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The fluctuation kinetics of reactions corresponds to a description of the reacting systems at a
mesoscopic level. In this approach, a description is written in terms of concentration distributions
which are continuous but fluctuating. The basic principles and methods of fluctuation kinetics are
illustrated by several specific examples. Particular emphasis is placed on cases in which powerful
mechanisms intensify microscopic fluctuations associated with the atomistic nature of the
individual reaction events to the point that they determine the outcome of events at macroscopic
scales. The situation is analogous to macroscopic quantum effects. In the first main section of the
paper, the induction period of a branching chemical reaction is calculated under the assumption
of a complete mixing of the reactants and also for the case with spatially inhomogeneous
fluctuations. The second section of the paper discusses fluctuations in the course of a two-particle
recombination reaction. The third section takes up the spontaneous breaking of chiral symmetry
in the course of biological evolution and a possible role of fundamental weak interactions.
Appendix I gives the solution of the general problem in which the point of a second-order phase
transition in a distributed system is traversed at a finite rate. Appendix II describes mathematical
methods of the fluctuation kinetics of reactions.

Induction period of a branching chemical reaction. Re-
combination of various radicals. Spontaneous breaking of
chiral symmetry in biology; fluctuations and pseudoscalar
crystals.

INTRODUCTION

Classical chemical kinetics operates with large numbers
of atoms and molecules which are participating in a reaction.
Under such conditions there is no need to consider the indi-
vidual atoms or molecules: Their concentration or total
number can be treated as a continuous variable. In this man-
ner, differential equations are obtained: ordinary differential
equations for a reaction in a well-mixed volume or partial
differential equations if concentration depends on the co-
ordinates, and transport of matter by diffusion or by a gen-
eral motion of the medium must be taken into account.

Classical chemical kinetics takes its place along with
chemical thermodynamics as part of the foundation under-
lying some remarkable practical achievements in chemical
technology. Nevertheless, the atomistic nature of the react-
ing substances does manifest itself in certain specially ar-
ranged conditions in the laboratory. Furthermore, there is
the possibility that classical kinetics will be incapable of de-
scribing the reactions which are responsible for the most
unusual—and ultimately the most important—process: the
appearance of life.

In this paper, without any specific applications in mind,
we will examine certain typical situations in which it is im-
portant to allow for the atomistic nature of events. This field
is usually called "fluctuation kinetics." The name stems
from the circumstance that the atomistic nature of events
usually leads to fluctuations in observable quantities from
the behavior described by a determinate solution of the clas-
sical equations. Furthermore, the word "atomistic" has

deep roots in the sense of the atomic structure of molecules.
Its application to kinetics might result in some misunder-
standing.

Questions pertaining to the role of fluctuations in the
kinetics of chemical reactions have been discussed previous-
ly by several investigators. '"7 It is not our purpose here to
offer a comprehensive review of that research. Our intention
is instead to suggest to the reader a chain of examples and
specific situations which in our opinion illustrate the funda-
mental principles of fluctuation kinetics. If it is permissible
to speak in terms of an essay as a genre of scientific paper, we
would prefer to have this paper classified as such.

1. INDUCTION PERIOD OF A BRANCHING CHEMICAL
REACTION

We consider a reaction for which the classical equation
is, according to Semenov,

(1.1)

or
An

t-rw, (1 r)

if we introduce y = a — ft. Here w is the rate at which the
particles of interest (e.g., free radicals) are generated, the
coefficient a is a measure of the speed at which these parti-
cles are bred, and the coefficient (3 is the rate at which they
are consumed.

A solution of Eq. (1.1) under the initial condition
n(t = 0) =0 with 7>0 is

We would speak in terms of an "explosion" if n reached
a certain critical value «c at which the reaction rate became
so high that a visible glow appeared, the temperature and
pressure rose, there was a significant change in the quantities
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of the basic components, etc.
The explosion induction period r is determined by

the condition n(t = r) = nc [under the initial condition
n(t = 0) = 0], so we find (at a large value of «c)

T ? » — I n ( 1 3 )• a m ' \ *••> )

However, we would like to study this problem from the
fluctuation approach. For a chain explosion the rate w at
which the active centers are generated is typically small, so
the spontaneous formation of an active center (of the S-»X
type) would generally require an activation energy many
times that of a branching reacton (of the type
Y + X^Z + 2X). Here X is the chemical symbol of the
centers, whose concentration is n.

In classical expression (1.3) the coefficient w appears
inside a logarithm. The fluctuation approach leads to a dif-
ferent result. If the chain reaction is to begin, at least one
active center must initially be spontaneously created in vol-
ume V. The probability for such an event per unit time is w V,
and the average time required for the formation of the first
center is

T<=^r- ( 1 4 )w V '

Once an active center has been produced, it begins to
breed rapidly. As the chain avalanche grows, one can of
course ignore the improbable spontaneous production of
new active centers. In this stage of the process the number of
active centers increases as e7', so the average induction peri-
od is [here we are using n(t = r,) = 1/F]

c). (1.5)

(1.6)

The variance in r is large:

If the first term dominates expression (1.5) for the induction
period, then we have (r — r)2s;r2.

Actually, this is again an approximate expression; spe-
cifically, it is an underestimate. When there is branching,
characterized by the coefficient a, and rupture of bonds (a
consumption of active centers), characterized by /?, an ac-
tive center, considered separately, will convert at a probabil-

ity a

probability — — — . By following the fate of successive gen-
a + /3

erations one finally finds the probability that an isolated cen-
ter will give rise to an unquenched chain reaction11:

1=1 — (1.7)

The corrected value of the average induction period is thus8

*=T^+Tln(F"r)- (L8)

Near the threshold, with y<^a,fi, incorporating this circum-
stance leads to a significant increase in T.

Finally, if the volume V is large, the spontaneous ap-
pearance of separate active centers will lead to the formation
of independent ignition points and to the propagation of a
flame away from these points. In this case we would expect
to see the appearance of an unusual spatial structure for the
reaction. To determine the structure we need to find the ve-

locity at which the reaction propagates away from an igni-
tion point which arises locally.

The well-known solution of the problem of chain propa-
gation in its biological formulation was found back in 1937,
independently by Kolmogorov, PetrovskiT, and Piskunov in
the USSR9 and by Fisher in England.10 They considered spe-
cifically an unstable medium with a diffusion described by
the equation

dn
dt An. (1.9)

Since the spontaneous-creation term [i.e., w; see Eq. (1.1')]
has been discarded, the mixture will react only if new active
centers enter it from the outside, by diffusion. We know that
the propagation velocity, i.e., the coefficient y0 in a solution
of the type n =f(x — v0t), is given by

va = 2 (0Y)V». (UO)

When the initial equation is used, it is always presup-
posed that the reaction comes to a halt at n > nc. Whether it

comes to a. halt abruptly ( = 0 at « > nc I or smoothly
V dt '

I n(nc — n) j is unimportant for the propagation ve-
V dt I
locity.

The flame spans the entire medium when the flame igni-
tion points grow together. This problem is similar to that of
the crystallization of a supercooled liquid, which was solved
back in 1938 by Kolmogorov." The idea embodied in the
derivation of this approximate formula is to determine the
volume which is traversed from a given center (the first igni-
tion center) until a new center of this sort is found within the
volume. It is easy to see that the volume of an individual
flame ignition region by the time at which these regions
merge is of specifically this order of magnitude.

We assume that the unknown volume satisfied F~ /3. It
can be seen from (1.8) that the average time over which an
ignition center appears in volume Fand gives rise to an un-
quenched chain reaction is ct/yw V. This time must be the
same as the lifetime of the original ignition region, l/v0. We
then find

• into two centers, while it will be consumed at a and thus
r q (j/y)v -1-1/4 ^

(1.11)

(1.12)

Let us rewrite the quantities of interest here in a unified
way in terms of molecular kinetics. Let the density of the gas
(the primary component of the gas) be N. This quantity
varies only slowly in the course of the reaction, in contrast
with n, the concentration of the active centers, which we are
following. The gas-kinetics cross section is denoted by cr; the
mean free path is then /I = (Na) ~'. We denote by c the aver-
age velocity of the molecules.

The reaction rate is described by dimensionless coeffi-
cients: the ratios of the reaction cross sections to the gas-
kinetics cross section. Specifically, we set

a = aacN, p = bacN, 7 = TacN, w = gcaN*. (1.13)

We are referring the reaction rate to the number of collisions
per unit time, with the gas-kinetics cross section of mole-
cules having an average gas-kinetics velocity c. The differ-
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ence between the velocity of collisions which result in a reac-
tion and the average velocity c is contained in the factors a, b,
and F. Within a dimensionless coefficient we can set

We finally find

/= a:;:f i/2°:;r. d.u)g1/* (a — b)'l"

It is instructive to compare this quantity with the mean free
path:

I _ JV'/aa3/* 'a1/-* a1/4 P8as ( 1 1 5 }

In the last expression we have taken the average distance
between liquid molecules to be of the order of the gas-kinet-
ics radius rkjn —a~in. We then find the estimate 7Vliq

~rkin
j~cr~3/2 and then the expresion written above. We

wish to stress that the theory is meaningful only under the
condition ///t> 1. Since the density of a gas is always lower
than that of a liquid, we require

TW^«1- (1-16)

This inequality can be satisfied if the branching is slow
(T 4,1) and/or the creation of active centers is rare (g < 1).

