 u, and if the parameters of the medium are typical of
a nematic liquid crystal (n, ~0.01 cm®/erg, d = 100 i, n,
~1.5), we obtain I =~0.1 W/cm?, which is readily attaina-
ble using low-power cw lasers.

b) If Eq. (2) has one solution (x, = x,), there is no
optical bistability. This corresponds to the condition
&y = Py in = — (12/F)'/2, which determines the thresh-
old intensity I, ,, for the observation of optical bistability:

Ton=c- (8n)7*-16- (3 V/3) GO F-v2. (3)

Equation (3) is identical, apart from numerical factors, with
the value of I, given in Ref. 16 (compare also with Ref.
17). Substitution of the above values of the parameters in Eq.
(3) gives I, =0.03 W/cm?, i.e., a threshold which is very
low compared with traditional values for nonlinear media.

c) If {®,| < 12/F, the curve in Fig. 3 has no inflection,
i.e., a single-valued relationship between x and x, is estab-
lished in a Fabry—Perot resonator. Two regimes are now pos-
sible: differential amplification, dx/dx, > 1, and power limi-
tation, dx/dx, <1 (Ref. 2).

We can easily show that in this case the first of these
conditions is always satisfied at low values of I: [<2/
$,(3FG)"/?, where 1/G’> 1; this gives " =&,/ <0.2 for
R=09and no = 1.5. If &y Pg i, i.€., if X, - x,, then dx/
dx,— «. Therefore, each of the branches of the hysteresis
loop ensures the most effective differential amplification re-
gime. A similar analysis can be also carried out in the case of
power limitation. For example, if ®, ~0, then ®" obeys the
condition ®™'$ 2(3FG) ~'/2, so that for the same values of R
and n, as above we have the approximate estimate ™3 0.2.
Hence, a transmission maximum of a Fabry~Perot resonator
(x~x,) with typical parameters (n,~10"2 cm'/erg,
d =100 um, A =0.5 gm) occurs in the range [,>0.5
W/cm?®. The same estimate for CS, (n, ~10~"" cm*/erg,
d=1cm, A =1um) gives a much higher value of I, > 2.5
MW/cm?®.

We can readily analyze also the conditions for the ap-
pearance of multistability in a Fabry—Perot resonator. For
example, a second hysteresis (second jump) should be ob-
served for F> 1 if x,~GFx~ (GF /®,); in the case of a
liquid crystal this would require I, ~ 1 kW/cm?.

2.2, Transient regimes and instabilities

We shall now analyze the operation of a nonlinear Fa-
bry—Perot resonator subjected to pulsed radiation. The
physical processes which then occur are naturally governed
by time-dependent parameters of the problem and we have
to introduce such concepts as the duration of a laser pulse 7,
the relaxation time of a nonlinear response of the medium
filling the resonator r,,, and the round trip time of a light
wave in the resonator ¢ty = 2dn/c. Different regimes are ob-
tained for different relationships between these time con-
stants.
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Nonsteady and transient regimes in a nonlinear Fabry—
Perot resonator were investigated in detail earlier*' and a
quantitative comparison of the theory and experiment dem-
onstrated excellent agreement. The nonlinear medium in
this case exhibited the Kerr nonlinearity and was in the form
of the isotropic phase of a nematic liquid crystal. A numeri-
cal analysis for the nonsteady case was carried out using the
standard calculation method already mentioned: an
allowance was made for repeated reflections of light from the
resonator mirrors and an infinite series of the field ampli-
tudes of transmitted radiation (E;) was summed. In the
approximation of small changes in the field amplitudes dur-
ing one round trip in the resonator allowing for the Debye
mechanism of the nonlinear response of the medium (time
T ), it was found that

TS =200 (| By oy | By o), (4)
| Ex|*=n,T | Eg|*—=n,T | En|* B, (5)

where Er and Eg are the amplitudes of, respectively, the
forward and backward waves inside the resonator; T and R
are the intensity reflection and transmission coefficients of
the mirrors; ® = (w/c) $[n(t,z)]dz is a nonlinear phase
shift in one round trip through the resonator;
én(t,z) = (6ng + Sny) is a correction to the refractive in-
dex n, in the quasisteady case, dependent on the intensity of
light:

Snpp =n, | Epp|®+ 2ny | Ep p[*

The integral form of Eq. (4) is

-~

t(t') [2exp [—(t—1') T3] d2’.

(6)

Equations (4)-(6) describe dynamic properties of a
nonlinear Fabry—Perot resonator and make it possible to an-
alyze the problem numerically for different relationships
between 7, 7\, and fg -

The main regimes which are possible in a nonlinear
Fabry-Perot resonator are as follows.

If tp > 7, we can expect such effects such as a phase
jump (switching),'® appearance of oscillations with a period

3wdn, (1R ¢
@ (t) n 2CT'I:M j

2ty, and transition to a state of chaos (optical turbu-
lence)."”** The switching time in this case is > .

If ty ~ 7\, various transient regimes are observed such
as controlled phase switching and dispersion broadening of a
pulse.”’ The switching time is now 2 7, fg.

If t; €1y, aself-oscillatory regime* is observed and the
parameters of the system are slowed down critically, which
is typical of a first-order phase transition.”” The switching
time is R 7, (which can be much shorter in the case of
pulsed excitation™).

Some results obtained specifically for optical bistability
in liquid crystals will be given in Sec. 3. Instabilities can be
observed experimentally most conveniently in a ring resona-
tor when an optical wave travels in just one direction. Then,
P (1) is still described by Eq. (4), but the right-hand side is
now different. In the case of practical situations, this situa-
tion can be rewritten in the form '

Ty - 6(1) (t)

+D(t)
:xA2H+2Bum@ML—h%—¢m, (7)

where 4 and B are certain coefficients and @, still represents
the initial detuning from the maximum transmission by the
resonator. The optical field is then

|E (t) P~ A% + 24°B cos (@ () — @,). (8)

A numerical solution of Eq. (7) which describes the time
dependence of the output light intensity is presented in Fig. 4
for two values of the parameters 4 and B. This figure in-
cludes also the spectral information. We can see that the
period is doubled (Figs. 4a and 4b) and that chaos sets in
(Figs. 4c and 4d).

Figure 5 gives the experimental results'® for a hybrid
bistable device exhibiting period doubling and the appear-
ance of chaos due to a change of the relationship between ¢
and 7y.”

It must be stressed that the transition to chaos is not
associated in these cases with the noise in the system. Such
instabilities are usually called the Ikeda instabilities. '

There are also other optical instabilities: regenerative
pulsations of the intensity of laser radiation transmitted by a
Fabry-Perot resonator filled with a medium characterized

le@)? 1) 2
7} 75} | M
ANV 7
VeV 5WWWWW\N
40 i 1 H i o 1 L/ 0
20 44 60 t/7 d‘ﬂ /7
a " c / M FIG. 4. Time dependence of | E | plotted on the ba-
sisof Ref. 19. B=0.3,1, /7y =3.5,and 4 =2.17
Plw) Plw) (a) or 4 =2.85 (c). The lower part of the figure
shows P(w) spectra plotted for B=0.3, ¢t /7
702 =3.5,and 4 = 2.17 (b) or4 = 2.85 (d). The con-
tinuous curves and the dashed vertical lines in Figs.
70 4b and 4d identify the values of 7y, w/27 for unsta-
ble and stable regimes, respectively.
7
w7
Y ! ! L 4L'
0 a5 10 75 Ty /210
d
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FIG. 5. a) Dependence of I1 on I, obtained by gradual increase and
reduction in fj, from zero to some maximal value and back againin 1 = 30
sec (Ref. 19); ¢, = 160 usec €7, = 1 msec. b) Dependences as in Fig. 5a,
but for #; = 40 msec» 7, = 1 msec. Here, S, P, and C represent stable,
periodic, and chaotic states of the system on the upper branch of the
hysteretic curve of Fig. 5a.

by two competing optical nonlinearity mechanisms and with
different nonlinear response times.* The appearance of these
pulsations is easily understood on the basis of a graphical
analysis presented in greater detail in Fig. 2 (Ref. 43). In
fact, under steady-state conditions the total phase shift dur-
ing one trip in a Fabry—Perot resonator can be written in the
first approximation as follows:

O =00, + Dy + D, 9)
where
Oy = KaglTl,, ®r = KopTl,,

@, is independent of the intensity, K is a constant governed
by the resonator parameters, @, and a1 are the coefficients
of proportionality corresponding to the two mechanisms'®
inducing @, and T'is the transmission coefficient of the reso-
nator. The dependence (9) is plotted in Fig. 6 and we can see
that it is a straight line. The working point of a Fabry—Perot
resonator is then determined by one of the points of intersec-
tion of this line with the transmission curve /4 of the resona-
tor. However, the working point, for example O (Fig. 6)
actually describes stable operation of the resonator only if
this point is stable against rapid thermal fluctuations (be-
cause the orientational mechanism does not have sufficient
time to develop). Therefore, the thermal mechanism may
shift the working point to a position A (or B). Then, because
the laser intensity / in the resonator corresponding to the
point 4 is lower (or greater) than at the point B, the orienta-
tional mechanism reduces (or increases) ®,. This shifts the

F1G. 6. Explanation of a self-oscil-
latory regime.”* Here, O is the
working or operating point; the
dashed and chain lines represent
the phase shift due to heating by ra-
diation, the continuous line is the
solution of Eq. (9), and the contin-
uous thick curve represents trans-
mission by a Fabry~Perot resona-
tor.
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working point from 4 to C (or from B to C’) and the dashed
line in Fig. 6 shifts to the left (or right). Beyond the point C
(or C') the thermal mechanism results in a shift to a position
denoted by D (or D). The resultant increase (or reduction)
in I now increases (or reduces) ®, because of the orienta-
tional mechanism and shifts the working point from D to C’
(or from D' to C), which is followed by switching to D’ (or
D) and ashifttoward 4 (or B). Then, thecycle ACDC’D A is
repeated and the self-oscillatory operation of a Fabry—Perot
resonator, which is not limited in time, is observed. The peri-
od of such oscillations (pulsations) is of the order of the
orientational relaxation time 7.

This description is valid for 7 €7, and we can readily
see that the threshold intensity of the fluctuations 7g,
should be found from the condition that the dashed line in
Fig. 6is a tangent to the transmission curve of a Fabry—Perot
resonator at the point of inflection:

F1p2 (10)

I~
max 2 !

. a7
| Kardpeoo |7 ={ 3¢

where Fis the sharpness (finesse) coefficient of the resona-
tor.

Such phenomena are particularly numerous in laser
systems of various types so that under certain conditions
instabilities of this kind are the rule rather than the excep-
tion! (see also Ref. 123).

An interesting regime in a passive nonlinear system
with optical bistability is predicted in Ref. 105: under certain
conditions'" it is possible to generate a time sequence of
short light pulses using a single “‘seed” pulse injected into the
system; an experimental demonstration of this effect was re-
ported so far only for a model device in which an acoustic
wave was excited (see Ref. 123).

