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The review deals with a new range of problems related to the Stark and Zeeman effects in the
hydrogen atom, which have attracted a growing interest in these effects during the last decade.
These problems include the behavior of a highly excited hydrogen atom in fairly strong electric
(F) and magnetic (B) fields. All the parameters describing the behavior of an atom in the fields F
and B are considered: changes in the energy levels, lifetimes of the states, intensities (oscillator
strengths), decay probabilities, nature of atomic electron trajectories, including the possibility of
their stochastization. Both analytic and numerical solution methods are described. Much
attention is given to semiclassical and purely classical approaches, which are being developed
rapidly. The review is designed to provide a description of the methods without the need to refer to
the literature.
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1. INTRODUCTION
Investigations of the splitting of the energy levels of

atoms in an electric field F (Stark effect, 1913) and in a
magnetic field B (Zeeman effect, 1896) have provided one of
the important confirmations of the validity of the main as-
sumptions of quantum theory. Fundamentals of the quan-
tum theory of the Stark and Zeeman effects are treated in
detail in the well-known monograph of Bethe and Salpeter,'
and also in textbooks on quantum mechanics2 and theoreti-
cal spectroscopy.3

In recent years the interest in these effects has shifted to
applications. It has been found that many theoretical results
are not very suitable for specific calculations or are still in-
complete. Further development of the theory has involved
mainly investigations of atomic spectra in strong fields B and
F and of highly excited states characterized by n > 1. The
interest in these problems arises because of a wide range of
applications such as ionization in an electric field of Rydberg
atomic states populated selectively by laser radiation,4'5 ab-
sorption spectra of excitons in a magnetic field,6'7 structure
of atoms in very strong magnetic fields on the surfaces of
neutron stars,8"10 splitting and broadening of atomic spectral
lines by electric and magnetic fields in a plasma,3'"'12 struc-
ture.of rf lines emitted by highly excited atoms in the inter-
stellar medium,13'14 etc.

Recent experiments on Rydberg atoms have been car-
ried out in connection with a wide range of theoretical prob-
lems including the quantum defect method,15 the dynamic
Stark and Zeeman effects in alternating fields Fand B (Ref.
16), and other topics (discussed in a monograph of Steb-
bings and Dunning17). An important place among these
problems is occupied by the simplest atomic system, which is
the hydrogen atom to which the present review is devoted.

Selective population of hydrogen states with n ~ 10-50
has been detected under laboratory conditions (for a review
see chapter by P.M. Koch in Ref. 17, p. 473). These experi-
ments provide, in principle, a technique for precision mea-
surements of fundamental atomic constants. The hydrogen
atom is also of great interest in astrophysics because it can be
excited to states with « ~ 100-400 in space (for a review see
chapter by A. Dalgarno in Ref. 17, p. 1). In the interpreta-
tion of both laboratory and astrophysical data one requires
detailed information on the dependences of atomic param-
eters on the intensities of external fields and on the individ-
ual quantum numbers of atomic states. Therefore, the ac-
count given below is designed not only to introduce the
general theoretical principles, but also to provide specific
analytic and numerical results suitable for use in many appli-
cations. At the same time an attempt will be made not to
omit problems of fundamental nature. They include, above
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all, the existence of an additional integral of motion of an
electron moving in Coulomb and magnetic fields, and the
possibility of stochastization of the electron motion in this
case. These problems are related closely to the fundamental
principle of quantization of systems with inseparable vari-
ables.

It is surprising that in spite of the traditional nature of
the topics related to the Stark and Zeeman effects, a whole
series of new results have been obtained and many new ob-
servations have been made. This has revealed major capabili-
ties of the semiclassical and purely classical solution meth-
ods. The success of the classical approach is clearly due to
the incompleteness of the classical descriptions of the atom
which have been "prematurely" elbowed out by establish-
ment of the theoretical apparatus of quantum theory. Quan-
tum-mechanical calculations based on perturbation theory,
asymptotic approach, and numerical solutions of the Schro-
dinger equation are treated fully in the monograph of Steb-
bings and Dunning.17 Therefore, we shall concentrate our
attention on semiclassical methods.

We shall frequently use the atomic system of units
(a.u.) without mentioning the fact explicitly. However, in
some cases it is convenient to retain dimensional units. We
shall therefore mention straight away the characteristic
ranges of the fields Fund B. The intraatomic electric field FA

is

• 5.1-10" V/m, (U)

where e and m are the charge and mass of an electron, and
a0 = f?/me2 is the Bohr radius.

In the case of magnetic fields it is convenient to intro-
duce a field B0 such that the magnetic interaction pBB0

(JUB = efi/lmc is the Bohr magneton) is comparable with
the scale of the atomic energy Ry = me4/2if:

T. (1.2)

The magnetic field BA inside an atom is in fact less by a
factor (•ftc/ei) ~ 137 because of the nonrelativistic nature of
the motion of electrons:

, 1.7-103 T.
(1.3)

2. STARK EFFECT

2.1. Hydrogenic atoms in an electric field. General
relationships

2.1.1. The fundamentals of the theory of a hydrogenic
atomic in an electric field F are well known and have been
presented in detail in, for example, the monographs men-
tioned earlier.1"3 However, from the point of view of practi-
cal applications many topics of this theory have not been
finally resolved until very recently. This applies particularly
to the interpretation of the spectra of highly excited atoms
when the high degree of degeneracy of the hydrogen levels
complicates enormously the calculations based on the direct
application of the general formulas for the intensities of tran-
sitions, etc. We shall present a number of new theoretical
results on the spectra of the hydrogen atom in an electric
field and these provide simple and reliable analytic results
suitable for the application to cases of practical interest.

2.1.2. A fundamental feature of the theory of the Stark
effect is the ability to separate the variables in the Schro-
dinger equation for the hydrogen atom expressed in parabol-
ic coordinates J" and 17 (Ref. 2) :

(2.1)

a = u; (2.2)

here, Xi(£) =/i/£1/2 and j2(r/) =/2/i?
1/2 are the reduced

wave functions (see Ref. 2); E is the energy; /? t and /7 2 are
the constants of the process of separation of the variables/?,
+ 02= 1; »i is the magnetic quantum number.

Equations (2.1)-(2.2) are one-dimensional and they
are characterized by the effective potentials

'i=~ 8?
(2.3)

governed at short distances by the Coulomb and centrifugal
terms, and at large distances by the term containing the field
F (Fig. 1). We can see from Fig. 1 that the potential barrier
expressed in terms of the variable 77 has a finite penetrability,
so that an atomic electron can escape to the continuous spec-
trum (i.e., an atom can decay).

It is convenient to rewrite Eqs. (2.1)-(2.2) in terms of
dimensionless variables x = v~ lg and y = v~ lrj, where v is

The values (1.1) - (1.3) of the fields FA and B0 are very high
and they are attainable only under fairly exotic conditions.
However, we must bear in mind that these fields decrease
rapidly on increase in the principal quantum number n of the
atom. For example, the critical electric field Fc which sup-
presses the potential barrier of an atomic electron is

V =_^A_
(1.4)

which is five orders of less than the atomic field FA if n ~ 10.
Similarly, hydrogenic excitations in a solid (excitons)

correspond to effective values B0 ~ 10-102 T because of a
reduction in the effective mass of an electron in a solid and
also because of the high permittivity. Therefore, many of the
effects considered below occur in near-critical fields .Fand B,
but can be observed in practice.

FIG. 1. Potentials V( = V^ (£) and K, = ^(77) for the motion of an
electron of energy E in an electric field, plotted using parabolic coordi-
nates g and 17.
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the effective principal quantum number of the level, which
allows for the shift of the level in an electric field F:

v = (—2E)lfl. (2.4)

Introducing next the reduced field intensity w = Wv3 and
the new separation constants a{ and a2 (

ai + 0-2 = v) we

obtain the following equations for the reduced wave func-
tions^, and <p2 (Ref. 18):

Ym(n,, ni) = F-nt, -

(2.5)

(2.6)

The states of the hydrogen atom in the field F are de-
scribed, as is well known, l~3 by parabolic quantum numbers
nl and «2 and by a magnetic quantum number m, which are
related by

«i + nz + I m n — i. (2.7)

It is convenient to introduce an "electric" quantum number
k = «2 — HI i which defines the projection of the dipole mo-
ment of an atom er along the direction of an electric field F:

> = - — — nkea0F.

(2.8)

The energy levels can be described, up to the second
order in respect of the field intensity F, by the expression ( in
atomic units)

16

(2.9)

The parabolic wave functions *„,,,,„, correspond to spe-
cific projections, along the direction of the electric field F, of
the vectors representing the dipole d and orbital angular mo-
menta 1 of an atom. The specific symmetry properties of the
Coulomb field make it possible to express simply these para-
bolic functions in terms of spherical functions Wnlm corre-
sponding to specific values of / 2 and m2 (see §37 in Ref. 1):

n-l

1=0
(2.10)

where /i,2 = [/n ± («i — n2)]/2; C(/,m|/,,/2) are the
Clebsch-Gordan coefficients.

The intensities /of the Stark components are described
by matrix elements of the coordinate r of an atomic electron:

(2.11)

where coa is the unperturbed frequency of the n->ri transi-
tion.

Depending on the polarization (linear, characterized
by Am = 0, or circular when Am = ± 1), the Stark compo-
nent can be divided into IT and a. The intensities of the IT
components are governed by the matrix elements of the z
component of r and the intensities of the a components are
determined by the x or y components of r. The general for-
mulas for the matrix elements have been obtained by Gor-
don (see §65 in Ref. 1) and can be expressed in terms of the
hypergeometric function

(2.12)

In the case of the parabolic quantum numbers n , and «2

( in contrast to the spherical quantum number /) there are no
rigid selection rules for dipole radiation. Nevertheless, the
distributions of the intensities of the Stark IT and a compo-
nents obey certain relationships which we shall discuss later
(Sec. 2.3). The Gordon formulas are very cumbersome and
suitable only for calculations in few special cases (see Ref.
1 ) . The formulas for the intensities expressed in terms of
spherical coordinates can be simplified considerably in the
semiclassical range.20 Since the relationship between the
parabolic and spherical bases is determined by the Clebsch-
Gordan coefficients [see Eq. (2.10)] whose properties are
known, we can expect to obtain satisfactory semiclassical
expressions for the matrix elements also in terms of parabol-
ic coordinates. However, such expressions have not yet been
derived.

2.2 Radiative lifetimes of states

We shall now consider the simplest radiation parameter
of the sublevels which is their lifetime governed by all possi-
ble radiative transitions to lower states.

The probability A '„„• of radiative transitions and the
lifetime Tn/ of excited atomic states are usually analyzed
using the spherical quantum numbers of atoms «/ (see Ref.
1). Bureeva19 obtained general semiclassical formulas for
the calculation of the probabilities A '„„. of radiative transi-
tions. Goreslavskii, Delone, and Krainov20 derived simple
analytic expressions for A 'nn, which are highly accurate even
when the numbers n and / are not too large. The structure of
these expressions is related closely to the familiar formulas
in the classical intensity of radiation in a Coulomb field (see
§70 in Ref. 21). The quantum corrections to these probabili-
ties can be found in Refs. 22 and 23.

Simple dependences of the probabilities A „, on the orbi-
tal momentum / in the range 3<«<25 are obtained in Ref.
24:

(2.13)

where the numerical coefficient a is selected so that it agrees
with the exact result for / = n — 1:

a = 0.7148 ± 0.0004. (2.14)

If we use the exact probability of a transition in the case
when / = « — 1 (see Ref. 1 ), we obtain the following expres-
sion for />0:

= 2.6759- 10" sec"1

— 2)"|2 (2n — l
Z-l) J (n —I) 2

(2.15)

Equation (2.15) ensures a high degree of accuracy so that
the maximum deviations amount to a few percent in the
range / < n/2.

If / = 0, the numerical results can be approximated sat-
isfactorily by the formula25

\
s c 07.\ns o»^~' - i^ i£ \
"O.sciu sec n"(n-M.46K (2.10)

929 Sov. Phys. Usp. 30 (11), November 1987 V. S. Lisitsa 929



Following Herrick,24 we shall describe the probability
B(nkm, «') of a transition from a parabolic state \nkrn) to
all the states of the level «':

B(nkm, n') = w(n, n') S \{nkm\r\n'k'm')\2, (2.17)
A', m'

where
2 3 ,, 1Q.

