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The present state of the theory of spin waves in magnetic insulators is reviewed. Special emphasis
is placed on systems with an arbitrary site spin. Some illustrative calculations are carried out on
the magnetic characteristics of several systems with a low density of particles (magnons) which
interact strongly with each other. The distinctive features of reduced-dimensionality systems
which stem from the governing role of spin fluctuations are examined. A separate chapter is
devoted to magnetic phase transitions, primarily orientational. Several effects which stem from
the dipole interaction of spins are also discussed.
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1. INTRODUCTION

This is a review of magnons: the quanta of elementary
excitations of the spin subsystem of a magnetically ordered
crystal. We will be discussing only magnetic insulators, in
which the electronic (orbital) excitations are separated
from the ground state by energies of the order of the atomic
energy ea. The excitations of interest here are those with
energies significantly smaller than £a.

A spin wave (magnon) is one branch of the low-energy
excitations of a crystal. If we restrict the discussion to long-
wave oscillations, with ak < 1 (a is the interatomic distance,
and k is the wave vector), we can describe the low-energy
excitations phenomenologically on the basis of the contin-
uum approximation. '~3 In this approach the general system
of equations describing long-wavelength oscillations con-
sists of the linearized equations of electrodynamics and the
theory of elasticity (including the equations of optical oscil-
lations) and also the Landau-Lifshitz equations for the den-
sities of the magnetic moments. A natural way to derive the
dispersion laws for the elementary excitations is to eliminate
the magnetization and displacement vectors from the system
of linearized equations. We are then left with only the equa-
tions of macroscopic electrodynamics, but with a spatial and
temporal dispersion in the permittivity and the magnetic
permeability. As a result, the dispersion laws for the elemen-
tary excitations are various solutions of the dispersion rela-
tion

D (k, = 0. (1.1)

Taking this approach, we find expressions which relate the
frequencies a> of the excitation branches—polaritons and op-
tical magnons (magnetic polaritons)—with the wave vector

k (Ref. 4). An understanding of the crystal structure and the
symmetry elements of the crystal enables one without solv-
ing the Landau-Lifshitz equations and the equations of elas-
ticity theory to make several statements regarding the spa-
tial and temporal dispersion of the tensors eik (<y,k) and
Hik(to,k) (Ref. 5).

Strictly speaking, for any arbitrary wave propagation
direction in a crystal each of the wave branches is a coupled
oscillation of all the quantities involved in the problem (e.g.,
the propagation of an optical magnon is accompanied by
oscillations in the electric as well as the magnetic fields).
Over a broad interval of wave vectors, however, it is suffi-
cient to focus on one or a few most important oscillating
quantities and to ignore the oscillations of other quantities.
This simplification becomes possible either because of differ-
ences in the propagation velocities of different processes or
because of small values of the constants of the interactions
between them. In the case of an optical magnon (the branch
in which the oscillations of the magnetic subsystem are man-
ifested most strongly) the small value of the velocity of this
magnon in comparison with the velocity of light, c, frequent-
ly allows us to ignore the oscillations of the electric field,
while the weakness of the magnon-phonon interaction al-
lows us to ignore elastic vibrations of lattice atoms. We then
end up with purely magnetic oscillations, whose quanta are
magnons."

The equations describing long-wavelength magnetic os-
cillations are the magnetostatic equations

rot H = 0, d i v B = 0 , Bt = ne f t (co, k) #k, (1.2)

in which the spatial-temporal dispersion jLtik (&>,k) is deter-
mined exclusively by the magnetic structure of the crystal:
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by the number of sublattices, the sign and magnitude of the
exchange interaction between magnetic moments, the an-
isotropy energy, and the magnitude and direction of the ex-
ternal magnetic field. All these quantities can be introduced
phenomenologically, and dispersion laws can accordingly be
calculated for magnons.1p6 By comparing the formulas found
by this approach with experimental results one can deter-
mine the constants introduced phenomenologically.

The phenomenological formulas for the magnon ener-
gies are sufficient for describing a long list of phenomena:
resonance effects, the temperature dependence of the mag-
netization and of the magnon heat capacity at temperatures
T low in comparison with the transition temperature Tc

(and far from points of orientational transitions), etc. On
the other hand, many effects (relaxation phenomena, the
temperature dependence of the spectrum and of the points of
orientational transitions along the magnetic-field scale, etc.)
cannot be explained by a simple phenomenological model.
For each phenomenon one could of course introduce new
phenomenological constants (e.g., one could introduce a
spin-wave lifetime r for relaxation phenomena), but that ap-
proach is not very informative. A systematic theory for the
nonlinear effects listed above will clearly require considera-
tion of the interaction between magnons and also the inter-
action of magnons with other elementary excitations. The
interaction between magnons is primarily of an exchange
origin and thus not a minor one. It must therefore be incor-
porated completely (the first few terms of a perturbation
theory are not sufficient). It is true that for small wave vec-
tors the interaction is effectively weak because the amplitude
(A) of the scattering of magnons by each other is propor-
tional to the wave vectors. In an isotropic ferromagnetic, for
example, the amplitude for scattering through a zero angle is

A =

This amplitude is renormalized by the exchange interaction.
Even in first-order perturbation theory the correction to A,

without changing its dependence on the wave vectors, does
change the important coefficient A. ijlm, by an amount propor-
tional to

This integral "lands on" its upper limit, demonstrating that
the continuum approximation cannot be used.

A systematic derivation of magnetic properties should
begin with a microscopic analysis based on a consideration
of the interactions of real atoms with each other. This "first-
principles" approach is a very complicated one.7 On the oth-
er hand, the exchange interaction between atomic spins,
which plays a very important role in magnetic phenomena,
has little effect on the structure of a crystal lattice. We are
thus justified in taking a semiphenomenological approach:
We consider a definite crystal lattice at whose sites there are
spins S, (1 is the radius vector of the lattice site) of fixed

magnitude.2' The interaction between spins is specified by a
model spin Hamiltonian which contains a set of constants. It
is assumed that these constants can be calculated from the
quantum theory of atoms.7'8

The problem of determining the magnetic properties of
a substance essentially reduces to one of studying the proper-
ties of a lattice gas of spin arrows.

2. SPIN HAMILTONIAN: TYPES OF MAGNETIC SUBSTANCES

Nature displays a rich variety of types of magnetic sub-
stances. They differ in particular in the number of magnetic
atoms (the number of spin arrows) in the unit cell of the
crystal; this number can range up to several tens. As the
crystal cell becomes more complicated in structure, how-
ever, the spectrum of spin waves does not acquire any funda-
mentally new properties. For example, the number of low-
lying branches in the magnon spectrum does not exceed
three, regardless of the total number of magnetic atoms in a
cell.9 Some fairly general ideas regarding the properties of
waves of various types can be extracted from a consideration
of some simple spin models: crystals with one or two magnet-
ic atoms per cell. We will restrict the present discussion to
such models.

Ordered magnetic substances divide in a natural way
into groups of ferromagnetic and antiferromagnetic materi-
als. In this simplest case they are described by the same ex-
change Hamiltonian, but the exchange integral / has differ-
ent signs:

(2.1)
i, A

where />0 for a ferromagnetic and J<0 for an antiferro-
magnetic material. The vector A joins nearest neighbors in a
lattice. Since we are not talking about metals, in which free
electrons mediate the long-range effect between spins (the
RKKY interaction), the discussion can be restricted to the
interaction of only nearest neighbors. Hamiltonian (2.1) is
the simplest but by no means the only possible exchange
Hamiltonian of a ferromagnetic material (the assertions
which follow apply equally well to antiferromagnetic sub-
stances ). In the first place, the interaction between a selected
atom and its next-nearest neighbors may be important. Sec-
ond, there may be situations in which an interaction involves
more than a pair of spins [this is the case, for example, in
solid 3He (Ref. 10)]. Finally, in the case S"^ 1/2 the ex-
change Hamiltonian may contain, along with a term which
is bilinear in the spins, terms of the type (S,S, + A )", where
2<«<2S. Any added complexity in the Hamiltonian of
course leads to a further complication of the corresponding
phase diagram (for example, if there is a strong antiferro-
magnetic exchange between next-nearest neighbors, the
original ferromagnetic structure becomes helimagnetic'').
The description of possible types of complex magnetic struc-
tures has been the subject of many studies.11'12 It is not our
purpose in the present review to examine those studies. We
see a different goal: to use the examples of very simple mod-
els to travel the path from a microscopic Hamiltonian to the
macroscopic characteristics without introducing any phe-
nomenological parameters and without resorting to order-
of-magnitude calculations. For this reason we will consider
only the standard Heisenberg Hamiltonian3' (2.1).

We choose the anisotropy energy in the form
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(2.2)
I, A

Again, this is not the only possible form of the anisotropy
energy; it might in general also include terms with other spin
projections (not necessarily identical). The reason we have
chosen the anisotropy energy in the form in (2.2) is that we
can examine several fundamental properties of magnetic
substances on the basis of a comparatively simple example.
For the same reasons as for the exchange energy, the anisot-
ropy energy is determined only by the interaction with the
nearest surroundings of the magnetic atom. Admittedly, we
must bear in mind that in general we would have g(0) ^0
but /(0)=0 (there is of course no exchange interaction of
the spin of an atom with itself). The term containing g(0)
describes a single-ion anisotropy. It is physically meaningful
for S =/= 1/2. The remainder, which contains g(A^O), de-
scribes the unlike-ion anisotropy, which is frequently inter-
preted as an anisotropy of the exchange interaction.

The anisotropy described by (2.2) arises as a result of
the spin-orbit interaction. The anisotropic part of the spin
energy also includes the energy of the dipole-dipole interac-
tion of spins (fi is the Bohr magneton) :

2ji18 S [(SiSr) fill-- 3 (S1Rll.)(SrR11,)]/?r^. (2.3)

In contrast with (2.2), the dipole-dipole interaction cannot
be limited to nearest neighbors. In it we can single out a spin-
isotropic term and a term which has the structure of an an-
isotropy energy. These terms make long-range corrections to
/(A) and g(A), which are manifested in the dependence of
the energy of the spin wave on the direction of the quasi wave
vector k in the limit k^O. Furthermore, ,%"AA contains
terms whose role does not reduce to one of renormalizing
J( A ) and g( A ) . These terms not only contribute to the angu-
lar dependence of the spectrum in the limit k -» 0 but also give
rise to several "fine" effects, which we will be discussing
below ( §8 ) . Until we take up these fine effects, we will ignore
the dipole-dipole interaction for simplicity. As we will see
below, this simplification is legitimate if the dimensionless
anisotropy constant is greater than 477.

The complete Hamiltonian, which contains Zeeman en-
ergy 2,uHS, along with ̂ ex and J^a , is

1, A

(2.4)

here /3(A)=g(A^O), and a=g(A = 0). We know from
quantum mechanics that an anisotropy always arises as a
result of relativistic interactions, so it must be small in com-
parison with the exchange to the extent that the ratio (v/c)2

is small, where v is the velocity of the orbital motion of elec-
trons, and c is the velocity of light. This is indeed the situa-
tion in a large number of real magnetic substances (see Table
VII below). In recent years, however, research has revealed
many substances in which the energy of the unlike-ion an-
isotropy is of the order of the exchange energy, so these sub-
stances can be classified quite accurately as Ising or planar
magnetic substances (some corresponding examples are giv-
en in Table VII). As a rule, a situation of this sort arises
because the exchange interaction (which is isotropic in spin

space) between magnetic ions turns out to be small for some
reason or other.

To simplify the geometric side of the analysis, and to
avoid some complicated equations, we restrict the discussion
to a simple cubic lattice with a nearest-neighbor interaction
(./(A) =./, /? (A) s /?). This is of course an idealization: writ-
ing the anisotropy energy as in (2) presupposes that the unit
cell is at least tetragonal. However, an increase in the struc-
tural complexity of a unit cell seldom causes any qualitative
changes.41

The reason why a Hamiltonian as simple as that in
(2.3) is capable of describing a variety of magnetic struc-
tures is that the signs of the anisotropy and exchange con-
stants can be arbitrary. Before we list the various cases we
note that the roles played by the single-ion and unlike-ion
anisotropies are essentially identical (as long as they are
small). The only exception is the case S = 1/2, in which the
term containing the single-ion anisotropy reduces to a con-
stant. For simplicity, we will not consider the unlike-ion an-
isotropy in this review. The interested reader can find the
corresponding results in the original papers.13'14

We first describe the various versions of the ground
states and the phase diagrams, treating the spins as classical
vectors. By taking this approach we are able in particular to
associate definite signs of the constants in Hamiltonian
(2.3) with types of magnetic structures.