The theory contains yet another distance, and associat-
ed with it is yet another dimensionless quantity. We find the
characteristic width of the flame front:

Again reducing all quantities to the cross section, the molec-
ular velocity, and the dimensionless coefficient, we easily
find

h 1
T = Tv^- (1.18)

This is a well-known result: The width of a flame front is
equal in order of magnitude to the mean free path of a mole-
cule multiplied by the square root of the number of collisions
required for a reaction. A continuum description is valid
only in the case /z>A, i.e., only if the branching is slow

Expression (1.8) for the induction period, which was
derived in the approximation of complete diffusive mixing,
thus becomes inapplicable once the dimensions of the vessel
become greater than /. The induction period is instead given
by the following expression, which holds within logarithmic
corrections, in order of magnitude (the induction period is
now to be understood as the time which elapses until the
entire mixture is in flame):

l
y5/6 —wD

1/4
(1.19)

The induction period ceases to depend on the volume of the
vessel.

The basic idea of fluctuations in the induction period
was expressed in Ref. 8. Other questions dealing with fluctu-
ations in media with an explosive instability were discussed
in Refs. 7, 12, and 13 (in particular, these questions involved
a fluctuation lowering of the threshold for an explosion or of
the limit of a chain reaction; see Ref. 12). Similar arguments
were used in Ref. 14 in a study of multiple generation and the
competition among sources of oscillations (guiding centers)
in active media.

2. RECOMBINATION OF VARIOUS RADICALS

Let us consider the equilibrium or steady-state situation
for the reaction

A + B = ^ C . (2.i)

This reaction is at equilibrium if it goes in both directions as
a result of thermal motion. In this case the concentrations A,
B, and C are related by the thermodynamic law of mass ac-
tion:

^j-^f(T). (2.2)

We note in particular that this model has no pair recombina-
tion: A + A 7M2, B + B =£B2.

The steady-state situation differs in that A and B are
formed as a result of a continuous influx of energy, e.g., when
the system is irradiated with photons v:

(2.3)

In this case we have

v (2.4)

and the coefficient K is determined by kinetic and optical
quantities.

We asume that we have A = B = 0 and C = C0 at the
initial time. During the relaxation, equal amounts of the sub-
stances then appear (A = B). We now assume that the tem-
perature decreases instantaneously and identically through-
out the volume, so that beginning at £ = 0 we have/= 0, or
we have turned off irradiation instantaneously.2' Let us ex-
amine the bimolecular recombination

A + B (2.5)

which then occurs, adopting the initial condition
A = B = A0. We assume that this process goes in a liquid or
at a constant impurity of an inert gas, so that we need not be
concerned about the removal of energy and momentum or
about ternary collisions.

In the macroscopic approximation the problem is
trivial:

A — at
Kt

(2.6)

(2.7)

Result (2.7), however, is incorrect in the asymptotic
limit t— oo. The correct result can be found only by fluctu-
ation kinetics incorporating the natural nonuniformity of
the distributions of A and B.

Let us examine in more detail the initial stage, before
the radiation is turned off. Even if we were to prepare before-
hand a completely homogeneous distribution of the mole-
cules A and B, random inhomogeneities would appear in it
because of diffusion (i.e., because of a random Brownian
motion). The atomistic nature of the recombination reac-
tion and of the inverse reaction will also generate random
inhomogeneities in the distributions of molecules A and B.

If the distance which molecules A and B move apart
during their pair generation involving the absorption of a
photon is small, of the order of the radius of the binary re-
combination reaction, diffusion will play a leading role in the
formation of a random spatial distribution of the molecules.
The A and B molecules become distributed in accordance
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with a Poisson law as a result of diffusion; these distributions
for the different molecules are established independently. In
a small volume (but a volume which is still large enough that
the number of A molecules in it is much greater than one),
the deviations are, on the average, of such a nature that we
can write

[(w — w)W = w. (2.8)

A spectral decomposition of a random distribution of this
sort results in a flat spectrum. Specifically, an isolated A

nents evolve in time in accordance with

molecule is described by a function <5(r
ously has a flat spectrum:

rA ) which obvi-

V '
(2.9)

If we have many molecules, the Fourier component ak will
be given by the sum

aft = -pr/ir S «'"">• (2.10)
i

In a Poisson distribution all the molecules occupy uncorre-
lated positions, so the phases in some (2.10) are random and
independent. The spectrum of the distribution of A mole-
cules will thus be flat (i.e., will be the sum of square of modu-
li)

N —(\ah\2)=-^ = A. (2 .11)

The spectrum of the distribution of B molecules will be of the
same nature.

The subsequent course of events after the lowering of
the temperature or the cutoff of the radiation is described as
a reaction for arbitrary spatial distributions A(r, t) and
B(r,t):

•^f- = -xAB+DAA,

dB
(2.12)

dt •= — xAB+DAB.

For simplicity we assume Z>A = Z>B.
The local difference between the two concentrations,

s = A — B, satisfies the pure diffusion equation

•JT = DA*- (2.13)

Avoiding the mathematical details, we consider a limit-
ing case. After a certain time we can assume that the B mole-
cules disappear completely from regions with an initial ex-
cess of A molecules:

A-B=s>0, A=s, 5=0. (2.14)

In other regions, only B molecules remain:

A-B=s<0, 4 = 0 , B = —s. (2.15)

Consequently, the entire medium in which the recombina-
tion reaction proceeds can be partitioned into regions of two
types, filled exclusively with A molecules or filled exclusive-
ly with B molecules.

How can we find the average dimensions of these re-
gions and the average A and B concentrations in the regions
of each type? The magnitude of the difference s = A — B
does not depend on the chemical reaction. According to the
diffusion equation (2.13), the individual Fourier compo-

ralf; (2.16)

in other words, the spectrum is effectively cut off at
k > (Dt) ~~ ' /2 at each instant. We also note that the spectrum
is initially flat (at t = 0):

\ s h ( 0 ) | 2 > = A + B = 2A0; (2.17)

(since the positions of all the A and B molecules are uncorre-
lated).

Since the spectrum ( \ s k ( t ) \ 2 ) contains only a single
characteristic length, (Dt)>>2, it is this length which will de-
termine the typical dimensions of the A and B regions.

Since the A and B molecules are separated in different
spatial regions, we have (AB > = 0. Consequently, by virtue
of the completeness theorem for a Fourier integral we can
write

| S f t | 2 > d k . (2.18)

Also using (2.16), we find the law describing the decrease in

A and B with time:

A2 = B* ~ A0

and therefore

(2.19)

'*• (2.20)

This difference between the asymptotic decay laws was
first pointed out in a note15 published in 1977. We recall that
classical kinetics, without fluctuations yields the asymptotic
behavior A=B~t~l after a long time.

These results were subsequently derived by more rigor-
ous methods in Refs. 5 and 16. In addition, a study was made
of the more complicated case in which the A and B molecules
initially move apart a large distance when they are formed,
so that in practice they can be assumed to be produced one by
one. In such a production process, the distribution of A mol-
ecules (and that of the B molecules) which is established
does not have a flat spectrum: If k is not too large, the spec-
trum is a power-law spectrum31

< l « f t l 2 > ~ - j 5 r . (2.21)

After the generation is terminated, the quantities A and B
then vary in accordance with some other asymptotic law. We
will not go into this situation in detail here; we refer the
reader to Ref. 17.

We now consider the geometric structures which arise
in the problem. In the one-dimensional case, it is sufficient to
imagine a smooth random function s ( x ) which has a flat
spectrum, cut off at k> (Dt)~112, and a zero mean value.
This funciton obviously crosses zero (i.e., intersects the ab-
scissa) many times. Each such crossing represents a bound-
ary between a region occupied by A molecules and a region
with B molecules. For brevity we will call these regions "A-
regions" and "5-regions," respectively.