(2-18)

Then, the total probability B (k, m) of a transition from a
given Stark sublevel to all the lower levels is

n-l

B(k, m)= S B(nkm, n'). (2-19)

The corresponding lifetime is given by

T (nkm) = B-1 (A;, m). (2.20)

The formulas (2.19) and (2.20) are "parabolic" ana-
logs of the corresponding spherical quantities Anl and
Tnl = A~,1. Using the familiar relationship between the
parabolic and spherical functions given by Eq. (2.10), we
obtain an expression relating the two types of probability:

B(k, m)
l=\m\

(n, k\lm)}2. (2.21)

It follows from the properties of the Clebsch-Gordan coeffi-
cients C(n,k \lm) that the symmetry properties of the proba-
bilities are

B (k, m) = B (—k, m) = B (k, —m).

Summation over all the values of k and m clearly gives
the total lifetime A ( n ) , which is independent of the summa-
tion bases:

n-l

A(n)= S B(k, m)= S (2l + l)A(n, I). (2.23)
ft, m i=0

An important sum rule is obtained from Eq. (2.21 ) by
adding all the values of k and m in such a way that either
k + m or k — m remains constant24:

rrlA(ri)=>B(k, 0)+ m,m)

2 B(k—m, m).
m=l (2.24)

If we sum in Eq. (2.24) the values of the number k = n — 1,
n — 3,..., — (n — 1) overall n, we again obtain Eq. (2.23).

It follows from Eq. (2.24) that the distribution of the
transition probabilities in the m = 0 case is determined
uniquely by the distributions B(k,m) when mj^O. The lat-
ter are found to depend weakly on the"electric" quantum
number k. It is therefore convenient to introduce average (in
terms of "k ") values o f B ( k , m) described by

A(n, I).
i=|m|

(2.25)

Since in the m ̂  0 case we can quite accurately assume that
B(k,m) =~B(m), we can obtain B( k, 0)~5°(,0) from Eq.
(2.24), which gives

B°(k, 0) = «-
_ _

B(m)— S B(m).
m=l m=l

(2.26)

If k = n — 1, this relationship reduces to
n-l _

B°(n—l, Q)=rriA(n)—21B(m).
m=l

(2.27)

In the range of lower values k < n — 1 the quantities
B°(k,0) are found from the recurrence relationship

-2, 0) =

(2.28)

The quantities B ( m ) can be found from Eq. ( 2.25 ) by means
of the approximate expressions given in Eq. (2.13) for

n-l-mA » ( m ) , A«(l)

(2.29)

A comparison of the results for B(m) and B(k,0) based on
the use of the approximation represented by Eqs. (2.28) and
(2.29) with the results of exact calculations is made in Table
I. It is clear from Table I that these approximations are quite
accurate. Therefore, the method described above makes it
possible to determine the lifetime B(k, m) of the Stark sub-
levels of the hydrogen atom using simple analytic formulas
and thus avoid direct summation of the series in Eq. (2.21)
containing the Clebsch-Gordan coefficients.

(2.22) 2.3. Intensities of Stark components

The intensities of the Stark components are described
by the general Gordon formulas (see Ref. 1) for the matrix
elements of the components of the radius vector of an atomic
electron expressed in parabolic coordinates. However, the
application of these formulas involves very time-consuming
numerical calculations, particularly in the case of highly ex-
cited levels. The situation is also complicated by the absence
of rigorous selection rules for the parabolic quantum
numbers.

In the case of large values n > 1 we can establish simple
relationships governing the distributions of the intensities of
the components in the case of transitions characterized by a
small change in the quantum number n — n' = AH •<n which
are of practical interest. Following Gulyaev,14'26 we shall
consider these relationships in the case of highly excited
lines Hna (A« = 1) and Hn/3 (A« = 2) observed under as-
trophysical conditions.

The change A<y in the frequency of a transition in an
electric field F corresponding to the Stark component
n^m-tnln'im', is—according to Eq. (2.9)—given by

-^=w(n1-n2)-ra« («;-/#, u^^-JS-F. (2.30)

The intensities of the components are sensitive functions of
the combinations of quantum numbers K=(n,— «2)
— («( — «2) =k—k' and i=n{ — n'2 =k', where ACJ be-

comes

(2.31)
UJJT

The parameter K, which ranges from — ( 2n — 2 — An ) to
(2n — 2 — An), groups the components of 2(2n — 2 — A«)
series, each of which contains 2(« — Aw) — ( A T + 1 ) terms
labeled by the parameter /'. Figures 2 and 3 show the group-
ing of the components in the case of the H 5a and H50 and
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TABLE I. Comparison of probabilities of radiative B(i) and B(i, 0) transitions obtained using
approximation formulas (2.28) and (2.29) (columns denoted by A) with exact results25 (columns
denoted by B) for n = 10 Level of hydrogen (Ref. 24).

1
2
3
4
5
6
7
8
9

B(i)

A

1,0905
0,5472
0,3623
0,2703
0,2155
0,1791
0,1532
0,1338
0,1186

B

1,0871
0,5523
0,3658
0,2722
0,2163
0,1794
0,1532
0,1338
0,1188

B(i, 0)

A

0,4753

0,5666

0,7757

1,1891

2,1610

B

0,4806

0,5685

0,7706

1,1733

2,1473

Hbe lines. We can see that the parity (or nonparity) of the 2.3.1. Hna lines (transitions with An= 1)

The central series (K = 0) is formed by the a compo-
nents and the transitions in this case are described by the
relationships

ni = ni, nz=n2 for m-vm-1, ^^

number of A" corresponds to the a (orir) polarization of the
components of the lines Ha and Hp. The separation between
the components within the series A<y, and the separation
A&ifc between the centers of the series are

(2.32)

We shall now consider the nature of changes in the in-
tensity on increase in the number K. We shall utilize the fact
that arguments of the hypergeometric functions in Eq.
(2.12), which occur in the Gordon formulas,1 are large if
1 ~ An < w ~ n ' so that these functions can be replaced by the
last (largest) terms:

(2.33)

K—6 K=-4 K=-2 K-0 K=2 K-4 K=6

FIG. 2. Stark splitting of the H5a lines, belonging to the Bracket! series,
and of H5g and H6/3 lines.T4'26 The upper rows of lines are the a compo-
nents and the lower rows are the tr components.

„ ' _| A „» |_ A r rn

The next series (K = + 1) represents the components
for which the similar conditions are

for K= -\
for K=—\

(2.35)

Using the approximation of Eq. (2.33) and the relationships
given by Eqs. (2.34) and (2.35), we find from the Gordon
formulas the following simple expressions for the matrix ele-
ments

where b = 4nn'/(n — « ')2> 1 (to be specific, we shall as- xm-
sume that n\ ^ «, and instead of \m we shall write simply
m).

The approximation of Eq. (2.33) allows us to obtain
simple analytic expressions for the matrix elements of the
coordinate governing the intensities of the ir and cr compo-
nents. We shall consider specific transitions characterized
by A« = 1 (Hn/} lines) and An = 2 (Hn/3 lines).

(2.36)

(2.37)

i ' /2c

(2.38)

The fall of the intensity on increase of the number K is de-
scribed by the ratio

-2/7

FIG. 3. Distribution of the intensity /(«) plotted as a function of the
frequency shift Aw [in units of (3/2)ra0/"/^j for7/na lines characterized
by n> 1 (Refs. 14 and 26). The thin lines are the envelopes of the a (top
part) and TT (lower part) components and the thick line is the combined
line profile.
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(2.39)

which cannot exceed 2 8 ~ 4 X 10 ~ 3 (a similar estimate ap-
plies also to z™) . Therefore, there is practical interest only in
the nearest a and -rr series, corresponding to the first few
values of AT)."

We can calculate the intensity of a line shifted by
A<a = ci)F (Kn + /) by summing the squares of the matrix ele-
ments allowing for the remaining degeneracy in respect of m.
In the case of the central a series (K = 0) and a given value
of i, such summation yields

/?« S[(:C-OM-(zrT]«-§»2(2rc3-3^ + i3). (2.40)

Similarly in the case of the nearest TT series (K — 1), we find
that

/?« S («S)J«-f^»2('»8-r-3»*/-3/»iW-i*W). (2.41)
m

Figure 3 shows schematically the splitting of the Hna

line in the case when n > 1.
The central a (K = 0) series, the nearest TT series

(K = + 1), and the distribution of the total (summed over
K) intensity are shown in the figure. The intensity of the a
series decreases by half when the width A<u,/2 = (n/3)eaF is
reached. The intensity minimum in the -rr series corresponds
to 4A«1/2 and represents approximately 40% of the maxi-
mum intensity of the central a series.

2.3.2. Hnp lines (transitions with An=2)

In the case of the odd n the components of the TT series of
these lines never coincide with the components of the a series
(Fig. 2). Beginning from the Hbp line, the terms of the series
with K = + 1 and — 1 corresponding to the a polarization
begin to overlap. This overlap is the reason for the nonzero
intensity at the line center (A&> = 0) because the intensity of
the IT components of the central (K = 0) series vanishes for
Aw = 0.

If we follow the procedure used above for the Hna line,
we can calculate consecutively the intensities of the
series I,a (AT = 0, Am = 0), /„, (K = ± 1, Am = ± 1),
IW^(K= ± 2), etc. The structure of the Hne lines is shown
in Fig. 4, which gives also the separate contributions of the TT
and a series.21 The positions of the line maxima correspond
to frequencies obeying A<un = + 1.6n'. Their width at mid-
amplitude amounts to 2.%5ncoF. The intensity at the center is
13% of 7max irrespective of the value of «. The line half-
width is A<y,/2 = 3.6<yf.

2.4. Weak fields. Asymptotic theory of decay of an atom

The behavior of an atom in an electric field F depends
on the ratio of F to the critical intensity Fc <x 1/16n4 [seeEq.
(1.4)] at which the barrier along the coordinate rj disap-
pears for a given level n and the classical above-barrier mo-
tion of an electron becomes possible (Fig. 1). I f F 4 F c , the
barrier width is fairly wide and the energy levels of an elec-
tron are well localized, i.e., the level width F is exponentially
small. This case was treated by Smirnov and Chibisov27 who
developed an asymptotic method for the calculation of the
atomic parameters. Damburg and Kolosov28 suggested a
method based on the similarity of decay to the scattering of
an electron by a quasidiscrete level. In both cases we are

FIG. 4. Structure of the Hnf! lines in the n > 1 case.14'26 The notation is the
same as in Fig. 3. Points: a) level corresponding to half-intensity /max /2;
b) maximum intensity; c) central dip.

dealing with a resonance energy level lying against the back-
ground of a continuous spectrum (continuum). When the
electron energy E approaches the energy of a discrete level
E0, the phase <p of the wave function changes abruptly3':

r _ _ . (2.42)

Having determined the wave function, we can then find the
parameter F and the value of E0 from Eq. (2.42).

Determination of the wave function of an atomic elec-
tron in the limit of weak fields F is based in Ref. 28 on the
matching of solutions at low and high values of the coordi-
nate 77 (along which an electron can reach the continuum).

The details of the method are described fully in the re-
view of Damburg and Kolosov (see Ref. 17, p. 31). The
result is

X[n3«2!(rt2 + m)!]-', (2'43)

where R = ( - 2E0)
3I2/F. Equation (2.43) was first de-

rived in Ref. 27, but there E was assumed to be the unper-
turbed value. In fact, terms of the order of Fin the expansion
for the energy are important in the argument of the exponen-
tial function, whereas terms of higher order occur in the
correction terms. Refs. 17, 27, and 28 give the results of an
expansion of F right up to terms of the order of F 2. The
results of this asymptotic theory are in good agreement with
the numerical calculations carried out for fields of intensities

(see Refs. 17 and 28).

2.5. Classical theory of decay of an atom In an electric field

An increase in the electric field F reduces the effective
potential barrier V^ along the coordinate rj. In the case of
highly excited states of an atom we can have a situation when
an energy level coincides with the maximum of the potential
barrier, i.e., when Ec = K,max (Fig. 1 ). This critical energy
corresponds to a critical electric field Fc in which two points
of intersection of the straight line V^—E with the potential
V^ coincide (roots ?;2 and 773 in Fig. 1 merge). In this case
above-barrier emission of an electron from an atom is clearly
possible and it is allowed by the laws of classical mechanics.
Hence, obviously the critical values £c and Fc can be found
by purely classical calculations. This was done by Banks and
Leopold31 and we shall follow their treatment below.
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The separation of variables in terms of the parabolic
coordinates £ and 77 of an electron in a Coulomb field e2/r
and in an external field F makes it possible to treat the mo-
tion of an electron in effective potentials of Eq. (2.3), as
shown already in Sec. 2.1.

It is convenient to introduce momenta /?>; and ps for
each variable 77 and £, defined by

-£- + Vl(Q = E, -^-MMrl) = /s, (244)

where £ is the total energy of an electron in an atom. In the
case of bound states the value of E lies within the range
(Fig. 1)

max (F, ln) \ 0. (2.45)

In the case of this value ofE the points of intersection of the
straight line E = const with the curves representing the ef-
fective potential V- and V^ are described by cubic equations
with three roots each: £,, £2, — |"3,77,, 77 2 , and 773.