2.3. Other optical systems with bistability

A relatively simple system in the form of a nonlinear
Fabry—Perot resonator has been discussed by us in the pre-
ceding sections. However, there are other optical systems in
which optical bistability and unstable processes may appear.
Even in the case of a Fabry—Perot resonator it is possible to
think of more complex systems. In particular, the complex-
ity may increase because of the presence of various elements
operating by transmission or reflection.'' In the latter case
one can use selective reflectors based on dielectrics (interfer-
ence due to plates; diffraction by apertures and various—
including those induced by external fields—structures; re-
flection near the total internal reflection and Brewster an-
gles, etc.), thin films of metals or semiconductors deposited
on dielectrics. The more general problem of propagation of
light in a nonlinear layer of finite thickness is related to the
case of a nonlinear Fabry—Perot resonator; the boundary
conditions give rise to reflected waves and these establish a
feedback.

The phenomena due to feedback can cover a wide range:
since a feedback is established in respect of the fields, new
nonlinear effects can be expected: transverse optical bistabi-
lity due to spatial modulation of the beam,*® polarization
optical bistability and multistability, and polarization cha-
0s.'% The problems related to the polarization of radiation
have now become an independent topic and are of exception-
al importance. In the case of spatially confined light beams
one can expect various self-maintained spatially inhomogen-
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eous regimes, in particular traveling switching waves in a
Fabry- Perot resonator.>’

Essentially, optical bistability can appear in any nonlin-
ear system with feedback and is a fairly universal property.'
In fact, Eq. (2) is cubic. Substitution of the variable in the
formx’ = x + 2®,(3®,) ~! makes it possible to rewrite this
equation in a more convenient form:

Os+ (4F — 5 ©F) 2/
+ [ 4moGtFt 2. 5 O; (451 — 1 @) ]=0.an

A dynamic equation describing oscillations of a nonlinear
(anharmonic) oscillator can be readily reduced®?’ to the
form of Eq. (11). A detailed analysis of the regimes which
can then appear has been made using the theory of nonlinear
oscillations; the first treatment of these problems in connec-
tion with optical bistability was given in Ref. 27. From the
microscopic point of view, we are speaking here of a well-
known problem in nonlinear optics, which is allowance for
the anharmonicity of atomic systems. In this case a local
nonlinear response of a medium can no longer be regarded as
small.’® A feedback loop in a nonlinear oscillator is estab-
lished by the dependence of its natural frequency on the os-
cillation amplitude, i.e., by the property of nonisochronism®
(see also Ref. 9).

A natural result of the use of this oscillator model, fre-
quently called the Duffing oscillator,'? in the case of wave
processes is the appearance of wave bistability: optical bista-
bility and hysteretic effect are transferred to a propagating
wave.'%® At high intensities the process of stochastization of
oscillations of a nonlinear oscillator'® results in stochastiza-
tion of the wave process.?®'?! At present these effects are
attracting most interest.'”® This type of optical bistability is
exhibited by a large class of nonlinear optical effects.'®
Many systems exhibiting optical bistability can effectively be
reduced to this case.

Optical bistability can appear in a nonlinear system if
there is some point near which its properties change consid-
erably. Then, in the case of an initial “detuning” from this
point, the nonlinearity of the system and a strong feedback
which appears in the system induce a transition between two
stable states'®’ governing optical bistability. The appearance
of such a singular point may be related to some resonance in
the system (nonlinear Fabry—Perot resonator'’ or anhar-
monic oscillator?’) or to total internal reflection,?’ excita-
tion of surface waves,*® distributed feedback, *' light-induced
bleaching of an initially inhomogeneous medium,*? etc. An-
other possibility is that the physics of the phenomenon itself
permits interactions with a light-intensity threshold (self-
focusing,® threshold reorientation of molecules typical of
liquid crystals,'>** etc.). We shall make no distinction
between the two types of hysteresis, the first when only the
state of the optical field changes '*’ and the second when the
state of the nonlinear medium itself is modified. We shall
regard these two cases as representing optical bistability
regimes.

Optical bistability based on the interaction between two
plane waves propagating opposite to one another in an iso-
tropic medium with the Kerr nonlinearity and inducing an-
isotropy in the medium has a characteristic feature. The de-
pendences of the output parameters of a light wave on the
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input parameters are not only multivalued (this gives rise to
a hysteresis in the system), but also have specific isolated
semiinfinite branches when the number of upward and
downward jumps is not the same.”” Moreover, in a quasi-
steady regime there are also branches from which a system
can only drop down (downward jumps), but cannot go up.
The solutions are related to an internal resonance in a non-
linear system induced by a field in the case of a four-wave
interaction. They appear for a specific form of the cubic non-
linearity of a medium and can play an important role in the
appearance of instabilities in the system (see Ref. 120).
However, these solutions may be associated with the simpli-
fication of the model of a nonlinear medium and the approxi-
mations used in the calculations. In particular, neglect of
absorption can play a decisive role: it is well known, for ex-
ample, that it is absorption (attenuation) which ensures a
transition between different states when optical instability
occurs in an anharmonic oscillator.® We have to allow also
for the nonsteady nature of the problem (see Refs. 75 and
120).

3. OPTICAL BISTABILITY IN LIQUID CRYSTALS

Many of the phenomena which result in optical bistabi-
lity have already been investigated for liquid crystals. Before
discussing some of the topics considered above, it would be
desirable to begin with a brief overall review of the results
obtained, so as to gain an idea of the range of investigations
already carried out on liquid crystals.

Detailed quantitative theoretical and experimental
studies of the optical response of a nonlinear Fabry-Perot
resonator, including the nonsteady case, were reported in
Ref. 41, where the isotropic phase of a nematic liquid crystal
was used as a nonlinear medium of the Kerr type.

Measurements were made for different values of
the phase shift ®;=0, - 0.17, and —0.27, where
O, = 2wn,d /¢, each of which corresponded to a specific
mode of a nonlinear Fabry—Perot resonator in a stable state.
Figure 7 shows three typical examples. Theoretical curves of
the output pulses were obtained from Eqs. (4)—(6). One can
also show that if zz €7, €7\, then the dependence of
|Ex (fax ) |2 ON [Eg(fmay ) |% Where £ = ¢, corresponds to
the maximum value of ®, should reach a characteristic curve
for a steady state of a nonlinear Fabry—Perot resonator (Fig.
8). We can distinguish three types of operation: power limi-
tation (Fig. 8a), differential amplification (Fig. 8b), and
bistable (Fig. 8¢).

A reduction in 7, modifies these dependences. In the
regime of Fig. 8c this modification is manifested mainly in
the negative curvature region. In the limit of very small val-
ues of 7, the curve becomes similar to a characteristic
switching curve of the phase, which is in good agreement
with the dependence mentioned above in the case of quasi-
steady operation at the maximum intensity of input pulses
1. =03MW/cm’

The experiments reported in Ref. 41 yielded also the
dependences I (¢) and $(¢) as a function of 7, (¢) when the
molecular relaxation time was reduced from 7y » 7, > #; to
Tnm <lg €7,. For 7y > 7,, the ®(¢) curves demonstrated a
nonsteady response of a medium to the field in a Fabry-
Perot resonator; however, if 7y €7, the medium could fol-
low almost instantaneously the changes in the field in the
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FIG. 7. Input [;,, (¢) and output [, (¢) intensities obtained for a nonlinear
Fabry—Perot resonator as a function of time for three different values of
the initial phase shift &, (Ref. 41). The continuous curves are calculated
using Egs. (4)-(6) and the dashed curve represents field-induced phase
shift & (¢); I, is the peak intensity of the input signal.

resonator so that ®(#) « I (#). A quantitative study was
made of the transition from a nonsteady to a quasisteady
case. In the power limitation regime ($, = 0) the depen-
dence of I on [, in the nonsteady case was in the form of a
loop which readily collapsed to form a line in the cases far
from the transition. In the differential amplification case
($, = — 0.17) we observed the same nature of the depen-
dence, but the hysteresis curve for I+ considered as a func-
tion of I, was quite pronounced in the quasisteady limit.
Bistable operation (®, = — 0.27) demonstrated a more
abrupt transition between the two limiting cases under dis-
cussion. In the nonsteady limit the dependence 7, (/,) was
also in the form of a loop, but the direction along which the
loop was followed was opposite to that in the cases discussed
above.

The results obtained for 7y €#x €7, corresponded to
the conditions under which the Ikeda instabilities should
develop, but in the experiments of Ref. 41 the detector re-
cording the optical radiation was too slow. Moreover, ap-
pearance of the Ikeda instabilities would require light inten-
sities 50 times higher' than those used in the experiments.

Strong optical bistability effects in a Fabry—Perot reso-
nator with a liquid crystal in the nematic phase were first
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FIG. 8. Dependences of I, on [, for a maximum phase delay ¢, and
the three values of ®, (a—).*' The dashed curves represent the steady-
state behavior of a nonlinear Fabry-Perot resonator. The continuous
curves are calculated numerically for the quasisteady case (7, = 2 nsec, I,
= 0.3 MW/cm?); the numbers alongside the experimental points give the

peak intensity 7, in our experiments (MW/cm?).

considered in the reports cited as Ref. 42. Optical bistability
and multistability had been observed*® in the field of an Ar *
laser and a transition to a self-oscillatory regime was also
found (the nonlinearity of the medium was governed by

/oul

}

| i 1 —
o, W/em2

.7,2 sec
_H—Z__"_

b 1, sec

FIG. 9. Multistable characteristics (a) and oscillations (b) exhibited by a
Fabry—Perot resonator containing a nematic liquid crystal, observed ex-
perimentally in Ref. 43. The top of Fig. 9a shows loops and the appearance
of spontaneous oscillations in the case of other (more favorable) initial
conditions. The measured values of the parameters were as follows: 74
= 1.6 sec, 7y = 0.015 sec, ap = 0.011 cm*/W, @ = 0.0013 cm?/W. The
measured value of the threshold intensity above which spontaneous oscil-
lations appeared in the investigated Fabry—Perot resonator amounted to
I.. ~63 W/cm?. An estimate based on Eq. (10) allowing for the resona-
tor parameters found experimentally*’ (K =7, F=20) gave [, ~50
W/cm?. The measured pulsation period was 1.2 sec.
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orientational and thermal mechanisms); see Fig. 9 and com-
pare with Fig. 6. A similar regime was also observed when a
cell with a nematic liquid crystal was placed inside the reso-
nator of an Ar* laser.* Optical bistability appeared in a
Fabry-Perot resonator when the field was in the form of a
train of nanosecond laser pulses: in view of strong feedback,
just a few pulses were sufficient to manifest the accumula-
tion effects.*?

The main features of the transient processes in liquid
crystals in the mesophase were due to the fact that the time
v was independent of the cell thickness and of the charac-
teristic scale of the resultant deformations.'? Therefore, the
value of 7, could be varied continuously within wide limits
(in practice from 10 ~ Ssec to tens of seconds ). Moreover, ™
essentially represents the switching-off time of a nonlinear-
ity when an external field is removed (7, =74 ); the switch-
ing-on time 7, itself depends on the intensity and can be
varied continuously In certain geometries (threshold reor-
ientation) there is moreover a specific delay time 7, because
of the inequivalence of two possible but opposite directions
of the initial reorientation of the director.** It is necessary to
allow also for the effects of accumulation of nonlinear prop-
erties of liquid crystals under the action of a train of short
(nanosecond and possibly picosecond) laser pulses.?
Therefore, the dynamics of orientational processes in liquid
crystals can be quite complex.