To find the velocity at which the boundary moves we
note that the position of the boundary at time t is determined
by the equality s(x0( t),t) = 0. Differentiating it with respect
to the time, we find

ds
dt

(2.21)
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On the other hand, s obeys a diffusion equation, so we can
write

ds

Tt = D
dx'2

(2.23)

Substituting (2.23) into (2.22), we find the displacement
velocity of the boundary:

(2.24)
d( dsldx

To illustrate equation (2.24), we consider the displace-
ment of a boundary in the particular case in which two re-
gions with maximum concentrations A m andBm and charac-
teristic linear dimensions LA and LB, respectively adjoin
each other. This situation corresponds, for example, to the
s ( x ) dependence

s==J4nL(£ l)-B (e _i)_ ^ (2.25)

Carrying out some calculations on the basis of (2.24), we
find

tlXff 1 ^ yim ^m /T 1£\F—. ( Z . l b )

As an order-of-magnitude estimate, expression (2.26) obvi-
ously holds even when the detailed distributions of the con-
centrations in the adjoining A- and B-regions are different.
According to (2.26) if the maximum concentration (Am ) in
the A -region is higher than the maximum concentration Bm

then the boundary will shift to the right, and the ,4-region
will grow at the expense of a shrinkage of the ^-region. Since
the concentration of molecules in a region is usually higher,
the greater the linear dimension of the region, we are led to
the conclusion that as time elapses the large regions will eat
up the small regions, and the total number of regions will
decrease.

In the two- and three-dimensional cases, the motion of a
boundary between A- and B-regions will also be affected by a
curvature of this boundary. We introduce a coordinate sys-
tem whose z axis runs perpendicular to the boundary and
whose x and y axes run along the principal axes of the curva-
ture tensor of the interface. After the simple introduction of
the Laplacian written in terms of these coordinates, we find

- -D
d-sldz-

-» - (2'27)
ds/dz

where R^ and R2 are the two principal radii of curvature of
the interface at the point under consideration.4'

The meaning of the terms which depend on the curva-
ture is a smoothing of sharp A tentacles which penetrate into
the 5-region and also a rapid annihilation of small A islands
in B or of small B islands in A.

In practice, therefore, there will be general decrease in
the sizes of the regions and a decrease in the number of A-
and 5-regions as time elapses.

Actually, the partitioning into A- and ^-regions is an
idealization. As time elapses the A and B molecules react,
and this reaction is obviously possible only if there is some
overlap at the boundary. This overlap between two annihi-
lating components which are transported by diffusion from
the exterior into the reaction zone was actually studied18

back in 1948 as part of a study of the combustion of unmixed
gases. A corresponding analysis was recently undertaken19

in connection with an astrophysical problem.
At the boundary we have s = 0, so we can set s = [ix in a

small neighborhood of the boundary. The reaction does not
appear in the equation for s, so the displacement of the
boundary and the change in the coefficient// are determined
by a far slower diffusion process. In calculating the overlap
zone we can assume that the position of the boundary and
the value of// remain constant.

For the sum q = A + B we find from (2.12)

O-q
dx*

(2.28)

Taking account of the comments made above, we write
the following equation for the behavior of q in the overlap
zone:

D

with the boundary condition q-*n\x\ asx-> + oo.
Introducing the dimensionless variables

q =
1/3

(2.29)

(2.30)

we can put this equation in the form

q" = {(?-&), (2.31)
where q^ x\ asjc^ + oo.

The width of the overlap zone is thus given in order of
magnitude by

1/3 , (2.32)

and the concentrations A and B in this zone are given in
order of magnitude by

(2.33)

The overlap zone becomes narrower, and the concentration
of molecules in it smaller, as the recombination becomes
more rapid, i.e., as the recombination rate K increases.

Equations (2.32) and (2.33) contain //, which can be
found on the basis of the following considerations. As we
mentioned earlier, the characteristic dimension of the A- and
5-regions at a time t after the irradiation is cut off will be
L ( t ) ~ ( D t ) l / 2 , while the characteristic concentration of the
A and B molecules in these regions will be A = B
~Al

0
/2(Dt)~~3/* [see (2.20)]. Adopting ̂ 4/L as an estimate

of//, we find

'*. (2.34)

By the time t the width of the overlap zone thus becomes

As time elapses, the boundary layer broadens, but at a
slightly slower pace than the dimensions of the A- and B-
regions grow:

^-)1/6W/12. (2.36)

We wish to emphasize that (2.36) applies to the case of
a three-dimensional medium. For a two-dimensional medi-
um we would have

A (t}

and thus

A\'z (2.37)
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In the one-dimensional case we find

(2.39)

As time elapses, the approximate description in terms
of A- and 5-regions becomes progressively more accurate,
since the relative width of the overlap zone decreases.

Let us examine in more detail the properties of the spa-
tial structure which is formed by these regions. Generally
speaking, the spatial picture of a distribution has a hierarchi-
cal nature. Inside a closed 5-region one may find closed A-
regions; inside the latter one may find even smaller closed B-
regions; etc.—down to a length scale L = (Dt)1/2. If we do
not reach this limiting length scale, then the set of regions
occupied by the A (or B) molecules forms (in the sense of an
intermdiate asymptotic behavior) an exceedingly compli-
cated fractal structure.

The primary quantitative characteristic of this fractal
structure is the size distribution of the closed regions.

A closed region can be characterized by its volume. We
consider a large section of the medium. In it we count the
number of closed A -regions with volumes between fl and
fl + dfl (ignoring whether these closed regions are nested
inside some larger^-regions in this section of the medium).
Taking counts of this sort for various sections of the medi-
um, we can construct a distribution in volume, VA (fl), such
that VA (fl) dfl tells us the number of closed A -regions which
have volumes between fl and fl + dfl per unit volume of the
medium.

Since we are now considering regions with spatial di-
mensions far greater than (Dt)1'2, the spectrum of the distri-
bution can be assumed flat: {\sk |

2> = const. In other words,
in this interval of dimensions spatial modes with all wave
vectors are equiprobable, and there is no distinctive spatial
dimensions. Consequently, the picture of the A- and B-re-
gions should have the property of self-similarity.

Let us consider some volume V of the medium. In it
there will be dN = VvA (fl)dfl closed .4-regions with vol-
umes between fl and fl + dfl. We then consider the volume
V = F/23, with linear dimensions half as large. Inside it
there will be dN' — VvA(fl')dfl' closed ^-regions with
volumes between fl' = fl/23 and fl' + dfl' where dfl'
= dfl/23. Invariance under a spatial scale transformation
requires dN' = dN. We thus find the functional equation

(2.40)

It is not difficult to verify that this equation is satisfied
only by a distribution VA (fl) = C/fl2 with a coefficient C
which we do not know at this point. The equality A = B
means that we have VB (fl) = VA (fl).

Because of the hierarchical nature of the picture, one
finds inside any closed A -region smaller 5-regions of various
sizes. If we subtract from the total volume fl of the /4-region
the total volume of all of its subregions containing exclusive-
ly B particles, and if we average the result over all the A-
regions with a volume fl, we find the quantity \A(fl), which

is the average pure volume filled with A particles inside an A -
region of volume fl. In a corresponding way, we can deter-
mine AB (fl).

For these quantitites we can write the integral equation
n

AA (Q) = Q - J vfl (Q') As (Q') Q' dQ'. (2.41)

Scale invarinace means that under the equality ~A=~B
the A molecules in any closed region will, on the average,
occupy exactly half the volume, as will the B molecules. We
can thus write A^ (fl) = AB (fl) = fl/2. Substituting this
relation into (2.41), we finally find

vA(Q)=-jp-. (2.42)

Let us discuss this result. First, it shows that there is a
finite probability for finding closed regions of arbitrarily
large volume in the spatial picture. This conclusion means
that self-averaging does not occur when we scale up to very
large sections of the medium: There exists a nonzero proba-
bility that this entire section will be occupied by a single
closed region.

The spatial picture is of a fractal nature down to a reso-
lution of the order of (Dt)ll2, which is the minimum size of
the regions which survive to time t after irradiation has been
cut off. As time elapses, progressively larger regions disap-
pear, but in other respects the pattern retains its self-simi-
liarity properties at large scales.51

In chemistry the effects described above occur only at
very low concentrations of neutral A and B molecules. If A
and B are charged particles (e.g.,A + andB ~ ions) .electro-
static forces will sharply reduce the charge fluctuations; i.e.,
the value ofs =A + —B ~. A length of the order of the Debye
length becomes the characteristic length.

There is a simple way out here, however: adding an inert
electrolyte. In particular, to Ag+ and Cl~ ions we might add
an excess of NaNO3 (which yields Na+ and NO~3 ions in
solution). Without influencing the Ag+ + Cl~ = AgCl re-
action, the sodium ions and the NO~3 ions make possible
thermodynamic fluctuations of the Ag+ and Cl~ at a level
typical of neutral molecules.

3. SPONTANEOUS BREAKING OF CHIRAL SYMMETRY IN
BIOLOGY; FLUCTUATIONS AND PSEUDOSCALAR
CRYSTALS

The question of a possible breaking of chiral symmetry
(the dextrorotatory and levorotatory forms of molecules) is
presently a subject of intense interest in organic chemistry.
The interest stems from the asymmetry of proteins and
DNA in all known varieties of life on earth.61 The breaking of
chiral symmetry is thus related to the exceedingly important
problem of the appearance of life.