Our task is to find the dependences of the critical pa-
rameters Ec and Fc on the classical action variables 7^, Is,
and /^, representing the state of an electron in an atom. It is
convenient to derive this dependence in a parametric form
by expressing all the dependences in terms of the roots of the
equations V? = E and F, = E and then requiring that the
roots ?72 = 773 coincide for the critical values of the param-
eters Ec and Fc.

The expressions for the classical action variables Is and
/^, expressed in terms of the roots £, and 77, are

A = i = r < 5 f t d g

(2.46)

= const.

(2.47)

(2.48)

The formulas ( 2.46 )-( 2.48) together with the equations for
the roots and the condition rj2 = 773 yield a parametric rela-
tionship between the critical parameters Ec and Fc and the
action variables. This relationship can be written in the form

F , , = - < S > c ( u , v ) , (2.49)

£c=--f£-£c(«, v), (2.50)

where we have introduced the total action / = /^ + /^ + /
and the parameters u = 1^ /I and v = If /I, the values of
which lie in a triangular region defined by

A {w>0, i > > 0 , M + y< l} . (2.51)

The functions <t>c(«, v) and & c ( u , v) are generally

found by numerical solution of the above equations. In the
most interesting limiting cases the classical values of the
critical parameters are

n*Fc = 0.3834,

n*t\= |̂ -= 0.208,

c = 0 for

for n,=

foi m=«.
(2.52)

This classical method for the calculation is effective
when estimates are being obtained of the ionization of an
atom from highly excited states n > 1 and /> 1, and the gen-
eral quantum-mechanical theory meets with considerable
computational difficulties. The critical values of the param-
eters given in Eq. (2.52) are in good agreement with the
values found by quantum calculations in the relevant range
of the parameters (see Sec. 2.6 below).

2.6. Decay of states near the critical value of an electric field

The classical results obtained in Sec. 2.5 for the charac-
teristics of an atom in an electric field F can be generalized
allowing for the quantum ( tunnel ) effects in the semiclassi-
cal approximation. According to the Bohr-Sommerfeld
rules, the values of the action variables (2.46) and (2.47) are
related to the parabolic quantum numbers by

(2-53>

The conditions of Eq. (2.53) have been used frequently
in the literature (see Ref. 17). For example, Zaretskii and
Krainov32 used the relationships in Eq. (2.53) to find the
behavior of an atom in a low frequency electric field. Ka-
domtsev and Smirnov33 investigated the atomic parameters
near the critical field Fc .

We shall find, following Ref. 33, the field Fc which sup-
presses the barrier and we shall do this employing the semi-
classical quantization conditions given by Eq. (2.53), Eqs.
(2.1 ) and (2.2), and the additional condition

(2.54)

where pn is the momentum of an electron in the 77 space and
rj2 is the right-hand turning point which coincides (when
F = Fc ) with the maximum of the effective potential energy.
These equations establish a unique relationship between the
separation constants 13 , and (3 2 > the electron energy E, and
the critical field intensity Fc .

The solution of this system of equations is simplest in
the case when m = 0. For example, in the limit «2 ->0, the
solution gives33

0 ',U'
(2.55)

We can see that the zeroth order terms of the expansion
coincide exactly with the results of a classical analysis of Eq.
(2.52). In the limit «2 ̂ 0, we find that

1.750.383 [ 1 ( 2 5 6 )

(2.57)

In the limiting case these results also agree with Eq.
(2.52). The correction factors given in the square brackets
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were obtained by Drukarev18 (see also Sec. 2.7).
The solution of the system of semiclassical equations is

fairly cumbersome in the general case when m ̂ 0 and it was
obtained numerically in Ref. 32. In the case when m = n the
results of the semiclassical analysis reduce to those given by
the classical formulas (2.52).

We can now plot the critical fields Fc and the corre-
sponding energies \EC \ throughout the plane of the variables
n{ and «2 (Fig. 5). The corresponding classical results of
Eq. (2.52) are located at the corners of the triangles in Fig. 5
in the region of n s:n (if n^m).

This method allows us to calculate the rate of decay F of
an atom near the critical field |F — Fc | <FC.

The calculations reported in Ref. 33 are based on the
approximation of a barrier near its maximum by a parabola,
followed by determination of the above-barrier transmission
coefficient. We shall not consider details, but simply give the
rate of decay F for F= Fc and «2 = n:

^-3.2Tn3 In (3un/4)' (2.58)

We can see that the rate of decay is not exponentially small
(in contrast to the case when the field is weak F<£FC) and,
moreover, it is comparable with the period of motion of an
electron along an orbit.

It is interesting to estimate the ratio of the width F of a
level to its energy Ec at the critical point. According to Eqs.
(2.57) and (2.58), we have

r l „.
2.35n In (3JW/4) (2.59)

Therefore, the ratio of the indeterminacy of the energy of a
level to the energy itself amounts to 1.8X 10 ~3 for n = 50
and5 .5x lO- 3 fo r« = 20.

2.7. Semiclassical theory of atomic states in an electric field

2.7,1. Basis of the semiclassical approach

We shall consider a more general semiclassical theory
of decay of levels in an electric field, which makes it possible
to follow the smooth transition from the case of weak fields
F^FC to fields which are comparable with the critical value.
It should be pointed out that although the fundamentals of
the semiclassical theory were provided by Lanczos34back in
the thirties, specific calculations have largely remained in-
complete. Such calculations have been carried out recently,
as pointed out above, using more rigorous methods (see
Refs. 17, 18, 31, and 32). We shall follow the results of Dru-

njn

0,4

0,4 0,4

FIG. 5. Reduced values of the critical electric field Fcn* (a) and of the
level energy En2 (b) plotted in the plane of the quantum numbers n, and
n, (Ref. 33).

karev18 who carried out a consistent calculation of the ener-
gies and widths of levels by the semiclassical method.

The semiclassical theory is based on the quantization
rules given by Eqs. (2.46)-(2.48) and (2.53). If the relevant
numbers are sufficiently small so that |/w|/|«| < 1 the inte-
grals of Eqs. (2.46) and (2.47) can be represented in the
form

(2.60)

(2.61)

where we shall use the notation of Eqs. (2.5) and (2.6) for
the separation constants a, and a2 and for the field w.

In this approximation the energy E (or the effective
principal quantum number v) are functions of two param-
eters:

S= (2.62)

We shall find v by noting that the integrals of Eqs.
(2.60) and (2.61) can be expressed in terms of the hypergeo-
metric function F( - 1/2, 1/2,2, + z), =F( + z), so that

L\ = no^ (1 — zO F (— Zi), L2 =

where

»~

(1 + z2) F (z3),

(2.63)

__
2~ 1-H1 — 16a2u>)V2 ' (2.64)

Using the quantization conditions of Eqs. (2.60) and
(2.61), we obtain

(2.66)

«i=U=]
Hence, it is clear that

We shall next express alw and a2w in terms of z, and z2

using Eqs. (2.64) and substitute expressions from Eq.
(2.65) for a, and a2, which yields

4 (!-« (2.67)

It follows from the last relationship that the maximum value
is attained at z2 = 1 and it is

(2.69)

The value w,. clearly determines the critical field Fc and we
can find this field if we know the energy E (parameter v).

If we use Eq. (2.69), we can reduce Eq. (2.68) to

3nV"2
(2.70)
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2.7.2. Energy levels

We shall now find the equations for the determination
of the effective principal quantum number v = ( — 2E)1/2.
We shall do this using the relationship a, + a2 = v between
the separation constants in Eqs. (2.65), which yields the
relationship between v/n and the parameter S [Eq. (2,62) ]
and the variablesz, andz2 [Eq. (2.64)].

The relationships (2.67) and (2.68) then give two other
equations relating the parameters T, S, and v to the combina-
tions of the functions F( — z ,) and F(z2). These three equa-
tions and simple transformations yield the parametric rela-
tionship between v/n and the parameters 5 and T (Ref. 18):

,'\ T— T (7 7\ (271)5jjJ, 2 — J. \*J, *2/' V *•• ' * y

The procedure of finding v with the aid of the system of
equations (2.71) reduces to the following: given S and T, we
use Eq. (2.7) to find z, and z2; substituting them in the
expression for v/n, we then find the required quantity. In
general, this procedure is carried out numerically. In Ref. 18
the dependences of z, andz2 on T were reported for different
values of 5. Some of the numerical data on the parameter v/n
can be found in Table II.

We shall now compare the results of the semiclassical
theory [Eq. (2.71) ] with those obtained by classical calcula-
tions [Eq. (2.52)] in the case when m = 0, «2 = n, and
F = Fc (see Ref. 18). We shall do this by assuming that the
parameter z2 in Eq. (2.71) is unity, which corresponds [ac-
cording to Eq. (2.64)] to the critical value F=FC

(w = wc). Bearing in mind thatF(z2 = 1) = 8/37Tis given
by Eq. (2.71), we obtain v/n = 37rX2"7/2 and hence the
energy E = — v272 is exactly equal to the classical value of
Eq. (2.52). Using then Eq. (2.69), we find the critical field
Fc = wc v~3, we can see that is also agrees with the classical
estimate of Eq. (2.52).

2.7.3. Decay rates

A calculation of the rate of decay F in Ref. 18 is based
on finding the asymptotic form of the wave function based
on the semiclassical method.35 Determination of the asymp-
tote of the semiclassical function is related to the problem of
determination of the penetrability of the potential barrier
V( y) in the y space. This problem can be solved exactly
either for a barrier of parabolic shape or in the limiting case
of low penetrability (large width) of the barrier. In our case
the barrier shape is nearly parabolic near its top, far from the
top the penetrability is weak. Consequently, we can derive a
single analytic expression which is approximately valid for
any barrier penetrability.

IfK and 4> are the parameters governing the penetrabi-
lity and the phase of the wave function,

(2.72)yi

where j>, 2 are the turning points to the left and right of the
barrier [p( y) is the momentum in the.y space], an approxi-
mate expression for F becomes

,-2K [»(*),.}"• (2.73)

The physical meaning of Eq. (2.73) is clear: the rate of
decay F is proportional to the frequency of motion of an
electron in a potential well (dQ/dE)^ multiplied by the
decay probability e~2K on approach to the barrier. Both
these parameters can be expressed, by analogy to Sec. 2.7. 1,
using analytic functions h(z2 ) and g(z2 ) related to the hy-
pergeometric functions

r— e x P(— gfa)/»>] (2 741
v»Mz2) •

The general form of the functions h and g can be found
in Ref. 18. In the case of weak fields F<^FC we can use the
relationship (2.64) between the parameter z2 and the field
w, which readily yields an asymptotic expression for the de-
cay parameter F which is identical, as expected, with the
results of the asymptotic theory.

When the field F is close to the critical value
FC(FC — F^FC ), the parameter z2 is close to unity: 1 — z2

< 1 . We then have

The limiting value of the function h ( 1 ) is

h (1) = 1/2 [6 - In (32 YZ wc) - ¥ ( -i. ) ]

(2.75)

(2.76)

(* is the logarithmic derivative of the F function). It is
interesting to compare the value of F at the point F = Fc

with the results given by Eq. (2.58) in Sec. 2.6. Substituting
Eqs. (2.75) and (2. 76) into Eq. (2.74), we find that the two
results for the line width diverge by a factor of about 2.5.
This divergence may be entirely due to the difference
between the analytic approximations (see Ref. 18).

A comparison of the results of the semiclassical theo-
ry'8 for the parameters v and F with the quantum-mechani-
cal calculations28 is made in Table II (based on Ref. 18).

2.8. Results of numerical calculations

Numerical calculation methods have been developed in
several papers 29'36~38 and their results agree generally quite
well with one another but they differ considerably from the

TABLE II. Comparison of quantum-mechanical28 and semiclassical1" calculations.

B=5 f = 18.10-*
n = ll F = 10~6

n=15, F = 3-10-6

v

Ref. 28

4,9240
10,6882
14,5771

Ref. 18

4,929
10,722
14,619

r, io-6 sec"1

Ref. 28

2,282
2,815
1,338

Ref. 18

2,55
3,3
1,74
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results of calculations carried out using the earlier method of
Lanczos (see Ref. 17). The numerical results can be repre-
sented conveniently ( for many of their applications ) in a
semianalytic form based on perturbation theory in respect of
the field.37 The energies E(n,,n2,m,A) and the widths
r ( H , ,n2,m,A ) of Stark sublevels can be written in the form of
power series in terms of the parameter /I = n3F/4:

£(«!, «2, m, X)= — -

(2.77)

where the coefficients cp are found by perturbation meth-
ods.37 The first three coefficients are described by

c3=-3(«1 — raj)[23n2— (re,— «2)
2+ Hm2 + 39].