Polarization optical bistability of a cholesteric liquid
crystal exhibiting a helical structure in space was discussed
in Ref. 45: in this case a Fabry-Perot resonator exhibits not
only scalar (frequency), but also polarization modes (opti-
cal bistability of the polarization of transmitted waves was
demonstrated experimentally for nematic liquid crystals
some time ago*®). Chaotic regimes in the polarization and
amplitude characteristics revealed by an analysis of a nonlin-
ear Fabry-Perot resonator containing the isotropic phase of
a cholesteric liquid crystal, exhibiting optical activity, were
reported in Ref. 112.

Mirrorless optical bistability systems had also been re-
alized experimentally for liquid crystals, but the investiga-
tions had been so far in the nature of demonstrations. Non-
linear reflection (in the case of the thermal nonlinearity
mechanism) at an interface between a nematic liquid crystal
and glass was reported in Ref. 47 for total internal reflection.
An optical hysteresis on excitation of surface plasmons at an
interface between a nematic liquid crystal and a metal was
recorded in Ref. 48 (Fig. 10). Surface phenomena were in-
volved in optical bistability observed in a system comprising
a photoconducting semiconductor and a nematic liquid
crystal*®: a static field which appeared in the semiconductor
because of the anomalous photo-emf effect resulted in sur-
face reorientation of the liquld crystal characterized by hys-
teresis as the incident light was increased and then reduced
(Fig. 11). A cell with two substrates carrying semiconduc-
tor films readily exhibited a tristable characteristic (double
hysteresis) illustrated in Fig. 11c: the scattering of light in
the bulk of a liquid crystal manifested hysteresis because of
the effect of the field on the liquid crystal on the exit sub-
strate, which occurred at higher intensities of the incident
light than on the entry substrate. An additional feedback
component (reflecting mirror) widened the optical bistabi-
lity region (Fig. 11b). Nonlinear bleaching of a nematic lig-
uid crystal layer with two free surfaces was described in Ref.
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FIG. 10. Hysteresis curves obtained on excitation of nonlinear surface
electromagnetic waves in an experiment involving frustrated total inter-
nal reflection in a system (inset in Fig. 10a) consisting of a prism (1), a
metal film (2), and a nematic liquid crystal (3), based on Ref. 48. Here,
0,0, is the direction of the optic axis of the nematic liquid crystal; I, and
Iy are the intensities of the incident and reflected light, respectively;
R=1Iy /1,. Theinitial deviation from the angle 8, corresponding to a reso-
nance of surface plasmons was as follows: a) 6, — 6= — 1% b) 6,
— 6=1%c) 8, — 8=30'". The actual shape of the hysteresis loop is gov-
erned by the initial deviation 8, — 6 from the resonance and by the state of
the system after a change of the direction of going round a hysteresis loop
(starting with the direction corresponding to an increase in /,,). The ex-
periments were carried out using a He-Ne laser (4 =0.633 um) and a
nematic liquid crystal 5CB; @ = 0°.

50.'® A relatively simple theory of nonlinear bleaching of
nematic liquid crystals, based on a molecular theory of non-
linear scattering of coherent light under conditions of optical
orientation of molecules,”"”? resulting in optical bistability,
was developed in Ref. 55 (one could speak thus of one more
optical bistability mechanism; compare with Ref. 6).
Optical bistability in a liquid crystal with distributed
feedback can be due to self-diffraction effects, when periodic
structures are induced by the laser radiation itself *!**-%% or
when a liquid crystal is itself spatially inhomogeneous (cho-
lesteric and smectic liquid crystals).® In the former case the
appearance of optical bistability should be associated with
saturation of the nonlinearity (when the nonlinear coupling
coefficient yd, where d is the thickness and y is governed by
the nonlinear correction to the refractive index An™, should
obey the inequality yd 2 10, as shown in Ref. 31; current
experiments®® have achieved only the condition yd~2). In
the latter case the phenomenon of optical bistability is due to
An™ induced under the Bragg resonance conditions (Ref.
57)"7 (the polarization form of optical bistability was dis-
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FIG. 11. a) Hysteresis of the dependence of the intensity of the
transmitted light I, on the intensity of the incident light I in a
system comprising a photoconducting semiconductor and a ne-
matic liquid crystal when the value of J, was gradually increased
and then reduced. b) Broadening of a hysteresis loop due to a
mirror reflecting partly (»=60%) transmitted radiation. c)

Double hysteresis (tristability) in a nematic liquid crystal cell
with semiconductor films on both substrates; the light-induced
static electric fields due to the anomalous photo-emf were paral-
lel on both substrates. d) Hysteresis of the dependence of the
reflection coefficient of light R * =147, ' (under conditions
of a Bragg resonance for a mixture of cholesteric liquid crystals)
on the intensity of the incident light J, when this intensity was
gradually increased and reduced (as indicated by arrows ). Mea-
surements were carried out at stationary points when an equilib-
rium thermal state was established in a sample for each value of
I,,. In all cases the experiments were carried out using an He-Ne
laser (A = 0.633 um) and a nematic liquid crystal 5CB (a—)*
or a mixture of cholesteric liquid crystals (d).*
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cussed for this case in Ref. 58). The latter effect was ob-
served experimentally®® (Fig. 11d) in the case of the thermal
mechanism of the nonlinearity of a mixture of cholesteric
and nematic liquid crystals with a dye subjected to the field
of a low-power He-Ne laser. (Some systems exhibiting opti-
cal bistability in cholesteric liquid crystals, similar to those
reported in Refs. 32, 33, and 57, were discussed in Ref. 60.)
Hysteresis during pulsed excitation of a cholesteric liquid
crystal, due to distortion of the profile of the light pulses
resulting from relaxation of the medium (observation of a
hysteresis in this case did not necessarily imply optical bista-
bility’), was reported in Ref. 61.
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FIG. 12. Dependence on H of the intensity I,,, of light scattered (in the
direction of the incident beam) by transverse fluctuations of the director
n, at the threshold of the Fréedericksz transition in a static magnetic field
H %, The top part of the figure shows the initial geometry (homeotropic
cell containing a nematic MBBA liquid crystal) in a plane perpendicular
to the direction of propagation of light; the polarization of light was E||H;
‘the arrow identifies the threshold value of the magnetic field H,.

1050 Sov. Phys. Usp. 30 (12), December 1987

The first experimental observation of the true intrinsic
phenomenon of optical bistability in a nematic liquid crystal,
associated with a threshold reorientation of molecules in a
laser field (field-induced phase transition**) was reported in
Ref. 62. Light scattering experiments® revealed a strong rise
of the amplitude of fluctuations at the reorientation thresh-
old of a nematic liquid crystal (Figs. 12), which was an ana-
log of the critical opalescence in the case of thermal phase
transitions. Critical behavior had been observed also in the
case of the time parameters >*%2

Optical bistability associated with aperture effects such
as the self-focusing of light**’? etc., in which a change in the
transverse structure of a light beam results in feedback
(which could be established also by optical components
such as reflecting mirrors, lenses, stops, polarizers, etc.) was
reported for a nematic liquid crystal in Ref. 64. These effects
were found to be strongest in liquid crystals and they gave
rise to a specific ring structure of the transmitted light.®

Therefore, a wide range of nonlinear optical phenome-
na in liquid crystals can give rise to optical bistability. In the
next sections we shall discuss in detail some of the effects
which at present are attracting most interest.

4. INTRINSIC OPTICAL BISTABILITY ASSOCIATED WITH A
LIGHT-INDUCED STRUCTURAL PHASE TRANSITION IN A
NEMATIC LIQUID CRYSTAL

A characteristic feature of the light-induced effects in
liquid crystals is the existence of an optical intensity thresh-
old I,, above which reorientation of the director n, takes
place (the director represents the average orientation of the
molecules, i.e., the optic axis) so that the system undergoes a
transition from an initial state with a homogeneous orienta-
tion of the medium to an inhomogeneous state. The exis-
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tence of a singular point which is the threshold of appear-
ance of this effect is not dependent on the presence of a
resonator, so that we can speak here of intrinsic optical bista-
bility. Two states of the system in which this bistability can
be observed correspond to the incident light intensities
I<1, and I>1,. A transition between these two stable
states may be accompanied by hysteresis which can occur,
for example, in the case of a nonlinear phase shift due to a
gradual increase and reduction in /if the feedback is selected
suitably.?

In this case feedback is governed by the self-consistency
of the problem: an optical field distorts the structure of a
nematic liquid crystal, which influences the parameters of
the transmitted radiation: self-modulation of light takes
place. Elastic properties of the medium ensure that the non-
linear response is nonlocal. Therefore, hysteresis character-
izing a first-order phase transition may appear for suitable
values of the material parameters of the medium itself. In
fact these parameters determine the macroscopic conditions
in an experiment and can be altered readily by, for example,
selecting the boundary conditions or using not only an opti-
cal field but also additional electric or magnetic fields.**

The same conclusion can be reached from a somewhat
different standpoint'*: since we are speaking here of light-
induced phase transitions, it follows that the external condi-
tions (the existence of an additional external field or a
change in the angle of incidence of light) can alter the nature
of the phase transition converting it from one of second or-
der (without hysteresis) to one of first order (with hystere-
sis). In the case of nematic liquid crystals this means that
when the threshold is overcome (/> I, ) then in the former
case the angle of reorientation 6 of the molecules (and, con-
sequently, the nonlinear phase shift " of the transmitted
radiation) changes continuously, whereas in the latter case
it changes abruptly.**

The results of the first observations of hysteresis of a
light-induced (in a field E) threshold reorientation of a ne-
matic liquid crystal in the presence of a static magnetic field
H were reported in Ref. 62. The experiments involved deter-
mination of the amplitude and time characteristics of "
induced in 4-n-pentyl-4'-cyanobiphenyl (5CB) by Ar™* laser
radiation (4 = 0.51 u) both at different but fixed values of /
as a function of H(ELH, H||n,) or vice versa. The results
obtained in the latter case are presented in Fig. 13. We can
see that hysteresis (of the dependence of @™ on I) occurred
in fields H>H_.. The values of I, and H,_ could be estimated
most accurately from measurements of the switching-on
(7,, ) and switching-off (7. ) times of the nonlinearity, cor-
responding to the “‘instantaneous’ opening and stopping the
aperture transmitting the Ar* laser beam. The values ob-
tained in this way were I, ~84 W/cm’ and H, ~ 181 Oe.

At low values of I the dependences of 7' on / obtained
at different values of H were linear. At high values of H they
were nonmonotonic and exhibited critical behavior.

The role of a magnetic field in this geometry was simply
to increase I, and 7, and to reduce 7.; provided / was not
too high (/ <200 W/cm?).