There are two fundamentally different answers to the
question of biological asymmetry:

I) The origin of life is an exceedingly improbable pro-
cess, which has occurred only once, with a definite sign of
chirality. The propagation of this life has altered the condi-
tions, and the appearance of life with a different chirality has
become impossible.

II) At the lower levels of biosynthesis various physical
factors associated with breaking of parity lead to a slight
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violation of the chiral symmetry of the system as a whole
(slight but still not zero, and having a definite sign). Auto-
catalytic effects subsequently amplify the slight asymmetry,
raising it to 100% chiral purity of the biological world.

Let us examine this second possibility in more detail.
About 30 years ago it was suggested that there exists an

interaction which breaks the chiral symmetry of the forces
which connect electrons to a nucleus.21'22 This form of the
weak interaction has now been proved completely and com-
prehensively by experiments. The Z° boson, with a mass al-
most 100 times the mass of a proton, has been found: the
mediator of a parity-breaking interaction. It is specifically
this large mass which keeps the corresponding interaction
small. Parity-breaking "chiral" effects have been found in
the scattering of electrons.23 After a prolonged debate, it was
established that the polarization plane of light can be rotated
by an atomic vapor of bismuth.24"28 In vapor form, bismuth
is monatomic; this particular substance was chosen because
in heavy nuclei the electron wave function has a maximum
density at the nucleus, and the interaction of interest is of
short range.

For organic molecules of the amino acid type the differ-
ence between the energies of the dextrorotatory and levoro-
tatory forms is about29 10~17 of the thermal energy at room
temperature (i.e., Huff/kBT ~ 10~17). We would thus need
about 1017 molecules if the average number of dextrorota-
tory molecules is to deviate by one from the number of levor-
otatory molecules. However, 1034 molecules are required if
the excess of dextrorotatory molecules over levorotatory
molecules is to reach a value of the order of the average
fluctuation in the total number of particles in such a volume.

Another factor which would cause an asymmetry is the
kinetics of radiolysis processes. There is the well-known ef-
fect30 (see also Ref. 31), and not a small effect, of a difference
in the rates of photochemical reactions for the cases in which
the light has different circular polarizations. The spin of an
electron becomes polarized in /3-decay processes. This po-
larization of electrons leads to a difference by a factor of the
order to fua/kBT ~105—106 in a photochemical effect.
However, it is difficult to estimate the relative importance of
radiolysis in biological synthesis reactions. If this relative
importance is some 1-10%, for example, the asymmetry ef-
fect will outweigh the fluctuations at 1012-1016 molecules.
The effect is much greater (under these assumptions) than
the statistical effect mentioned above, but still it is very
small.

Consequently, by itself an asymmetry of the weak inter-
action cannot explain the chiral purity of biological organ-
isms. This purity must stem from nonlinear amplifying fac-
tors of some sort.

For systems which are at thermodynamic equilibrium
and which consist of ideal gases it would be an easy matter to
prove the intuitively obvious theorem that an equilibrium
state is unique.32 A small change in the thermodynamic or
kinetic parameters will cause a correspondingly small
change in the equilibrium state.

Under conditions to which this theorem applies, small
changes in the energy or rate of a reaction of right-handed
isomers in comparison with that for left-handed isomers
thus could not cause anything in the way of a significant
chirality in a system.

In order to explain the observed asymmetry we would

need a sharp violation of at least one of the assumptions on
which the theorem is based.

We first consider a very nonideal system, specifically, a
liquid or solid phase, rather than a gas. Let us recall some
basic facts. From a racemic mixture of d and / salts of tartaric
acid, the d and / salts crystallize separately. We know that it
was from specifically these crystals that Pasteur was able to
select d forms and / forms separately (distinguishing them
on the basis of their facets at corners).

We see in this example that the d-d and /-/ affinity is
greater than the d-l affinity. The advantage here stems from
the geometry and relative arrangement of the molecules. The
advantage is of the order of a few times kB T and has no
bearing on effects associated with the breaking of chiral sym-
metry at the level of the electron-nucleus interaction.

Back in 1974 one of us33 suggested the possibility that
pseudoscalar liquid crystals might exist. For a pseudoscalar
crystal the order parameter would be the chirality field of the
molecules making up the liquid, i.e., the local difference be-
tween the concentrations of the d and / isomers (or a chira-
lity-asymmetric arrangement of molecules), in contrast
with the situation in ordinary liquid crystals, where the or-
der parameter is the spatial orientation of the liquid mole-
cules.

Any ordering involves a breaking of symmetry. An or-
dinary solid crystal violates both spatial isotropy and homo-
geneity, i.e., all the elements of the Poincare group. A liquid
crystal allows a common displacement but is characterized
by a distinct direction of the director; the rotation group of
three-dimensional space is violated. The pseudoscalar liquid
crystal under discussion (if it existed) would violate the re-
flection point group.

We recall that objects which violate reflection symme-
try undoubtedly exist: We started from that position. One
such object is sweet water, i.e., a solution of ordinary sugar.
(Is it not miraculous that beet sugar and cane sugar are iden-
tical in this regard.) In a weak solution, however, these sys-
tems are undoubtedly not at equilibrium. They undergo ra-
cemization in the presence of a suitable catalyst, with an
entropy advantage of R \n1 per mole. A concentrated solu-
tion or a molten solution, however, may behave in a different
way! Intermolecular forces may cause such a solution or
melt to stratify into right-handed and left-handed pseudo-
scalar liquid crystals.

The picture of the phenomenon depends on the rate of
the racemization process. If the probality for the conversion
of one mirror isomer into the other is negligibly small, we are
dealing with the problem of stratification of two immiscible
liquids. A racemic mixture of two isomers decomposes into
regions occupied by isomers of different chirality.

The situation changes if there are rapid conversions be-
tween isomers. Stereoselective interactions make a chirally
pure state—levorotatory or dextrorotatory—more favor-
able from the thermodynamic standpoint. As a result, there
is a spontaneous breaking of chiral symmetry throughout
the liquid, and a nonzero average order parameter arises.
The appearance of a pseudoscalar crystal of this sort upon a
change in the parameters of a medium would occur through
a second-order phase transition.

The parity-nonconserving weak interaction creates an
external field associated with the order parameter. As was
mentioned above, however, this field is so weak that it would
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ordinarily not have to be taken into consideration. In nonliv-
ing nature there is nothing in the way of a significantly ex-
pressed chirality of molecules.

The principal biological molecules are very stable with
respect to racemizing conversions. Opposite mirror isomers
usually cannot participate in the finely fitted biochemical
reactions in a living cell, where frequently one molecule is
obliged by its very shape to fit into another molecule as a key
in a lock (see, for example, the interesting paper which
Gol'danskii et a/.34 recently published). Racemization
would have resulted in malfunctions of the operation of a
cell. Consequently, it is to the advantage of a living organism
to construct itself from chirally pure molecules, which are
stable with respect to racemization: This tendency is
strengthened genetically and is passed on from generation to
generation.

We wish to stress that the pioneering studies carried out
by Morozov and Goldanskii played a major role in the for-
mulation of the problem of the causes and paths to the devel-
opment of the chiral purity of the biosphere. The results of
their studies35"41 are set forth in detail in a recent review.42

These questions have also been discussed in several papers
by Prigogine and his colleagues.43"47

Life on earth had a beginning. When it arose, the chiral
symmetry characteristic of nonliving nature was violated.
Whether this violation was a random event or imposed by
the asymmetry of the weak interaction is one of the most
profound puzzles.71 In either case, some powerful mecha-
nisms would have to come into play to amplify a small initial
asymmetry.

We have only indirect data regarding the processes
which occurred during the initiation of life. The situation
here is somewhat similar to that of the appearance of the
universe. The only possibility is to construct various scenar-
ios of events and to compare their remote consequences with
observable effects.

Various scenarios for the appearance of life have been
proposed.48"50 We would like to call the reader's attention to
the recent book by Dyson,5' which advances a new and fairly
plausible scheme of events, developing ideas expressed by A.
I. Oparin.

According to Dyson, the first stage in the initiation of
life consisted of random selection of combinations of organic
molecules which were of such a nature that they were capa-
ble of a cooperative catalysis in some of the coacervates or
droplets floating in the primordial world ocean. These com-
binations began to perform a chemical conversion of sub-
stances in the world ocean. These organic molecules became
the first enzymes. A metabolism process, i.e., an exchange of
substances—the most important property of all life—began.

These "living" droplets were initially not yet capable of
reproduction. Molecular mechanisms of reproduction and
inheritance appeared only in a later second stage. Because of
random mutations, some of the enzymes in some of the "liv-
ing" droplets acquired autocatalytic properties.8' Through
replication they began to produce similar entities. A chain
reproduction of molecules of an inheritance nature began.
The growing droplets broke up; their number increased; a
competition for the nourishing substrate arose; a pollution of
the environment with reaction products occurred; and these
processes were accompanied by natural selection.