We begin with ferromagnetic materials. If a > 0, the
magnetic moments are directed primarily along or opposite
the z axis in the absence of a magnetic field at T<TC ~JS.
This is an easy-axis ferromagnetic substance. Any arbitrar-
ily weak field directed along the z axis will eliminate the
phase transition from the paramagnetic phase to the ferro-
magnetic phase. Furthermore, no transition occurs in any
arbitrary oblique direction of the magnetic field H (if
Hz 7^0). In this case, however, an increase in the field is
accompanied by a smooth alignment of the magnetic mo-
ments in the field direction. The average magnetic moment
M becomes parallel to H only in the limit of an infinitely
strong field. This situation is different if the field H is direct-
ed strictly perpendicular to the z axis. In this case there exists
a certain critical field //t <x a below which there is a nonzero
order parameter M,, while at H>HC the average magnetic
moment M is directed along the field; i.e., we have Mz = 0
(Fig. 1). The reason why the case Hz = 0 is a special one is
that in this geometry the field appears in the Ginzburg-Lan-
dau functional in combination with even powers of the order
parameter.3 The critical field Hc depends on the tempera-
ture, vanishing at the Curie point of an easy-axis magnetic
substance. The phase diagram of an easy-axis magnetic sub-

FIG. 1. a—Fielddependenceofthezcomponent of the magnetic moment
for an easy-axis ferromagnetic material in a transverse field H„; b—phase
diagram of an easy-axis ferromagnetic material in a transverse field.

1017 Sov. Phys. Usp. 30 (12), December 1987 M.I. Kaganov and A. V. Chubukov 1017



stance in a transverse field is shown in Fig. Ib, The points of
an orientational transition at low temperatures (r< Tc) in a
field H^HC and the Curie points of the transition in a zero
field (T = T c ) lie on the same line in the phase diagram. In
this sense, the state at H> Hc (T) belongs to the paramag-
netic phase even in the limit T-> 0.

If a < 0, then the spins at T < Tc will lie in the x, y plane.
This case is an easy-plane ferromagnet. In this case, Hz and
ffi trade roles (in comparison with an easy-axis ferromag-
net): A line of second-order phase transitions (of the same
type as in Fig. 1 exists only if HL ^0. In a field HL, the sym-
metry group Z2, which reflects invariance under the substi-
tution Af2«-»Mz, is preserved.

We turn now to antiferromagnetic substances.5' Work-
ing on the basis of a classical description, we can say that in
the case a > 0 (an easy-axis antiferromagnetic material) and
H = 0 the spins lie in a checkerboard order parallel to the z
axis. In a field H||Z, the antiparallel arrangement of neigh-
boring spins persists up to a field Hl oc (/a)l/2, at which
point a first-order phase transition (a spin-flop transition)
occurs. The spins of the sublattices are established nearly
perpendicular to the field. As H is increased further, the
angle between the sublattices decreases, and in a field H2^J
the magnetic moments of the sublattices "collapse." This is a
second-order phase transition (a spin-flip transition). Both
of the transition points (H{ and H2) of course depend on the
temperature.15'16 Figure 2a shows the phase diagram in
terms of the variables Hz, T. The arrows show the directions
of the magnetic moments of the sublattices in the different
phases.

The spin-flip transition always occurs, regardless of the
direction of the magnetic field, but the spin-flop transition
occurs only if H is directed nearly parallel to the z axis.17

Figure 2b shows the phase diagram in the Hi, Hz plane at
T<TN. We wish to stress that in contrast with a ferromagne-
tic material the transition line H = H2(T) [H2 (TN) = 0]
exists for an arbitrary direction of H. Correspondingly, the
state atH>H2(T) is paramagnetic.

In an easy-plane antiferromagnet (a < 0) atH = 0, the
spins are ordered in an antiparallel fashion in the xy plane. In
a magnetic field of arbitrary direction, only a spin-flip transi-
tion to a paramagnetic state occurs, atH = H2(T)a:J. For
an easy-plane antiferromagnetic material, it is of fundamen-

FIG. 3. Phase diagram of a magnetic substance whose anisotropy constant
changes sign with decreasing temperature: a > 0 at T> 7", and a < 0 at
T< T,. The hatched region is the region with Mz ^0.

tal importance to consider an additional term which has
been omitted from (2.3) but which exists for crystals with a
certain symmetry (e.g., orthorhombic). This additional
term describes the so-called Dzyaloshinskii interaction and
takes the form18

FIG. 2. a—Hz, Tphase diagram of an easy-axis antiferromagnetic materi-
al (the arrows are the directions of the magnetic moments of the sublat-
tices in the different phases); b—Hlt H, phase diagram of an easy-axis
antiferromagnetic material (a spin-flop transition occurs in the hatched
regions).

i, A

The Dzyaloshinskii interaction is of relativistic origin, so the
coefficient d is of the same order of magnitude as a. This
interaction leads to a slight ferromagnetism in the case of an
easy-plane antiferromagnetic material, i.e., to a skew of the
sublattices in a zero magnetic field.15'18

This list of possible types of ordering and, correspond-
ingly, phase diagrams of course does not exhaust the list of
magnetic structures which exist in nature, even those which
are described by a model like (3). In particular, the anisotro-
py constant may depend on the temperature and may change
sign, resulting in the conversion of an easy-plane magnetic
substance into an easy-axis magnetic substance or vice versa.
Figure 3 shows an example of a phase diagram of a magnetic
substance for which the relation a > 0 holds at T> T\, while
a<0 holds at T<T^. The paramagnetic phase spans the
entire unhatched region except for the segment 0< T < T\
along the ordinate axis. We will not go into complications of
this sort here, since we are interested in the properties of
magnetic substances near T = 0.

In winding up this discussion of the properties of var-
ious types of magnetic substances we would like to point out
that each type of course has representatives among real mag-
netic substances (some corresponding examples are gath-
ered in Table VII, at the beginning of §6). In this review we
will be concerned for the most part with theoretical work on
the behavior of magnetic substances with an arbitrary spin at
low temperatures. Although we will reproduce several well-
known equations here, we will be focusing on some subtle
effects. We will thus not dwell on the experimental confir-
mation of the basic properties of ferromagnetic and antifer-
romagnetic materials (such as the Bloch law for ferromag-
netic substances or the dependence C oc T3 for the heat
capacity of antiferromagnetic materials). Where we do
know of experiments on the subtle effects, we will cite the
corresponding papers.

3. TRANSITION TO BOSONS

In principle, a microscopic calculation of the properties
of magnetic substances on the basis of Hamiltonian (2.3)
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could be carried out directly in terms of spin operators. 19 21

That approach, which uses the single-particle Hamiltonian
as a zeroth order approximation, is a good one and also quite
graphic when the nonlocal exchange interaction is small in
comparison with the single-particle interaction.22"24 In the
opposite limit — in which we are interested here — that ap-
proach is no longer graphic, and we find it more natural to
introduce some usual Bose quasiparticles: magnons. The
problem of constructing Bose analogs of spin Hamiltonians
has been posed and solved in many places, dating back to the
pioneering paper by Holstein and Primakoff.25"34 The pri-
mary difficulty in taking this path is that the finite-dimen-
sional spin space, with 2S + 1 dimensions (5 is the lattice
spin), must be related to an infinite-dimensional boson
space. This linkup is usually made by introducing a projec-
tion operator which cuts off extraneous states.27'34 Admit-
tedly, this approach requires an analysis of the role played by
this operator in each particular problem. One could in prin-
ciple also avoid using a projection operator by associating
with spin operators some periodic functions of Bose opera-
tors:

For S> 1 these equations can be derived from a compact
Holstein-Primakoff transformation:

= / (N), = a+F (N),

where

F (x) = {[S (S + 1) - / (x) (f (x) - !)](* + I)-1}"',

N = a+a,

f (x) = S - (25 + 1) [x (2S + I)-1]-

The square brackets in the last equation mean the fractional
part of the argument. This path (a Goldhirsch transforma-
tion31'32) allows one to write out explicitly an exact Bose
analog of a spin Hamiltonian, although in the form of an
infinite series whose terms are products of an arbitrary num-
ber of creation and annihilation operators (analytic expres-
sions have been derived for the corresponding coefficients
only for the cases32 5=1/2 and 5=1). Clearly, one cannot
work with such a Hamiltonian in the general case. There is,
however, a wide class of problems for which the condition of
a slight deviation from ideality of a Bose gas of magnons is
satisfied. We will be discussing some examples below; at this
point we would like to point out that, as always, a slight
deviation from ideality means that we can restrict the calcu-
lations to the lowest anharmonicities. In other words, we can
work with simply the first few terms of the expansion of the
spin-projection operators in series in normal products of
Bose operators. For all the effects which we will be discuss-
ing below, which result from a nonideality of a Bose gas, for
example, it is sufficient to work with the first three terms in
the exact Goldhirsch expansions:

= a('ai— -z-a\a\a\ai(i\, 5=1,
9

= a\a\ — a\a\a\a\-\-— a\a\a\a\a\, 5=1,
(3.1)

ofa,o,

_ a\a\ \
25 j

1/2
(3.2)

1/2
a,.

— QI — afaioH— r- a.\a\a\a\a\, S-
2 y 3

A modification of this transformation is the exact Gold-
hirsch transformation. Actually, however, the situation is
simpler: Since the Holstein-Primakoff transformation does
not by itself send the system out of the physical subspace
(the matrix element between the states 125 > and 125 + 1 > is
zero), the use of the Holstein-Primakoff transformation at
temperatures low in comparison with Tc leads to correct
results even in the cases 5= 1 and 1/2. This assertion is
verified by direct calculations35'36: The divergent series in
1/5 which appear at the stage of the transition to bosons,
even with a normal ordering of Bose operators, do not ap-
pear in the final results. We will accordingly be using trans-
formation (3.2) everywhere, regarding it as exact (for—we
wish to stress this point—an arbitrary value of 5).6)

Let us formulate the conditions under which a gas of
magnons can be regarded as slightly nonideal. As we men-
tioned earlier (§ 1), the exchange interaction between mag-
nons is not small, so a slight deviation of a Bose gas from
ideality could result only from a low density of quasiparti-
cles. In all cases, a necessary condition for a low magnon
density is that the temperature T must be low in comparison
with the transition temperature Tc (or TN) at H = 0. This
condition is not always a sufficient condition, however, since
in most magnetic structures describable by Hamiltonian
(2.3) there are zero-point vibrations, which lead to a non-
vanishing boson density (a,+ a,) in the ground state. This
density must also be small. In ferromagnetic materials, the
value of {a,+ a,} is made small at T = 0 by the small value of
the ratio a/J. In antiferromagnetic materials this situation is
more complicated, since even in the absence of anisotropy a
state with a checkerboard arrangement of quantum spins is
not an eigenstate of the spin Hamiltonian. In other words,
the zero-point vibrations in an antiferromagnetic material
result from exchange, so the boson density at T = 0 will gen-
erally not be parametrically small.7'

In this review we will focus on problems in which per-
turbation theory can be used correctly. We accordingly re-
strict the discussion to ferromagnetic materials with a slight
anisotropy, while in the case of antiferromagnetic materials
we will be concerned primarily with the field region near the
spin-flip transition, where the structure is approximately
ferromagnetic. We wish to emphasize the following point:
The discussion is carried out in terms of an arbitrary site spin
5 (i.e., in terms of 5~1), so we will not make use of the
possibility of obtaining a low magnon density as a result of
the semiclassical nature of the spin. In other words, we will
not use the expansion in 1/5 which has been used frequently
elsewhere.

The Bose analogs of spin Hamiltonians differ substan-
tially, depending on whether there are zero-point vibrations
in the system.8' If there are no zero-point vibrations, the
ground state of the magnetic substance is the same as its
classical ground state. In this case we need write in the Bose
Hamiltonian only those terms which contain equal numbers
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TABLE I. Values of the magnon energy and of the seed amplitude for two-particle scattering for
systems without zero-point vibrations. In the cases of an easy-plane ferromagnetic and an easy-
plane antiferromagnetic material it is assumed that the magnetic field H, is greater in magnitude
than the critical field for the transition to the "paramagnetic" phase.

Model Spectrum £k Amplitude <l>"

1. Easy-axis ( + ) and
easy-plane ( — ) ferro-
magnetic materials in a
longitudinal field

2. Isotropic antiferro-
magnetic material above
the spin-flip transition

/(0)5(l-vk)±

±2a.S+2\iHx

-J

'2_3+V!-3-2

±<*

of magnon creation and annihilation operators:

-M = Ect + 2 Skflkflk

^T S <D'1
t,flX<V4

1, 2, 3, 4

(3.3)

The indices 1, 2, 3, 4 correspond to k,, k2, k3, k4. In Hamilto-
nian (2.4), this situation corresponds to an easy-axis ferro-
magnetic material in a longitudinal field and also an easy-
plane ferromagnetic or antiferromagnetic material in a
strong field directed along the selected axis. The values of the
magnon energy £k and of the amplitude O3* are given in
Table I. We will use the notation

where /( k ) is the kth Fourier component of the exchange
interaction /( A ) = /, given by

In the case in which there are zero-point vibrations, the
structure of the Bose Hamiltonian is quite different. Specifi-
cally, terms with unequal numbers of magnon creation and
annihilation operators appear25'35-39:

ffl = £cl + 2

0<+1lr 2 $>Xa3

+ -JT 2

1 , 2 , 3

1, 2, 3, 4

(3.4)
1, 2, 3,
4, 5, 6

In Hamiltonian (2.4), this situation corresponds to an easy-
axis ferromagnetic material in a field which is not parallel to
the selected crystal axis or to an easy-plane ferromagnetic or
antiferromagnetic substance in an arbitrary field, except in
the cases discussed above. The coefficients 4>0, Ak, and Bk in
(3.4) for certain models are listed in Table II. We will not
reproduce here the lengthy expressions for the seed energy of

TABLE II. Values of the coefficients in the forms which are linear and quadratic in the Bose
operators for the Hamiltonians of several systems containing zero-point vibrations (6 is the angle
between the quantization axis and the selected axis of the crystal; for an antiferromagnetic material,
the direction of the selected axis is set by the external magnetic field).