In the case when E|H (E, Hln,) it is possible to ob-
serve under certain conditions (with ordinary and extraor-
dinary waves inside a nematic liquid crystal) an interesting
effect in the form of disappearance of reorientation in fields
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FIG. 13. a) Dependences of the nonlinear phase shift ™ induced by an
optical field E on the intensity of light 7 obtained in the geometry of the
light-induced Fréedericksz transition, obtained in Ref. 62 for different
values of the magnetic field H /H,: 1) 0;2) 0.92; 3) 1.15;4) 1.32;6) 1.35.
Here, H,, is the threshold value for the Fréedericksz transition in a mag-
netic field when ELH. The symbols are the experimental values obtained
by increasing / (black) or by reducing / (open); the curves are calculated.
b) Width of the hysteresis loop /,, — I}, plotted as a function of H on the
basis of the results reported in Ref. 62. The two threshold values of the
intensities were recorded for increasing and decreasing I, respectively.
The inset shows an increase in /,; on increase in H in the case of a nematic
liquid crystal 5CB (d = 380 um).

H > H, in the absence of an optical field (H,, is the threshold
of the Fréedericksz transition in a magnetic field), which is
discussed in Sec. 6.

A standard expression for the density of the free energy
Fin a nematic liquid crystal, considered as a function of the
amplitude of the small angle of reorientation 8, which acts
as the order parameter, is (see, for example, Ref. 34)

Fe ~ce;n+%Be:n+%Ge:n+
(12)

. nz
8 =0, sin =

where the coefficient C= (I/7%)"'? — 1 determines the
threshold of the light-induced Fréedericksz transition; the
parameter B in the case when ELH and H||n, is governed by
the parameters of the medium and by H:

P (=) (-5

9 €, Xaf?
(1 5“) Ky (v/a)* ’

where K, are elastic constants; £, and £ are the components
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FIG. 14. Calculated dependences of the maximum of the reorientation
angle 8, on the normalized intensity E /Ey of a quasistatic electric field of
frequency fapplied to a nematic liquid crystal RO-TN-200 in the geome-
try of the threshold Fréedericksz transition.®> Parameters:
K, =9.21x10"" dyn, K,, = 14.83x 1077 dyn, ¢, = 7.58; E}, is the
threshold value of the field during its reduction. Curve 1: f= 10 kHz, £
=26.00, B= —0.376, E; = 0.67Ey (first-order transition). Curve 2:
S=140kHz, ¢ = 21.50,B= —0.330, Ey = 0.74E, (first-order transi-
tion). Curve 3: f'= 560 kHz, £, =9.36, B = 0.013 (second-order transi-
tion); Ep = wd ~'(47Ks.¢, /6,6,)'7.

of the permittivity across and along the director, respective-
ly; x. is the anisotropy of the magnetic susceptibility; the last
constant in the above equation is G > 0 for known nematic
liquid crystals. Equation (12) does not have terms which are
even in powers of 6, because of the equivalence of two direc-
tions of the director reorientation ( 4+ 8, ).**

If A =0, then in the case of the majority of nematic
liquid crystals (particularly for SCB), we have B> 0 and a
light-induced second-order phase transition takes place; if H
is increased, then the sign of B can change to B <0; then, a
first-order phase transition takes place in a system and this
transition exhibits a hysteresis. This explains the results
shown in Fig. 13, However, the change in ™ (and, there-
fore, in 6,,) at the reorientation threshold occurs quite
smoothly in experiments. This departure from the predic-
tions of the simple theory of Ref. 34 is clearly due to the need
toallow for thermal fluctuations of the director (see Fig. 12)
and also due to the finite dimensions of the laser beam.

The value B = 0 in the case when C = 0 [ when the coef-
ficient in front of 63, in Eq. (12) automatically vanishes]
corresponds to a tricritical point of the system. A theoretical
estimate of the tricritical parameters of SCB (B =0, if
H=H, =0.92H, or I=1.781% ) gives values close to
those found experimentally.

The possibility of hysteresis in the case of reorientation
is not a specifically optical effect.®® Figure 14 shows, by way
of example, the results of calculations carried out for a nema-
tic liquid crystal RO-TN-200 subjected to an external quasi-
static electric field. An interesting feature of this case is the
ability to change the nature of the phase transition by alter-
ing the field frequency f, which determines the sign of the
anisotropy of the permittivity of the medium.’

5. REORIENTATION OF A NEMATIC LIQUID CRYSTAL
INDUCED BY EXTERNAL FIELDS AS AN ANALOG OF A
NONLINEAR OSCILLATOR

It is of interest to consider light-induced effects in ne-
matic liquid crystals from the point of view of general sys-
tems exhibiting optical bistability because this makes it pos-
sible to reveal in a systematic manner the various regimes
including the transition to dynamic chaos. It is useful to fol-
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low here an analogy with the problem of a nonlinear (anhar-
monic) oscillator.*

The description of optical bistability and instabilities
within the framework of a model of an anharmonic oscillator
(Duffing equation) applies to vibrations of microscopic sys-
tems (atoms, molecules) with a strong local nonlinearity,
but even in the case of extended systems (when optical fields
in a nonlinear medium interact or self-interact) the use of
this model can be very fruitful. It is found that in many cases
the equations describing such phenomena can be reduced to
a form similar to the equation for a nonlinear oscillator. '
This makes it possible to carry out a general analysis of the
potential regimes in nonlinear dynamics of these systems
and identify the conditions for their observation. In particu-
lar, this approach has been found to be successful in the case
of liquid crystals (particularly in the initial stages of the
analysis) which can be subjected to external fields in various
geometries. Use of this analogy makes it possible to deter-
mine more precisely the conditions for the appearance of
various regimes. One can distinguish here two aspects.**

One can readily show that the usual equation for reor-
ientation of the director of a nematic liquid crystal can be
represented by a spatial analog of the anharmonic oscillator
equation. A manifestation of the general property of noni-
sochronism of such an oscillator® in the case of a nematic
liquid crystal is the field-dependence of the characteristic
scale of a field-induced grating of the refractive index. A
resonance of forced oscillations is ensured in the general case
by multibeam geometry when the structure of strains creat-
ed by optical fields acting as an external force becomes simi-
lar to that already induced in a nematic liquid crystal by a
different field.

In fact, we can show that, for example, the equation for
the threshold Fréedericksz transition in a static magnetic
field H||x, when a nematic liquid crystal with a homeotropic
orientation (director nyl|z) is subjected also to an optical
field E, considered in the geometry of threshold-free reorien-
tation (angle of incidence a; E n,#0°, 90°) for reorientation
angles 8 <1, can be written as follows:

O ROHHE = pl., (13)
where
. a2, 2 fny2 H?
Ro=(7) = =5 (%) H

p= _3531/2 tga [Kaasllc (1 + _%lil_tha)iﬂ]—is

and I, is the z component of the Poynting vector of light.
Equation (13) is now a spatial analog of the equation for an
anharmonic oscillator subjected to a periodic external force®
[the right-hand side of Eq. (13) can be represented in the
form I, = I, sin R '/’z, where R"? is the spatial frequency
of the oscillations)]. This can be generalized allowing for
damping or fluctuations. Then, in the former case the left-
hand side of Eq. (13) is supplemented by a term containing
the viscosity y: — yK 5396 /3t if for the sake of simplicity
we assume that 6 depends exponentially on time (£%0) in
accordance with & = 6, exp(at), where 6, is an rms fluctu-
ation and a is a parameter dependent on H and 7, the quanti-
ty R is redefined. In the latter case the right-hand side of
Eq. (30) is supplemented by a random “‘force” f(z) which
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H2/H,

is &-correlated in space and we have (f(z)) =0 and
{f(2)f(2')) =2D6(z — z'), where D is the diffusion coeffi-
cient of the orientation defined by D~ R {’K;,/¥ (see Ref.
68).

However, direct utilization of Eq. (13) in the analysis
of optical bistability of liquid crystals meets with consider-
able difficulties because this equation does not include a
term containing the first derivative with respect to z and in
the case of an anharmonic oscillator a similar term contain-
ing 8/6¢ (in the time dependence) and describing damping
ensures a transition between two states of a bistable system. ®

Moreover, an analogy with an anharmonic oscillator
can be followed by conservation of the moment of inertia J
in the dynamics of nematic liquid crystals (see Ref. 69).

We shall consider the specific case when a homeotropi-
cally oriented nematic liquid crystal is subjected to a field of
two crossing light waves [forming afield E = (E, 4, E,)] in
the presence of a static magnetic field H = (H,, 0, 0) (Fig.
15). The standard procedure for variation of the free energy
of the system, consisting of the fields and the medium, sub-
ject to an allowance for the time derivatives of the angle of
reorientation 8(z, t) of the director n = (sin 8, 0, cos )
gives the following equation'®’ accurate to within terms
which are cubic in 6:

S+ Rofly B8+ oy S = B oos Q¢ (1

t

(wecan show thatif8, > 0.1, H /H,, ~2,and 2 1 kW/cm?,
the terms proportional to ~8 ] can be ignored). For simpli-
city, we shall make a number of assumptions (which are
usual in the case of nematic liquid crystals), in particular, we
shall ignore the anisotropy of the elastic properties of the
liquid crystal (elastic constant X') and we shall consider only
the first harmonic of the orientational distortion of the initial

orientation angle 8 = 8, sin 7z/d, where 8, = 6,,¢"*, and

assume that the parametersareas follows: 8 = — y, H/4%;
) w21 , 1 (H?

e [ (3] e ()

determines the natural frequency w, of oscillations in a sys-
tem of this kind (R,=wl); H,, is the threshold value of the
magnetic field for the Fréedericksz transition; y, is the mag-
netic susceptibility anisotropy; d is the thickness of the inves-
tigated nematic liquid crystal; B = (£,/4m3J)(&*E,
+ &, &*); g, is the optical anisotropy of the permittivity;
|E | =|& |’cos Qt, |E,|>=|%,|*cos Qt;** 6, =B
X [(w5 — %) + iy, ] s @ = p/3; v is the viscosity. For
simplicity, we shall ignore the correction for the local field so
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FIG. 15. a) Dependence of the amplitude of the angle of
deviation g, of the director on the applied magnetic field
H, governing the natural frequency of oscillations of the
system w,, obtained in Ref. 55 for two cases: 1) 3 #0; 2)
J = 0;in the J#0 case the values of 8, and 6y, ,,, corre-
spond t0 @, =0 (H/Hy =1) and w,=Q[H/H,
= (H/Hy) ., ]; the calculations were carried out for
the following conditions:  =3X 10~ *g/cm, d = 10 um,
Q=10"Hz, K=10"°dyn,y=10"2g-cm-sec ', I /1,
=1, (H/H,)L., = 2. b) Geometry of the problem: 1)
probe beam; 2) liquid crystal; 3) modulator capable of
varying the intensity in accordance with the law
I=1I,sin R '*t; 4) pump.

that |E |2 = (87/cn), where I is the light intensity and » is
the refractive index, and assume that there is no phase shift
between %, and % _, which then yields B = (2¢,1/7cnS).

The nonlinear equation ( 14) with @, =0 is the Duffing
equation.® If 8> 0 and R > 0, all the solutions of Eq. (14)
are periodic. The principal difference between these solu-
tions and the motion described by the linear equation
( #=0) is that the frequency of oscillations described by Eq.
(14) is determined by R {/” and depends on the amplitude
6y, i.e., the nonisochronism effect is observed. If # < 0 and
R, >0, then low energies W of the system correspond to
motion which qualitatively resembles harmonic oscillations.
An increase in W above a critical value W_ suppresses peri-
odic motion which cannot exist in the range W> W,_. This
critical value is given by W, = R4 '|8|~" and it corre-

sponds to 8,, = + ( — R, B ~")"/2 Infinite motion can also
occur for W < W_ provided the initial deviation is sufficient-
ly large.

