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The concepts listed in the title are introduced and clarified. The relations among them are pointed
out. It is shown that the corresponding optical phenomena are definitely of a quantum nature.
The basic quantities which are measured in correlation optical experiments are discussed.
Manifestations of photon antibunching and of sub-Poisson photon statistics in the recording of
delayed coincidences, in the distribution of photon counts, and in intensity fluctuation spectra are
analyzed. (More precisely, what is involved is the spectrum of fluctuations in the photocurrent;
all the results of the theoretical analysis in this review are expressed in terms of directly
measurable quantities.) A diagram technique for calculating the correlation characteristics of the
radiation from a polyatomic system is outlined. Photon correlations in nonlinear resonance
fluorescence are analyzed. There is a discussion of approaches to the development of macroscopic
sources of radiation with sub-Poisson photon statistics: the production of a squeezed state of a
field in phase-sensitive parametric effects in nonlinear optics and the introduction of repulsive
statistics in luminescence excitation events and in the pumping of a laser. Experiments in these
directions which had been reported through April 1986 are discussed. The practical importance
of reducing the quantum noise in radiation for extremely precise measurements and for optical

data transmission is pointed out.
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I. INTRODUCTION tuations in the radiation in comparison with the shot-noise

Research on the topics in the title of this review, which
are associated with concepts and phenomena in optics, be-
gan in the 1970s and is presently in a rising stage of develop-
ment. We can apparently conclude that we have reached the
crest of this curve when we see the reliable experimental
realization of macroscopic light sources with a photon flux
of elevated regularity. It is this elevated regularity which is
the primary characteristic of the electromagnetic-field states
which we will be discussing. It means a lowering of the fluc-
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level which can be attained in single-mode, steady-state las-
ing at a pump level far above the threshold.

Let us examine the basic concepts in the examples of
known experiments on the temporal correlations of pho-
tons."? Figure la is a simplified diagram of an experiment
carried out to count delayed binary coincidences of pho-
tons.” A light beam from a steady-state source .S is split into
two beams, which are sent to photodetectors D, and D,. The
arrangement records coincidences of photon detection
events delayed by a time 7. The average count rate over the
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FIG. 1. Experiment on the statistics of delayed coincidences of
photon counts. a—Simplified experimental layout; b—some
representative photocurrent correlation functions. B) In the
case of photon bunching; AB) in the case of photon antibunch-
ing.

4

ensemble of measurements is proportional to the correlation
function of the photocurrent, K(7), of the two photodetec-
tors: K(7) = (J,(0)J,(7)) (the exact definitions of the
quantities which are actually measured are discussed in Sec.
2). The term “photon bunching” (Fig. 1b) means an in-
crease in the number of binary coincidences at small values
of 7 above the “random” number, i.e., above the number
corresponding to the absence of correlations: K (7) > (J Y2 at
small values of 7 ({(J,) = (J,) is assumed for simplicity).
Photon bunching is characteristic of natural (quasithermal)
light sources. It results from an interference of the waves
from different points of the source (atoms) (Sec. 3). The
random modulation of the intensity associated with this in-
terference can frequently (but not always, as we will see be-
low) be described in a semiclassical version of the theory
(without quantization of the electromagnetic field—
through a modelling of the stochastic field tailored to the
particular light source and by means of a quantum-mechani-
cal description of the interaction of this field with the atoms
of the photodetector).

For single-mode, steady-state laser radiation, with a
pump level well above the threshold, in which case the state
of the field approaches a Glauber coherent state, the equality
K(7) = {(J)? holds; i.e., the photon detection events are not
statistically dependent.’

Already in the pioneering papers on quantum optics
(Refs. 4-7; see also Ref. 3) it was pointed out that there
could also be states of an electromagnetic field with “nega-
tive” binary correlations of photons, i.e., with a photon “an-
tibunching.” In this case, the relation K(8) < (J ) would
hold in an experiment recording delayed coincidences of
photon detection events (AB in Fig. 1b). It might be said
that when antibunching occurs the conditional probability
for observing a ““second” photon immediately after a ““first”
photon, with a short delay 7, averaged over the ensemble of
pairs of delayed coincidences of photon detection events (for
all values of 7), is smaller than the unconditional probability
for the observation of a photon.