(2.78)

The first two correspond clearly to the familiar linear and
quadratic Stark effects. The coefficients cp are given right up
to the ninth order41 in Ref. 37.

Analytic expressions for the widths F of levels are close-
ly related to the frequency of motion of an electron in a po-
tential well governed by the derivative 9E/dn2:

m,

100O 2000 3000 4000
Field intensity, V/cm

5000 6000

FIG. 6. Stark splitting of a highly excited lithium atom.38

The relationship (2.81) is deduced from the condition of
analyticity of the energy in the plane of complex values of the
field F (for details see Ref. 37, p. 328).

A comparison of the coefficients ak with the coefficients
cp from Eq. (2.81 ) makes it possible to obtain the following
relationship for the function K:

K fanjnK) = ! (nz + m)!

, X); n,, m, (2.79)

The function K( nl,n2,m,A ) clearly describes the barrier pen-
etrability. The derivative dE /dn2 is found by differentiating
the series of Eq. (2.77).

The function K describing the barrier penetrability can
be found using an asymptotic series for T of the type (see
Sec. 2.4)

r /» „ ~ i \ — e*pf3(ni-na)-(l/6X)] V /
" I ~

(2.80)

where the coefficients ak(n,n2m) are expressed in terms of
the coefficients of Eq. (2.77) using the dispersion relation-
ship

= -g- [P (lyij ( - 1)"

(2.81)

(2.82)

It therefore follows that the coefficients cp tabulated in
Ref. 37 allow us to find the energy levels of Eq. (2.77), the
frequencies of motion inside a barrier, and also decay half-
widths from Eqs. (2.79) and (2.82).

Table III is based on Ref. 37 and it compares the results
of numerical calculations of Refs. 28 and 37 for the rates of
ionization of a level with n — 10 and also the data of Ref. 36
based on the Lanczos theory. We can see that the data of
Refs. 28 and 37 agree well but they differ considerably from
the earlier results36 based on the Lanczos theory.

Figure 6 shows the Stark structure of a highly excited
lithium atom.38 It illustrates a set of Stark components cor-
responding to the projection of the quantum number

TABLE III. Rates F of ionization of states corresponding to the n = 10 level in an electric field.37

7llTl2f

090

900

F, i o* V/cm

4,058
4,603
5,178
5,814
8,082
9,134

1Q,,81

r, sec '

Ref. 36

8,236(2)
8,015(5)
1,425(8)
7,560(9)
1,539(7)
8,525(8)
1,802(10)

Ref. 28

7(6)
1,310(9)
6,707(10)
6(6)
3,170(8)
6,585(9)

Ref. 37

6,889(3)
7,090(6)
1,344(9)
7,611(10)
5,802(6)
3,272(8)
7,675(9)
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m = 1. This set (because of the smallness of the quantum
defects of the/? states) is very close to the pattern of the Stark
splitting in hydrogen. A discrepancy is observed only in the
case of the weakest fields when the quantum defect of the p
levels is important. We can see clearly the pattern of crossing
of the Stark components of various levels. The repulsion
between the crossing terms is due to the nonzero value of the
quantum defect and on the whole it rises on increase of this
defect.5' In contrast to nonhydrogen atoms, a nonrelativistic
theory of the hydrogen atom admits exact crossing of levels.
This is possible because of an additional degeneracy: the
crossing levels have not only the parabolic quantum
numbers n, and m, but can have different values of the addi-
tional integral of motion which is the constant of separation
of the variables a j 2 [Eqs. (2.1) and (2.2)].

On the whole the calculated pattern of the Stark split-
ting agrees very well with the experimental results.17'38

3. ZEEMAN EFFECT

3.1. Atom in a magnetic field

3.1.1. introductory comments

One of the effects of a magnetic field B on an atom is the
well-known Zeeman splitting of atomic levels into separate
components corresponding to specific values of the projec-
tion of the orbital momentum m of the atom along the direc-
tion of the field B.

The characteristics of the Zeeman effect which are in
particular due to the spin-orbit interaction have been de-
scribed in detail in a number of textbooks and mono-
graphs.'~3 Therefore we shall consider only the less well-
known aspects of the effect observed at high values of the
field B.

The application of a magnetic field to an atom imposes
an additional constraint on the motion of an electron across
the field and when this field is increased still further, there is
a strong reduction in the transverse motion of an electron
and consequent transformation of a three-dimensional po-
tential well of an atom into a one-dimensional well. A con-
siderable change in the energy spectrum of an atom may
follow.

We shall initially consider the first-order Zeeman effect
in the case of the simplest zero-spin one-electron (hydro-
gen) atom. The Hamiltonian of a perturbation V due to the
interaction of the orbital momentum 1 of an electron with the
field B is

V = -MB, (3.1)

where/^B = efi/lmc is the Bohr magneton.
The eigenvalues of the energy can be found (i.e., the

perturbation of Eq. (3.1) can be diagonalized) simply by
selecting the wave functions corresponding to a specific pro-
jection of 1 along the direction of B. Usually these functions
are spherical wave functions Vnlm corresponding to specific
values of the total angular momentum / 2 = /(/ + 1) and on
its projection /, = fun. In the case of the hydrogen atom the
Zeeman sublevels corresponding to a specific value of m are
degenerate in respect of the quantum number /. This special
feature of the Coulomb degeneracy is manifested also by the
fact that the wave functions of Eq. (3.1) which become diag-
onalized can be parabolic wave functions ¥„,„, with the Oz
axis along the field B. In view of the relationship

" i + n2+ m\ = n — I corresponding to a given value of m
these states remain degenerate with the values of «, and «2

corresponding to the constant sum n, + «2- Therefore, the
Zeeman component of a hydrogen level is characterized not
by one but usually by several wave functions. The intensity
of the component is governed by the sum over the degenerate
states and this sum should no longer depend on the selection
of the basis (spherical or parabolic quantization).

In the simplest case of the La line (representing the
2 — 1 transition) the state with m = 0 corresponds to two
parabolic functions with n, + «2 = 1 and two values of
n, — «2, which amount to + 1 and — 1 and which represent
two different projections of the dipole moment of the atom
along the field B. Clearly, the sum of the intensities of the
transitions from these two states is equal to the intensity of
the transition from one "spherical"/? state characterized by
/ = 1 and m = 0. In general, the transition from the parabol-
ic to the spherical basis is described by the formulas in Eq.
(2.10).

3.1.2. Energy spectrum of lower states

We shall consider briefly the evolution of the lower
states of the energy spectrum of a hydrogenic atom when the
magnetic field B is increased to values comparable with (or
exceeding) the intraatomic electric field. This evolution has
become important, as already mentioned, in connection with
the absorption spectrum of excitons, which are excitations
characterized by a very low electron-hole binding energy
(because the permittivity of the medium is high and the ef-
fective mass of an electron in the medium is small): this
energy is comparable with the energy of an electron in a
magnetic field of moderate intensity (10-102 T). We shall
introduce the following parameter as a measure of the field
intensity:

; 4.26- 10-s B (T), (3.2)

where Rys; 13.6 eV is the Rydberg constant.
The Hamiltonian of such an atom in a field B is6'

—7-. (3.3)

In view of the invariance of H relative to orientation about
the Oz axis, parallel to the field B and passing through the
nucleus of the atom, the z component of the orbital angular
momentum Lz = — fiM is conserved. Introducing a cylin-
drical coordinate system Oz||B and bearing in mind that the
dependence of the wave function * on the angle of rotation
about <p the z axis is trivial, * a elM<p we can write the Schro-
dinger equation in the form

L 9p2 ' p ap az8 pa

«)-0. (3.4)

The two-dimensional equation (3.4) cannot be solved ana-
lytically in its general form because the Coulomb interaction
term containing r — ( p 2 + z2)1 / 2 prevents separation of the
variables. We shall therefore demonstrate the nature of the
solution for y < 1 and y& 1 and obtain some approximation
formulas for the transition range y~ 1.

If 7< 1, allowance for the terms containing y can be
made by using perturbation theory. In the case of the ground
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state of the hydrogen atom, this gives4

The expression (3.5) agrees well with the results of numeri-
cal calculations up to y~Q.l (i.e., up to5~104T). Similar
results were reported in Ref. 40 for the case when n = 2.

If y> 1, the motion of an electron across the applied
magnetic field is governed by the size of its cyclotron orbit
A. = (fic/eM)1/2, whereas along the field it is determined by
the Coulomb interaction. The potential of this "longitudi-
nal" Coulomb interaction can be obtained by averaging the
total Coulomb potential e2( p2 + z2) ~ ] / 2 over the small pa-

I

r<-

rameter of transverse motion. Therefore, bearing in mind
that on the average we have ( p 2 ) ~A < (z2), we may assume
that the longitudinal motion of an electron occurs in a one-
dimensional Coulomb potential.

Successive separation of the transverse and longitudinal
types of motion in Eq. (3.4) when/> 1 can be achieved if the
wave function *(/?, z) is represented as the product of the
wave function * NM ( p) of the transverse motion of an elec-
tron in the applied magnetic field and the function %'NM (z)
of its longitudinal motion in a one-dimensional "longitudi-
nal" potential.

The transverse motion of an electron in a magnetic field
is equivalent, as demonstrated by Eq. (3.4), to the motion of
an oscillator whose wave functions are well known2'7:

(3.6)

where N =0, 1, 2, ... are integers governing the number of
energy (Landau) levels in a magnetic field; M \ <,N; L ^(0)
are the Laguerre polynomials; cr=p2/2A.2. Consequently,
the energy levels of the transverse (oscillator) motion of an
electron are

The equation for the wavefunctions X'NM (z) of the lon-
gitudinal motion is obtained from Eq. (3.4) after averaging
over the transverse-motion functions of Eq. (3.6) (Refs. 6
and 7):

where the energy of the longitudinal motion E2
NM. should be

added to the energy of the transverse motion of Eq. (3.7)
and the average potential is given by

(*) = J (P) (P) P dp . ( 3.9 )

The explicit form of the potential (3.9) is not too complex,
so that Eq. (3.8) can be solved analytically. However, it can
be approximated satisfactorily by a function of the type7

V(z)= — a
 e\ + a^

el 2 (3.10)

where the size a~A and the coefficients A are selected for
each NM so as to approximate best the true potential of Eq.
(3.9).

If the parameter a is sufficiently small, the potential
F(z) is close to a one-dimensional Coulomb potential e2/\z\,
as demonstrated by Eq. (3.10). Therefore, by analogy with
the three-dimensional Coulomb problem, we shall write
down the longitudinal energy E Z

NM . in the form

E\NMn' =
Ry (3.11)

where the effective "principal quantum number" K* is ob-
tained from the boundary conditions.

Introducing next a variable x = (mc2/fi)"2[(a + z)/
n*] and retaining only the first term in the potential of Eq.
(3.10), we can reduce Eq. (3.8) to the form

I
the solution of which is in the form of Whittaker functions
WnA/2(x)- Bearing in mind also that the potential F(z) does
not change as a result of the substitution z— — z, we find
that the solutions of Eq. (3.12) should be either even or odd
in respect of z. The requirement of continuity of the func-
tions and of their derivatives at z = 0 yields the following
condition for the odd states:

(3.13)

whereas in the case of the even states, we obtain

1 *".'/« 2=0
(3.14)

The conditions (3.13) and (3.14) give the values of the
numbers «* governing the number of nodes of wave func-
tions and the sequence of the energy levels.

In the limit 7-. oo all the energy levels of the longitudi-
nal motion are hydrogenic, i.e., we have n* = 1, 2,. . . , with
the exception of the ground state the energy of which de-
creases logarithmically on increase in y [see Ref. 2, Problem
3 in §112; also Eqs. (3.70) and (3.71) below].

There is a unique relationship between the states in
weak and strong magnetic fields. This relationship is found
by calculating the number of nodes of a wave function in
both limits of weak and strong fields. In fact, an increase in
the magnetic field deforms the spherical symmetry of the
hydrogen atom to the cylindrical symmetry. Bearing in
mind that a free atom is characterized by np = n — I — 1
nodes of the radial wave function, corresponding to np nodal
spheres, and that there are / — \M\ nodes of the angular
function corresponding to cones with the z axis, and also
recalling that in a strong magnetic field we have correspond-
ingly N— [( M\ + M ) / 2 ] nodal cylinders (p = const)
and 2n* (for even states) or 2«* — 1 (for odd states) nodal
planes intersecting the Oz axis, we find, following Prad-
daude41:

l—\M\=2n* —even,

= 2ft* — 1 _ odd,
\M\+Mn-l—l=N— = M. (3.15)

(3.12) For example, the lower even state with N = 0, M = 0, and
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«* = 0 corresponds to n = 1,1 = 0, and M = 0 of the hydro-
gen atom.