If R, <0 and >0, there are two stable equilibrium
positionscharacterizedby8,, = + ( — R, ~')'/?and cor-
responding to two possible directions of the tilt of the direc-
tor, as well as one unstable with 8,, = 0. In the last case the
motion is only periodic.

Therefore, the condition R; = O determines the thresh-
old value of H at which deformation of a nematic liquid crys-
tal begins (9 #0). Forced nonlinear oscillations described
by Eq. (14) give rise to hysteresis of the dependence of the
oscillation amplitude |8,,] on the frequency R'?=Q of the
driving force; the dependence |6,,(R)| exhibits a resonance
(ay<R'?,R~R,).If R hasaconstant value, hysteresis ap-
pears in the course of successive rise and fall of I and it is
again a consequence of continuous deformation of the reso-
nance curve. The condition for the existence of a resonance
a,<R '"?in fact determines the range of values of the param-
eters of a nematic liquid crystal in which the oscillatory re-
gime is observed.

We can now readily estimate the threshold optical in-
tensity I,, which in the geometry under discussion should
correspond to optical bistability. We shall therefore seek the
solution of Eq. (14) in the form 8, = A(#)sin[ Q¢ + ¢ (1) ];
we can then readily derive reduced equations for 4 (¢) and
@ (1) by the Van der Pol method and then estimate /5 using
the expression (see Refs. 8 and 115)

I _/mcan( 5\752_)1/‘-’
OB~ g, By 2

If we select the parameters (see below) to be J =107
g/cm, y=10"4Q=10"Hzor§ = 10"* g/cm, y = 1072,
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and (! = 10° Hz, we find that I,z ~ 50 kW/cm? or I, ~ 50
MW /cm?, respectively.

The most interesting is the case when hysteresis disap-
pears at the reorientation threshold, because we can then
speak of a field-induced first-order phase transition (see Ref.
34). The physical reason for optical bistability is then related
to indeterminacy of the initial reorientation: both directions
of deviation of the director are equivalent. When the thresh-
old is approached from the high-field side, one of the possi-
ble states is already in existence in the system, so that the
cases of rising and falling fields are not equivalent.

In other geometries we can show that Eq. (14) has to be
replaced by an analog of the nonlinear Mathieu equation and
the growth of parametric instabilities in such a case is well
known (Ref. 8).2"

Equation (14) can also be generalized allowing for fluc-
tuations, i.e., by considering the growth of thermal fluctu-
ations of the director in the presence of an optical field; this
can be done by introducing a random force f(¢) on the right-
hand side of this equation. The solution of Eq. (14) with f(¢)
in the Gaussian form and in the case of § correlation in time
is analyzed in Ref. 68. Its statistical behavior is governed by
thesignof R,,; if R, = 0, there is a change from a regime with
a maximum at 6 = 0 for a steady-state distribution of the
probability P(6) of the quantity & in the case with maxima of
P(B)at@= + (—R,B "2 (for simplicity, we shall as-
sume that 7 = 0). Then, fluctuations increase strongly for
R, = 0and, consequently, the scattering of light should also
increase (Fig. 12). This gives rise to an additional energy
loss channel which disappears when the reorientation
threshold is exceeded. Therefore, hysteresis appears because
of the scattering of light associated with reorientation in the
threshold region as the field is increased and then reduced.
This effect has been observed experimentally.®® The pres-
ence of a scattering maximum in the critical region of the
growth of transverse fluctuations of the director, at the
threshold of the Fréedericksz transition, can naturally be
predicted also by the ordinary methods of thermodynamics
of liquid crystals,? but this maximum is of very general im-
portance and it is characteristic specifically of first-order
phase transitions.'*”®

An analysis of optical bistability regimes in the case of
nematic liquid crystals can also be carried out for other geo-
metries and also allowing for an inhomogeneity of the field in
the medium, relaxed boundary conditions (which determine
the nature of phase transitions induced by the field), etc.

It is desirable to describe the reorientation effects in the

TABLEI Reorientation angles 8, and 8, ,,.,, (Fig. 15) and corresponding phase shifts ®"'and ¢!

for different parameters of liquid crystals.

form of Egs. (13) and (14) of universal validity because it
helps to detect the transition to dynamic chaos due to inter-
action of external fields with a liquid crystal (see Ref. 121).
The use of a liquid crystal to identify the actual scenario of
the transition to chaos is particularly attractive in experi-
mental studies. The ranges of the parameters occurring in
Egs. (13) and (14) in which the behavior of a system is
chaotic are identified in Ref. 26. Therefore, it is realistic to
carry out a deliberate experimental search for these extreme-
ly important states of the system.

The main question which is encountered in the time
dependences is the need to retain the term with J#0in Eq.
(14). Usually this term is regarded as negligible, of the order
of the moment of inertia of a single molecule. However, in
the case of a nematic liquid crystal the orientational effects
are governed by the collective reorientation phenomena in
an ensemble of molecules affecting the director, so that we
can assume that the macroscopic value of § need not be
small*®’ (see Ref. 69).

A simple estimate of the macroscopic moment of inertia

can be obtained for the director of a nematic liquid crystal
per unit volume (33) using the dimensions of that local re-
gion with a characteristic scale r, which is associated with
the director. In fact, by definition we have § = m,72/V,
= pr;, where p is the density of the investigated nematic
liquid crystal (p~1 g/cm’).”> We can estimate 7, using
dimensional analysis and we then readily obtain®® the rela-
tionship ¥ = r,up, where y is the viscosity and v is a param-
eter with the dimensions of velocity (see Ref. 69). In the case
of typical nematic liquid crystals we have y~0.1-1 P; as-
suming that v~ 10° cm/sec (velocity of sound),** we find
that #, = 107°~107> c¢m so that I~107">-107'° g/cm.
This value of ry corresponds to the correlation coherence
length of nematic liquid crystals.? If v is associated with the
propagation of orientational waves (solitons), then r, is
equal to the thickness d of a nematic liquid crystal layer; for
ry ~d~10um, we have ¥~ 10~ ¢g/cm. In this case a similar
estimate of J can be obtained from the relationship
v = (K/3)"?, where KX is the elastic coefficient.®

The problem can be solved by experiments. The equa-
tions of motion of a nematic liquid crystal in an external
{magnetic) field derived allowing for the moment of inertia
S of the director have soliton solutions.®® Experimental ob-
servation of such behavior makes it possible to estimate 3.
However, it is much simpler to find ¥ by direct experiments
in which a nematic liquid crystal is in an oscillatory regime
(see Fig. 15). In fact, if we write down Eq. (14) in the ap-

max

cell illuminated normally.

[ ] [
3, d,
gfcm 7P #m O He|H/H |11, Yot cl:'I|‘l 801 max D
|

1= - | 10 403 12 T 1 JORl | YRSt 10-1 713
{3 -t 100 | 104 10 1 7104 5. 102 13 7.10-2
ks 102 1 18 2 1 112 3 1 N
173 1 1) {id in2 I J6-3 71073 11)-3 Toji3
fe=s 1 Lo | 104 10 =t | 7108 10-1 71073
10-3 [t 10 13 104 1o 10m3 71072 14472 7ol

*I,, is the threshold light intensity needed to induce the Fréedericksz transition in a homeotropic
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proximation which is linear in &, then its solution allowing
for the phase shift between the resultant oscillations and the
driving force obtained for two cases (¥ = Oand J#£0) yields
the dependences shown in Fig. 15. The actual values of the
parameters used in such calculations are given in the caption
of Fig. 15.

Table I lists the values of the reorientation angles 8,
and 6, ..., and the corresponding phase shifts &% and &7
of a probe light beam used to detect reorientation of a nema-
tic liquid crystal; these angles are given for characteristic
points on the curves in Fig. 15 obtained for different values
of the material parameters of a nematic liquid crystal and
different experimental conditions. For example, we can
readily demonstrate that the condition (8,,... — 65}/
Go1max = 0.1, which ensures a sufficient difference between
the curves in Fig. 15 for experimental detection, leads to the
requirement 2 0.45y/3. In this case the difference
between the values of H /H,;, for characteristic points of the
curve with 3540 (curve 1 in Fig. 15) also exceeds 0.1, i.e., it
should be easy to detect it experimentally.

The data of Table I show that in real cases it is possible
to measure ¥ more readily for specially selected liquid crys-
tals with exotic properties such as a low viscosity » and high
values of r4, which govern JJ. However, if r4 is increased,
then—in spite of the fact that both Y and » both increase and
make opposite contributions when differences between the
two curves in Fig. 15 are observed—the rise in the former
caseis faster (3 « 72 and y « 74 ).2¥ Therefore, an increase in
the degree of collective interaction ** improves the condi-
tions for realization of oscillatory regimes in the dynamics of
liquid crystals.

6. INSTABILITIES AND STOCHASTICITY IN EXPERIMENTS
ON LIGHT-INDUCED REORIENTATION OF THE DIRECTOR
OF LIQUID CRYSTALS UNDER CONDITIONS OF EXCITATION
OF VOLUME GRATINGS

6.1. Effects of a laser field on a liquid crystal

A laser field destabilizes the initial equilibrium state of a
medium in which reorientation effects begin to appear and
these effects govern field-induced structural phase transi-
tions.** In the case of a propagating wave this results in cre-
ation of volume gratings, i.e., a distributed feedback is estab-
lished in the system.

The processes of self-modulation of light which then
develop are governed by the mutual influence of normal
waves in a medium.”®”* In the case of nematic liquid crystals
a characteristic spatial scale in which energy transfer occurs
between two waves with orthogonal polarizations is gov-
erned by the quantity 1/v4 2 (Ref. 54), i.e., it is governed by
beats (with the characteristic parameter ¢g,) between two
oscillatory components of the field (here, 4 ? is the intensity
of each of the components of the field identified by i = 1 or 2,
v=g, ¢,/ 167 '77'K ', g, is the z component of the vec-
tor q =k, — k,, and k., and k, are the wave vectors for
waves with the extraordinary and ordinary polarizations,
respectively). In the case of cholesteric liquid crystals such a
periodic redistribution of energy between waves gives rise to
so-called pendulum solutions.”® The presence of two orthog-
onal polarizations inside a medium and their interaction re-
sults in time instabilities of the transmitted light. The ap-
pearance of oscillations as a result of optical excitation of
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nonadiabatic deformations in nematic liquid crystals was
first discovered in a series of experiments reported in Ref. 38.
Different oscillation regimes were observed: damped, exact-
ly periodic, and stochastic. There are many factors which
can give rise to waves of different polarizations in liquid
crystals. One of them is the appearance of a second polariza-
tion due to light-induced reorientation processes (Ref.
54).*" Another possibility is that waves with the two polari-
zations can travel in a liquid crystal even in the linear case.
This is either due to the ellipticity of the polarization of light
incident on an initially homogeneously oriented liquid crys-
tal or, in the case of linear polarization of light, it is due to an
inhomogeneity of the liquid crystal structure. It is deter-
mined by the asymmetry of the boundary conditions (sam-
ples with hybrid orientation®) and by the specific *“twisted-
ness” of the structure (cholesteric liquid crystals). Another
possibility is the use of multibeam systems when a liquid
crystal is subjected to several waves with different polariza-
tions. The nonlinear interaction of light with a medium
(characterized by a threshold) ensures formation of com-
plex gratings in all these cases as a result of the combined
effects of different components of the field. Finally, the scat-
tering of light in a liquid crystal in the orthogonal polariza-
tion can also give rise to gratings if the intensity of the inci-
dent light is sufficiently high.