Model

1. Easy-plane fer-
romagnetic mate-
rial in a longitudi-
nal field

2. Easy-axis ferro-
magnetic material
in a transverse field

3. Isotropic anti-
ferromagnetic ma-
terial in a field

Oo

— i (2;VS)1/2 sin 0

X (n//z — ctS cos 8)

— i (2A'S)V2 cos 9

X(H#.x — aSsin6)

-i(2Ar5)1/2sin6
X(u-ffz — / (n)Scos6)

-*k

/(0)5(l-vk)
+ 2n#z cos 6

+ a5(l — 3 cos2 6)
/(0)S(l-vk)

+ 2[iHxsinQ

+ 2aS ( l— 2-sin2e)

/(0)S(l-vk)
4-2nffzcos6

+ / (0)S(v k s in 2 9
— 2cos26

Bk

aS[i— (25)-1]1/2sin«6

aS[l— (25)-1]1/2 sin2 0

/ (0) Svk sin2 6
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the ground state, Ecl, and for the coefficients in the anhar-
monic terms. We simply note that while terms of the type
3^23 fli+ a2 °3+ a4 witn an even number of Bose operators ex-
ist whenever there are zero-point vibrations, the terms con-
taining an odd number of operators arise only if the quanti-
zation axis makes an angle 6, where 0 < 0 < -rr/2, with the
selected axis of the magnetic substance. In the classical case
(S-> oo ) the angle 6 is found from the condition 4>0 = 0. In
the general case (at a nonzero S) the equation for determin-
ing the angle 9 is more complicated (more on this below),
and <f>0 is not necessarily zero.

We wish to stress that the values given for the coeffi-
cients of both Hamiltonian (3.3) and Hamiltonian (3.4) in
Tables I and II fail to satisfy many natural requirements. For
example, the exchange part $>\\ does not satisfy Adler's
principle9'; not all of the anisotropic terms vanish at
S = 1/2; and the spectrum found through a direct diagonali-
zation of the quadratic form in (3.4) is unstable at small
values ofk forS ^ 1/2. The existence of these parasitic prop-
erties demonstrates the need for anharmonic renormaliza-
tions; a description of these renormalizations is the basic
content of the following sections of this review.

For systems describable by Hamiltonian (3.3) all the
eifects which stem from anharmonicities are manifested
only at a nonzero temperature. Some problems which arise
here are those of calculating the temperature renormaliza-
tions of the spin-wave energy (including the renormaliza-
tion of the gap in the anisotropic case) and the magnetiza-
tion and that of calculating the relaxation parameters. These
questions will be taken up in §4.

In systems describable by Hamiltonian (3.4) the situa-
tion is more complicated since now the temperature effects
are accompanied by anharmonic effects at T = 0 which re-
sult from quantum fluctuations (§5).

For the most part, the problems formulated above have
been solved in the semiclassical approximation (5>1), in
which anharmonicities can be dealt with in second-order
perturbation theory. We recall that we are interested in arbi-
trary values of 5. In this case, magnetic systems with a pre-
dominant exchange interaction have an obvious distinguish-
ing feature: The anharmonicities to which they lead are not
small in the general case of arbitrary wave vectors, and all
the terms of the corresponding perturbation-theory series
must be summed.10)

The strong interaction between quasiparticles is what
distinguishes magnons from phonons. In the case of phon-
ons there are always zero-point vibrations, but the coefficients
of the anharmonicity and the density of quasiparticles de-
pend on the same parameter Q/£Q (©is the Debye tempera-
ture, and e0 is a characteristic atomic energy, given by EO

~Ms2, where M is the mass of the ion, and s is the sound
velocity). If ®/EO -4 1 (and this condition usually holds, by
virtue of the small value of the ratio m/M, where m is the
electron mass), the interaction and also the density of quasi-
particles are simultaneously small at T-^&. In this case the
phonons are similar to magnons in systems with 5> 1. Ad-
mittedly, there is the distinction from phonons that in the
case of magnons there can be situations in which there are no
zero-point vibrations, so single-particle excitations are ei-
genstates of the spin Hamiltonian. In such cases a magnon is
more reminiscent of a particle in a periodic field (a band
particle) than of a phonon. For both magnons and phonons

there can be situations in which decay processes are forbid-
den by conservation laws (e.g., the cases of transverse phon-
ons and magnons in an isotropic antiferromagnetic materi-
al), so the quasiparticle lifetime is infinite, despite the
presence of zero-point vibrations.

4. SYSTEMS WITHOUT ZERO-POINT VIBRATIONS

It is clear from the discussion above that we are talking
about systems in which the ground state is characterized by
the maximum possible magnetization and is thus the same as
the classical ground state. As we have pointed out, this re-
quirement is satisfied by isotropic ferromagnetic substances,
easy-axis ferromagnetic substances in a longitudinal field,
and also uniaxial easy-plane ferromagnetic and antiferro-
magnetic substances in a sufficiently strong magnetic field
directed along the selected axis. In all these systems the spec-
trum of long-wave single-particle states at T = 0 is of the
form

where the values of £0 are given in Table I for two specific
cases (we are setting Planck's constant equal to one). For an
arbitrary geometry of the exchange interaction, the quantity
/S(ka)2 in (4.1) is replaced by (\/2)Ai}k,kj, where

A,J = 2S^\ J (A) A;A;
A

is the tensor of inverse effective masses.
At nonzero temperatures, spectrum (4.1) is not exact,

since this spin wave interacts with thermal magnons, whose
characteristics (the gap £0 and the effective-mass tensor A tj)
are renormalized as a result; in addition, its lifetime r(k)
becomes finite.

The energy renormalization and the lifetime of the mag-
non are determined by the real and imaginary parts of the
diagram

(4.2)

which contains the complete amplitude for scattering
through a zero angle, r£[J. A calculation of this amplitude
(for arbitrary S) requires summing the "exchange ladder,"
i.e., solving the integral equations

M «»

%x
•'X

p
k q

(4.3)

An analytic solution of these equations is possible thanks to a
specific feature of the exchange interaction: The kernels of
the integral equations can be factorized. To illustrate the
solution of the integral equations in an application based on
the Holstein-Primakoff formalism [see (3.2)], we have cal-
culated the complete amplitude for scattering through a zero
angle in an isotropic ferromagnetic material.

In the general case of an anisotropic magnetic substance
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TABLE III. Temperature renormalizations of the gap, temperature renormalizations of the effective mass, and magnon lifetimes for systems which do not have
zero-point vibrations. The factor Q(S) is defined in the text proper [expressions (4.5 )-(4.7) ]. Explicit expressions for the coefficients A and A ' are not reproduced
here, since the corresponding temperature corrections to the spectrum are smaller than the lifetime of the quasiparticles with the same wave vectors.
Zp(x) = 2;=,, (e-"'/nf); in limiting cases: Zp(x)^^(p) a tx^ l and Zp(x)~e-'&l x^ 1 (r= T/4vJS).

Model

1. Easy-axis ( + )
and easy-plane
( — ) ferromagne-
tic materials in a
longitudinal field

2. Isotropic anti-
ferromagnetic ma-
terial above the
spin-flip transition

Gap in spectrum £0( D

2y.H2 ± 2aS

x|>-T*«*(iO]

2[iHz-2J(0)S

x[i-4-.. / , , w - i \ - »A ( l ' s I
XT»/»Z,/,(-^-)]

Inverse effective mass

/s[l-|^(S)T^Zs/2(^-)],

aS < T;

^[^"^•(T-)].
aS>7'

r c f ^ A' TV17/ / B« \1

Inverse magnon lifetime

Vo

12 ~ / a \
nS a\J (II) J 'l~

*z4-r)

12 j«nnS J (U)

- d i iv-ir2
X l1^ 5 /

Xx*Z., (-^-)

Vh

3 ~ / a \
n5 a I / (It) ) <"*> 'l'/2

x z3/2(-y-) ,

a5 > /5 (ka)2;
J T

6n5 -("4)41n?
 JS(ak)2 ,

aS « /5 (fca)a < 3T;

^r-(afc)3T^Z5/2 (-^-) ,

/S (foi)2 > 71, aS

3/(0) / W - l v - 2
n5 I 1 ' 5 " j

X (fca) T'/2Z.,/,! | -y- j

o
M
N)



without zero-point vibrations, the complete scattering am-
plitude can be written in a natural way as the sum

* K P *~~ \ kp/cx "T" \ kp/rcl" \ ••*/

It is the first term, of exchange origin, which determines the
renormalization of the effective-mass tensor at temperatures
which are not too low. The second term is of a relativistic
nature. It determines the renormalization of the gap and—at
very low temperatures—the effective-mass tensor. Both
terms contribute to the damping of a spin wave with k /O.
At k = 0, the damping is determined exclusively by (/tj )re).
The exchange and relativistic parts of the amplitude r£[J are
susceptible in different ways to exchange renormalizations.
For the relativistic part, the primary renormalization re-
duces to the replacement of the single-ion anisotropy con-
stant a by41'42 a = a [ 1 — (25) ~ ' ]; the unlike-ion anisotro-
py constant does not change at all.1" Nontrivial
renormalizations of the relativistic part of the complete am-
plitude arise in higher orders in a/J and 0 /J. For the ex-
change part of r£jj, the renormalization is more important: It
leads to a change in the structure of the amplitude. Specifi-
cally, the "parasitic" finite term at zero values of the quasi-
particle momentum vanishes, so that Adler's principle is re-
stored.

Table III shows expressions for the renormalizations of
the gap and of the effective mass and also for the magnon
lifetime in various cases.M4'19'24'27'41^14 In calculating the
renormalizations of the spectrum in leading order in the
temperature it is sufficient to consider only the value of r£|J at
T=0, since the characteristic wave vectors of the virtual
magnons are close to their maximum values. In the calcula-
tion of r(k), the temperature dependence of the amplitude
must not be ignored, since all the characteristic wave vectors
of the problem are of the order of a~' (7Y/5)1/2, and the
distribution functions are of the order of unity.

It can be seen from the expressions given in Table III
that the renormalization of the effective mass due to (rjjjj )ex

contains a nontrivial spin factor

4r w-i
3(2S-r)

where

— cosx — cosy — cos z

(4.5)

1.52 (4.6)

is the Watson integral,45 and

n
3_ f t t (1 — cos x) cos y dx

n* J J J 3 — cosx — cos;/ —
d y d z
cos z •0.2. (4.7)

For a simple cubic lattice with nearest-neighbor inter-
action, an expression for Q(S) was first derived by Dyson27

by a formalism developed especially for the purpose.12) The
lifetime of a magnon, in contrast, does not have a factor of
this sort, so the correct result for the damping is the same as
the result derived in second-order perturbation theory.

The expressions in Table III are important for refining
dispersion relations as such. They are less important for cal-
culating the free energy and its derivatives (aside from the
replacement of a by a), since the temperature renormaliza-
tion of the energy plays a lesser role than the incorporation

of the deviation of the magnon dispersion law at T = 0 from
a quadratic law in the calculation of the macroscopic charac-
teristics.

Table III shows equations for nearly exchange magnet-
ic substances (with an anisotropy much less important than
the exchange).

Strictly speaking, a small anisotropy is not a necessary
condition for obtaining rigorous results for an arbitrary spin:
The only important points are that the ground state be "clas-
sical" and that the temperature be low in comparison with
Tc. Not only the calculations but also the final results are
extremely complicated for an arbitrary value of the ratio
|a|//. We restrict the present discussion to the expressions
for the gap renormalization, A£O ( T ) . For an arbitrary \a\/J
the temperature dependence A£O (7") remains the same as at
|a|//< 1, but an additional factor which depends explicitly
on the spin and on the ratio |a | //appears. The most interest-
ing case is that of an easy-axis ferromagnetic substance: For
a certain value of the anisotropy constant,

a = ac = / (0) S [W - (2S)-1 (W — I)]-1

[see (4.6) ], the scattering amplitude r™ diverges, forcing us
to consider the finite size of the momentum of a virtual mag-
non in calculating the gap renormalization by means of
(4.3).42 Calculations show that with a = ac the tempera-
ture correction to EO changes sign, and the damping of y0 has
a maximum (Fig. 4). The nature of the resonance effect is a
change at a = ac in the nature of the low-lying two-particle
excited states. At this value of a, the energy of a bound state
of two magnons with K = k, + k2 =0 becomes lower than
2f0, which is the lower energy boundary of the continuum of
two-particle excitations.46'47

We have been discussing the bound states which arise
from the relativistic interaction. Exchange bound states in
three-dimensional space exist only at large quasiparticle
wave vectors.48"51 We will not pursue that question since it
goes beyond the scope of the problems in which we are inter-
ested—problems which concern the behavior of long-wave

AWo r
1
1I

1
I
1

Ij ]
i \

ce/a.-

FIG. 4. The attenuation factor YO ar"d the temperature correction to the
gap in the spectrum of an easy-axis ferromagnetic material, A£O, as func-
tions of the single-ion anisotropy constant.42 Solid line—A£O; dashed
line—/„.
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magnons. We simply note that in calculating the exchange
bound states one needs to know the value of \r\\ for arbi-
trary values of the momenta.46'51

5. SYSTEMS WITH ZERO-POINT VIBRATIONS

As we have already mentioned, the quantum ground
state does not coincide with the classical ground state in
many systems because of zero-point vibrations. For such
systems, the problem is not simply one of calculating the
temperature renormalizations but also of correctly deter-
mining the magnetic characteristics at T = 0. Among the
models described by Hamiltonian (3.2), those which have
zero-point vibrations are those in which the quantization
axis does not coincide with the selected crystal axis: an easy-
axis ferromagnetic material in an oblique field and easy-
plane ferromagnetic and antiferromagnetic materials — the
latter in nearly all cases, except in a situation in which a
strong field is applied along the selected axis.