The dependence of the energy E on the parameter 7 is
described by the formula

2«* (3.16)

The behavior of the first few levels was calculated by Ga-
lindo and Pascual40 using approximate formulas based on
interpolation between the limits y->0 and 7-* oo.

It should be pointed out that the problem of correspon-
dence of the terms and the possibility of their exact crossing
has not yet been solved. A magnetic field does not separate
the variables (in contrast to an electric field) and the only
quantities (apart from the energy) which are conserved are
the projection of the momentum and parity. In this case it
would seem that the Wigner-Neumann theorem on non-
crossing of terms should apply (see 79 in Ref. 2). However,
in the case of an atom in a magnetic field there is an addi-
tional approximate integral of motion (see Sec. 3.3) which
can give rise to exact (or negligibly repelling) crossing of
terms. Until the problem is solved finally, we shall follow the
identification of the terms given above. This topic is dis-
cussed in Ref. 42.

3.2. Adiabatic theory

The results of Sec. 3.1 make possible an interesting gen-
eralization to large quantum numbers n corresponding to
the motion in a Coulomb well or to rapid motion in a mag-
netic field (A> 1). This was done by Zhilich and Monozon44

and we shall follow their treatment below.
The approach adopted in Ref. 44 is based on the slow-

ness (adiabaticity) of the motion of an electron along a mag-
netic field (z axis) compared with its motion in a transverse
plane. Comparing the classical frequency of motion in a
Coulomb field con = /ne4//z3n3 with the Larmor frequency
<«L = eS /me, we obtain the condition

.
-1 * (3.17)

The condition (3.17) of slowness of motion of the z coordi-
nate ensures retention of a parametric dependence on z in the
wave functions describing the transverse motion, i.e., we can
assume that

iNn (P, Z) = RN (p, z) WNn (Z). (3.18)

Then, Eq. (3.4) yields the following equations for RN and
WNn:

i a
P dp dp

(3-19)

(3.20)

where the eigenvalues q2
N(z) can be found in the «> 1 case

from the Bohr-Sommerfeld quantization conditions

P,(z)

__^1— 4yVj
1/2

[pi(z) <p2(z) are the classical turning points representing
the roots of the integrand above].

Simple results are obtained from Eq. (3.21) in two
limiting cases of |z|>/?2(0) and z|<p,(0).

If z[>/92(0) then Eq. (3.21) yields an expansion for
the eigenvalues

(2N+\m\ (3.22)

which determine the form of the effective potential in Eq.
(3.20). We can replace this potential by a more general
expression of the type

2 a 2
(z2 + b|y)V2 ' y ^ ' ' '' ( J . £ j )

which is identical with Eq. (3.22) apart from terms of the
order of |z|~3 if z^bN. After this substitution Eq. (3.20)
becomes

n(*) 7w»(*) = 0, (3.24)

(3.25)

If B^ oo, Eq. (3.24) clearly reduces to Eq. (3.12) with a
one-dimensional Coulomb potential which has the solutions
given by Eqs. (3.13) and (3.14). The parameter bN deter-
mines the size of that region along z in which the potential is
close to the Coulomb form. Clearly, the size of the Coulomb
well decreases more and more as the number N is increased.

Inclusion of corrections of the next order in respect of
the adiabaticity parameter (3.17) makes it possible to find
the quantum defects 6nug for levels due to deviations of the
field from the pure Coulomb form:

,_, ^ 1

g)2 (n = 0, 1, 2 ...). (3.26)

The quantities 8nus are found for even and odd states
on the basis of the solution of Eq. (3.24) [which reduces
after the substitution x2 = \p2

Nn (z2 + b 2
N), to an equation in

terms of Whittaker functions], subject to the quantization
conditions of Eqs. (3.13) and (3.14). The result is44

6wu = 2bN, (3.27)
lJjr-p- (3-28>

Therefore, each doublet level of the hydrogenic atom in
a magnetic field splits into two levels corresponding to the
quantum defects described by Eqs. (3.27) and (3.28). In the
limit B^ oo the two conditions merge to form a doubly de-
generate hydrogenic level of Eq. (3.16).

If |z <^o, (0) we can substitute in the quantization con-
dition of Eq. (3.21) an expansion directly in powers of
(z/p)2. It is easiest to obtain the solution for the case when
M = 0 [corresponding top,(0) =0] by assuming that the
parameter q2

N (proportional to N) is large:

P2 (0) P§ (0)

(3.29)

Solving Eq. (3.29) by the method of successive approxima-
tions, we obtain

r TV

(3.21)

z2. (3.30)

We can see that the effective potential along the z axis
coincides in this case with the oscillator potential. The equa-
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tion for motion along the z axis becomes

(3.3D
where the characteristic frequency of ClN electron motion
along the z axis is

(a.u.), (3.32)Y3/4

while

(3.33)

The spectrum of energy levels E is identical in this case
with the oscillator spectrum44:

eB -\ 1/2heB \ ,-«
~

(3.34)

The spectrum of Eq. (3.34) is obtained if the frequency flN

is small compared with the Larmor frequency, i.e., when
QN I mVc \ l / 4

<1- (3.35)32&3B7V3

Therefore, the spectrum of bound electrons at a suffi-
ciently high Landau level JV> 1 varies continuously from the
oscillator type in the case of low-lying levels to highly excit-
ed hydrogenic levels («>1), which become denser at the
limit of the series (Fig. 7).

3.3. Level crossing and "latent" symmetry of an atom in a
magnetic field

The Hamiltonian H of a hydrogen atom in a magnetic
field B directed along the z axis is

A p2 1 1 C /1"2i^

where lz is the operator representing the projection of the
orbital angular momentum / along the direction of the mag-
netic field B (Oz axis); ca -B /c (a.u).

The equations of motion of an atomic electron in a mag-
netic field do not allow separation of variables in any coordi-
nate system (in contrast to the electric field case) and, con-
sequently, these equations do not contain additional
integrals of motion of the type represented by constants of
separation of variables. Therefore, when the Zeeman struc-
ture of one of the levels overlaps the structure of another

0,067

0,OSt
1000 2000 z, a.u.

FIG. 7. Energy levels of an excited atom in a strong magnetic field corre-
sponding to a sufficiently high Landau level.

Of S,103T

FIG. 8. Crossing of Zeeman energy sublevels E (cm ') of an atom on
increase in a magnetic field B in the case of small values of the principal
quantum numbers.45

level at the crossing points, we cannot expect exact coinci-
dence of the energies (as found in an electric field). Never-
theless, numerical calculations of the Zeeman structure car-
ried out by Zimmerman, Kash, and Kleppner45 revealed an
approximate symmetry of the hydrogen atom in the applied
magnetic field. It was manifested by a strong (exponential)
fall of the splitting &En at the points of crossing of the Zee-
man sublevels as a function of the principal quantum num-
ber «. Figure 8 (taken from Ref. 45) shows the pattern of
crossing of the Zeeman sublevels at low and high values of
the quantum number «. Clearly, "anticrossing" at low val-
ues of n changes to a pattern of almost complete crossing on
increase in n. Figure 9 shows how the value of A£n varies on
increase in n in the case of crossing of the outer components
(continuous line) and of the outer with middle (dashed
line) Zeeman components. The dependence on the level
number is clearly exponential.

Among the many proposed explanations45"49 of the ap-
proximate symmetry, we shall consider the results of Solo-
v'ev47 who attributed the observed change in A£n to the
presence of an additional integral of motion A for a hydro-
gen atom in a magnetic field (see also the paper of Her-
rick48).The integral A can be obtained, following Ref. 47,
using classical equations of motion for the orbital momen-
tum and the Runge-Lenz vector A = [pX/] — (r/r) (see
Ref. 50) in a magnetic field (p = x + y)

Pll + tptrp]]}- (3.37)

Averaging Eq. (3.37) over the period of motion along an
unperturbed trajectory (Kepler ellipse), we obtain a system
of equations describing the change in the trajectory under

a f

o) " ^ 6 \_ 10 tt »^ 16 fS 20 rr

-Z

-3

FIG. 9. Variation of the splitting A£n at crossing points of Zeeman sub-
levels plotted as a function of the principal quantum number n (Ref. 45).
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the influence of a magnetic field.
These equations can be used to demonstrate the exis-

tence of an integral of motion

A=4A2-54°, (3.38)

which is conserved together with the energy E and the pro-
jection of the orbital angular momentum lz. Conservation of
A applies right up to terms of the order of a>4. Bearing in
mind that A1 varies in the range 0<^42<1, we can find the
range of variation of A: — 1<A<4.

The integral of motion A gives rise to additional condi-
tions on quantization of angular variables. Let us assume
that 0 is the angle between the vectors B and A; then,

A = A2 (4 - 5 cos2 6). (3.39)

If A = 0, the vector A is on a double conical surface de-
scribed by the condition cot 90 = 2. The conservation of A
means that all the trajectories of motion can be divided into
two classes: trajectories within a double cone (if 0<0<00;
77- - 6>0<0<77-) or outside it (if <90<0<77 - 9). We can write
down the quantization conditions if we introduce a general-
ized momentum, which is canonically conjugate to the coor-
dinate 6. This is clearly the component of the orbital angular
momentum 1 L ( 6 ) , perpendicular to the plane of the vectors
B and A. Expressing 1L in terms of the integrals of motion
m, E(n = — 'flE), and A, we obtain47

= [«2- Ua (6)]1/2

l-5sin»«

(3.40)

The eifective "angular" potential U e f r ( 9 ) is plotted in Fig. 2
for the cases A.<0 (a) and A > 0 (b). We can see that the
presence of an additional integral of motion results in sharp-
ly divided regions of classical motion, defined by the roots of
the effective potential 0„ ..., 66. If A <0 the Bohr-Sommer-
feld quantization conditions can be written down separately
for the upper and lower parts of a double cone:

(3.41)

- (ft = 0, 1, 2 . . .).

(3.42)

72(A)= J
6;

If the potentials in this case are identical, the resultant equa-
tions are doubly degenerate. From these states, localized in
the upper and lower parts of the cone, we can construct wave
functions which are symmetric and antisymmetric relative
to the (x,y) plane.

If A > 0, the states are nondegenerate and the quantiza-
tion condition becomes

7,(A)= (3.43)

The integrals (3.41)-(3.43) cannot be calculated analyti-
cally in general. The maximum value of/, (A) is obtained for
A = 0 and it determines the total number of states

N = 4- [/, (0) + 72 (0) -f /3 (0)] = n - m, (3.44)

which is identical with the exact quantum number of states
with given values of n and m.

In the first (in respect of &>2) order of perturbation theo-
ry the energy is expressed in terms of the period-average
value of p2 = x2 +y2. Calculating this average with the aid
of equations for an unperturbed trajectory, we find that47

„ „ co2 -, 1 , o^re2 , , , , , , A , ,-i*c^/?==£„+ -=- p2= —jTH—r~ (n2 + m2-\-n2Ak). (3.45)

The greatest interest lies in the outer Zeeman components
which are the first to experience crossing. These sublevels
correspond to the lower levels in the effective potentials in
Fig. 10 and they can be determined using the parabolic ap-
proximation of the potential near its minimum. This gives

{15 (2ft + I)2 11/2

— 1/5 (2ft +1)} ' ( f t = 0 , 1, 2 ...). (3.46)

In going over to quantum mechanics the integral of mo-
tion A is replaced by the operator A which commutes with
the Hamiltonian in the subspace of the wave functions with
given values of n. This can be demonstrated by expressing
the operator/?2, which occurs in the Hamiltonian, in terms of
A. This relationship makes it possible to construct also wave
functions which diagonalize the Hamiltonian of Eq. (3.36)
in the subspace of states with a given n. Such construction is
possible because of the separation of variables in elliptic-
cylindrical coordinates for the hydrogen atom in the case
when the independent variables are the operators lz and the
quadratic combinations of the Runge-Lenz vector. We shall
not consider the explicit form of these functions, but direct
the reader to Refs. 47 and 48, and to the work cited there.

The approximate symmetry of the hydrogen atom asso-
ciated with the presence of an additional integral of motion
A, found in Ref. 47, accounts for the relationships deduced
from numerical calculations (see Figs. 8 and 9). Indeed, as
can be seen from Fig. 10, in the case of states with different
values of A the splitting at the level quasicrossing points is
governed by the penetrability of a classical barrier and if
«> 1, the splitting should be exponentially small. Calcula-
tions of the splitting &.En carried out in this way give the
result (Ref. 47)7):

; exp | —n In -=-

; e x p ( — 1.92«).