Various combinations are also possible when a liquid
crystal is subjected not only to an optical field, but to other
quasistatic (in particular, magnetic) or acoustic fields
which themselves create inhomogeneities in a medium and
can excite various instabilities. *>*

We shall now analyze some of the instabilities which
appear because of a nonlinear optical interaction of light
with a liquid crystal, as manifested in the intensities and
polarizations of the transmitted light. It is convenient to di-
vide such instabilities into two groups: regenerative pulsa-
tions in time* and Ikeda instabilities.'® The Ikeda instabili-
ties describe the transition to optical chaos and
identification of such oscillatory time dependences is impor-
tant in studies of the stochasticity of wave nonlinear-optical
interactions in inhomogeneous anisotropic media.

6.2. Experiments

Oscillations in time had been observed experimental-
ly''""'¢ in the course of propagation of optical waves with
orthogonal polarizations in nematic liquid crystals. Various
forms of dynamic self-diffraction of light” in anisotropic
media''! had been observed: (a) due to excitation of nona-
diabatic deformations in the geometry of threshold reorien-
tation of nematic liquid crystals in the case of oblique inci-
dence of light on a sample®®; (b) due to interaction of optical
radiation with an inhomogeneously (in a hybrid manner)
oriented nematic liquid crystal®; due to normal incidence on
a nematic liquid crystal of (¢) two coherent opposite waves
with noncoincident directions of linear polarizations of light
and (d) of elliptically polarized light. Oscillations appear in
all these cases because of the exchange of energy between
different components of the polarization of an optical field as
a result of nonlinearity of the medium.

Homeotropically oriented samples of SCB nematic lig-
uid crystals were used in these experiments. A laser-induced
reorientation of a liquid crystal (Ar* laser, A = 0.51 um,

S. M. Arakelyan 1055



/, rel, units /, rel, units
< 20
2 k Hw
30 40
20+
ok
oL
! \ 1
a 900 2000 t, sec

FIG. 16. Typical oscillations in time in the case of threshold reorientation
of a homeotropic nematic liquid crystal in the field of an obliquely inci-
dent ordinary wave, obtained for the pump beam (1) and for the probe
radiation (2).'"® The excess above the threshold was I /I, = 1.5; the oscil-
lation period was 7=170 sec. Parameters: nematic liquid crystal 5CB;
d =130 um; T = 24.8 °C. The oscillations appeared more clearly in the
case of the probe beam (probed region of size 10 #m, diameter of the main
beam 600 um). When I /1, was increased, the oscillation pattern became
more complex and irregular processes appeared at 7 /1, ~3.

beam diameter 600 zm, power up to 3 W) was deduced from
a characteristic aberration pattern®® and also using a weak
He-Ne laser beam acting as a probe (4 = 0.63 um, effective
probed region of ~ 10 xm size), which made it possible to
investigate a local region of a nematic liquid crystal (at the
center of the Ar * laser beam) and not the overall pattern, so
that the oscillations were observed more clearly (Fig. 16).
Figure 17 shows the results in the form of the depen-
dences of the period 7 of the oscillations on the intensity of
the incident light 7 obtained in the geometries (a) and (b).
In the former case (Fig. 17a) it was found—in contrast to
Ref. 38—that an increase in [J increased 7; the oscillations
were not observed at high values of 7 and the reorientation
pattern was stable; a further increase in I induced irregular
processes. In the latter case (Fig. 17c) the period 7 fell on
increase in /; saturation occurred in the range /2 kW/cm?
In the geometry (c) these oscillations appeared in every
beam and were in antiphase (Fig. 18). For the same beam
intensities these oscillations were damped out over approxi-
mately ten periods; the maximum duration in time and the
amplitude corresponded to the case when the polarizations
of the waves E, and E, were orthogonal; when the angle
between E, and E, was reduced, the oscillations were mani-
fested less strongly and in the E,||E, case the reorientation
pattern became steady. Different spontaneous oscillation re-
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gimes were observed as a result of a relative change in the
intensities of the compgnents of the field and because of a
change in the angle (E, E,).

In the case (d) the threshold intensity I, for the reor-
ientation increased on transition from linear polarization
(along x, component E, ) of the incident light to elliptic po-
larization, when the second component of the field E, ap-
peared (Fig. 19). On increase in E, (when the reorientation
duetotheaction of E, was retained) it was found that begin-
ning from a certain value E, > E, once again undamped
oscillations appeared in time (see Ref. 77). In the case when
E, ~E, the oscillations appeared when the intensity of the
component E, was of the order of /,;, and they were damped
out in several periods. A steady-state threshold reorientation
pattern reappeared in the range £, > E, .

Oscillations of the intensity and polarization of the
transmitted light in the field of a circularly polarized inci-
dent wave were reported in Ref. 119.

In the case of cholesteric liquid crystals we could expect
appearance of oscillations in time of a different type, which
were due to the Bragg conditions of selective reflection of
light dependent on I (Ref. 59). In the experiments this case
could be observed conveniently utilizing the mechanism of
laser heating of cholesteric liquid crystals. Typical oscilla-
tions in time reported in Ref. 55 for this case are plotted in
Fig. 20 for a mixture of cholesteric liquid crystals which
made it possible to use the field of cw He—Ne laser radiation
(A = 0.63 um) interacting with a cell 10 um thick when the
intensity was J~40 W/cm?,

Instabilities and oscillations were observed also as a re-
sult of a light-induced Fréedericksz transition in cholesteric
liquid crystals with the homeotropic orientation at the walls,
which was homogeneous and stable ford < d,. = K;; p/2K,,,
where p is the pitch of the helix of a free cholesteric liquid
crystal.3? Oscillations in time appeared also in the case of
oblique incidence (at an angle @) of Ar* laser radiation of
either the ordinary or extraordinary polarization (Fig. 21);
the nature of the oscillations was governed by the angle a: for
a = 45° the oscillations were undamped.''®

6.3. Discussion

We shall now consider the case when light propagates in
a spatially inhomogeneous modulated medium. The param-
eter which changes under the influence of light is the angle of
deviation @ of the director.?®

The calculation method was based on the geometric-

FIG. 17. a), b) Dependences of the oscillation peri-
od 7on [ for a fixed value of @ = 2.5° (a) and on a
for a fixed value of I /1;;, =~ 1.6 (b). The experimen-
tal parameters were the same as in Fig. 16 (Ref.
116). ¢) Period of the time oscillations 7 plotted as
a function of 7 for d = 50 um and B = 90° (hybrid
cell) ''5; the inset shows the experimental geometry.

[ )
[ —i.
3 a,deg 2

~
N

25 15 1, 77 2
a b

1056 Sov. Phys. Usp. 30 (12), December 1987

] J
4 [, kW/cm?
c

S. M. Arakelyan 1056



s N g

t, sec

FIG. 18. Oscillations observed when a nematic liquid crystal was subject-
ed to two opposite coherent laser beams with linear polarizations E, and
E, which did not coincide in direction.''® The intensities of the two beams
were the same: I, = I, = 230 W/cm?”. The thickness of the nematic liquid
crystal layer was 4 = 200 zm. The angle between E, and E, was 90° (a) or
80° (b).

optics approximation,’* i.e., a local medium was regarded as
uniaxial and the field inside it had components with the ordi-
nary (o) and extraordinary (e) polarizations. The details of
the calculations carried out for the case of nematic liquid
crystals can be found in Ref. 111.

The physics of the observed phenomena is as follows.
When two waves with orthogonal polarizations are acting
inside the medium, the reorientation of the director occursin
two planes.'? In the simple case of the equality of the elastic
coefficients K of a nematic liquid crystal the equations of
motion of the director n = (sin ¢ cos @, sin ¢ sin @, cos ¥),
where ¢ = @(z,t) and ¢ = ¥(z,¢) are the reorientation an-
gles, can be written in the following clear form

;s )4 . 7]
K sin?qp (O—fp = —Me,--ysin?y 0—(5 ,

aty

[ 9 \2
KL—SmlP-cosw (—) f—az—zj

0z

- —111(ezcoscp—exsjn(p)+y%, (15)

fr /1 (0)

FIG. 19. Dependence of I, on the
ellipticity &= (E,|/|E,| of the
polarization of light incident
normally on a cell containing 5
CB (Ref. 116). The thickness of
the nematic liquid crystal layer
was 200 pzm. Experimental points
were taken from Ref. 116 and the
curve was calculated using the for-
mula I, (&)/I, (0} =1/[1+ (1
— £2)'/2] based on Ref. 79.
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25 35 48§ I sec

FIG. 20. Pulsations of light reflected by a cholesteric liquid crystal ob-
served initially after an “instantaneous” increase in I (Ref. 59);

Rt=I_1;".
where
M = 2 {(nE) [nE*] + (nE*) (nE]},

y is the viscosity, and e, ,, are unit vectors along the axes
indicated in the subscript. The system of equations (15) rep-
resents equality of the moments of rotation of the director
because of the action of elastic forces (on the left hand side)
and of an optical field (first terms on the right hand side). In
the latter case the first equation of the system (15) maintains
the moment of rotation for a fixed value of @, whereas the
second equation contains the corresponding moment for a
fixed value of ¢. The second terms govern the dynamics of
the process.

In the present case, because of the anisotropy of the
medium, there is a change in the polarization of the trans-
mitted light and, in accordance with Eq. (15), the reorienta-
tion of a nematic liquid crystal is inhomogeneous along the z
axis: a volume grating of the refractive index is induced. Its
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FIG. 21. a) Oscillations in the field of an obliquely incident extraordinary
wave of I = 2 kW/cm? intensity observed for different angles a of inci-
dence of this wave on a homeotropically oriented cholesteric liquid crystal
(5 CB, d=~ 60 zm) with a chiral admixture of 0.017% by weight, which
ensured that in the course of reorientation the director was tilted out of the
(E, k) plane and waves with orthogonal polarizations propagated inside
the medium. b) Experimental geometry.
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distinguishing feature is a characteristic scale (or “period”
representing the separation between zeros of the function),
which varies along the z axis and depends not only on the
anisotropy of the medium (g, ), but also on the intensity of
light I inside a nematic liquid crystal. When the angle o is
varied, a complex transformation of the grating takes place.
Firstly, there is a change in the scale, whereas the number of
“periods” which can be fitted in the thickness of the sample
remains constant. Secondly, at some values o, there is a
change in the number of these periods. The light intensity
necessary to form a modulated structure in a nematic liquid
crystal is governed by the scale of the induced distortions
(gratings with distortions varying smoothly along z are
formed more easily than those with rapid variation of the
distortions) and by the total number of such distortions in
the thickness of a sample (i.e., the energy integrated over the
thickness of a nematic crystal is important). Therefore, in
the former case we have the dependence I, (), whereas in
the latter case there is a discontinuity of I, at o, which
determines a singular point of the system.