Let us examine the particular features of photon corre-
lations in an experiment carried out to measure the distribu-
tion of photon detection events p(n,T): the probability that
precisely n photon pulses will be detected over a time T. We
assume that radiation is incident on an ideal photodetector
(Sec. 2). In this case the temporal realizations of the photo-
current can be represented as a train of short pulses. Figure 2
shows some realizations of this sort for various sources.® Let
us consider the variance D[n;T] = ((n — #)?) of the distri-
bution p(n;7) of the number of photon counts (7 is the
mean number of photon counts). A Poisson distribution
p(n) = (A" /n')yn ~" with a variance D{n] = 7 is known to
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be characteristic of a field in a coherent state* (Fig. 2b). A
bunching of photons corresponds to the inequality D{n] > 7,
i.e., to the case in which the scatter in the photocurrent
pulses which fall in a given time interval T is large in com-
parison with a Poisson distribution (Fig. 2a). An antibunch-
ing corresponds to smoother temporal distributions of the
pulses (Fig. 2¢). If D[n] <7, one speaks in terms of sub-
Poisson photon statistics (SPPS).

In a study of the statistics of radiation in a single mode
from a natural source over a time T €7, where 7. is the
coherence time, one finds a Bose-Einstein distribution
p(n) = (A")/(n+1)"*', and in this case we have
D(n] = 7 + #°. Spatial correlations play an important role.
If the detector collects radiation from an area S which is
much larger than the spatial-coherence area at the surface of
the photocathode, o, and if the time of a single measure-
ment, 7, exceeds 7., then random interference will lead
to a variance D[n] =n(l +§&'), where 6 = (1/2)(o./
SY{J )7, = g8, §is the radiation degeneracy parameter (the
mean number of photons which pass through the coherence
area over the coherence time), and g is the quantum yield of
the photodetector. Under the condition § €1 (the number of
photons in the coherence volume is small) the photon distri-
bution differs only slightly from a Poisson distribution.

An interesting case of photon superbunching,
D[n] >7 + i?, occurs in the case of two-photon emission. In
this case, pairs of photons are correlated at least over a time
interval of the order of w5, ', where w,, is the transition fre-
quency.® In the parametric splitting (0w, = @, + @,), in ad-
dition to the strong positive temporal correlation, there is
also a hard correlation of the photons @, and w, in terms of
directions (a “biphoton’’).'® Some new applications of radi-
ation with correlations of this sort for precise measurements
and data transmission have already been found and are being
discussed.'®""!
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FIG. 2. Examples of realizations of photocurrent pulses for various statis-
tical properties of the radiation. a—Bunching and super-Poissonian sta-
tistics; b—Poisson distribution; c—antibunching and sub-Poissonian sta-
tistics.
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Photon antibunching was first observed experimentally
in 1977, in the nonlinear resonance fluorescence of single
atoms in a rarefied atomic beam (Ref. 12). The effect had
been predicted in Refs. 13-15 (polyatomic effects were also
discussed in Ref. 15, along with quantum-mechanical inter-
ference). After a refinement of the theory, an analysis of the
experimental conditions, and the establishment of good
agreement between theory and experiment,’®'® a stream of
theoretical papers appeared. In 1983 came a report'® of the
detection of SPPS in the nonlinear resonance fluorescence of
asingle atom (see also Ref. 20). The variance of the number
of photon counts under these conditions had been calculated
previously.”'* The overall distribution of photon counts
was studied theoretically in several papers.”* >’ Figure 6
shows a typical result of the experiments of Refs. 12 and 17
on the count of delayed coincidences (this figure is taken
from Ref. 18; see Sec. 3 of the present paper).

The Fermi features of the photon distribution in the
presence of photon antibunching and SPPS of course do not
contradict the requirements of Bose-Einstein statistics. The
antibunching and the SPPS stem from the specific dynamics
of the source—from “repulsive” factors in the emission or
conversion of a flux of photons." In the case of the nonlinear
resonance fluorescence of a single atom, with steady-state
monochromatic excitation, the repulsive factor is the un-
avoidable delay in successive scatterings of incident pho-
tons. Under the given conditions in the preparation of the
system and the observation, this delay agrees with the time-
varying evolution of the population of the excited level,
p!"V2, () (the superscripts on a density matrix element spec-
ify the initial condition at 7 = 0): The detection of the “first”
photon is indirect, but the atom in state 1 is reliably detected
(Fig. 6; see Sec. 3 for more details).