U/5 + l)]}

(3.47)

FIG. 10. Eifective angular potential Ueir(6) for different values of the
integral of motion A <0 (a) and A > 0 (b) based on Ref. 47.
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Equation (3.47) indeed demonstrates an exponential fall of
the splitting on increase in n, which is close to the calculated
data in Figs. 9 and 10.

An interesting approach to a calculation of the quadrat-
ic Zeeman effect was developed by Braun5 ' and also by Ka-
zantsev et a/.52 It is based on the following property of the
matrix elements of the perturbation operator V=xi-\-yi

expressed in terms of parabolic coordinates (when the axis
Oz is parallel to B):

: arccos

X(2fl —

- = 0 when !«i — «il>2.

= «,+ n2 = n — \m\ — 1.

(2a- »t

(3.48)

Writing down the wave function with a given value of n as an
expansion in terms of parabolic functions *„,„,„, with the
coefficients Cni and using the property described by the sys-
tem (3.48), we obtain recurrence relationships for the coeffi-
cients €„

(3.49)

where the eigenvalues % are related to the energy E of an
atom by

J_
4

E = (3.50)

Following Ref. 5 1 , we shall obtain the quasiclassical solution
of Eq. (3.49) at high quantum numbers «, ̂  I. We shall do
this by representing Ck in the form of the product:

H.)

where the functions Hs play the role of the classical momen-
tum in the space of parabolic quantum numbers.

Substituting Eq. (3.51) into Eq. (3.49) and using the
condition n, > 1, we reduce the recurrence relationships to a
quadratic equation of the type

Pn, + (">„, — g) ft,,, ~ Pn,+ iuj1 = 0, (3.52)

the discriminant Dn of which has the approximate form

A,, (3-53)

The functions U ̂  play a role similar to the potential energy
in the Schrodinger equation and, after allowance for Eq.
(3.48), these functions are described by

[/,?, = 3ra2— m.2 + 1 — 12 (a — n,)2

(3.54)

If the energy & lies within the interval V ~ < % < U + ,
then Z)ni <0 and the classical momenta IIS in Eq. (3.51)
become

= arccos B,, (3.55)

The expressions obtained for the "momenta" FI k can be used
also to find the energy ff by applying the Bohr-Sommerfeld
quantization rules:

(3.56)

where N = 0, 1, 2,... is an integer.
The nature of the spectrum depends on the potential

curves U * governed by the projection of the momentum m.
For example, if m = 0, these functions become

f/;i«5n2-20(n1-a)2, U^ « «2-4(n,-a)2, (3.57)

i.e., they represent two inverted parabolas with the center at
the point n, = a. Classical motion occurs in the range limit-
ed by the upper (U +) and lower (U ~) parabolas. At values
of the energy $ less than the maximum of the lower parabola
(U ~ < 8? <max£/n~ = n2) the motion occurs in two sym-
metric potential wells separated by a maximum U ~. In view
of this symmetry the Zeeman sublevels are doubly degener-
ate. The difference between the energies of these levels
&g — %> u is determined by the barrier penetrability and is
described, as in the ordinary coordinate space, by a phase
integral between the turning points in the subbarrier region.
The doublet splitting of the levels disappears for a sufficient-
ly large value of \m\ > «/VJ, corresponding to the region of
motion without maxima.

Calculations51 of the energy "S' „ and of the splitting
ftg — %?u in the case when m = 0 give the following results.
The energy of the lower (doublet) levels deduced from Eq.
(3.56) is (N=0, 1,2,...)

2IV+1

The corresponding splitting is given by

x « P f — »
L 5

(3.59)

The formulas (3.58) and (3.59) are strictly valid if
, but a comparison with numerical calculations51 shows

that they are highly accurate even for N~n.

3.4. Oscillator strengths of transitions

A calculation of the oscillator strengths in a weak mag-
netic field was carried out by Clark and Taylor46 by pertur-
bation theory methods. Evolution of the oscillator strengths
/„„. of the Zeeman components on increase in the magnetic
field B is such that when the Zeeman structures of different
levels overlap, there is no significant change in/nn.: the com-
ponents "penetrate" each other freely. As pointed out in Sec.
3.3, this is one of the proofs of the existence of an additional
symmetry of an atom in a magnetic field.

The oscillator strengths in ultrahigh magnetic fields
have a strong anisotropy due to the existence of a preferred
direction B\\Oz (related to the direction of revolution of an
electron). A calculation of the oscillator strengths in fields
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in the range B^>B0 > 105 T based on a general adiabatic theo-
ry in Sees. 3.1 and 3.2 above was carried out by Hasegawa
and Howard.7 Following Ref. 7, we shall consider the oscil-
lator strengths for the absorption and emission of circularly
polarized light in the xy plane:

'i^i)!8. r± = x±iy, (3.60)

where *, and ̂  are wave functions of the type described by
Eq. (3.18), and E, are the energies of the levels.

It is convenient to introduce generalized momenta ir ±

and the coordinates X, Y of the center of a cyclotron orbit of
an electron:

X = x — — nv, Y = y + -^-nx, (3.62)

where A = cfi/eB is the radius of the cyclotron orbit. The
variables ira, X, and Y obey the commutation relationships

[n,, jig = - = a2, [BB, X] = K, rj = 0.

(3.63)

The wave function of the ground state *„ (usually em-
ployed in variational calculations) has the structure

(3.64)

where a1 is the transverse size of the orbit approaching the
value A in the limit B-> oo and a^ is the longitudinal size,
which is of the order of the Bohr radius a0.

Using the operators va and the completeness of the sys-
tem of functions *P,-, we readily derive the following rule for
the oscillator strengths:

Ĵ (fl ' \J*\tJ}

In the case of the ground state (/ = 0), using the function
(3.64), we obtain

V t± l _,_ BJLZj /o-j — -ij-i-jp-. (3.66)
;'
We can see that in the limit B -» oo the sum of the oscilla-

tor strengths for the left-hand circular polarization (LCP)
tends to unity, whereas for the right-hand circular polariza-
tion (RCP) it tends to zero.

The matrix elements of the wave functions $NM of an
electron in a magnetic field are found using the standard
properties of the operators IT ± , X, and Y which are used to
describe the relevant coordinate:

(3.67)

The remaining factors of/), are governed by the overlap inte-
grals of the wave functions FNMn of one-dimensional quasi-
Coulomb motion along the z axis. For example, in the case of
transitions from the ground state 0 (N = M = n = 0) to the
first excited states (N = \,M— 1, «), we obtain7

/0-»lln= (''llni **00<>) p~ (elin eOOoM^lln> ^OOo) (LCP),

(3.68)

/O"-K>, -i, n = -^j- (elm —BOW,) <Flln, F000> (RCP),

(3.69)

where £NMa are the energies of longitudinal motion and
(/",,„, FOOQ) are the overlap integrals of the "longitudinal"
wave functions.

Calculations of the functions FNMn (and of the associat-
ed overlap integrals) are based on a general system for
matching the solutions in the range of high and low values of
the z coordinate. At high values of z the functions FNMn (z)
are identical, according to the results obtained in Sec. 3.1,
with the functions in a one-dimensional Coulomb well. At
low values of z they can be found by a perturbation method
and a characteristic logarithmic singularity is then encoun-
tered in integration of the Coulomb potential. Matching the
two solutions, we find the energy levels

8==-25r-^T (3-70)

and the corresponding form of the wave functions.
The energy of the ground state (n-»0) decreases log-

arithmically on increase in B:

i«ln^r + aJ V M+.. . , (3.71)

The wave functions of the ground state n = 0 are con-
centrated near the origin of the coordinate system so that
their overlap integrals are large:

,P m \ ̂  A 4 i n 721
\fi, n=o, rtf n=o> ~ i In (a2/4X2)""" ' ' ' ' ^J-'^'

Substitution of Eq. (3.72) in Eq. (3.68) yields the fol-
lowing expression for the oscillator strength involving the
ground state

1 = 1 — T (3.73)In (o2/4X2) '
which is in agreement with the sum rule of Eq. (3.66).

The oscillator strengths for the transitions to states with
n > 1 can be found similarly. In the case of high values «> 1
the oscillator strengths/0- 11(l are proportional to a normali-
zation factor n ~ 3 . Similarly, we can use the oscillator
strength per unit energy interval dn/dE. The wave functions
characterized by n > 0 have logarithmically small overlap
integrals with the function FQM concentrated in a region
zocln-'(a2/4/l2).

Therefore, the corresponding oscillator strengths are
small:

where

2ma2

(3.74)

(3.75)

The oscillator strengths for the RCP transitions include
an additional small power-law factor.

The general transition scheme, based on Ref. 7, is
shown in Fig. 11. The strongest transitions are of type A and
these are followed by logarithmically suppressed transitions
of type B, and finally by transitions of type C suppressed in a
power-law manner.

Detailed calculations of the oscillator strengths for an
atom of hydrogen in a magnetic field, including the interme-
diate range B ~ B0, were carried out by Forster etal." Figure
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(N-t,H-t,n-0) T

(B)

LCP

FIG 11. Schematic diagram showing various transitions in an atom sub-
jected to an ultrahigh magnetic field.7 The quantum numbers N, M, and n
of the states are given for right-handed and left-handed circular polariza-
tions (RCP and LCP).

12, based on Ref. 53, shows the behavior of the oscillator
strengths /„, predicted for various transitions between the
lower states of hydrogen. We can see that the transitions
allowed in the absence of a magnetic field (of type 1-8)
change little the value of /„• whereas in the case of other
transitions (9-12) the oscillator strengths change by several
orders of magnitude.

3.5. Classical trajectories of an atomic electron in a magnetic
field

An increase in the intensity of a magnetic field B alters
the energy spectrum of an atom from a pure Coulomb (Ryd-

003-

-1

-10

-10

-10'

0-10
000

/3=7B00

10" 10

FIG. 12. Changes in the oscillator strengths/^ of transitions between the
lowest states of the hydrogen atom on increase in the magnetic field (pa-
rameter^ = B/B0). "The dashed curves correspond to the approxima-
tion of an infinite proton mass. The scheme of transitions corresponding
to /? = 0 and 0 = 103 is shown in Fig. 12a.

berg) type to a Landau oscillator spectrum with an adjoining
one-dimensional quasi-Coulomb spectrum. It is quite diffi-
cult to follow in detail such a transition within the quantum
theory framework, as found in Sees. 3.1-3.3. However, this
can be done on the basis of classical mechanics valid in the
case of sufficiently highly excited atomic states. In this case
the trajectory of an atomic electron should evolve on in-
crease in B from a Kepler ellipse to Larmor circles. We have
shown in Sec. 2.5 that the classical description of the motion
of an electron in an electric field F close to the critical value
Fc gives good results for probabilistic ionization. We can
therefore expect that in the case of a magnetic field a classical
description can serve as a satisfactory basis for a future quan-
tum theory.

The classical motion case was investigated in detail by
Delos, Knudson, and Noid54 who solved numerically classi-
cal equations of motion of an electron in Coulomb and mag-
netic fields. We shall follow the treatment given in Ref. 54.

The equations for classical trajectories in cylindrical co-
ordinates/5 and z (when the Oz axis is parallel to B) can be
obtained using a Hamiltonian H containing the Coulomb
potential — e2( p2 + z2)~l/2 the centrifugal potential
L 2

z/2mp2 and a "diamagnetic" term e2B 2p2/Smc2.
The Hamiltonian equations of motion for canonically

conjugate coordinates/5 and z and momenta^ and^z can be
reduced to a dimensionless form containing just one param-
eter:

T r I e2B2 \L = L,{ — 5-2 \ me2 /
e 4/3 (3.76)

which is a combination of the parameters of the Coulomb
(e2) and magnetic (proportional to B2) interactions.

This form of equations is obtained after substitution of
variables81

P 2 Pp T}-, t f 1 TT '\

P = « ' Z=7T' A> = TT' PZ = TT. f = 7 T > (3'77)

where
I me2 \ l / 3 „a=(ir) - P= 1/6

? =•=£-. (3.78)

In terms of new variables the Hamiltonian H contains a
single parameter which is the effective z component of the
angular momentum L.