Figure 22a shows field-induced gratings expected for
different values of a.

In the case of excitation of nonadiabatic deformations
the angular dependence of the threshold intensity I, (a)
readily shows that hysteretic characteristics should be ob-
served when « is gradually increased and then reduced. The
number of upward and downward jumps is not the same
(Fig. 22b).”" It is important to note that at high values of a,
which require large values of I, different branches corre-
sponding to successive jumps of /,;, and, which is particular-
ly important, the corresponding values of the angle «; be-
come more similar, so that in practice a system may be in

o

1058 Sov. Phys. Usp. 30 (12), December 1987

various states and this corresponds to the transition to chaos
[on reduction in a the system follows one (the important
point is which) of the branches in Fig. 22b]. Such states can
be observed in experiments if in addition to an optical field
(E) there is also a magnetic field H||E; even low intensities
I~1, (a = 0) are then sufficient and jumps appear when H
is varied.”"

In the case of an optical field inside such an inhomogen-
eously anisotropic medium we can write down the equations
for the ordinary (4) and extraordinary (B) components of
the polarization; moreover, this can be done in a general
geometry when both forward (4, , B_ ) and backward
(A_, B_) waves interact in a medium. These equations de-
scribe the time dependences of the amplitudes and polariza-
tions of the transmitted waves.

We can readily show that, for example, in the case of
circularly polarized waves the polarization oscillates in time
immediately if we make the simplifying assumption that dg /
dz = const (and it follows hence that in the limit { — 0, we
have dy¢/dt = 0 and dg /Jt = const’)*” (see Ref. 119). On
the other hand, oscillations of the intensity of an optical
wave (producing a ring pattern of the transmitted light)
require that the problem be solved without this assumption,
but this meets with serious difficulties even when the solu-
tion is obtained by numerical analysis (the transfer of energy
is then related to the ellipticity of the polarization of light).
An even more difficult task is to provide a qualitative expla-
nation of the oscillations of the intensity with time.

In fact, since I,;, exists only for the ordinary wave, the
transfer of energy from this wave to the extraordinary com-
ponent reduces the intensity for the former so that the
threshold can no longer be exceeded, i.e., the system returns

FIG. 22. a) Structure of the distortions which appear in a
nematic liquid crystal under the influence of an optical
field (threshold reorientation of a homeotropic sample in
the case of oblique incidence of an ordinary wave) plotted
for different angles of incidence of light a: 1) a =0,
gasin(wz/d);, 2) a, =57 (first jump, I[,),
@ asin[(372/2d) + (2/d)];3) a; =7.5° (second jump),
@asin[(572/2d) 4 (2/d)}; here, @ is the reorientation
angle. The dependences 2, 3,and 2', 3’ correspond to mod-
ulated structures for, respectively, the lower and upper
branches at jumps of /. The calculations were carried
out for MBBA of thickness & = 100 um. The formula for
the reorientation angle was

§ (3, 1) o ((x2— ) X~ sin xz+ g2z) V1Y,

where ¥y = (Q/K)"%, Q= (&,/87) (ko/k ) Aim|*
+ K¢q?, where 4,,,, is the limiting value of the field ampli-
tude and X is the elastic coefficient. b) Hysteresis of I,
(a). The chain vertical line identifies possible states of the
system which it can assume for a given value of a when the
light intensity is varied.
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toits initial state. (This energy exchange occurs both during

transient regimes and as a result of a grating which is shifted,
relative to the optical field, as a consequence of the depen-
dence of the period on I—see Ref. 75.) However, the ex-
traordinary component of an optical wave inside a medium
then disappears and the intensity of the ordinary component
is again sufficient to excite reorientation. It is important to
note that this mechanism operates only near the reorienta-
tion threshold when the transfer of energy to the extraordin-
ary component is a fairly weak effect ( ~¢), but it still has a
strong influence on the reorientation process. This is con-
firmed by the experimental results in which oscillations of
the values of I are observed near I,,.*® It should be noted
that other possible explanations do not satisfy this experi-
mental observation.*® An increase in the oscillation period 7
on increase in I (Fig. 17a) can also be understood on this
basis: the higher the value of I (for a fixed angle @), the less
energy is transferred to the extraordinary component and if
I> I, the reorientation is a steady-state effect so that there
are no oscillations. The reduction in 7 on increase in a (for a
fixed value of I) is determined (Fig. 17b) by an increase in
I, (a) in the selected experimental geometry and, conse-
quently, there is a relative increase in the energy transfer to
the extraordinary component in the course of reorientation.
The very fact of the appearance of oscillations in time, which
are in antiphase for two components of the field in an experi-
ment with two opposite waves (see Fig. 18), confirms the
correctness of the hypothesis of an oscillation pattern based
on energy exchange between waves characterized by differ-
ent polarizations.

If the appearance of the second polarization component
inside the investigated medium is not due to the appearance
of deformations, but is governed by the polarization of the
incident light (elliptically or circularly polarized radiation)
or by an initial inhomogeneity of the medium (hybrid cells,
cholesteric liquid crystals),”” the competition between
these polarization components because of the nonlinear in-
teraction in the medium also gives rise to oscillations of simi-
lar type (Figs. 20and 21).*? Anincrease in the intensity I of
theincident light then reduces the oscillation period (see, for
example, Fig. 7c) and each of the components has a suffi-
cient intensity to induce distortions in the medium, whereas
an increase in ] makes the energy exchange more effective. If
these components create distortions of the medium charac-
terized by different relaxation times (due to different inten-
sities of the components or due to induced gratings with dif-
ferent periods, which is true of adiabatic and nonadiabatic
deformations of a medium in orthogonal planes), regenera-
tive pulsations may appear (Refs. 4 and 43).**’ Oscillations
in the case of cholesteric liquid crystals (Fig. 20) depend on
the initial state of the system, i.e., they depend on the point
on a Bragg reflection curve at which the process begins when
alaser is switched on; in particular, under certain conditions
there may be oscillations which do not decay with time (be-
cause of the difference between the times taken to establish
the temperature of a sample and the pitch of the helix of a
liquid crystal).

It should be stressed that in the case of competing inter-
actions of two fields with a liquid crystal, the resultant dis-
torted structure is not simply a sum of two deformations:

even in the case of the threshold Fréedericksz transitionina -

magnetic field H there may be no reorientation in the range
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H > H,, inthe presence of an optical field E||H in the geome-
try when this field induces (in a threshold manner) nonadia-
batic deformations.'!! The opposite effect is also possible. In
a sufficiently strong optical field the competing (in respect
of the geometry see, for example, Fig. 15) polarization com-
ponents (E,LE,) can increase the total reorientation: in this
case inclusion of terms which are higher in respect of the
reorientation angle ¢ (it is sufficient to retain terms propor-
tional to @) gives rise to contributions to ¢ which have the
same signs for both components (this plays the main role
when I, ~I, and depends on tan’e)."'® Another possibility
is light-induced reorientation of the director of a nematic
liquid crystal occurring in a perpendicular plane (E,, E,).
We shall conclude by noting the influence of the bounded
nature of a laser beam (radius 7, curvature of the phase
front 1/R). The phase shift @ (#), where 7 is the transverse
coordinate, for a transmitted wave is (see Ref. 74)

d
O ()= ko [ 2R 4 { Sn 29 dz]
' b

where k, = 27/A; 6n > 0 is a nonlinear correction to the re-
fractive index; then, depending on whether a converging
(R <0) or a diverging (R > 0) beam is used in the experi-
ments, the resultant ring structure will be quite different.**
If in the course of reorientation there is a reversal of the sign
of R (for example, along z at high values of d; for typical
nematic liquid crystals when / ~ 1 kW/cm?, r, ~ 50 um, and
A~0.5 um, the self-focusing length is estimated to be 500
pm), then oscillations are possible. A reduction in r; as a
result of self-focusing may also create oscillations because of
the dependence I,;, (r,) (Ref. 38).>> Clearly, these are the
effects which are manifested experimentally?® because in
their case an increase in I should reduce 7 (self-focusing of
light is a faster process).

We shall end with the comment that oscillatory light-
induced effects in liquid crystals may be due to fairly general
factors.”>* In fact, in the case of slowly varying media’* the

~ correction to the quasisteady values of the parameters of the

medium (and particularly to the permittivity, which is gov-
erned by the nature of light-induced distortions) has an
imaginary (anti-Hermitian) part which differs from zero
even in the absence of absorption (see, for example, Ref.
74).*® This part describes an additional phase shift between
the vectors of the electric induction and intensity when this
shift is induced by reorientation of the investigated medium.

7. CONCLUSIONS

The results reviewed above demonstrate that liquid
crystals are unique media in which it is possible to observe
strong nonlinear interactions of optical waves, optical bista-
bility and multistability, instabilities, and chaos.

The principal reason for the occurrence of these pro-
cesses is that in the case of liquid crystals we are dealing with
very strong nonlinearities which are responsible for field-
induced structural phase transitions so that the nature of the
resultant instability originates from the physical aspects of
the phenomena. This is the reason why it has been possible to
observe true intrinsic (resonatorless) optical bistability re-
sulting from real phase transitions that occur in a nonlinear
medium subjected to an optical field. A feedback necessary
for the appearance of optical bistability is in this case deter-
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mined by the nature of the self-interaction effects of light ina
liquid crystal, namely by the nonlocality of the nonlinear
response of a medium in which a propagating wave experi-
ences the action of the medium at some point and is itself
capable of influencing the state of the medium at this point.

In the case of conventional resonator systems this feed-
back is ensured by the reflection of a wave from a mirror. In
systems with distributed feedback the appearance of a back-
ward wave is a consequence of the Bragg reflection by a grat-
ing. In the case of nematic liquid crystals an important fea-
ture is that such feedback may appear also in the absence of a
backward wave because of, for example, elastic properties of
a medium which give rise to a nonlocality of the interaction
of light with matter (when the equations contain spatial de-
rivatives of n). In fact, light-induced reorientation of nema-
tic liquid crystals at each subsequent point during propaga-
tion of a wave influences, because of the elasticity of the
medium, the state of the medium also at the preceding point,
which in turn alters the properties of the transmitted
wave.”” Therefore, in particular, optical bistability becomes
possible also in the case of nonlinear scattering of light under
conditions ensuring optical orientation of molecules.>>*
The time parameter, similar to the round-trip time of a reso-
nator, is the relaxation time describing establishment of de-
formation in a medium; it governs instabilities in the system
(for example, the Tkeda instabilities'?).

In the case of propagating waves the dominant feature is
the occurrence of nonlinear interactions of several waves
with different polarizations. The random nature of the pro-
cess (due tofluctuations of the director) plays a decisive role
in the appearance of a new state of a liquid crystal under the
influence of an external field. A nonlinear interaction of
waves in liquid crystals is characterized by a small number of
degrees of freedom; these degrees are two components of the
polarization of an optical wave and the energy exchange
between these is essentially governed by a four-wave para-
metric process (in the steady-state and the nonsteady cases).
A description of these phenomena can be provided using the
“language” of stimulated scattering typical of nonlinear op-
tics when effective energy exchange occurs for waves with
different frequencies (a moving displacement relative to the
grating field forms in a medium ); this approach is developed
in Ref. 120 for a medium with the Kerr nonlinearity*® and
an analysis of the appearance of various unstable (chaotic)
regimes is made there.