In terms of Bose operators, these models are described
by a Hamiltonian like (3.4) (see Table II for the values of
the coefficients). The structure of this Hamiltonian is the
same as that for a nonideal Bose gas of particles with a con-
densate."'52'53 The formal analogy between the Hamilto-
nians (in both cases there are nondiagonal terms ak a^k

and ak a k in the quadratic form ) means that we can use in
the calculations the Belyaev technique for Bose systems with
a condensate; this technique has been developed quite well
for gases with low densities of particles which are interacting
strongly with each other.53 This situation literally refers to
slightly anisotropic magnetic substances, in which the inter-
action between magnons is strong (an exchange interac-
tion), and the density is low because the temperature and the
anisotropy are slight in comparison with the exchange.

Calculations based on the standard Belyaev diagram
technique imply the introduction of three Green's functions:
the normal Green's function G + and two anomalous ones
(G + + and G ), which are equal to each other by virtue
of the Hermitian nature of the Hamiltonian. For these func-
tions we can write a system of Dyson equations, from which
we find a dispersion relation for the spectrum of spin waves:

D (k, to) = («> - iZA (k, co))- + (Ak - Z.(k, co))2

-(5k- 2 + + ( k , co))2 = 0, (5.1)

where

, eo)±2*-(-k, -co)), (5.2)

and 2+ ~ (k,6>) and 2+ + (k,o>) are the eigenenergy parts of
the normal and of the anomalous Green's functions. The
normal Green's function is related in the usual way to the
quantity xk = (ak

+ ak } :

-~ (5.3)

Calculations show that in the lowest order in the anisotropy
the value of xk differs from the classical value [which can be
found through a trivial diagonalization of the quadratic
form in (3.4) ] only by a natural quantum renormalization
of the anisotropy constant,29-35'54-58

 a -. a [ 1 - (2S) ~ ' ]:

(5.4)

I}"2 (5.5)

is the spectrum of spin waves (again, in lowest order in a//).
We wish to stress that the simplicity of this result does not
mean that its derivation was simple: The calculation of the
renormalization of the coefficient Bk (Bk->Bk[l
— (25) ~ ' ]) "2 requires solving the integral equation

c: • c< (5.6)

where nk is a Bose function, and

whose kernel factorizes by virtue of the structure of the ex-
change interaction.

At the same accuracy level, the angle 6, which specifies
the magnetization direction, is found by equating the coeffi-
cient of the linear term in Hamiltonian (3.4) to zero (we
denote the angle determined in this fashion by 60).

In the lowest order in the anisotropy, the expressions
for the magnetic characteristics at T = 0 thus differ from the
classical expressions only by the renormalization of the an-
isotropy constant, a-»or[l — (25)"']. These expressions
are given in Table IV. Also shown in this table are the results
for an antiferromagnetic substance near the spin-flip transi-
tion.13'14'59 The particle density is low here by virtue of the
condition #< 1. We recall that for an antiferromagnetic ma-
terial the angle Q is the angle between the quantization axis of
one of the sublattices and the direction of the external field.

In an easy-axis ferromagnetic material the order pa-
rameter is the z component of the magnetization. Since the
order parameter has only a single component, i.e., since
there is no axial symmetry, the spectrum has a finite gap
everywhere except at the transition point. In an easy-plane
ferromagnetic or antiferromagnetic material, in contrast,
the order parameter near the spin flip is the transverse mag-
netization, i.e., a two-component vector. In such cases the
system is invariant under rotations around the selected axis,
and as a consequence the spin-wave spectrum is linear in the
limit fc-»0, i.e., is of a Goldstone nature.

Before we discuss the anharmonic effects, we would like
to go back to the formal analogy between the Hamiltonians
of magnetic substances and Bose gases of particles. We
would like to determine just how far we can pursue this anal-
ogy.

We know that in a Bose gas of particles with a conden-
sate the long-wavelength excitations are sound waves.52'53 In
magnons, as we have just stated, this assertion is correct only
if the order parameter is of a vector nature (easy-plane ferro-
magnetic and antiferromagnetic materials; isotropic antifer-
romagnetic substances), and only in these cases is it mean-
ingful to stress the analogy with a Bose gas of particles.

In the strict meaning of the word, magnons are quasi-
particles which determine elementary excitations in a mag-
netic substance. The number of magnons is not conserved, so
there is no condensate of magnons in an equilibrium state.
On the other hand, the low-temperature properties of mag-
netic substances can be and frequently are conveniently de-
scribed in terms of Bose operators a + and a, which are di-
rectly related to the spin-projection operators [see (3.2) in
§3 ]. This is the approach which we take. These operators are
customarily called "magnon creation and annihilation oper-
ators," and the concept of a condensate has a completely
definite meaning for a description in terms of these opera-
tors. Specifically, in a Bose gas of particles a condensate—
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TABLE IV. Magnetic characteristics at T= 0 of several systems containing zero-point vibrations. The expressions are written in lowest order in the small particle
density: the small parameter a/J for easy-axis and easy-plane ferromagnetic materials and sin2 du for an antiferromagnetic material (w 0 i s the volume of the unit
cell).

Model

1 . Easy-plane ferromag-
netic material in a longi-
tudinal field

tic material in a trans-
verse field

3. Isotropic antiferro-
magnetic material near a
spin-flip transition

Angle eo

" z, c
Hz < tf <«>c;

"x, K

COS DO — „((,, ,
r, C

#2 < 7/(0) '

Critical field #f Magnon energy £k

{/(0)5(l-vk)x[2a5sin200

-l~ T l(\\ ^ t\ 1111/2T t vk;j,

+ 2 (H//x sin Oo + ai1 cos2 60)]i/2

Longitudinal
magnetization

2^5^' cos 00

2\iS uj1 cos 00

Transverse
magnetization

2)i5i;j ' sin 60

2H5UJ* sin 90

o
l\3
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i.e., a cluster of «0 particles in a unit volume in a state with
p = 0—reflects the appearance of a long-range order in the
system: The density-density correlation function tends to-
ward «0 at long range.'' Correspondingly, the appearance of
a long-range order in magnetic substances is characterized
by the appearance of a nonzero value of (SL ), whose square
is the large-scale limit of the spin-spin correlation function
[ (S1 = (S* ,5*) is the projection of the spin onto the easy
plane; for definiteness, we will speak in terms of an easy-
plane ferromagnetic material ].

According to (3.2), we have

found from the vanishing of the sum of diagrams having a
single external end,

= o, (5.9)

and the eigenenergy parts 2 + ~ and 2 + + are given by the
diagram series

+ —s

or

_A"_ .'S--y- _, -V sin3 9 2 V

k
-f sin29. (5.7)

By analogy with the known equation for a Bose gas of parti-
cles,"

(5.8)

( b k
+ and b k are the Bose operators of the particles ) , we can

thus identify the quantities

with respectively the total density of particles, the density of
particles in the condensate, and the "site" density of parti-
cles above the condensate. The first two of these correspon-
dences are a bit on the formal side, although they do make it
possible to deal with phase transitions in an easy-plane ferro-
magnetic or antiferromagnetic material as the disappear-
ance of a Bose condensate.13' The last correspondence is a
more natural one since the distribution function of the mag-
nons above the condensate has the same form as that in a
Bose gas [see (5.3) and (5.4)]. This correspondence makes
the structure of the ground state clear: At T = 0, a magnetic
substance contains (quasi) particles above the condensate,
in an equilibrium number which is determined by the first
term in (5.4) and which is small [ ~ (a//) V2] to the extent
to which the ratio of the anisotropy to the exchange is small.
The deviation of the distribution function of the magnons
above the condensate from xk r=0 causes a relaxation of
the spin system, which leads under certain conditions to a
finite magnon lifetime at T = 0. The standard uv transfor-
mation in magnetic substances is also clarified: It may be
regarded as a transition from particles to quasiparticles. In
this connection we would like to point out that zero-point
vibrations are important not only at T = 0 but also at non-
zero temperatures: The temperature part of the particle dis-
tribution function xv is not a Bose function, in contrast with
the quasiparticle distribution function, which is equal
to'4X-

There are several effects (e.g., the shift of the point of
the orientational transition in an easy-axis ferromagnetic
material), however, for which calculations require equa-
tions more accurate than those in Table IV — equations
which incorporate the following terms in a/J, The calcula-
tions are carried out in the following way14'35: The angle 0 is

(5.10)

-t-

(5.11)

At the accuracy of the treatment below (to within the square
of the small parameter) it is sufficient to consider only these
diagrams. The complete vertices &.. which appear in the
series are themselves solutions of integral equations which
arise because of their strong exchange renormalization.
These equations are shown in diagram form in Fig. 5.

The results of the quantum renormalizations are col-
lected in Table V. There is a nontrivial dependence of the

-P
-9

0 0 , -.c q r

Cyclic permutation

FIG. 5. Diagram equations for the complete vertices which appear in
diagrams (5.10) and (5.11).
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TABLE V. Quantum renormalizations (T = 0) of the magnetic characteristics of several systems containing zero-point vibrations i = W+ [2S[ 1 — (2.S) ~ ' ]}

Model

1. Easy-plane ferromag-
netic material in a longi-
tudinal field

2. Easy-axis ferromagne-
tic material in a trans-

3. Isotropic antiferro-
magnetic material near
the spin-flip transition

Angle 0

cos 0 — cos 00

f < "^ 2 a 1
' S L 2 / (0)S" "_T

it, <_ 77, r-
0 = 0, 7/z>77z, c

sin 0-— sin 00

•-' f l 1 ™X sin2tt,l/ X L ' 2/(0)S "J '
HX < ^" -Y, Ci

Jl

COS 0 — COS 0n

0 = o" 7/z>//z, c

Critical field

/,,, „ r= 7/,o,c

6'2=-

X f l

e.=-i

x

C

Magnon energy £v, ka^l

ek -= Ck,

£JS, Sin2 9o

1 " f j ! "> ' '0 11 / O O . S - \A 2[l-(25)->] /"'" "J '

a5

/ . KOL sin2 On \ „
\ « / ( ' ' ) A /

ti // v n ^ ( 77 v — n T f • ) n ^ / ̂
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energy of the elementary excitations and of the magnetiza-
tion on the site spin. Furthermore, the angle 0, between the
quantization axis and the selected axis of the crystal, de-
creases with increasing field in an easy-plane ferromagnetic
or antiferromagnetic material, and it vanishes at the point of
the phase transition (at H = f f c ) . Correspondingly, the
ground state at H >HC coincides with the classical ground
state, so there is no quantum shift of the transition point, and
the longitudinal magnetization at T = 0 reaches its nominal
value at the transition point. In an easy-axis ferromagnetic
substance, in contrast, the angle 9 is tr/1 in a transverse field
atH = Hc; i.e., both of the states (at H < Hc and H > Hc)
contain a Bose condensate. Quantum fluctuations, which ex-
ist in both phases, shift the transition point down the field
scale60:

2J (0) S

(5.12)

where H (
c
m — aS. The reason for the sign of A//c is that the

phase at H>HC, in which the magnetization is directed
along the field, is "disordered" in the sense that it belongs to
the paramagnetic region on the phase diagram (Fig. 1).
Fluctuations, on the other hand—regardless of whether they
are quantum-mechanical or classical—should broaden the
region in which the disordered phase exists. A further mani-
festation of quantum fluctuations in strong fields is the cir-
cumstance that the longitudinal magnetization does not
reach its nominal value at any finite field, simply approach-
ing it in a square-root fashion.