The corresponding equations of motion are

dzdp
IT =

d*

(P2+z2)3/2

p3

(3.79)

The trajectories of an electron in terms of the variables
p, z, pp , and pz are still complex. However, we can obtain a
full picture of these trajectories by considering a section ob-
tained by cutting with the z = 0 plane (Poincare section55).
In fact, it is clear from the system of equations (3.79) that
d ^z/dt 2 and z always have opposite signs. Therefore, this
system must be intersected by the z = 0 plane throughout
the whole duration of motion — oo < t < + oo . Numerical
calculations of trajectories reported in Ref. 54 were carried
out as follows: it was assumed thatz = 0 and for given H and
L selection was made of twenty random values of the vari-
ables p and pp ; pz was deduced from the Hamiltonian and
this was followed by solution of the equations of motion giv-
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FIG. 13. Schematic representations of the regions of electron motion in
the plane of dimensionless energies /= [E — Emm (L) ] [£, (L)
— £„,!„ (L) ] ~ ' and of the angular momentum L (Ref. 54). Ranges of

existence of various types of motion are indicated.

en by the system (3.79).
We shall first consider the general aspects of motion.

An electron moves in an effective potential

V ( p , z ) = - ( (3.80)

which has two characteristic values: a minimum at z0 = 0 at
the point p0:

^ T KO ' m '

as well as an energy Es for the detachment of an electron
from a nucleus in the limit z-> oo:

F(p., oo) = - = (3.82)

It is convenient to describe the motion of an electron of ener-
gy E by introducing a dimensionless energy

- £mm (L)) (Es - (3.83)

which vanishes at E = Emin and becomes unity at E = Es.
Figure 13 shows schematically the regions character-

ized by different types of motion in the (/ L) plane. Elliptic
motion at low values of L (corresponding to weak fields B)
changes to helical motion at high values of L (strong fields
J3). Phase trajectories (paths) in thez = 0 plane are plotted
in Fig. 14 for several values of/and L.

Following Ref. 54, we shall describe the motion of an
electron in each of the regions in the (/, L) plane.

a) Elliptic trajectories correspond to the usual motion
along Kepler ellipses. Among these we can identify ellipses
elongated along the positive or negative axes (known as "li-
brators"). The motion along "librators" occurs54 if
EZ — 1/10L2, i.e., in a narrow region of the (/, L) plane in
Fig. 13. These trajectories apparently play an important role
in the transition to unstable motion (see below). The bulk of
the trajectories (known as "rotators") correspond to mo-
tion along ellipses close to the (x, y ) plane.

b) Helical trajectories occur in a strong magnetic field
and correspond, as in the quantum theory in Sec. 3.2, to a
sharp division of periods of motion along (parallel to the Oz
axis) and across the applied magnetic field. As in Sec. 3.2, we
can adopt adiabatic separation of the motion in the Hamil-
ton-Jacobi equation retaining a parametric dependence of
the potential V( p, z) on z.

The nature of the energy spectrum obtained using semi-
classical quantization conditions is of the kind shown in
Fig. 7.

c) Irregular motion occurs when the interactions of an
electron with the Coulomb and magnetic fields are compara-
ble, and it is manifested by the fact that a trajectory fills
continuously the phase (pp, p)-space (Figs. 14c-14i). The

FIG. 14. Phase trajectories ( pp,p) of an electron in thez = 0
plane obtained for different values of/and L (Ref. 54). The
columns from left to right correspond to L = 0.50, 1.51, and
5.03, respectively, whereas the rows counting upwards from
the bottom correspond to/= 0.1, 0.4, and 0.8, respectively.
The black regions represent stochastic trajectories.
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mechanism of appearance of stochastic motion in this case is
not yet fully understood, but it is obviously related to reson-
ances of two existing types of periodic motion: along a
Kepler ellipse and along a Larmor circle.

d) Transition motion is observed also for comparable
intensities of the interactions, but at lower energies/and it
represents stable motion. If L~ 1.5, this motion is however
different from ellipses and circles. At low energies/ the mo-
tion occurs near a minimum of the eifective potential and
can be investigated by a quadratic expansion of this potential
[ U ( p ) <x ( p — p 0 ) 2 ] . Consequently, the potential becomes
oscillatory in respect of the variables/) andz; the trajectory is

*then close to that of a two-dimensional oscillator.
We shall conclude our account of classical calculations

by estimating the regions of appearance of transition effects
in the case of a hydrogen atom in a magnetic field. If we
express the parameter L in terms of the initial parameters B
(in teslas) and Lz (in units of fi), we obtain LZB l / 3 =
61.6£. In a field of 5—10 T for an intermediate value of
L~ 1.5, we find that Lz ~40#. These values of L2 can how-
ever decrease to a few units in the case of hydrogenic exci-
tons in a medium with a permittivity ~ 10 and an effective
electron mass 0.lme.

3.6. Stochastization of electron motion in Coulomb and
magnetic fields

Following Robnik,49 we shall consider in greater detail
the appearance of unstable motion of an electron in Cou-
lomb and magnetic fields. Such motion is due to a resonance
interaction of modes representing the motion in these fields
and the range of its manifestation becomes narrower when
one of the interactions becomes stronger. Therefore, there is
a definite range of parameters (representing projections of
the orbital angular momenum L, the energy E, and the field
B /B0) in which electron trajectories cover uniformly (but
randomly) the range of allowed motion in the phase space
(Fig. 14).

The transition to random motion had been investigated
both by Robnik49 and by Delos, Knudson, and Noid54 and in
both cases this was done numerically using classical me-
chanics. Figure 15 shows the behavior of the points of inter-
section of electron trajectories by the z = 0 plane (Poincare

section; see Ref. 55) for various values of the energy E and
the parameters L = 1 and 7 = B /B0 = 1 . The motion on a
trajectory represents mapping of points on the phase plane
(pp, p) representing periodic intersection of the trajectory
by the z = 0 plane. It is of interest to consider fixed points
and invariant curves which are not affected by successive
mapping. The minimum and maximum values of the energy
inFig. 15are£min = — 0.394... and Emax = 0.5. Wecansee
that when the energy is low (Fig. 15a) the phase space con-
sists of invariant curves corresponding to periodic motion of
an electron along the trajectories. The existence of such
curves is proof of the existence of an additional (third) inte-
gral of motion 73 ( p, q) which defines an invariant surface
73( p, q) = const and the points of intersection of this sur-
face with the plane (p,pp z = form invariant curves. At
the centers of these curves there is a fixed imaging point
corresponding to totally periodic motion.

An increase in the energy E (Fig. 15c) results in bifur-
cation that gives rise to a second fixed point surrounded by a
family of closed curves. When the energy is E = — 0.04
(Fig. 15d) the structure of the trajectories changes drastical-
ly: curves with multiple intersections appear and in the
corners of such intersections there is an accumulation of
points ( with a nonzero measure ) , so that these curves are no
longer the usual lines and on further increase in E ( Fig. 1 5e )
these curves broaden into a uniformly filled layer. A further
increase in E produces a more or less uniform broadening of
the layer (alternating with regions of regular motion) and
subsequently gives rise to uniform filling of the whole region
of allowed motion in the phase space. The value E — Ec

= — 0.04 at which there is an abrupt change in the nature of
the trajectories is called the critical energy. Therefore, if
E<EC, the motion occurs mainly along invariant curves
corresponding to different values of the conserved invariant
/3 ( p,q). If E>EC, this invariant is lost and the motion in-
side the allowed region is uncorrelated ( chaotic ) . A detailed
mechanism of Stochastization (of the type representing
overlap of the resonances55) has not yet been finally identi-
fied and, moreover, the explicit form of the integral 73 ( p, q)
is not known. Therefore, it is not clear whether this integral
corresponds to the approximate classical integral A found in
Refs. 47 and 48 (see Sec. 3.3).

"fl
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FIG. 15. Behavior of phase trajectories of an electron
plotted for the parameters L = 1 and y = B /B0 = 1
and different energies E (a. u.): a) -0.3;b) —0.1;c)
-0.05;d) -0.04;e) - 0.04; f) 0.
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Nevertheless, numerical calculations49 make it possible
to determine the unstable region. We note that the Hamilto-
nian H and, consequently, the parameters Em[n and Es de-
pend only on the combination yZ,3 (after change of all vari-
ables to the dimensionless form with the aid of L), so that
calculations carried out for L = 1 can be used to obtain re-
sults for any value of L. In Ref. 49 the ratio/of Eq. (3.83) is
calculated near the critical fields E = Ec. The minimum val-
ue of/min is 0.22 for -yl^-l.!. Above the curve f(Ec, yL3)
we have irregular stochastic motion of an electron, whereas
below it the motion is regular and quasiperiodic (see Fig.
13). It follows from the scaling parameter yL3 that the mag-
netic fields in which stochasticity appears decrease rapidly
(proportionally to L ~3) on increase in L. A reduction or an
increase in the parameter yL3 results in predominance of
either the Coulomb or the magnetic interaction. This nar-
rows down the range of stochastic behavior. The relation-
ship between this classical description of the motion of an
electron and numerical quantum calculations is in many re-
spects still unclear. This applies both to the region of regular
classical motion and (even more so) the region of stochastic
motion. In any case, we are dealing here with the case of
quantization of motion with unseparable variables, which is
of fundamental and practical importance.

3.7. Numerical calculations of spectra of an atom in a
magnetic field

Large numbers of numerical calcula-
tions4 '.43.45,47.53,56-58 of the spectra of fa hydrogen atom in a
strong magnetic field have been carried out either by pertur-
bation theory methods or on the basis of asymptotic expan-
sions in terms of the field B. Some results of the calculation
and interpolation formulas for lower excited states based on
these calculations are given Sec. 3.1.

Sufficiently convenient universal data for arbitrary
atomic levels in any field B are not yet available, although
the results of calculations carried out for a number of states
in various ranges of variation B are in good mutual agree-
ment.9'

It is appropriate to mention here a simple circum-
stance60 associated with the behavior of atomic terms in the
region of transition from ultrahigh magnetic fields B to low
fields. A direct comparison of calculations carried out for
low fields in a spherical basis subject to a diamagnetic per-

B, G

turbation with calculations for high magnetic fields gives
results very similar to more rigorous numerical calculations.

A comparison of the results obtained by direct joining
of the results corresponding to the two limiting cases of low
and high fields B with those obtained by more rigorous cal-
culations is made in Fig. 16 (Refs. 41-43). We can clearly
see that the curves agree throughout the full range of B. This
demonstrates that modification of the atomic basis of the
states from Kepler orbits to cyclotron revolution occurs in a
narrow range of B. This is also supported by the results of a
classical calculation of electron trajectories (see Sec. 3.5)
demonstrating the feasibility of simultaneous coexistence of
Kepler and cyclotron orbits. Clear ideas on the transforma-
tion of wave functions of the energy states can be provided by
the results of numerical calculations of Rosner et a/.61

3.8. Simultaneous effects of F and B fields on an atom

3.8.1. First-order effects

Simultaneous action of electric and magnetic fields on
an atom is encountered in many practical applications. In
particular, such simultaneous action occurs when an atom is
situated in a magnetized plasma where an electric field F is
created by the surrounding charged particles 62'63

Crossed F-B fields also appear when atoms move
across a magnetic field because in the system of coordinates
linked to an atom there is an electric (Lorentz) field FL

= [vXB]/c. This gives rise to a dependence of the energy
levels of the atom on its velocity, which is of considerable
interest for an atom in a plasma and for excitons in a solid.
The dependence of the energy levels of an exciton in a strong
magnetic field on its momentum across the magnetic field
was first investigated by Gor'kov and Dzyaloshinskii 64

Frequently the appearance of an effective magnetic
field is due to a change to a rotating system of coordinates.
Such a change is convenient in many physical problems, in-
cluding magnetic resonance,65 an atom in a rotating electric
field,66'67 or in a field of circularly polarized light,68 an atom
in the field of a moving charge,69'70 etc. We have to distin-
guish here the problems where there is a true interaction
with a magnetic field and an effective interaction due to rota-
tion of the coordinate system. In the former case we always
have a diamagnetic perturbation, whereas in the latter case
there are only quadratic corrections to the Zeeman effect.
However, this distinction is unimportant in the first order of
perturbation theory.

The problem of the behavior of an atom in F and B fields
was considered a long time ago using classical mechanics.71

We shall consider the period-average characteristics of
motion of an electron in fields F and B. We shall do this by
using an additional integral of motion in a Coulomb field
(Runge-Lenz vector) related to the period-average value of
the coordinate (r):

2 \ E \ r (3-84>
In the case of period-average values of the orbital angular
momentum M of an atom and of the vector A in a static
electric field F, we obtain the following equations72

FIG. 16. Comparison of the behavior of atomic terms found by direct
combination of the results for /8< 1 and /8> 1 with the results of more
accurate numerical calculations60: 1) Ref. 41; 2) Ref. 43; 3) Ref. 42. The
points are the places where the terms were combined.