The first "living" droplets, which consisted of enzymes

alone and which were incapable of reproduction, appeared
in a random manner from a racemic solution, so their mirror
forms occurred with identical frequencies. Also identical
were the probabilities for the appearance through mutations
of reproducing molecules of the two mirror forms. The
breaking of chiral symmetry occurred in the second stage of
the initiation of life, when reproduction chain reactions
arose, and powerful amplifying factors associated with these
chain reactions also arose. We can construct a very simple
model for this phenomenon. We of course do not know the
details of the enzymatic reactions and the replication pro-
cesses during the initiation of life. The model will therefore
be purely phenomenological.

We denote by nd (r,t) and n,(r,t) the concentrations of
the dextrorotatory and levorotatory molecules resulting
from reproduction. In actuality, of course, these molecules
are parts of separate droplets or coacervates. However, we
will use a continuous description and assume that there are
many such droplets in a physically small element of the me-
dium. The time evolution of the concentrations is governed
by the equations

- M - = (7 — a«d — P«i) nd + D A«d + n (n, — nd) ,

— n,).
(3.1)

The rate of the chain reproduction of dextrorotatory mole-
cules, Kd = y — and — Pn,, depends on the concentrations
nd and n, for two reasons. First, the nourishing substrate is
expended on the reproduction, and the replenishment of this
substrate (e.g., through the eruption of volcanoes or by pho-
tochemical synthesis) is rather slow. An increase in the con-
centration of molecules resulting from reproduction leads to
a depletion of the environment and to a depression of the
chain reaction. If the substrate were completely common to
the levorotatory and dextrorotatory replicating molecules
(i.e., if the substrate were achiral or underwent racemization
rapidly), the two mirror forms would have been indistin-
guishable with respect to this substrate, and the coefficients
a and /? would have been the same. As we will see below,
under the condition a=/3 system (3.1) does not break
chiral symmetry. Actually, however, the composition of the
substrate may include molecules with a very slow racemiza-
tion rate. This circumstance is equivalent to the presence, in
addition to the common component, of unshared compo-
nents of the substrate, which are drawn from separately by
the levorotatory and dextrorotatory replicating molecules.
Because of this effect, the coefficient a can exceed 13.

The second reason is that the chiral intermediate prod-
ucts of the autocatalysis of dextrorotatory molecules pass
through the common medium into the coacervates where
levorotatory molecules are synthesized, and vice versa. They
interfere in this synthesis and, because of the high stereo-
selectivity of enzymatic reactions, disrupt the synthesis, i.e.,
they serve as a poison. Consequently, the processes of chain
reproduction of the molecules of the two mirror forms have a
cross depressing effect on each other. This cross depression
introduces an additional positive contribution to the value of
the coefficient fS.

Model (3.1) also incorporates a spatial diffusion of the
molecules of the two mirror forms and their spontaneous
conversion into each other. The rate of a racemic conversion
of this sort, n, is very small, but it turns out that in special
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situations (specifically, near a bifurcation point) this pro-
cess plays an important role.

With Eqs. (3.1) we can associate the following hypo-
thetical scheme of chemical reactions ( here 5 represents a
substrate or food) :

d -i- S ̂  d - d. I - S -I. d - I -+ 0. d 1.

(3.2)

The model thus includes both reproduction reactions and an
effective annihilation.

We begin by considering the case in which the diffusion
is so rapid that it keeps the reacting molecules completely
mixed and the distribution of concentrations uniform. We
can then ignore the terms with spatial derivatives in Eqs.
(3.1).

If the possibility of racemizing conversions is ignored
(/j =0) , a simple analysis shows that under the condition
/3<a a stable state of the system is symmetric and corre-
sponds to the coexistence of the two mirror forms on an
equal footing:

ir. (3.3)

In the case /3 > a, the symmetric state is unstable, and the
stable states are two purely asymmetric states, with exclu-
sively dextrorotatory or exclusively levorotatory molecules:

"i = ~- , nd = 0. (3.4)

In the case a = P, in this model, the levorotatory and dex-
trorotatory molecules are indistinguishable and can coexist
in any proportions, so we have

« i - n < i = i r - (3-5)

The value/? = a is therefore a bifurcation value, but the
bifurcation itself is degenerate. This degeneracy is lifted
when racemizing conversions are taken into consideration
(more on this below).

We turn now to spatial effects.
If a seat of the reproduction of levorotatory or dextroro-

tatory molecules has arisen at random in an initially empty
medium (nd =n,) = 0), then this seat will generate the
population wave which was studied by Kolmogorov, Pe-
trovskiii, and Piskunov.9 If the front of this wave is planar, it
will move at a velocity v0 = ( 2 D r ) l / 2 ; if the front instead has
a radius of curvature R, the propagation velocity will be

(3.6)

What happens when two population waves, which are
being followed by molecules of opposite chirality, collide?
We first consider the one-dimensional problem, i.e., the col-
lision of two waves with plane fronts. After the collision, a
steady-state distribution is established. If we ignore the
small probability for racemic conversions, and if we intro-
duce the dimensionless variables

(3.7)

then we can describe the steady-state distribution in terms of
these variables by means of the equations

-JIT- -r (1 — n — xm) n = 0.

d~i» i / 1 % ^JJT- + ( i — m — x«) w = 0.
(3.8)

where x = P /a.
We assume x^> 1; i.e., the cross depression is far strong-

er than the direct depression. A distribution with a narrow
overlap zone will then be established. The width of this zone,
/„, and the concentration of molecules in it can be found
without difficulty from (3.8), when we note that in this case
the equations are dominated by the terms xmn, so we return
to the recombination problem of $2. As a result we find

/„

«„ (0) = n, (0) ~ -£. x-'/3.
(3.9)

As x decreases, the width of the overlap zone and the
concentration of molecules in it increase. The critical value
is x = 1. As this value is approached, the depth of the mutual
penetration becomes infinite:

/„ (3.10)

If x< 1, the two chain reactions will become completely
mixed, and a homogeneous steady state will be established:

nd = HI = 1 + x x< 1. (3.11)

Racemization effects become important near the critical
point; we will return to a more detailed discussion of this
question a bit further on.

The situation thus depends very strongly on the relation
between the extent of the direct and cross depression of the
chain reactions. In this connection we can postulate two dis-
tinct scenarios of an evolutionary explosion which results in
the formation of a chirally pure biosphere:

a) In the case of a strong cross depression, large regions
dominated by molecules of one chirality or the other should
have initially formed on the earth. This geometric picture of
regions would subsequently change because of the cross
depression in the contact zones; certain regions would dis-
place others; and ultimately one form of life would be com-
pletely annihilated.

b) The second scenario presupposes that the cross
depression was initially quite weak, that the reproducing
molecules of the two chiralities were completely mixed, and
that the two chain reactions coexisted. However, the cross
depression subsequently strengthened; the coefficient K in-
creased; and at a certain time it crossed the critical value
x = 1. A complete homogeneous coexistence ceased to be
possible. The chiral symmetry is violated through a second-
order "phase transition" (analogous to the formation of a
pseudoscalar liquid crystal). The choice of the specific chir-
ality is determined by random fluctuations, and, possibly,
the effect of the weak interaction.

Let us examine each of these two scenarios in more de-
tail.

We assume that the cross depression is pronounced
( K > 1). Two waves with plane fronts which have collided
then come to a stop and form a fixed interface. If, however,
the waves were not plane waves, and the interface which was
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formed was curved, the interface would begin to move over
time at a velocity

D
R

(3.12)

where R is the local radius of curvature of the interface
[which is large in comparison with the diffusion length (D /
y)1/2]. The direction in which the interface moves is deter-
mined by the condition that the interface tends to reduce in
length. As a result, an enclosed region which is entirely sur-
rounded by a region with molecules of the other chirality
will disappear completely over a time of order L jj /D, where
LQ is the initial dimension of the region.

It is useful to compare the propagation velocity of a free
population wave [ v0 = ( 2 D y ) ' / 2 ] with the velocity at which
the interface moves, (3.12). These two velocities are of the
same order of magnitude only if the radius of curvature is
very small [R~ (D/y)V2]. If R^(D/y)1'2, the interface
between the regions moves very slowly in comparison with
the free propagation of waves. The course of the evolution
can thus be divided into two stages. Initially, points of a
chain reproduction arise in the ocean. Population waves
propagate away from these points rapidly, and the entire
ocean is soon divided into regions which contain only levoro-
tatory or only dextrorotatory reproducing molecules. In the
following, and slower, stage all the bends in the boundaries
between regions are smoothed out, and all the closed regions
which are surrounded by molecules of different chirality
gradually disappear. One region, with a definite chirality,
eventually covers the entire earth.9'

In this scenario, the outcome of the evolutionary explo-
sion depends strongly on the random initial geometry of the
levorotatory and dextrorotatory regions, i.e., on the random
process by which the chain-reaction points are initiated.