A nonzero temperature T ̂  0 leads to a renormalization
of the magnetic characteristics, regardless of how the
ground state is constructed. The diagram equations for the
temperature renormalizations are the same as for the quan-
tum renormalizations [see (5.9)-(5.11)], but it now be-
comes necessary to consider the discrete nature of the Mat-
subara frequencies 2-rrn T (the values of n are integers). After
a summation over the frequency, the result is the appearance
of additional terms containing a Bose function «k. The re-
sults calculated in Refs. 22, 35, 61, and 62 are given in Table
VI. We wish to call attention to the existence of two tempera-
ture intervals far from the Curie point ( T ^ J S ) : T<^aSsin2d
and T^>aS sin20. At comparatively high temperatures, the
renormalization is dominated by magnons with fairly large
characteristic wave vectors, for which the spectrum essen-
tially "does not feel" the anisotropy (£k =sJ5'(ka)2). In this
case the temperature renormalizations of all quantities are
determined by the number of thermal magnons and are pro-
portional to r3/2. At the lowest temperatures, the major role
is played by extremely long-wave magnons, whose energy
depends strongly on the anisotropy (in an easy-plane ferro-
magnet, for example, these would be the magnons with £k

cc k). The situation is more complicated here because (first)
the difference between £k andAk is manifested and (second)
cubic anharmonicities contribute substantially to the renor-
malization.15' In this interval the temperature laws depend
on both the model and the selected characteristic. In an easy-
axis ferromagnetic material, for example, all the tempera-
ture renormalizations (except the renormalization of the
point of the orientational transition) contain an exponential

factor exp( — eQ/T) (since these renormalizations are
small, we do not give the exact expressions in Table VI). In
systems with a Goldstone spectrum (in easy-plane ferro-
magnetic and antiferromagnetic materials), in contrast, the
temperature renormalizations are always of a power-law na-
ture. Furthermore, the spin-wave velocity, the longitudinal
magnetization, and the transverse magnetization are renor-
malized in different ways in this case [ AC( T) a T 4ln T; AMz

(T)ccT4; and 8M, (T)*T2, respectively ]. It is also useful
to note the analogy with a superfluid Bose liquid, in which
one observes similar functional dependences for, respective-
ly, the sound velocity, the density of the normal component,
and the density of particles in the condensate.8 Admittedly,
this analogy would hold, strictly speaking, only in the case
H 7^0 because there are always ternary anharmonicities in a
superfluid Bose liquid [these anharmonicities give rise to a
logarithmic factor in AC( T) ] . In a zero field, the renormal-
ization of the spin-wave velocity is AC( T)~T4.

The difference between the temperature dependence of
the longitudinal magnetization and that of the transverse
magnetization reflects the fact that the temperature correc-
tions to Mz are finite in a space of any dimensionality, since
at T =£ 0 the quantity M2 is essentially a paramagnetic charac-
teristic, and its value is determined by the external field,
while the temperature corrections to ML—i.e., to the order
parameter—diverge in a space of dimensionality Z><2, in
accordance with Mermin-Wagner theorem (§6). Corre-
spondingly, the correction to M1 is determined by the num-
ber of particles above the condensate (2k A k £k ' n k ) , while
the correction to M2 (like the spin-wave velocity, which also
remains finite, regardless of the dimensionality) is deter-
mined by the energy of the quasiparticles (2 k £ k n k ) .

It can be seen from Table VI that the value of the angle 0
also depends on the temperature; i.e., the quantization axis
shifts with a variation in T. A situation of this sort is charac-
teristic of any oscillator with anharmonicities of odd powers.
In essence, there was essentially also a shift of the quantiza-
tion axis at T = 0 because of the zero-point vibrations. The
two effects are identical in nature; the only distinction is that
the amplitude of the quantum fluctuations increases with
increasing reciprocal spin 1/5, while the amplitude of the
classical fluctuations increases with increasing T.

The table which we are discussing does not give equa-
tions for the damping of spin waves. The reason is that most
of the equations are very lengthy, and there are a multitude
of different limiting cases. We refer the interested reader to
the original papers61'63"65 and content ourselves with some
general assertions here.

First, the damping is nonzero even at T = 0 in the case
H 7^ 0, because of quantum effects.

Second, the damping is always (under the conditions
a/J<^ 1 and T/JS^ 1) weaker than the corrections to the
energy.

Third, at H ^0 the damping is caused primarily by
three-particle anharmonicities. At H = 0 there are no such
anharmonicities (the corresponding terms in the Bose Ham-
iltonian contain a factor of sin26>), and the damping is deter-
mined by four-particle anharmonicities.

The picture which we have drawn here is correct when
dipole interactions are ignored. Incorporating them alters
the situation for H = 0: A damping at T = 0 appears, and at
a nonzero temperature the damping due to three-particle
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anharmonicities of dipole origin generally becomes pre-
dominant.

The magnon lifetime (and the method for determining
it) depend on the relation between the magnon energy ek

and the characteristic lifetime rchar of the thermal quasipar-
ticles with which the magnon interacts. In the case
fk rchar £» 1 (the ballistic regime), the damping is due entirely
to the first nonvanishing order of perturbation theory
(usually the second), while at £k rchar < 1 (the hydrodynam-
ic regime) it is frequently important to go to a higher-order
perturbation theory.16' In particular, the change in the
expression for the damping at the transition to the hydrody-
namic region171 for an easy-plane ferromagnetic material at
H = 0 is extremely important64:

(k) for ekrchar>l,
for ekrchar<l,

(5.13)
(5.14)

and we have rchar <x T 5. We complete this section of the
paper by presenting several results on systems in which the
zero-point vibrations are not parametrically small. We begin
with the case of an isotropic antiferromagnetic substance. Its
classical spectrum

= /(0)5(l-vt)'/2 (5.15)

contains two Goldstone modes [k = 0 and k = ( + -ir/a,
+ IT/a, + IT/a) ] , which reflect the in variance of the Hamil-

tonian under spin rotations and the interchange of the sub-
lattices.37'38'67 The symmetry of the spectrum under the sub-
stitution A;, -> (TT/O, ) — /c, allows us to shrink the cell in the
k space of the antiferromagnetic substance and to treat the
spectrum as consisting of two coincident branches (the more
customary interpretation). In applying a magnetic field we
disrupt the invariance of the sublattices: The substitution of
one sublattice for the other requires the simultaneous re-
placement of the spin directions, which in turn changes the
Zeeman energy. This change in turn has a further conse-
quence: The symmetry of the spectrum with respect to the
point kt = 7r/2a, (/ = x, y, z) is disrupted. If we go to a
shrunken cell in k space, we find that a gap appears on one of
the branches.

As we have already noted, the contribution of zero-
point vibrations in an antiferromagnetic material is numeri-
cally small. For example, the first (in terms of 1/5) correc-
tion to the spin-wave velocity is68

±c _ i Y I. ^ \.
C 2NS ^ \ / ( i I ) S]'

(5.16)

for a simple cubic lattice, this correction is 0.097/25.
The temperature correction to the velocity in the lowest

order in 1/5 is determined by the quasiparticle energy
(2k£k«k ) and is proportional to 7"4, as in an easy-plane
ferromagnet.69'70 A specific feature of an antiferromagnetic
material — the presence of two Goldstone modes in the spec-
trum — arises in calculations in the next order in 1/5: Incor-
porating the interaction between low-energy modes with
k~0 and kt ~TT/O gives rise to a factor which is logarithmic
in the temperature,71

AC
C 2160 1/3 S

10 In
JS ). (5.17)

magnetic substance gives rise to a constant factor Q(S) (Ta-
ble III).

The damping of antiferromagnetic magnons has been
calculated in many papers, primarily for isotropic63 and
easy-plane72 antiferromagnetic materials. Among the funda-
mental points we will mention only that calculations in sec-
ond-order perturbation theory here lead to the correct result
for the damping of a magnon at small wave vectors ka < (T /

V ( k ) < x > e s
k r ' | ] n 7 ' . ( / ( 0 ) S ) - > | . (5.18)

We recall that the corresponding renormalization in a ferro-

Going over to hydrodynamics thus does not require taking
into account the finite lifetime of the virtual magnons.63 We
would like to call attention again to an important difference
between the behavior of an isotropic antiferromagnetic ma-
terial and that of an easy-plane ferromagnetic substance. Al-
though the spectrum for each is linear as &->0, there are two
Goldstone modes in the case of the antiferromagnetic sub-
stance, so the antiferromagnetic material has properties sim-
ilar to those of an isotropic ferromagnetic material.

In completing this discussion of the antiferromagnetic
material we would like to see how Adler's principle is mani-
fested in this case.18) We switch to bosons, and we diagona-
lize the quadratic form by means of a uv transformation, so
that we will have a seed Goldstone spectrum. Any of the four
amplitudes will then contain, along with a term quadratic in
the energy in the numerator, the root of the product of ener-
gies in the denominator, so that as certain wave vectors tend
toward zero the amplitudes will diverge, and it might appear
that Adler's principle was being violated. This is of course
not the case. The explanation is that Adler's principle is for-
mulated for phonon-like Goldstone bosons, for which the
seed Green's function is proportional to (or + k 2 ) ~'. The
Green's function of the magnons, in contrast, contains the
first power of the frequency, G(k,a>) oc ( \k \ — ia>) ~'. The
physical reason is that the spins in a spin wave rotate in a
common direction. Correspondingly, in calculations by per-
turbation theory with a magnon Green's function the de-
nominators have a "deficiency" of virtual-quasiparticle en-
ergies in comparison with that which would be found in
calculations with a phonon-like Green's function. This defi-
ciency is exactly offset by the energies which appear in the
denominators of the amplitudes of antiferromagnetic sub-
stances. Accordingly, we should speak of Adler's principle
only in application to the numerators of the corresponding
amplitudes, and in total accordance with the requirements of
this principle the expansion of each of the numerators in
momenta (or energies) begins with the quadratic terms.

We turn now to an easy-plane ferromagnetic material
with a large anisotropy constant (a^J). Ata large value of
a, zero-point vibrations can completely change the structure
of the classical ground state. To see this, we will analyze the
case a>/with H — 0. In the zeroth order approximation in
the exchange interaction, the problem then becomes a single-
particle problem. We assume that the atomic spin is an in-
teger spin. The ground state is then a singlet (5 \ = 0), sepa-
rated from the first, IN-fold-degenerate, excited state (for
one of the atoms, 5^0 = + 1 or — 1) by an energy gap ~«.
Turning on a weak exchange interaction could not liquidate
this gap, of course. The existence of this gap is unambiguous
evidence of a complete smearing of the long-range order in
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the ground state, since the spectrum in the ordered phase is
definitely a Goldstone spectrum (see the discussion at the
beginning of this section). With a~J, an order-disorder
phase transition clearly must occur.56'73

For systems with half-integer spins the situation is dif-
ferent. In such systems, the ground state is 2N -fold degener-
ate (S\ = + 1/2 or — 1/2) in the single-particle approxi-
mation. The incorporation of even a weak exchange
interaction leads to an ordering in the x,y plane. In this case,
therefore, there is no phase transition involving a change in
the anisotropy constant: The system remains in the ordered
phase at all times.

Applying a longitudinal field Hz = H gives the phase
diagram of an easy-plane ferromagnetic substance an ex-
tremely unusual shape,22'35'74 even at T = 0. As we move up
to stronger fields we do not monotonically approach the
melting point of the Bose condensate, as in Fig. 1; we instead
cross S regions with spins which are ordered in the x,y plane.
These regions are separated by regions in which there is no
long-range order (Fig. 6).

This alteration of ordered and disordered regions re-
sults from the circumstance that turning on a magnetic field
in the single-particle problem causes a splitting of all the
levels (except the Sz

t = 0 level) by an amount proportional
to the field and to the z projection of the spin. As the field is
strengthened, levels with different values of S* turn out to be
the lowest-energy levels in succession. Near each of the
crossing points of the levels Sz, = m and Sz, = m + 1 (there
are a total of [s] such points) the ground state is 2N-fo\d
degenerate, either exactly or approximately (depending on
whether we are dealing with strictly the crossing point itself
or a small neighborhood of it). Since the distance between
the two lowest levels is smaller than the exchange integral
which smears the upper level into a band, there will be a
long-range magnetic order in the system. If the exchange is
slight, all levels other than the two lowest ones are unimpor-
tant, so the system in its ordered phase is essentially equiva-
lent to an XY magnetic substance with 5 = 1/2 in a longitu-
dinal field. There is a long-range order in the x, y plane as
long as the field is below the critical value.

Interestingly, the field dependences MZ(H) and
M! (H ) at a > J are reminiscent of the H dependence of the
Hall and dissipative conductivities under the conditions of
the quantum Hall effect74 (Fig. 7). This is not simply a for-

X/J,

n a
2

_
2

flHz/a

FIG. 6. Phase diagram of an easy-plane ferromagnetic material with a
single-ion anisotropy and with 5 = 2 in the plane of the variables a/J and
[iH; /a. The hatched regions are the regions in which a long-range order
exists in the x, y plane.

FIG. 7. Field dependence of (a) the longitudinal magnetization Mz and
(b) the transverse magnetization Mt of an easy-plane ferromagnetic ma-
terial with a large single-ion anisotropy constant. The plateau on the plot
of Mf (H) ] and the simultaneous vanishing of ML (H) ] arises because of
the finite size of the correlation radius in the paramagnetic ("localized")
phase.

tuitous agreement, since the reason for the appearance of the
strict plateau on the plot of MZ(H) [and for the simulta-
neous vanishing of ML (H)] is the same as that in the Hall
effect: If the spins in the x, y plane have a finite correlation
radius (i.e., under "localization" conditions, with ML = 0)
the interaction between the single-particle levels which re-
sults from the transverse components of the exchange inter-
action does not give rise to a macroscopic effect, i.e., does not
impart a field dependence to M2. At a nonzero temperature,
the entire picture will of course be smoothed over slightly.