= |.JL[FA]) A-JL- (3.85)

In a uniform magnetic field a classical particle rotates (re-
volves) at an angular velocity J1B = — eB /2mc, which cor-
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responds to the equations

M = [QM], A = [QA1. (3.86)

If a particle is subjected simultaneously to both F and B
fields, the corresponding equations of motion for M and A
are obtained by adding Eqs. (3.85) and (3.86). Introducing
new vectors representing the angular momentum

(3.87)

(3.88)

and the frequency

we can rewrite the equations of motion in the form71'72

Ji=[oi1J1), J2=[co2J2]- (3-89)

It is clear from Eq. (3.89) that the new angular mo-
menta J, and J2 precess at frequencies to, and to2 indepen-
dently of one another. The correction K, to the energy of a
particle in fields F and B expressed in terms of the variables J
and co is

Vj = 3l&1 + J2o2. (3.90)

Therefore, the change in the energy is determined by the
projections of the vectors J, 2 along the directions to, 2 .

The form adopted in Eq. (3.90) provides a simple op-
portunity for the generalization of the results to the quantum
case. This can be done by independent quantization of the
projections of the momenta J, and J2 identified by quantum
numbers «' and n":

Vl = n'h n"h (3.91)

The numbers «' and n" assume, in accordance with the defi-
nitions of J, and J2, half-integral values: — (n — l ) /2<n' ,

Consistent quantum-mechanical generalization of the
classical results was provided by Demkov, Monozon, and
Ostrovskii.73 The "correct" wave functions 4* „„.,,- corre-
sponding to the diagonalized Hamiltonian of Eq. (3.90) can
be obtained from parabolic wave functions *„,,,-, corre-
sponding to specific projections /, and /2 of the vectors J,
and J2 along the electric field, and this can be done by rota-
tion through angles /?, and /? 2 between the vectors co L2and
the direction of the field F (Ref. 73):

¥ —nn'n" —
',n-D/2 ("~1)/2

(3.92)

Here, Z>J$(0,/?,0) are the Wigner rotation matrices73 de-
scribing rotation by angles /3 , 2 given by the relationships (in
the FIB case)

l ' Pi + P*=n- (3.93)

If B = 0 the angles /?, = IT and /3 2 = 0 and the functions
*„„•„•• are identical with the usual parabolic functions *nii,,
corresponding to the Stark effect. If F= 0, then the angles
13 , 2 = 77/2 and the functions *&„„•„• transform into parabolic
functions oriented along the magnetic field B. The relation-
ship between them and spherical functions is considered in
Sec. 3.1.1.

It is of special interest to consider the case of mutually
perpendicular fields F and B, when the change in the energy
is

(3.94)

Here, we are dealing with an additional degeneracy of the
levels due to the fact that the energy K, depends only on the
sum of the quantum numbers «' + n" and not on each of the
numbers «' and n" separately.

3.8.2. Second-order corrections

Calculations in the second order of perturbation theory
on a hydrogen atom subjected to F-B fields are much more
difficult. They were considered by Solov'ev.74 One has to
allow here for the second-order corrections due to the per-
turbation V, of Eq. (3.90) and for the first order of the dia-
magnetic perturbation V2 = [BXr]2/8c2. The magnetic in-
teraction included in F, makes no contribution because the
resultant matrix elements of this interaction, which are off-
diagonal in respect of n, vanish. Consequently, the effective
operator A allowing for the second-order corrections is74

= V2— F2zGnz = (3.95)

where Gn is the Coulomb Green's function including sum-
mation over all intermediate states of the investigated atom.

The operator V2 associated with the diamagnetic inter-
action is expressed above (Sec. 3.3; see also Ref. 47) in terms
of the angular momentum operator L and the Runge-Lenz
vector A:

V -
16c2 (3.96)

where LB andAB are the projections of these operators along
the magnetic field direction.

A similar expression in the space of states with a given
value of « can be obtained also in the case of W (when the Oz
axis is parallel to the field F):

Expressing next the operators L and A in terms of new angu-
lar momentum operators J, and J, and using the wave func-
tions *„„•„•• ofEq. (3.92), which correspond to specific pro-
jections of these operators, we obtain the second-order
correction to the energy74:

-f 19— 12 (n'2-\- n'n" cosy-r n"2)]
1U

-f ?8 i \lnz -L 5 4- 4«'«" sin YI sin Y2

+ (ra2— 1) (cos2 Y, -f cos2 Y2)

—• 12 («'2 cos2 YI—«'rc"cos YiCos Y2-T- «"2cos2 Ya)!.

(3.98)

where Y\ and y2 are the angles between the vector B and the
vectors to, and to2; y = Y\ + Ti-

The results are valid only on condition that the degener-
acy of the levels is lifted in the first order of perturbation
theory. This condition breaks down in the case of mutually
perpendicular fields Fand B when the frequencies o>, and o)2
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are equal: a>, = <y2 = a>, and when the first-order correction
depends only on the sum of the quantum numbers «' + n".
Therefore, Eq. (3.98) gives the correct result if the differ-
ence between <y, and a>2 exceeds the correction E<2>. The
case FIB cannot be considered analytically in the second
order of perturbation theory. The general calculation proce-
dure in this case involves numerical diagonalization of bilin-
ear combinations of the angular momenta J, and J, in the
subspace of quantum numbers n' and n", and it is given in
Ref. 74.

The behavior of the ground state of the hydrogen atom
subjected simultaneously to electric and magnetic fields was
considered by Turbiner75 by the methods of perturbation
theory. The expansion for the energy can be represented con-
veniently in the form

E - Esx r.(lt'L\ (3.99)

where Esz is the sum of the energies of the fields F and B
taken separately:

Esx=-\-±F*--,--!j--?jjiF*-jtB*+..., (3.100)

and E "a contain0 ti.e hitherto unknown cross terms for mu-
tually paro< el (F!l ) and perpendicular (E1) directions of
the fields F~nd B:

tK-a 1742009 p2p4
26 880 ~~ ' ' '' (3.101)

22770991 , 3 j
107520 e . ••• • I .J.1UZ;

The results represented by Eqs. (3.99)-(3.102) allow
us to understand qualitatively the characteristics of the be-
havior of an atom in fields Fand B. Indeed, if we assume that
the electric field Fis constant, we can find the magnetic sus-
ceptibility of the investigated atom75:

3 „, . 1 742 009

16

24
. £2^
r 24 •

6720

15 308 803
30 240

,
D ~

(3.103)

We can see that the sign of the term with the electric field
(proportional to F1) is opposite to the sign of the usual "dia-
magnetic" term (proportional to B2). Therefore, the pres-
ence of the electric field increases the magnetic susceptibility
of the atom. It should be pointed out that this effect is strong-
er in the case when FIB.

On the other hand, if we fix the value of B, we can find
the influence of this field on the polarizability of the atom in
the fieldF (Ref. 75):

= 9 — 3555
8 """ 13440

P2 _ 7.31 R2 , 15 308 863 R
24 a + 60 480 U ̂

(3.104)

We can see that the magnetic field reduces effectively
the polarizability of the investigated atom.

3.8.3. Atom in electric and strong magnetic fields

The limits of a strong magnetic field (B^>B0) and a
weak magnetic field (F^B) were considered in Ref. 74 in
the specific case, mentioned above, of energy levels of an
exciton moving across a magnetic field.

A detailed description of the structure of such spectra is
outside the scope of the present review. We shall consider
only an interesting feature of the spectrum of an atom of
hydrogen in crossed Fand B fields, which was investigated
by Burkovaera/.7 6

The characteristics of motion of a free charge in F and B
fields are related, as is known, to the drift of the charge at a
velocity

Vd = eI^L, (3.105)

which is the same for an ion (of mass m -,) and for an electron
(of mass w c ) .

The drift of an electron may give rise to new bound
states in an atom localized at a certain distance y() equal to
the drift displacement during an effective cyclotron oscilla-
tion period76:

i~ i'B - l- l Mc"-F (M = mj-)-/ne).
(3.106)

The spectrum of an atomic electron can be obtained
conveniently in this case by transforming the wave function
to a system of coordinates linked to the drift motion64:

(3.107)

where y = (m, — m
e )/M.

If the z axis is directed along the field B and they axis
along the field F, and if the origin of the coordinate system is
shifted along the y axis by an amount y0, the Schrodinger
equation becomes76

Sue3

(3.108)

where// = m^mJM is the reduced mass.
We shall consider the effective potential energy U along

thej> axis:

(3.109)
I

We can see that the potential f/can have two wells: one
Coulomb well at y^y0 and the second at y — 0. Such a struc-
ture of the potential is realized for a sufficiently large value
of the following parameter

, (3.110)
/ £ \ ' / z * l *L/-».\ [i I e°- B { B

when the bottom of the well at y = 0 is higher than the Cou-
lomb binding energy me4/fr.

The energy spectrum can be calculated subject to the
condition (3.110) if, as in Sec. 3.1, we separate the variables
of the longitudinal (along the z axis) and transverse motion,
and if we reduce the Schrodinger equation of Eq. (3.108) to
the one-dimensional form with an effective potential u(x,y,
z) obtained by averaging the initial potential over the trans-
verse coordinates p:

<D (P) dp
-(.V + .Vo)" (3 .111)
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where <!>( p) is the wave function of the transverse motion
with a characteristic scale length aB (see Sees. 3. 1 and 3.2).

We shall consider the bound states near y = 0 and use
the condition y0 > aB , which allows us to set x = y = 0 in Eq.
(3.111) and this gives

Consequently, the Schrodinger equation for the motion
along the z-axis becomes

where

2B2

(3.113)

(3.114)

is the energy corresponding to the limit of the continuous
spectrum.

In the case of the lower energy levels in a well the effec-
tive values of zeff are small compared with>>0, so that we can
use the expansion of Eq. (3.112) which obviously leads to an
oscillator potential. The energy spectrum which is then de-
termined is of the form76

M he F B
2Ry

(3.115)

In the case of the hydrogen atom subjected to a field
B~B0 and also to fields F compatible with Eq. (3.110) the
binding energy is of the order of 0.55 eV when the separation
between the levels is ~0.1 eV.

4. CONCLUSIONS

The above review demonstrates the recent rapid growth
of interest in the Stark and Zeeman effects. On the one hand,
this is due to numerous possible practical applications of
these effects and, on the other, it is due to problems of funda-
mental nature associated with the dynamics of systems with
nonseparable variables.

In applications of the Stark and Zeeman effects it is
usually essential to know not just one parameter, but all the
characteristics of an atom in fields Fand B, such as the split-
ting of levels, line intensities, probabilities of radiative and
autoionization decay, etc. The range of field intensities /"and
B, and of the quantum number n of atoms is very wide. Very
frequently the values of F and B are determined by the pa-
rameters of the ambient medium, such as the temperature T
and density N of a plasma, which can also range within very
wide limits. Therefore, it is very important to have analytic
results for the parameters of an atom in fields /"and 3, par-
ticularly in a clear form that would be suitable for the use in
practical applications.

Many of the problems discussed above have not been
finally solved. This applies particularly to an atom in a mag-
netic field, when the inability to separate variables greatly
complicates the situation. Investigations of the behavior of
an electron in this case by the methods of classical mechanics
and discovery of stochastic regions of motion leave open the
problems of the nature of the quantum motion and its corre-
spondence to the classical motion. One would hope that this
review will draw attention to these problems.

"The validity of the approximations represented by Eqs. (2.33) and
(2.36)-(2.39) was established by Gulyaev'4-"1 who compared directly
these approximations with the results of numerical calculations based on
the Gordon formulas. However, this leaves the problem of analytic justi-
fication of these approximations by the classical method.

2>The intensities /^ and /„ of the series are numerically small and, there-
fore, they are not included in Fig. 4.

"It should be noted that the transformation of a wave function on ap-
proach of the energy E to the energy En was first analyzed by L. I.
Mandel'shtam and M. A. Leontovich in 1928 (see Ref. 30).

4)A complete expansion of Eq. (2.77) subject to Eq. (2.78) naturally
involves powers of the classical parameter Fn4.

5)The strong repulsion of terms demonstrated in Fig. 6 is only apparent
and it is due to inaccuracies of the numerical procedure used in the
calculations (see Ref. 38).

"The electron spin is ignored, because an allowance for this spin simply
shifts the energy levels by a constant amount. It should be pointed out
that the concept of a strong magnetic field is modified if an atom has
many electrons. "'

7 > In the calculations we have to allow for the change in the parameter A,
the value of which is — 1 in the range 0<#<?r/4 and + 4 in the range rr/

*'In order to simplify the subsequent notation, we altered (compared with
Ref. 54 ) the symbols used for dimensional ( p, p, . . . ) and dimensionless
( p, p) variables.

'"We shall ignore the range of very strong fields B/B0 > 10', where the
problems of separation of variables of the center of inertia and of relative
motion become important.5"
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