We studied the effect of the weak interaction on the
motion of interfaces between regions with different chirality
in Ref. 52. That effect contributes a correction of the order of
e = A %7kB T to the interface velocity vb =D/R. This cor-
rection is so small, however, that even if the radii of curva-
ture of the interface are comparable to the radius of the globe
the correction can be ignored. In this scenario, the weak
interaction is not capable of influencing the choice of chira-
lity in the biosphere.

According to another evolutionary scenario, the cross
depression was initially quite weak, so the levorotatory and
dextrorotatory forms of life coexisted in a completely mixed
symmetric state. Later, the intensity of the cross depression
(i.e., the magnitude of the coefficient/?) began to increase, a
bifurcation occurred, and the system underwent a second-
order phase transition into an asymmetric state with a defi-
nite predominant chirality.

Let us assume the course of events in this scenario. It is
convenient here to introduce a dimensionless order param-
eter f] and a dimensionless time r.

a
7 = Y'- (3.13)

Near the bifurcation point, we find the following approxi-
mate equation for the order parameter from (3.1):

Here xcr = 1 + 40. The coefficient 9 = /i/y is very small
and characterizes the probability for a racemic conversion of

an individual molecule over the average time between two
sequential replication events of this molecule. The quantity e
characterizes the relative difference in the reproduction
rates of the levorotatory and dextrorotatory molecules. If
this difference stems from a difference in the ground-state
energies of the levorotatory and dextrorotatory molecules
due to the weak fundamental interaction, then we would
have

In the derivation of (3.14), it was assumed that the or-
der parameter is small: j i / l ^ l . If the small racemi/ation
probability is ignored, and if we set 6 = rj/y = 0, then we
find that at x > 1 this equation describes an initial exponen-
tial stage of the decay of a completely mixed symmetric state.
Equation (3.14) is identical in form to the time-dependent
Ginzburg-Landau equation in the theory of second-order
phase transitions at thermal equilibrium.53 The quantity e is
playing the role of an external field.

The random function f ( r ) in Eq. (3.14) incorporates
the noise associated with the atomistic nature of the con-
sumption and reproduction reactions. This noise is analyzed
systematically in Appendix II; we will content ourselves
here with some cruder arguments in order to find some esti-
mates.

If independent reactions in which individual particles
are consumed and reproduce occur in a system of N parti-
cles, the number (AM) of reaction events over a certain time
interval A? is a random quantity with a Poisson distribution
and with a mean square value of I/AM of the relative fluctu-
ations. At dynamic equilibrium, the number of consumption
events is equal to the number of reproduction events over the
same time interval, so we can write &M~yNkt, where y is
the probability for the reproduction of some particular mole-
cule per unit time. The noise intensity S, defined by

is equal in order of magnitude to the mean square value of
the relative fluctuations in the number of reaction events per
unit time, i.e., over a time A? = l/y. We thus have S~ \/N,
where N is the total number of reacting molecules of the left-
handed and right-handed chirality.

If the noise is ignored, Eq. (3.14) has the steady-state
solutions shown in Fig. 1. Under the condition

the system has two stable steady states, with order param-
eters opposite in sign.

Let us analyze the process by which the steady state is
chosen as the critical point is crossed.101 We can carry out
this . nalysis by discarding from (3.14) the nonlinear term
Wri ', which leads to a limitation on the exponential growth
at large values of the order parameter 17.

It is not difficult to see that in the absence of noise the
system will always, as it crosses the critical point, go from an
initial symmetric state (rj = 0) to a state with an order pa-
rameter whose sign is imposed by the external field. The
question is how is this choice affected by the noise associated
with the atomistic nature of the reaction events.

Since we are interested in simply order-of-magnitude
estimates, we will assume that the system was initially (at
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r = 0) at the critical point x = xcr in a symmetric state
( r j = 0), and then the parameter K began to increase linearly
with time:

X = Xc, + CT. (3.17)

Working from Eq. (3.14) without the nonlinear term,
we can derive two equations describing the time evolution of
the average value of the order parameter, (77), and of the
mean square value of its fluctuations:

d ,„> 1 ._ ,._> , .^ (3.18)

(3.19)

It follows from (3.18) and (3.19) that as long as the condi-
tions CT(T}) <£e and CT(ST)2) <^S hold these quantities will
grow over time in accordance with

= St. (3.20)

The linear growth continues up to the time r*~c 1/2; at
later times, r> r*, the onset of an exponential instability be-
comes dominant, and the effects of the noise and the external
field can now be ignored. In other words, if the order param-
eter had, say, a positive sign at T = T* then it will remain
positive also at later times. The noise is thus capable of af-
fecting the choice of the sign of the order parameter only in
the time interval 0 < r < r*.

According to (3.20), in the case 0<r<r* the average
value of the order parameter increases linearly with time, but
fluctuations in it also increase simultaneously. The noise is
not capable of influencing the choice of the sign of the order
parameter if the mean square fluctuations in the order pa-
rameter by the time T* are smaller than the mean value of the
order parameter. We thus have the condition

s_
ea (3.21)

Returning to dimensional units of time, and using S~ l/N,
we find an inequality for the transition time t,r = T*/y.

<«»^r- (3.22)

If this condition holds, the asymmetry of the weak interac-
tion would be sufficient to impose the sign of the chirality in
the biosphere.

Let us attempt to find an estimate, even if quite crude, of
the minimum transition time determined by inequality
(3.22).

Since we do not know the characteristics or the number
of the first living organisms, we will draw on some corre-

spending data for the present stage of biological evolution.'"
In one cubic meter of the surface layer of the ocean today
there are about 107 living cells, in each of which there is a
single DNA molecule. If we take the depth of the populated
layer to be of the order of 100 m, we find the crude estimate
N~ 1023 as the total number of reproducing molecules in the
world ocean. The time interval between successive divisions
in modern single-cell microorganisms ranges from 1 to 100
h; for an estimate we adopt y= 1 h~'. We also assume that
the differences between the reproduction rates of the levoro-
tatory and dextrorotatory molecules stem from a difference
in their binding energies due to the asymmetry of the weak
interaction. In other words, we assume £~ 10~ n. Substitut-
ing these values into (3.22), we find that the minimum dura-
tion of the transition which would be sufficient to allow the
weak interaction to impose the sign of the chirality in the
biological world would be about 107 yr. This estimate is com-
pletely realistic since the total duration of biological evolu-
tion has been of the order of 109 yr. Nevertheless, these esti-
mates are so inaccurate that they may actually be one or two
orders of magnitude too high or too low. Furthermore, they
apply to only one of the postulated scenarios of evolutionary
development. We can thus conclude only that an analysis of
this question does not rule out the possibility that the chira-
lity of biomolecules was determined by the asymmetry of the
weak interaction.

CONCLUSION

Fluctuations associated with the atomistic nature of the
individual events of a chemical reaction are usually mani-
fested only at the microscopic level, in processes and effects
with relatively small length and time scales. Nevertheless,
the examples which we have discussed here show that there
can also be situations in which some powerful nonlinear
mechanism amplifies this initially weak microscopic noise to
the point that it determines the outcome of macroscopic ob-
servable events. To some extent the situation is analogous to
macroscopic quantum effects.

APPENDIX!

In this Appendix we consider the general problem of the
behavior of fluctuations when the point of a second-order
phase transition is crossed at a finite rate. We will derive the
conditions which must be satisfied by the crossing rate if the
medium is not to break up into domains of opposite phases
after a transition in a given external field.

The time evolution of the real order parameter 77 in the
case of an equilibrium second-order phase transition is de-
scribed by121 the Ginzburg-Landau equation53

= at) — brf + g Ar| + h + f (r, /). (1.1)

The random Gaussian force f ( t , t ) in this equation incorpo-
rates the noise effect of the heat reservoir. Its intensity is
determined by the temperature of the medium, T:

(/ (r, t) f (r', t ' ) ) = 276 (r - r') 6 (t - f). (1.2)

FIG. 1. Steady-state solutions of Eq. (3.14). a - e = 0; b - e>0. The
symmetric state with 77 = 0 above the critical point ;ct.,. is unstable.

The bifurcation coefficient a in Eq. ( I . I ) is determined by
the external conditions. We will assume here that it varies
linearly with time, and as the origin for the time scale we
choose the instant at which the critical point is crossed:
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a = ct. (1.3)

In a steady-state regime, with a constant value of a, the
correlation radius of the order parameter, rc , and its correla-
tion time fc become infinite as a->0. This result means in
particular that relaxation to thermal equilibrium requires
progressively more time as we move closer to the critical
point. It is thus obvious that when the critical point is
crossed at a finite rate there is always a time interval during
which the system is characterized by a probability distribu-
tion which is greatly different from that at thermal equilibri-
um.