Experimentally, the transition from a singlet state to
magnetic order in a magnetic field has been observed in sev-
eral magnetic substances with 5= 1 (Ref. 75). Further-
more, a field dependence of Mz similar in shape to that pre-
dicted theoretically has been seen experimentally76 for
FeSiF6-6H2O(5 = 2).

6. DISTINCTIVE FEATURES OF REDUCED-DIMENSIONALITY
SYSTEMS

We have been discussing systems which are anisotropic
in spin space but isotropic in coordinate space. Actually, the
situation is different in many cases: The values of the ex-
change integrals along different directions are quite differ-
ent. Quite frequently, the hierarchy of exchange interactions
is so clearly expressed that one or two exchange integrals can
simply be ignored. We are then led to the model of a reduced-
dimensionality (two-dimensional or one-dimensional) mag-
netic substance as a zeroth order approximation.

In the strict sense of the word, of course, there are no
reduced-dimensionality entities. For example, no matter
how anomalously small certain components of the exchange
interaction may be there is always a dipole-dipole interac-
tion between magnetic moments, which decays slowly over
distance.19) Nevertheless, there are essentially always condi-
tions under which the reduced-dimensional properties of
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TABLE VII. Some substances which fall in the categories of 3D, 2D, and ID magnetic substances,
are studied in this review. The data regarding the assignment of a specific substance to a particular
category are taken from the proceedings of recent international conferences on magnetism and from
some reviews.

Type of substance

Ferromagnetic materials:
exchange

Easy-plane with single-
ion anisotropy

Easy-plane with unlike-
ion anisotropy (of the AT
model type)
Easy-axis with a single-
ion anisotropy
Easy-axis with unlike-ion
anisotropy (of the Ising-
model type)
Antiferromagnetic mate-
rials: exchange

Easy-plane with single-
ion anisotropy

Easy-plane with unlike-
ion anisotropy (of the
XY-model type)
Easy-axis with a single-
ion anisotropy

Easy-axis with unlike-ion
anisotropy (of the Ising-
model type)
Complex structures:
metamagnetic materials
helimagnetic materials

Dimension-
ality

3
2
1
3
2
1
3
2
1
3
2
3
2
1

3
2
1
3
2
1
3
2
1
3
2
1
3
2
1

3
3

Substance

EuO, EuS, Cu(NH4)2Br4-2H20
K2CuF4, Cu(CH3NH3)2Cl4

(CeHuNH3)CuCl3, (C6HuNH3)CuBr3

Dy(Ni)5, FeSiF8.6H20
Rb2CuCl2

CsNiF3, RbFeCl3

Fe[Se2CN(C2H5)2]2Cl
CoCl2

(CH3)4NNiBr3

NiZnF6-6H20, FeP
AgCrSea, NaCrSe2

Tb(OH)3, Fe[S2CH(C2H5)2]2Cl
FeCl2

CoCl2.2NC5H5, CoCl2-2H20

RbMnF3, KMnF,
BaMnF4, K2NiF4

CsMnCl3-2H20, RbNiCl.,, CsNiCl3

CsMnF3, MnC03, FeB03

Ba(Ni)2(P04)2

(CHs)2NH2MnCl3, (CH3)4MMnCl3

Co(C5H5NO)6(C104)2, Co(C5H5NO)«(BF4)2

CoBr2-6H20, CoCl2-6H20
Cs2CoCl4, PrCl3

MnF2

Rb2NiF4, Tl2NiF4

CsMnCl3-2H20
DyP04, FeF2

CoCs3Br5, Rb2CoF4

CsCoCl3, RbFeCl5-2H20

[(CH3)3NH]CoCl3.2H20, FeCl2, FeBr,
Mn02, MnAu2, FeCl3

magnetic substances are seen in their full glory. This is clear-
ly the case, for example, when the temperature is high in
comparison with the energy of the interaction which dis-
rupts the reduced dimensionality, but low in comparison
with the large exchange integral. There are also other exam-
ples in which a specific reduced-dimensionality behavior is
not masked by the three-dimensional nature of the sample.
Several magnetic substances which can be categorized as re-
duced-dimensional are listed in Table VII.

The aspect of reduced-dimensionality systems which
attracts most of our attention is the significant increase in
the role played by fluctuational effects, both temperature
and quantum effects. We will discuss them separately, begin-
ning with the case T ^0, in which classical fluctuations play
a governing role. For two-dimensional systems, a manifesta-
tion of these fluctuations is the well-known Mermin-Wagner
theorem77 regarding the absence of long-range order from
easy-plane and isotropic two-dimensional Heisenberg ferro-
magnetic substances at T^O. This theorem shows that, in
contrast with three-dimensional magnetic substances, the
nature of the low-temperature behavior of 2D systems de-
pends strongly on the dimensionality of the order parameter
n. The assertion that there is no order does not apply to easy-
axis ferromagnetic materials with a single-component order

parameter ' (n = 1). It applies only to systems in which the
order parameter is a vector for which there is no special di-
rection in the plane (n = 2) or in space (n = 3). An interest-
ing aspect of 2D magnetic substances is that the absence of a
long-range order does not mean that their magnetic proper-
ties at low temperatures are similar. In easy-plane magnetic
substances (n = 2) there is a fixed temperature TB at which
the correlation radius becomes infinite, if we approach from
the side of higher temperatures. Although there is no order-
ing at any temperature according to the Mermin-Wagner
theorem, at T<TB we are dealing with a new phase: The
system in a sense freezes at the point of the phase transition,
where everything is prepared for ordering. The correlation
radius and the susceptibility are infinite, and the spin corre-
lation function decays by a power law.79"81 These properties
persist at all temperatures below TB, except that the expo-
nent of the power-law decay of the correlation function de-
creases monotonically with decreasing temperature.82 At
n > 2, on the contrary, no phase transition occurs down to
T= 0; i.e., at all nonzero temperatures the magnetic sub-
stance is in a paramagnetic phase with a finite spin correla-
tion radius.83'84 The reason for the amplification of fluctu-
ations effects in an isotropic magnetic substance (n = 3) in
comparison with those in an easy-plane magnetic substance
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TABLE VIII. Temperature renormalizations of the spin-wave energy for 2D magnetic substances
with various numbers of order-parameter components (see Table IV regarding 60).

Model
Temperature renormalization of the magnon energy et(T)/

1. 2D easy-axis ferromagne-
tic material

2. 2D easy-plane ferromag-
netic material

V ( T )
U(0) ' E0(0) L

C(T) I. 2
-=(l-J-<l + 2,

> (T)

<C aS sin2 60,

T In- - , T > 'aS sin2 60

3. 2D isotropic ferromagne-
tic material

4. 2D isotropic antiferro-
magnetic material

aS sin2 60

/(71) _ (27-/H/ (0) S2)2 |lnte|
/(i!) l-(2r/!t/(0)S2) |lnte|

C(T) 1 / 2 7 -
2

(1+0(W|sr)| lnte '))

(« = 2) is the larger number of degrees of freedom of the
order parameter (and thus the existence of additional low-
energy excitations). The situation can be seen most simply
by comparing easy-plane magnetic substances and antiferro-
magnetic substances. In each case there are low-energy exci-
tations with ka^O, but in the antiferromagnetic substance
there are in addition some low-lying excitations with wave
vectors close to tr/a, and all the specific features of fluctu-
ation effects in an antiferromagnetic substance result from
the interaction of low-energy magnons with k~0 and

The difference in the behavior of easy-plane and iso-
tropic magnetic substances at low temperatures is manifest-
ed in a difference in the structure of the long- wave part of the
spectrum. If the correlation radius is infinite (an easy-plane
magnetic substance), spin waves exist at all k. If, on the
other hand, the correlation radius g is finite (isotropic mag-
netic substances ) , there are no spin waves as weakly damped
collective excitations at k£ < I (over distances greater than
the correlation length). The spectrum in this part of k space
is of a diffusive nature, as in a paramagnet. The nature of the
long-wavelength excitations governs the form of the basic
temperature corrections to the seed ( T = 0) spin- wave spec-
tra. Expressions for the corrections to the spectra of various
2D magnetic substances35'71'85'86 are given in Table VIII. The
corrections in the cases of easy-plane ferromagnetic materi-
als are finite and small at low temperatures; these results are
a natural reflection of the infinite nature of the correlation
radius. The finite velocity of the spin waves actually serves as
an "order parameter" in the phase in which the spin correla-
tions fall off by a power law.

In isotropic magnetic substances, in contrast, the cor-
rections to the spectrum grow logarithmically with decreas-
ing wave vector k and become comparable to the seed values
of the energy at

A; (6.1)

where a is the interatomic distance. The quantity f can natu-
rally be treated as a correlation radius of the system. Al-
though a perturbation theory would not be valid at k£ < 1,
this assertion is justified by the circumstance that, according
to the exact solution,211 the fluctuations grow even outside
the range of applicability of perturbation theory.

According to the calculations of Refs. 85 and 86, the
damping of spin waves is always slight when perturbation
theory is applicable. In isotropic magnetic substances at the
applicability limit of perturbation theory (at kg~\) the
damping is comparable to the real part of the energy.

Let us return to easy-plane ferromagnetic substances.
The decrease in the velocity (or rigidity) of the spin waves
with increasing temperature (Table VIII) suggests that the
transition to the paramagnetic phase occurs in the standard
way: as a second-order phase transition, when the rigidity
vanishes. However, this is not the case! The transition from a
power-law decay to an exponential decay of the correlation
functions occurs as an infinite-order phase transition (a
Kosterlitz-Thouless phase transition or "Berezinskii-Kos-
terlitz-Thouless phase transition"). The disruption of the
rigidity, i.e., the formation of a finite correlation length, re-
sults from the creation of some unusual elementary excita-
tions: vortices. At low temperatures, the vortices collect in
pairs (a vortex plus an antivortex). As the temperature is
raised, the average distance between the centers of the vorti-
ces in a pair increases, and the transition temperature is de-
termined quite accurately from the condition under which
the existence of a single vortex is preferred from the thermo-
dynamic standpoint. The energy loss A£= irJ\n(L/a)
which results from the formation of a single vortex (L is the
dimension of the sample) is canceled exactly at the transi-
tion point by the entropy term, 2TB\n(L/a) (the center of
the vortex can be placed anywhere in the sample of area L2).
Hence

rB = -2-r- (6.2)
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FIG. 8. Phase diagram of a 2D isotropic ferromagnetic material in terms
of the variables randy/7. Here./is the exchange integral between layers;
the hatched region is that in which an ordered phase exists.

More-accurate calculations show that the estimate of
TB given by (6.2) differs only slightly from the actual val-
ue.81'82

To wrap up this discussion of the role played by classi-
cal fluctuations in 2D systems we would like to point out that
turning on a weak exchange interaction along the third axis
quickly gives rise to a long-range order in an easy-plane fer-
romagnetic material at all temperatures below TB, while in
isotropic magnetic substances it gives rise to a phase transi-
tion at Tc<xJ/\nJ/j, where j is the exchange integral
between layers (Fig. 8).

In ID systems the classical fluctuations completely rule
out a phase transition at T =£0, regardless of the number of
components in the order parameter. The reason is that in a
fairly long chain a breakup into domains is always favored
from the thermodynamic standpoint: The energy loss from
the formation of a single domain wall, Af~2J, is offset by
the entropy increase (TS~TlnN). At low temperatures,
however, the dimensions of the domains are large, and they
grow with decreasing temperature, exponentially in an Ising
magnetic substance and by a power law in isotropic and
planar magnetic substances. If the wave vectors are not too
small, one can thus define the spin waves as elementary exci-
tations above an ordered state (within a domain). In easy-
plane and easy-axis magnetic substances, the temperature
corrections to the velocity of these magnons are nonzero
(AC/Coc T2 in an easy-plane magnetic substance), while in
an isotropic magnetic substance the correction to the spec-
trum is A£k/ek <x (T/J)2/ka. The range of applicability of
the spin-wave description thus becomes narrower [ka must
be greater than (T/J)2}.

In real systems a weak interaction between chains
would naturally lead to a phase transition. It occurs at
r<"oc (Jj)1'2, where; is the exchange integral between
chains.