The investigations carried out so far have already yield-
ed some important physical results and will help in further
growth of this promising branch of nonlinear dynamics of
strongly excited systems.

We should mention first of all the extensive opportuni-
ties that liquid crystals provide for detailed investigations of
time dependences of strongly nonlinear optical effects, in-
cluding a quantitative picture of the transition to optical tur-
bulence (chaos). The experimental aspect of such investiga-
tions is one of the main topics in the current stage of
investigation of this universal state of strongly nonlinear sys-
tems (see Refs. 94 and 100, as well as Ref. 122 where recent
experiments were reported).

Liquid crystals provide in fact the means for systematic
investigations of the manifestations of multistability and
chaos in real two- and three-dimensional fields: the first
steps have already been made and some promising results,
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particularly those for hybrid systems have been obtained. "’
It is necessary to consider these effects also in purely optical
cases which will undoubtedly be of major practical impor-
tance to the development of a new architecture of computers
based on nonlinear images and not on standard binary
logic.'®®

Scenarios of the transition to chaos are many and in the
case of orientational effects in liquid crystals we can use the
method often adopted for liquids'*: a steady (spatially ho-
mogeneous) state passes via a nonequilibrium phase transi-
tion to another steady (but spatially inhomogeneous) state,
which in turn changes to an oscillatory state®’ so that a limit
cycle is established. Then, instead of one there should be two
fundamental oscillation frequencies and transitions of this
type may continue indefinitely. This behavior is naturally
not universal. In particular, as shown in Sec. 5, orientational
effects in external fields can be described by analogy with an
anharmonic oscillator.

Specific studies of these effects, identification of the
conditions under which they appear, and the requirements
in respect of the parameters of liquid crystals which ensure
that these regimes can be realized experimentally is a neces-
sary stage in the current status of research. Hydrodynamic
effects in liquid crystals are very interesting. In particular,
Kapustin—~Williams domains which appear in nematic liquid
crystals can be considered from the point of view of forma-
tion of periodic structures on transition to dynamic chaos.*®
The appearance of higher (and fractional, subharmonic) or-
ders of reflection of light by cholesteric liquid crystals (the
case of normal incidence of light is considered in Ref. 87)
can also be analyzed on the basis of the transition to chaotic
behavior by period doubling. The same approach can be used
to consider multiple diffraction of light by light-induced
gratings in nematic liquid crystals encountered in conven-
tional systems for dynamic self-diffraction'? (see also Ref.
81).

It should be stressed that such a great variety of instabi-
lities of this type is not accidental and, therefore, it would be
desirable to attempt to describe all these effects in liquid
crystals from a unified standpoint using fairly general non-
linear equations (see Ref. 100).*” A promising approach is
an analysis of these phenomena on the basis of multicom-
ponent phase transitions. A consistent description of these
and other effects should be statistical and should allow for
fluctuations® by using, for example, the Fokker—Planck
equations (see, for example, in particular Ref. 95).*"

The author is deeply grateful to S. A. Akhmanov for
discussing the organization of the present review, and also
for decisive encouragement and help. The author is also
grateful to Yu. S. Chilingaryan for fruitful discussions, to A.
S. Karayan for practical help in writing the review, and to V.
A. Belyakov, N. 1. Zheludev, V. A. Makarov, and G. L. Sur-
dutovich for valuable comments which were taken into ac-
count in the final version of the manuscript.

D Distributed-feedback systems are now increasing in importance (in
these systems optical waves interact continuously in many sections of a
nonlinear medium).*"!%

D1t should be pointed out that a hysteretic nature of the dependence of
I, on I, doesnot necessarily mean that a system exhibits optical bista-
bility; this applies in particular to pulsed systems, and not only to non-
linear ones but even to linear ones with dispersion.’

»The possibility of hysteresis during lasing is the feature which allows us
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to introduce the concept of a first-order phase transition. '™ These top-
ics are considered in Ref. 103 for the case of spatial fluctuations of
radiation at the lasing threshold.

“'The speed of optical logic elements is now already superior to any other
elements and the shortest response time is 10 ~ '*sec (Ref. 1). Pumping
can be conveniently provided by frequency-tunable semiconductor la-
ser diodes (considerable progress has been made recently '*in the manu-
facture of these diodes).

*The switching rates which are achieved here are usually low. '

®1In particular, the operation of a liquid-crystal optical transistor was
demonstrated in Ref. 78.

"In this calculation the validity of Eq. (1) is limited to low light intensi-
ties (see Ref. 98), when the principle of superposition can still be used.

® Derivation of the necessary conditions for optical bistability in a more
general case, when an allowance is made for the nonlinearity of the
system manifested not only by its phase but also by its amplitude param-
eters, can be found in Ref. 105.

?)The operation of such a liquid-crystal device was recently demonstrated
in Ref. 118 (see also Ref. 122).

19 We can assume that, for example, the first of these mechanisms (molec-
ular reorientation) is strong but slow (r,~sec), whereas the second

(laser heating) is weak but fast (7 ~0.01 sec), which is usually true of
nematic liquid crystals.*}

'"The duration of a “seed” pulse should be less than its travel time in the
resonator; a pulse has a pedestal (it satisfies the steady-state condition),
so that the system is in the region of hysteresis (in the simplest case it is
sufficient to consider a nonlinear medium with an instantaneous re-
sponse).

2 Multistability in this case is ensured by generalization to the case of an
oscillator with several natural oscillation frequencies.

'$1n particular, these may be four-wave interactions, ?* stimulated scatter-
ing,'*? etc.

') There may be some regimes in which the upper state is not steady in the
system under consideration and in this case oscillations may appear '’
(see Fig. 5).

'9’Sometimes optical bistability is defined only for this case,' but this is
naturally a question of definition.

'©This was observed experimentally for nematic liquid crystals using
light scattering®' and was studied separately on a different occasion. *

DIt is interesting that the transmission of a system can in this case be
described by Eq. (1).

'® Aperiodic damping of orientational deformations is usually assumed
for liquid crystals, but at least during the initial stage of the reorienta-
tion process one can speak of oscillations of the director. This approach
to the analysis of the dynamics of reorientation of liquid crystals in the
presence of dissipation is developed in Ref. 121 allowing for the reverse
fluxes.

)Tt is interesting to note that in this geometry weak optical fields exert a
competing influence on the reorientation of a nematic liquid crystal; in
strong fields such interactions are summed. (Experiments were report-
ed in Ref. 116.)

2D]n the experiments it is simplest to generate step-like light pulses of
opposite polarities; calculations can easily be extended to this case.

2D An attractive approach involves description of the orientational effects
in liquid crystals on the basis of a model of coupled oscillators '°' (with
two field components inside the liquid crystal).

2D Forexample, in the case of an orientational nonlinearity its value for the
mesophase is many orders of magnitude greater than the nonlinearity of
an isotropic solution of the same molecules and this is precisely due to
the collective nature of the interaction. '?

IIn the case of the molecular moment of inertia (3,,), we find that
Sy = myh?/Vyy ~10~" g/cm (we shall assume that molecules are
cylinders of height #=2x10"7 cm and with the base radius r,,

=5x10"%cm; my ~4XxX10-22g).

29The acoustic wavelength 4, which must be allowed for in the case of
waves propagating in a medium with the size of inhomogeneous regions
1;, is determined by the condition 4, </;.

#'We shall assume that v remains constant.

) This appears in the region of thermal phase transitions,? in the course
of stochastization of the process,’® etc.

1t is interesting to note that a laser beamn with a polarization component
of lower intensity becomes self-focused faster because of the transfer of
energy from the stronger component, i.e., equalization of the intensities
of the components takes place. '

28'We are speaking here of deformations of a nematic liquid crystal which
are nonadiabatic in space when, by analogy with time dependences, we
need to allow for terms 8¢ /8z~q, ' <d.

2 The angle ¢ determines the deviation of the director from the initial
reorientation and creates a nonlinear phase advance in the case of the
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transmitted light [¢ satisfies the boundary conditions
Y(z =0) = ¢(z = d) = 0]; for each value of Y the rotation of the direc-
tor is governed by the angle @ (at an angular velocity §¢ /8¢), which is
responsible for the rotation of the polarization of light (representing an
analog of the Mauguin limit for cholesteric liquid crystals'?).

*The possibility of oscillations is clear directly from Eq. (15); when ¢ is
increased (64/56¢> Q) we can easily see that the anisotropy of the medi-
um increases effectively so that §p /6z becomes larger; this reduces the
effective field inside the medium so that the reorientation threshold is
not exceeded and the system returns to the initial state (§¢/6¢ <Q); the
process is then repeated.

*DIfB #0, the effect of light on a hybrid nematic liquid crystal tilts n out of
the (s, s,) plane (see Fig. 17¢), so that two components of the polariza-
tion of the transmitted light are observed.

*In the case of circularly polarized light such pulsations had been ob-
served, as already mentioned, in nematic liquid crystals''® and also in
cholesteric liquid crystals.>

**1n the opposite case, an equilibrium state is established after a time and
this state corresponds to reorientation by a certain effective (and
smaller than in the case of action of a single field component) angle.
This accounts for the results presented in Fig. 18.

*) A report of the observation of this pattern was given in Ref. 78,

3 Some role may be played also by laser heating of the medium because /7,
= I, (T), where T is the temperature of a sample'? in general, the
important dependence is that of 7, on any parameter of the problem
which changes in the process of reorientation (in particular, this is true
of the dependence on the polarization of the transmitted light shown in
Fig. 19, which changes inside the medium).

3 1n this case we need to consider separately the energy invariants of the
problem,”™%’

3 A feedback is established also in the case of reorientation in static fields;
however, in this case the field has to be inhomogeneous inside the medi-
um and this is an analog of the state of a system for a propagating wave.

*The difference between the frequencies w and o' is related to the pro-
cesses of energy dissipation in a system (which may be of thermal,
orientational, and other nature); the maximum gain (for the wave with
the lower frequency) corresponds to the condition w — ' = 1/7,
where 7 is the relaxation time of the nonlinearity (in the case of liquid
crystals the value of 7 amounts to several seconds).

3 When the parameter controlling the system increases, the molecular
parameters become cooperative and they characterize the system as a
whole.®

“OThis analysis, which makes it possible to reveal instability regions, was
made in Ref. 89 for nematic liquid crystals with periodic flexural defor-
mations affected by optical radiation. In the presence of two compo-
nents of the polarization field in a nonlinear medium it would be useful
to provide a description in terms of a model of two coupled (orthogo-
nal) oscillators®; we can easily show that the conditions for the excita-
tion of regenerative pulsations are then satisfied, and also that stochas-
tic states are possible.

*DWe are speaking here of open systems, so that the main thermodynamic
concepts as well as the procedure for the variation of the free energy and
finding its minimum for a system comprising a liquid crystal and a field
would require refinement.’!**%¢
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