For definiteness we assume that the system starts at the
time / = 0 directly from the critical point, and we assume
that the order parameter is initially equal to zero throughout
the medium.131 Fluctuations appear at f > 0 because of the
noise of the heat reservoir, i.e., because of the random force
/(r,/) in Eq. (I .I) . Because of its microscopic origin, this
random force is <5-correlated in terms of the spatial coordi-
nates. The onset of spatial correlations for the fluctuations of
the order parameter is thus caused exclusively by the inter-
action with the different regions; this interaction is described
by a term of the diffusion type, — gAn, in Eq. (I.I). Over a
finite time interval t this interaction is capable of establishing
correlations only within a volume element with a linear
dimension no greater than the diffusion length r d ( f )

The diffusion length rd (t) should be compared with the
value of the correlation radius r c ( t ) at the instantaneous
value of the bifurcation coefficient a = ct at the correspond-
ing time. If the condition rd(t)>rc(t) holds, we can apply
the adiabatic approximation, and the fluctuations of the or-
der parameter at time t are the same as at thermal equilibri-
um with the value a = ct of the bifurcation coefficient. On
the other hand, in the nonadiabatic region, with r d ( t )
</- c ( f ) , the fluctuations are qualitatively different from
equilibrium fluctuations.

We know quite well that in analyzing equilibrium fluc-
tuations near a second-order phase transition we can distin-
guish a fluctuation region and a region in which the mean-
field theory is applicable. The mean-field approximation is
valid far from the tansition point, where the following condi-
tion holds54:

p- • (1.4)

At thermal equilibrium, the fluctuations in this region are
small; more precisely, the mean square value of the fluctu-
ations in the order parameter in a volume with a size equal to
the correlation radius is small in comparison with the square
of the mean value of the order parameter. Closer to the criti-
cal point there is a fluctuation region, in which the relative
fluctuations of the order parameter at thermal equilibrium
are large.

As the criticl point is crossed at a finite rate, the entire
picture of events depend strongly on whether the nonadiaba-
tic region spans the entire fluctuation region. In other words,
an important question is whether the value of the bifurcation
parameter a* = ct * at the time t *, at which the condition
rd(t*) = rc(f *) holds, satisfies inequality (1.4).

If we find ourselves in a fluctuation region when we
leave the nonadiabatic region, then it is actually irrelevant to

what extent the fluctuations have grown by this time: Large
or small, they will subsequently become strong in the adiaba-
tic regime. Far more interesting is the case in which the sys-
tem, as it leaves the nonadiabatic region, goes immediately
into the region in which the mean-field theory applies.

Since the correlation radius is given by the expression
rc = (g/0)I/2 in the mean-field approximation, the duration
of the nonadiabatic region is t * = c1'2, and the value of the
bifurcation parameter by the time at which this region ends
is a* = c1 /2. The nonadiabatic region spans the entire fluctu-
ation region if

(1.5)

Outside the fluctuation region [i.e., under inequality (1.4) ]
the creation, as a result of equilibrium thermal fluctuations,
of macroscopic domains of opposite phases with dimensions
greater than the correlation radius is an exponentially rare
event. If the medium was originally broken up into domains
with opposite signs of the order parameter, a process of re-
laxation to a final thermal equilibrium would begin in it. In
the course of this relaxation, there would be shifts of the
boundaries between domains, so that domains of a metasta-
ble phase would disappear.

It is not difficult to show that the radius ( R ) of a spheri-
cal domain which is immersed in the opposite phase has a
time evolution determined by

dfl
(1.6)

where the numerical factor £ is of the order of unity. We need
to use the pluse sign in this equation if the relation r) > 0
holds in the domain, and in the opposite case would use the
minus sing.

It follows from (1.6) that all the metastable-phase do-
mains (77 <0) contract over time and ultimately disappear.
A spherical domain of a stable phase (?7>0) in a region
filled with a metastable phase grows over time if its radius is
greater than the critical value Rkp ~ (a2g/hb)in.

Outside the fluctuation region, any arbitrarily weak ex-
ternal field h will eventually put the entire medium in a state
with a definite sign of the order parameter, which the field
imposes. For this to happen, however, sufficient time must
elapse after the crossing of the transition point. In addition,
processes by which the metastable domains disappear—if
they occur—must have time to go to completion. Since the
velocity of a plane interface vanishes as h -> 0, it is clear that
for very weak fields the duration of this last stage can be
exceedingly long and can exceed the very time over which
the system exists. In this situation there is no phase stratifi-
cation only if there are no macroscopic domains of a metas-
tagle phase in the system upon the arrival at the mean-field
region. In the problem involving the crossing of the point of
the phase transition at finite rate this assertion means that as
we go out of the nonadiabatic region into the region in which
the mean-field approximation applies the fluctuations in a
volume of the correlation radius must be small in compari-
son with the mean value of the order parameter, imposed by
the external field.

What happens in the nonadiabatic region, i.e., at /X? *?
It is easy to see that under condition (1.5) the original Ginz-
burg-Landau equation, ( I . I ) can be simplified substantially
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in this region; it reduces to the form

= g (r, t). (1.7)

Using (1.7), we find that at t^ t * the mean value of the order
parameter increases over time in accordance with

= ht, (1.8)

and the mean square value of the fluctuations 8rj = 17 — (f)),
in the volume V, i.e., the quantity

<(6rf)v> = -Jr J J <8r|(r, t)6r](r', * ')>drdr ' , d-9)
(V)

increasing with time in accordance with

= ir. (MO)

We require that the fluctuations in a volume Fc with the
correlation radius rc(t*) = (gt*)1/2 = (gVc)"4 be small
by the time f *. In other words, we require that the following
condition hold:

<(6if)vc> <0l>2- (1.11)

Using (1.9) and (1.10), we find that this requirement im-
plies the requirement

^-)4/5. (1.12)

We have thus obtained limitations on the rate at which
the point of a second-order phase transition is crossed. These
limitations have the effect of preventing the system from
ever breaking up into regions with opposite phase through-
out the crossing process.14) These limitations are given by
inequalities (1.5) and (1.12). In the general case of an arbi-
trary dimensionality of the medium, d, these limitations take
the form

-d/2)4/<4-cf). (1.13)

If the fields are too weak, the two inequalities in (1.13) are
incompatible. There thus exists a minimum strength of the
external field at which the system can cross the transition
point without breaking up into a mixture of domains of two
opposite phases. For a three-dimensional medium, this mini-
mum value is given in order of magnitude by

(1.14)

The analysis above can be generalized in a natural way
to the case of nonequilibrium second-order phase transi-
tions, as an example of which we might cite the transition
which we studied in §3 and which involved the breaking of
the chiral symmetry of the biosphere. The only distinction is
that now the random force/(r,f) in Ginzburg-Landau equa-
tion (1.1) is slightly different in nature.

In the reactions which occur in a liquid medium, hydro-
dynamic noise and fluctuations associated with the atomis-
tic nature of reactions and diffusion contribute to the ran-
dom force/(r,?) (see Appendix II for more details). For the
transition analyzed in §3 the leading role is played by the
fluctuations which stem from the atomistic nature of reac-
tions. These fluctuations actually determine the effective

temperature reff which must be used to replace Tin (1.2). It
can be shown that in this case we have Teff ~ l/N0, where
NQ = n0l

3 is the number of reproducing molecules in a vol-
ume element with a length / = (D /y)'/2- When spatially in-
homogeneous fluctuations are taken into account, (3.22) is
replaced by the following inequality for the duration of the
transition:

1 7 T . (1.15)

Under this condition, the medium does not break up after
the transition into domains with opposite chirality of the
reproducing molecules.

However, relation (1.15) is hardly applicable for de-
scribing processes which occur in the earth's biosphere.
Over transition times of the order of 107 yr, the dominant
role will be played by the large-scale turbulent transport of
the reacting substances—a transport which is not described
by a diffusion equation. A more natural assumption is that
there is complete turbulent mixing over such times; this is
the assumption which was made in §3.

APPENDIX II

In this mathematical Appendix we will discuss methods
for describing fluctuations in reacting systems with diffu-
sion. We recall that the formal kinetic equations of chemical
reactions are written for nonfluctuating concentrations
n ( x ) of the reacting particles. In a comprehensive micro-
scopic description of a reacting system, on the other hand,
we need to introduce a set of distribution functions
{PN (x,, . . . ,xN;t)}, each of which gives the probability for
finding N = 0, 1,2, ... particles in the system, at the points
with coordinates x , , . . . ,\N. The time evolution of these
functions due to reactions and the diffusion of particles is
described by governing equations. There are many methods
which could be used to work directly from these microscopic
governing equations in order to solve kinetic problems (for
example, one could construct a perturbation-theory dia-
gram technique55"59). In this paper, however, we will focus
on the intermediate (or mesocopic) description level, where
the description is formulated in terms of smooth distribu-
tions of the concentrations n (x), but the fluctuations caused
in these concentrations by the atomistic nature of the indi-
vidual reaction events and by the diffusion process are taken
into account.