We now consider the role played by quantum fluctu-
ations in reduced-dimensionality systems. In 2D systems
these fluctuations do not play a critical role: The quantum
effects are manifested more strongly than in 3D systems, but
"there are not enough of them" to completely wash out the
order in the ground state. We are of course talking about
analogs of those 3D systems in which quantum fluctuations
are weak. In ID systems, quantum fluctuations are more
important. Their manifestation at T = 0 is reminiscent of
that of classical fluctuations in 2D systems at T 7^0: A long-
range order exists in the ground state for systems with n = 1
but not for systems with « > 1 (Refs. 33, 37, 87 and 88). At
n = 2 the correlation radius in the ground state is infinite,
and the spin correlation functions fall off with increasing
distance by a power law, with an exponent which depends on

the reciprocal spin 1/S. The reciprocal spin plays the same
role for quantum fluctuations as the temperature plays for
classical fluctuations. In isotropic magnetic substances
(n = 3) the situation is more complicated than in the corre-
sponding 2D systems. In ferromagnetic materials there are
no quantum fluctuations at all, while in antiferromagnetic
substances the structure of the ground state for an arbitrary
spin has not yet been finally resolved. According to a pertur-
bation theory71 in 1/5, the quantum corrections to the
Green's function have a logarithmic dependence on the wave
vector—of the same nature as the temperature corrections to
the spectrum of a 2D ferromagnetic material (Table VIII)—

G (k, u) <*> e<
k [' + $ °-i , n f c a -]• (6.3)

If we assume that the fluctuation corrections continue to
grow even outside the range of applicability of perturbation
theory, we can conclude that the spin correlation functions
in the ground state of ID antiferromagnetic substances de-
cay exponentially, i.e., that the ground state of a one-dimen-
sional antiferromagnetic material is paramagnetic. This sys-
tem is a spin liquid. On the other hand, it has been
established quite accurately that the correlation radius in the
ground state is infinite for all antiferromagnetic materials
with half-integer site spin.87'89'90 It has been suggested9192

that the analogy with 2D magnetic substances beyond the
range of applicability of perturbation theory (perturbation
theory was the basis for the conclusion that a finite correla-
tion radius forms as a result of fluctuations) holds only for
integer values of the spin S (this suggestion was first made by
Haldane91). Numerical simulations89'93"95 confirm this point
of view.221

The introduction of a weak exchange interaction
between the spin chains for easy-plane magnetic substances
and for isotropic antiferromagnetic materials with half-in-
teger spins quickly gives rise to a long-range order in the
ground state (for magnetic substance with « = 2, we again
see a manifestation of an analogy with classical 2D systems).
In an isotropic antiferromagnetic material with integer
spins, the paramagnetic ground state is stable with respect to
the introduction of a sufficiently weak exchange interaction
between chains. A finite value of the interchain exchange
integral; is required if the correlation radius is to "grow all
the way to infinity":

— coe-ns. (6.4)
J

Admittedly, we cannot rule out the further possibility that
when an interchain exchange is introduced the long-range
order will appear immediately (at an arbitrarily small;'), but
not as the result of a phase transition. That possibility seems
unlikely to us. Figure 9 shows the phase diagram proposed
for an anisotropic Heisenberg antiferromagnetic material.

In concluding this section of the review we note that at
sufficiently low temperatures, despite the absence of long-
range order in several cases, the spectrum of spin waves with
energies £~Tis always slightly renormalized.23' For this
reason, the equations given in Table VII are completely suit-
able for calculating the macroscopic characteristics of re-
duced-dimensionality magnetic substances. The existence of
a region of very small wave vectors, in which there are no
weakly damped collective excitations, is manifested in the
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FIG. 9. Phase diagram of an antiferromagnetic material with an integer
site spin in terms of the variables / andj/J. Herey is the exchange integral
between chains. The hatched region is the region in which an ordered
phase exists. The decrease in the transition temperature aty>,/is a conse-
quence of the quasi-two-dimensional nature of the antiferromagnet in this
limit [(///)„ ae"].

form of small corrections to the equations derived in the
spin-wave approximation.

7. QUANTUM PHASE TRANSITIONS

As we stated in the Introduction, the existence of phase
transitions in the HTplane (Fig. 1) shows that a transition
from a paramagnetic phase to a ferromagnetic phase occurs
not only as the temperature is varied but also as the magnetic
field is varied. When such a transition occurs at a low tem-
perature (and a transition may occur even at T = 0), it is
called an orientational transition. We need to recall that at
any nonzero temperature an orientational transition is not a
specific transition; i.e., such a transition is not fundamental-
ly different from a transition at the Curie point. From the
theory of phase transitions we know that the critical behav-
ior at T~ TC(H), where Tc (H) is the transition temperature
at H =£Q, is determined by fluctuational modes with small
wave vectors24' ak~\(Tc(H) - D/JS\]/2**). In the im-
mediate vicinity of the transition point, the distribution
function of these modes is always classical,

TC(II)-T (7.1)

and it is specifically for this reason that the nature of the
critical behavior remains the same over the entire transition
line. The critical indices are the same as at If = 0. They de-
pend on the dimensionality of the space, D, and the number
of components of the order parameter «. The values of these
indices are given in any sufficiently detailed monograph on
critical phenomena (see Refs. 96 and 97 for example). We
would simply like to recall that the critical dimensionality
Dc, below which the Landau theory does not apply, is 4.

At a low temperature, the classical fluctuations are im-
portant only in a very narrow interval near the critical point
(the width of this interval tends toward zero along with the
temperature). However, as can be verified easily, and as ex-
amples show, there are always zero-point vibrations which
create their own fluctuation region on at least one side of the
point of an orientational transition in a spin system. Far
from the transition point, a slight deviation from ideality in a
Bose gas of magnons is sufficient to keep the renormaliza-
tions for the zero-point vibrations small. As the transition
point is approached, the quantities to which renormaliza-
tions are calculated (e.g., the energy of a spin wave and the
angle between the directions of the magnetic moment and
the external field) decrease, so the quantum renormaliza-

tions are important near the critical point, and we need to go
beyond perturbation theory.

At sufficiently low temperatures the fluctuation region
which results from the zero-point vibrations is wider than
the classical fluctuation region. In a 2D easy-axis ferromag-
netic material in a transverse magnetic field, for example, the
classical fluctuation region corresponds to \&HX/HX \<T /
•7(0)5, while the quantum fluctuation region corresponds to
\&HX/HX | < (a//(0)5)3. These regions are comparable at
T~Tcr = a(a/J(Q)S)2. At T<Tqu, a magnetic substance
behaves essentially everywhere in the fluctuation region as it
does at zero temperature. In other words, the critical behav-
ior is shaped completely by quantum fluctuations.

Again in the case of quantum fluctuations there is a
concept of a critical dimensionality D [?". The value of D |?u is
always smaller than D £' since the growth of the interaction
between quantum fluctuation modes is weakened. The rea-
son for this effect is that large-scale fluctuations play a role
near the critical point, so the spins of blocks consisting of a
large number of cells serve as "elementary" spins.98 The spin
of each such block is very large, and it is for this reason that
the quantum effects are weakened.25' However, the growth
of the interaction between fluctuations at a sufficiently small
dimensionality of the space is not completely liquidated.

Quantum orientational transitions are far more sensi-
tive than classical transitions to the number of components
of the order parameter n (Ref. 99). In particular, the critical
dimensionality varies with « (Refs. 100 and 101):

DC
C

T = 3 for « = 1, D f = 2 for w = 2. (7.2)

A further weakening of the interaction between fluctuations
in modes with a two-component order parameter occurs be-
cause for these systems the approach to the transition point
is simultaneously an approach to a state without zero-point
vibrations, which occurs above the transition point. In sys-
tems with a single-component order parameter, quantum
fluctuations exist on both sides of the critical point.

The difference in the structure of the "paramagnetic"
phase (the presence or absence of zero-point vibrations)
leads not only to a difference in the critical dimensionalities
but also to a difference in the values of the critical indices.
For « = 1 there is a simple rule: The indices of the transition
at T = 0 are the same as those of the transition at T ̂ 0 in the
same system, but in a space of dimensionality one unit
greater. 99,100,102 For n = 2 there is no corresponding rule:
The critical behavior has no classical equivalent. In this case
the only space with a dimensionality less than the critical
dimensionality is one-dimensional space. The indices for it
can be determined exactly103:

,a = . (7.3)

Furthermore, a specific feature of the phase transition for an
easy-plane magnetic substance — the approach to a complete
ferromagnetic ordering — makes it possible to determine the
indices exactly as functions of an arbitrary dimensionality D
(Refs. 104-107).

A nontrivial critical behavior is of course observed in
systems with a dimensionality equal to the critical dimen-
sionality. For orientational transitions this circumstance is
seen in (for example) the logarithmic divergence of the lon-
gitudinal susceptibility (which is analogous to the heat ca-
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pacity in the case of a transition along the temperature
scale). The power of this logarithm is

108'110

(7.4)
= 2:

In completing this section of the review, we note that the
equivalence of Z>-dimensional quantum and (D + 1)-di-
mensional classical critical indices also prevails in the case of
easy-plane ferromagnetic materials, but in transitions in the
anisotropy constant56 rather than in orientational transi-
tions (cf. §5 and Fig. 6). Admittedly, this is true only for
certain discrete values of the magnetic field H :

X [5(5+1)-m(m—I)]1/'}. (7.5)

where m = — S + I , . . . , S — 1 (H = 0 also appears in this
sequence for integer values of S ) . The equivalence of the
quantum and classical indices can be seen by writing a Ginz-
burg-Landau functional for quantum phase transitions (as
can be done, for example, by a coherent-state technique).
The quantum nature of the situation is reflected by the ap-
pearance in this functional of an additional variable—the
Matsubara frequency—in addition to the wave vector. If the
field Hz satisfies condition (7.5), the frequency a> appears in
the form ca2 in the quadratic part of the functional. In other
words, the wave vector k in a sense acquires an additional
component, with the result that theZJ-dimensional quantum
and (D + 1)-dimensional classical critical behaviors be-
come equivalent. If, on the other hand, the field Hz differs
from that given by (7.4), then the quadratic part of the func-
tional will contain, in addition toco2, a term which is linear in
a and which turns out to be governing at low frequencies.
This term forms the specific quantum critical behavior: the
same behavior as that near orientational transitions in easy-
plane magnetic substances.

8. DIPOLE INTERACTION AS A SOURCE OF ZERO-POINT
VIBRATIONS

In speaking of relativistic interactions up to this point
we have restricted the discussion to the short-range interac-
tion forces between atoms. In other words, we have consid-
ered the single-ion and unlike-ion anisotropies. We know
that between magnetic moments there is always a dipole-
dipole interaction, which falls off slowly with distance
(oc r 3). Strictly speaking, this dipole interaction can never
be omitted. However, if the dimensionless anisotropy con-
stant is large in comparison with 477 (as was tacitly assumed
above), the role of the dipole interaction is unimportant in
many cases. On the other hand, incorporating the dipole in-
teraction leads to several qualitative changes. Let us examine
these changes in more detail.

We would like to begin by emphasizing that when the
dipole interaction is taken into account there will be zero-
point vibrations in any spin structure. This assertion means
that in reality there is always the complexity of determining
the ground and low-lying excited states and their energies.25

In the ferromagnetic materials with a large exchange inter-
action which we have studied, the amplitude of the zero-
point vibrations due to the dipole interaction is small, and we

can use the approximation of low particle density, which was
demonstrated in the preceding sections. A correct calcula-
tion will of course require an accurate inclusion of the strong
exchange renormalizations. That situation does not, how-
ever, change the results in the lowest order in fj,2/Ja} com-
pared to the semiclassical equations.60

To see the qualitative changes caused by the incorpora-
tion of a long-range effect, we write the known expressions
for the energy of a spin wave in a uniaxial ferromagnetic
material at H = 0 ( Ref. 25 ) :

X [2£s+J(0)S(!-vk)+16jT|A<ur3sin2ek]. (8.1)

Analogously, in a uniaxial antiferromagnetic material we
would have"1

e'k" = 4<xS (aS -\- J (0) S) + (J (0) S)2 (1 - vk)

+ 16jru2S (ta3)-' [2aS + J (0) 51 (1 - vk)J,

ek
21 = 4^5 (aS + / (0) S) + (J (0) S)2 (1 - vk)

+ 16nn2S (3a3)-' (1-3 sin2 6k)

X [2

(8.2)

1-Vk)] .

Here #k is the angle between the wave vector k and the quan-
tization axis Z.

The long-range effect leads to a nonanalytic depen-
dence on the components of the wave vector:
sin2# k = k2 /k2. As a result, even at k = 0 there exists a band
of allowed energy values.26' As can be seen by comparing
(8.1) and (8.2), the role played by the dipole interaction in
an antiferromagnetic substance is less important than that in
a ferromagnetic one. The reason is that the gap in an antifer-
romagnetic substance is larger than that in a ferromagnetic
one, because of the exchange intensification, while the dipole
energy does not experience this intensification. The zero-
point vibrations caused by the dipole interaction lead to the
result that even in the case of an isotropic ferromagnetic
material the magnetization at T = 0 does not reach satura-
tion at any finite field25:

(8.3)MH = 2v.Sa-*(\ - (2S)-1

where, in the specified limiting cases, we have

H« 2\iS

32n / p.- \z t
~ 15 </2 I /a3 M

JS „ 2(t.S

«3 '
^. (8.4)

In some of the anisotropic magnetic substances dis-
cussed above, there were no zero-point vibrations in strong
fields. Incorporating a dipole interaction of course causes
such vibrations. As a particular result, the strength of the
critical field at T = 0 is lowered, and there is a deviation of
the magnetization in the ground state from its nominal val-
ue.

The dependence of the gap in the spin-wave spectrum
on the direction of the vector k leads to a change in the tem-
perature properties of magnetic substances at extremely low
temperatures,112 T<%4irfi2S/a3.~~In an isotropic ferromagne-
tic material at H = 0, for example, there should be a viola-
tion of the Bloch law AAf cc T3/2 as the temperature is re-
duced:
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96 „,

(8.5)

The dipole-dipole interaction has an even stronger ef-
fect on the kinetic properties of magnetic substances.

First, the magnon lifetime in an isotropic ferromagnet is
finite even at T = 0 because of the dipole interaction.111>114

Second, this interaction always—regardless of the spin
structure—generates three-magnon anharmonicities. The
result is to reduce substantially the lifetime of a spin wave in
several cases (in which the anharmonicities due to the an-
isotropy energy begin at the four-magnon level).41'44'"3"115

Third, the existence of a band of allowed energies as
k->0 makes possible an elastic scattering of a magnon with
k = 0 and its conversion into a magnon with k/0. This ef-
fect leads to a broadening of the ferromagnetic-resonance
line271 (Ref. 2).

The dipole-dipole interaction also affects the behavior
of magnetic substances near phase-transition points. The ef-
fect is not simply one of a renormalization of the transition
point; there are also changes in the critical indices. Specifi-
cally, the indices of a D-dimensional magnetic substance
with a dipole-dipole interaction are the same as those of a
(D + 1)-dimensional magnetic substance when long-range
effects are ignored.117 The reason for this correspondence is
that the low-energy fluctuations which are important in a
second-order phase transition are characterized by a disper-
sion law with

(8.6)

from which we see that #k is playing the role of a (D + 1 )th
component of the vector k.

As is clear from the discussion above, the dipole-dipole
interaction is particularly important for states with extreme-
ly small wave vectors. The nonanalytic dependence of the
energy of a spin wave on the components of the wave vector
in the limit k -»0 focuses our attention on (first) the question
of the role played by the finite size of the sample and (sec-
ond) the applicability limits of the magnetostatic approxi-
mation.

These questions go beyond the scope of the present re-
view.

9. CONCLUSION

In this review we have studied the structure of the
ground and low-lying excited states of a system of spins
pinned at the sites of a crystal lattice. The most important
interaction between spins is the exchange interaction. In ad-
dition, there are relativistic interactions (spin-spin and spin-
orbit) which disrupt the isotropy in spin space. Specifically,
we studied the properties of systems which are describable
by various versions of Hamiltonian (2.3). What we have
been attempting to say in this review can basically be sum-
marized in two assertions.

a) In most cases, a classical ground state (complete or-
dering at T = 0) is partially disrupted (or even com-
pletely disrupted, in the case of reduced dimensiona-
lities) by quantum fluctuations: zero-point
vibrations of spins. The amplitude of the zero-point
vibrations (even in 3Z> systems) is, strictly speaking,
small, provided that there is a parameter in terms of

FIG. 10. One of the magnon-phonon interaction processes for which the
exchange renormalization of the vertex is important. The vectors, which
are graphical representations of the Green's functions of magnons, are
pointed in the same direction. A wavy line represents the Green's function
of a phonon.

which the ground state is close to a ferromagnetic
state.

b) Since the exchange interaction between magnons is
not small, when we take it into account we cannot
restrict the analysis to low-order perturbation theor-
ies (if we are talking about arbitrary values of the
spin S).

A method for taking the exchange normalizations into
account exactly (summing ladder sequences of diagrams) is
demonstrated in the Appendix for the particular example of
an isotropic ferromagnetic material. The results of corre-
sponding calculations for easy-axis and easy-plane ferro-
magnetic materials are given in the corresponding tables.
We wish to emphasize that the assertion that the exchange
renormalizations must be taken into account fully applies to
all situations in which two or more magnons are created as
the result of some process (e.g., the decay of a phonon into
two magnons) (Fig. 10). The result of the renormalization
is not universal: Each vertex renormalizes in its own way.

In concluding this review of the role played by the inter-
action between magnons in magnetic insulators we would
like to point out that, although the topic which we have se-
lected is a particular case of a many-body system, it serves as
an example which demonstrates many common types of be-
havior which are being studied in both quantum statistical
physics and field theory. In particular, the simple model of a
Heisenberg Hamiltonian can be used to check the predic-
tions of the modern theory of critical phenomena. On the
other hand, the variety of ways for working with spin opera-
tors and the graphic value of the results means that (first)
we can construct approximate solutions in the form of ex-
pansions in small parameters which actually exist, and (sec-
ond) we can frequently derive exact analytic solu-
tions,87,88,103 which can serve as "reference points" for
general theories. Furthermore, magnetic systems are con-
venient subjects for numerical calculations.89'92"95 Finally, as
we have already mentioned, nearly each one of the variety of
particular cases which we have discussed here has a repre-
sentative in the vast assortment of available magnetic crys-
tals.

APPENDIX. TOTAL SCATTERING AMPLITUDE IN AN
ISOTROPIC HEISENBERG FERROMAGNETIC SUBSTANCE

We restrict the discussion to the case28' T=0, and we
write out explicitly the integral equations for the total ampli-
tude which are shown in diagram form in (4.3). We first
separate from their kernels and free terms the particular
terms which do not depend on the spin factor
q = 4S{\ - [1 - (1/2S)-']} (Table I), and we make a
convenient change in notation (r^ is the total vertex):

pk
/ (") pk

1 ''ok.
in, p + k-m .111 _ p, k

r p, k = ' ji, k = ' m •
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The last equation is a consequence of the Hermitian nature
of the Bose Hamiltonian. Here are the explicit equations:

(A2)

V m _k — Vm — Vm-p-k

V»-m l - p _ k — Vs — V s _ p _ k )

where

Vp+k-q,

rp, k

= in, s.

(A3)

(A4)

We can show that the sum of the last two terms in (A. 2)
is zero. Summing the two sides of Eq. (A. 3) over the wave
vector m, and using the obvious condition Zq i>q = 0, we find

l\ ? } 1

I 45 J JV
P. k

(A5)

That the last two terms in (A2) cancel each other out can
now be seen from the obvious relation (see the definition of

As a result, Eq. (A2) simplifies considerably:

• ~

-k — vm — (A6)

It can be seen from this last equation that the total amplitude
r$ does in fact satisfy Adler's principle, i.e., it vanishes if
even one of the wave vectors p, k vanishes.

We further note that Eq. (A6) is invariant under the
substitution

PP, k . PP, k _ PP, k , j T ( \1)
' m *" ' m — ' m ~T A-* m» V - f * ' /

where A is some arbitrary factor.
It is natural to choose A in such a way that the integral

equation for the quantity r^ is as simple as possible. We see
from (A4) that it is convenient to take

2-q (A8)

With this choice of A, and taking into account the condition
Js vs + q = 0, we find, in place of (A3),
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-I- 2NS 2 / "s ' k (vs_m + Vs + m_p_k — Vs — V s _ p _ k ) /g ' .

(A9)

We are interested in the total amplitude for two-particle
scattering at small momenta of the interacting magnons.
Consequently, it is sufficient to retain only the terms °;p2k2

in the second (integral) term in (A6). Since we have

Vm-p + "Vm_k — V m _ p _ k — Vm oo pk, (A10)

we can assume the following, at the accuracy of this treat-
ment, in Eqs. (A6) and (A9):

/m,s « 2 (1 — Vm,s), Vs_p_k; W Vs, Vs + m_p_k « Vs+m.

(All)
We seek a solution of integral equation (A9) in the

form

r£ik = S plklC
i
n.

t=l

Substituting it into (A6) we find the result

(A12)

X cosmx(l-vm)-1]].(A13)

The term in square brackets is the Dyson factor Q(S). To
determine C * , we return to Eq. ( A9 ) . Using ( A 1 2 ) , we put
it in the form

Cx
m = cos mx -~ j (v s _ m -i- vs+m - 2vs) (1 - vs)-» .

(A14)

The kernel of integral equation (A14) can be factorized; i.e.,
the substitution

2 cos mx -T- K3 (cos my + cos mz) (A15)

reduces integral equation (A 14) to a system of three alge-
braic equations with three unknowns. Substituting the solu-
tion of this system into (A13), we find the known expression
for the total amplitude for two-particle scattering:

(A16)

where the values of Q(S) are given in the text proper [see
(4.5M4.7)].

"The comparative simplicity of the spectrum of the various branches of
elementary excitations clarifies the interactions between them: The in-
teraction must be taken into account near intersections of branches
(near resonances).

2>The justification here is that we are interested in excitations with ener-
gies £<£, (as discussed above).

3lThe formalism presented below, which is suitable for calculations for an
arbitrary spin, can also be applied to more complex structures, e.g.,
helimagnetic and metamagnetic materials.

"'Admittedly, in certain substances (CeBi and CeSb) the Jahn-Teller ef-
fect leads to a marked change in the exchange integral along one direc-
tion while causing essentially no changes in the lattice constants (as was
pointed out by V. L. Pokrovskii).

5>In discussing antiferromagnetic materials here and below, we will omit
the absolute-value sign from the exchange integral J.

6(In the case of a slight deviation of a Bose gas from ideality, we could use
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another transformation—the Dyson-Maleev transformation27'28—
equally successfully. Just which transformation is chosen is largely a
matter of taste and custom for the particular researcher working with
Bose analogs of spin Hamiltonians.

"Admittedly, calculations show that in an isotropic antiferromagnetic
material the density x = (a,+ a,), calculated in the harmonic approxi-
mation is numerically very small: x = 0.078 (Refs. 37 and 38).

8>We have in mind macroscopic zero-point vibrations, which differ from
the zero-point vibrations of an individual particle. The latter always
exist, since we have max S* = 5 and S2 = S( S + 1).

''According to Adler's principle,40 the amplitude for the scattering of
Goldstone bosons should vanish as the momenta of the corresponding
quasiparticles tend toward zero.

""For clarity, we should point out that at small wave vectors k the com-
plete interaction amplitude of the magnons, although small, of the order
of the small quantity k, is by no means the same as the seed value, since
virtual magnons with arbitrary wave vectors contribute to the renor-
malization of the amplitude.

1 ' 'The replacement a — a [ 1 — (2S) ~' ] is a natural one since for S = 1 /2
the term aZ, (S\ )2 reduces to a constant.

12)The non-Hermitian Bose Hamiltonian used by Dyson can be obtained
from a Heisenberg Hamiltonian through the transformation proposed
by Maleev.28

'3lLet us refine a point: In its pure form, the "disappearance of a Bose
condensate" occurs in the course of an order-disorder phase transition
in the anisotropy (more on this below). In the case of orientational
transitions, the disappearance of the condensate is accompanied by the
vanishing of the total density of "particles."

HIAs can be seen particularly clearly in 2D space: The total number of
particles above the condensate, I,k xv, diverges, in contrast with the
total number of quasiparticles, 2knk .

15'Unless otherwise specified, we are assuming that the magnetic field is
not zero.

I6'ln this interval it is simpler and more common to work directly from
macroscopic hydrodynamic equations.66

'"This change in the damping at the transition to the hydrodynamic re-
gion is also found in an isotropic ferromagnetic material. However, we
will not discuss that question in §4, since the transition in an isotropic
ferromagnetic material is manifested only in a change in the degree of
the logarithmic factors.64

""The discussion below applies equally well to all magnetic substances
with a Goldstone spectrum in which there are zero-point vibrations.

™The only exceptional cases are some specific one-dimensional and two-
dimensional formations such as long organic molecules, isolated dislo-
cation lines, or monatomic films on a nonmagnetic substrate.

2<"Ordering begins at T = Tc ^0 in a 2D easy-axis ferromagnetic material.
The transition indices have been calculated by Onsager.7S

2"An exact solution was derived84 for a nonlinear 0(3)-o- field-theory
model in (1 + 1) -space (one temporal and one spatial coordinate). The
Euclidean version of this model is equivalent to 2D isotropic magnetic
substances.

"'Evidence in favor of the suggestion that there is a difference between the
structures of the ground state of antiferromagnetic materials with in-
teger and half-integer spins (even if 5>1) comes from an analysis in
terms of the cr-model with an additional term which is a topological
invariant.92

23lWe are not considering here the possibility, which we just mentioned, of
a paramagnetic ground state.

24'There might be transitions in which a soft mode corresponds to a finite
wave vector k0. For such transitions, the estimate given in the text
proper pertains to the deviation from k0.

25)We recall a trivial truth: There are no quantum effects at all at 5 = oo.
2<)'At a fixed k^O in a noncubic magnetic substance there always exists a

band of allowed energy values, but in the absence of a dipole interaction
the width of this band would vanish in the limit k->0.

2"For magnons with 6V — 0, a process of this sort would not be possible.
The lifetime of these quasiparticles is determined exclusively by intrin-
sic dissipation mechanisms, so this lifetime is far longer than at 0k ^0
(Ref. 116).

"'Knowledge of the scattering amplitude at T = 0 makes it possible to
calculate the renormalizations of the inverse-effective-mass tensor and
of the free energy (see the text proper).
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