We begin with the simplest case. We assume that the
reaction consists of a single production of particles in a ves-
sel, at a probability u;0 per unit time. The following exact
governing equation then holds for the time evolution of the
probabilityp(n), which is the probability for finding n parti-
cles in the vessel:

S p ( n )
at

W
0 p ( n — l )

If the number of particles in the vessel is sufficiently large,
the quantity n can be approximated by a continuously vary-
ing variable, and we can write

p.(n — i) = p(«) — -̂ - + -2~ ~a~r + • • • • (H.2)

For smooth distributions/>( n) the terms with higher deriva-
tives in expansion (II.2) can be ignored. Substituting (II.2)
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into (II. 1) we find an approximate Fokker-Planck equation
for this reaction:

"aT= ~~fa (wof) + T~dnT (W°P)- (H.3)

We turn now to the decay reaction X ̂  R. We denote by
wt the probability for the decay of an individual X particle
per unit time. The corresponding governing equation is

= wi (n + 1) p (n + 1) - wiP (n). (II.4)

Carrying out an exapnsion ofp(n + 1) at large values of n by
analogy with (II.2), we again find a Fokker-Planck equa-
tion:

— = — ( \+— — (wn\ C I I5}

Finally, for the breeding reaction X -> 2X the governing
equation is written

,(n— l)p (» — !)- wznp(n), (n.6)dp(n)
dt

where w2 is the probability for a doubling of an individual X
particle per unit time. Corresponding to this case is the fol-
lowing approximate Fokker-Planck equation:

dp
-at

a2

(II.7)

A distributed medium can be described approximately
as a set of vessels or "boxes" in each of which production,
decay, or breeding reactions are occurring. Furthermore,
the particles can move at random from one box to others,
with the result that there is a diffusion of particles. To sim-
plify the analysis we first examine the processes which occur
in a one-dimensional distributed medium, which may be
thought of as a linear chain of boxes with indices7' = 0, +1,
+ 2 , . . . . The state of such a system is specified by specify-

ing the set of the numbers of particles in each of the boxes.
If there is no diffusion (i.e., if particles do not go from

one box to another), the number of particles in each of the
boxes, njt will vary independently in accordance with the
particular reactions which are occurring (S-»X, X-»R, or
X-»2X). The joint distribution function p({rij}) will then
obey the approximate Fokker-Planck equation

(II.8)

We now consider the fluctuations caused by diffusion.
We assume that there is a probability w that a particle will, in
a unit time, hop into one of the neighboring boxes in the
chain. The governing equation for this random process is

})} . (11.9)

Here we are using the notation p(/nj_l — 1, «, + !/),
which shows that in the set of occupation numbers {nt}
there are changes of + 1 only in the numbers of particles in
boxes j — 1 and/

If the occupation numbers «; are sufficiently large, they
can be treated as continuous variables, and we can write the
approximation

(11.10)
A similar expression holds for />(/«/ + 1, «;+ 1 — I/). Sub-
stituting these expressions into (II.9), we find a Fokker-
Planck equation for the distribution function:

T w 2 JH +

(11.11)

The next step is to switch from the discrete description, in
which the medium is partitioned into a sequence of boxes, to
a continuous description in terms of a smooth concentrtion
n(x). The multidimensional distribution function /?({«,})
then converts into a functional p [ n ( x ) ] , which gives the
probability density of the various realizations of the concen-
tration field n ( x ) . Multidimensional Fokker-Planck equa-
tion (11.11) transforms into a functional Fokker-Planck
equation. As will be shown below, this equation is

(11.12)

where D = wl 2 is the diffusion coefficient (/is the size of one
of the individual initial boxes).

To demonstrate the validity of equation (11.12), we
transform from it to Eq. (11.11) by switching to a discrete
description. We do this separately for the terms with the first
and second functional derivatives.

After the switch to a discrete description, the first term
turns out to be

(11.13)
and is therefore the same as the first term in (II.l 1 ).

The switch to a discrete description in the second term
is a mojre complicated procedure. We first introduce the no-
tation A(x)=S/Sn (x) andA(y)=8/6n(y), so this term is
written in the form

(11.14)

Now integrating by parts in (II. 14), we find

(11.15)
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We note that we have

/ dA \ 2 dA d , ". . dA '. dn
-3— « = -3—3- (-4n) s— A -3-\ ox I ox ox ^ ' ox ox

(11.16)

The last term here is a total derivative and disappears after
integration over x. We finally find that the term in which we
are interested can be put in the form

(Mr, O /o (0, 0)> = (Mr, OMO, 0)>

= (Mr, «)/i(0, 0))

= 6 ( r )6 (0 , </<«> (r, I) /«» (0,0))

= 6 (r) 6 (0 6OP, o, p = 1, 2, 3.

(11.21)

Stochastic differential equation (11.20) should be interpret-
ed in the Ito sense.

»
(11.17)

where the operators which perform a differentiation with
respect to x only on the expressions in parentheses which
follow them immediately.

It is now a convenient point at which to induce a dis-
crete description. We then find

T » S - [(«*• i + «;-. - 2»y) P]

= T"; S - r I

•(n,p) - w

(11.18)

It is easy to verify that this expression becomes the same as
the last term in (II. 1 1 ) after a change of summation indices.

Consequently, functional Fokker-Planck equation
(11.12) does indeed describe the fluctuations of the concen-
tration field which are caused by the atomistic nature of the
diffusion.

In the general case in which the medium is three-dimen-
sional, and production, decomposition, and breeding reac-
tions are occurring in it simultaneously, along with diffu-
sion, the functional Fokker-Planck equation is

-w = - J dr K*n + D Aw>
4- drdr' Sn (r) 6n (r')

+ VrVr-(2ZM8(r-r'))]p}, (11.19)

where K0 is the probability for the production of a particle
per unit time per unit volume (i.e., K0 = w0/l

3), K\ = wt,
and K2 = w2.

We know from the theory of random processes60 that a
Fokker-Planck equation can be associated unambiguously
with a stochastic Langevin equation. For a fluctuating con-
centration field, this Langevin equation is

(H-20)

where the Gaussian random forces/0,/,,/2 and fare indepen-
dent and have the correltion functions

1 'We denote by |, the probability that a center, considered separately, will
not initiate an infinite chain of divisions. This quantity is the sum of the
probabilities for two independent events: the probability that a center
will be consumed without undergoing a single division and the probabil-
ity that it will undergo one division, but the two centers which appear
after it will fail to initiate an infinite chain. The quantity £r thus satisfies
the equation

a

61 =

Solving it, and assuming £ = 1 — £,, we find the result (1.7).
•'In an experiment it is obviously easier to turn off the radiation than to
cool the entire volume instantaneously and uniformly.

"The power law holds down to k ~ 1 /a, where a is the radius to which the
molecules initially move apart. When k is smaller, the spectrum be-
comes flat again.

4>Here Rt and R2 are positive if the surface is convex in the direction
toward the z axis; in the opposite case they are negative.

"Related questions dealing with the formation of structures by random
fields are discussed in the review in Ref. 20.

^'Specifically, only dextrorotatory (d) sugar molecules and only levoro-
tatory (/) amino acid molecules occur in living organisms.

7)Amino acid and sugar molecules in living organisms have precisely that
chirality which is favored by the weak interaction, but this could be a
random coincidence (the probability differs too slightly from 1/21).

"'According to the present data,61 several RNA molecules have an enzy-
matic capability. In a recent theoretical paper, Farmer et a/.62 examined
a chemical system in which polymer molecules undergo splitting and
connection reactions catalyzed by other polymers from the existing set.
It was shown in Ref. 62 that under certain conditions the number of
polymers progressively larger molecular weights would spontaneously
begin to increase without bound. In other words, an autocatalytic graph
would form. It would be interesting to generalize the results of Ref. 62 to
the case in which the set of polymers might contain molecules of the
same chemical composition but with different chiralities of the constitu-
ent monomers.

''Simplified equations (3.1) no longer apply in this last stage, since the
physical conditions in various regions on the globe are very different.

""These questions are studied in Refs. 46 and 47. We would also like to call
the reader's attention to a recent paper" on the crossing of a bifurcation
point at a finite rate in the presence of noise.

"'We wish to thank V.V. Alekseev for assistance in making these esti-
mates.

'2'We are expressing the time in units of the reciprocal relaxation rate of
the order parameter, y.

"'This assumption is not very important. The final results hold in the
general case in which the system crosses the critical point at a finite rate,
moving from the symmetric state into the region with broken symme-
try.

u'More precisely, the probability for the appearance of domains of a meta-
stable phase in the course of the transition is exponentially small.
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