As another example from nonlinear optics we consider
the propagation of a coherent wave in a medium with a two-
photon absorption. In this case the antibunching and the
SPPS can be represented as a consequence of a more prob-
able absorption from a Poisson flux of pairs of photons
which lie close together along the time scale (from regions of
elevated intensity). The photon flux produced as a result
must therefore be more regular than the incoming flux. Anti-
bunching and SPPS in several effects of nonlinear optics are
discussed in other reviews,2%3¢

Sub-Poisson photon statistics may be a consequence of
the conversion of some “repulsive” statistics of excitation
events into the statistics of radiation (Secs. 5,6). Teich and
Saleh'’® have experimentally observed an SPPS effect (al-
though a weak one) in the luminescence of atoms excited by
an electron beam with shot noise suppressed.

Antibunching and SPPS may reveal a radiation field in
“squeezed states,” which are being discussed widely in the
literature (Secs. 2,4; there is a good brief review on the sub-
ject’!). In the squeezed state of a harmonic oscillator, the
variance of one of two canonically conjugate observables is
smaller than in a coherent state. For a single standing wave
of a free electromagnetic field, we write the electric field
operator in the Heisenberg picture:

L W

E(t, r) =z &(r)[aexp (—iot) +a* exp (iwt)};

(L)

herea™ and g are the photon creation and annihilation oper-
ators (more generally, they are the “slow’”-amplitude opera-
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tors), and & (r) is the spatial mode function of the field. We
introduce the Hermitian operators (quadrature compo-
nents)

1 i

Xj==(a"+a), X,=

=5 (a"—a),

(1.2)

which are formally analogous to the dimensionless operators
g and p for the harmonic oscillator. The field operator E
takes the form

E(t, r)=¢ (r) (X, 208 ot ++ X, sin ot). (1.3)

For the quadrature components X,,X, we find the following
results from definition (1.2) and the commutation relation
[a,a™]:

1

(X, Xz]:%, 8X,0X, > -, (8X)?*=DI[X]. (1.4
In a squeezed state we have, by definition,
X, < or OX,<—. (15)

Squeezed states and two-photon coherent states appeared as
generalizations of coherent states.>>~** (see Refs. 31, 34, and
206 for citations of the literature).

Disparities in the development of quadrature compo-
nents (their mean values and fluctuations) in parametric
processes are a familiar effect in classical nonlinear optics
and radiophysics.* Such disparities set the stage for the sup-
pression of amplitude or phase fluctuations of the resultant
field. The situation is analogous to that regarding quantum
fluctuations: The variance of one of the quadrature compo-
nents can decrease, and a squeezed state and SPPS can be
achieved as a result of phase-sensitive interactions of waves
as they propagate through a nonlinear medium (Sec. 4).

The discovery and study of new states and new statisti-
cal properties of radiation have been regular features in the
development of optics. We know that fluctuations in the en-
ergy of blackbody radiation played an important role in the
development of quantum statistics*® and our understanding
of the particle-wave dualism.*** In Einstein’s formula®®*’
for the variance of the spectral energy density of blackbody
radiation or in the equivalent formula for the variance of the
number of photons in a single field mode,

Dm)=m+ m? (1.6)

the first term corresponds to the statistics of independent
(and distinguishable) particles, while the second can be re-
lated to an interference of waves (or the indistinguishability
of photons).

The sharply increased interest in the statistical charac-
teristics of radiation since the 1960s was stimulated by the
development of ideas regarding the interference of partially
coherent light beams,*” the first (prelaser) experiments on
intensity correlations'? and optical mixing,*' and (later)
the development of lasers and the need for a detailed study of
the unusual properties of laser light. New methods were de-
veloped for correlation measurements*?™; a systematic
quantum theory of the statistical characteristics of radiation
was derived****; and numerous applications of the new
research methods were found in physics, chemistry, technol-
ogy, and biology.**>* An ideology based on the theory of
random processes and random fields,”>~>® combined with
the methods of physical kinetics,**°' became the governing
force in modern optics.™
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Photon antibunching, SPPS, and the properties of
squeezed states are optical effects which are definitely of a
quantum nature. A comparison of quantum-mechanical and
semiclassical approaches usually makes use of an “optical
equivalence theorem”” which asserts that a representation of
the field density matrix which is diagonal in the coherent
states (the P representation) can be used to calculate and
interpret the mean values of normally ordered products of
field operators by means of relations which are formally sim-
ilar to classical relations (if the latter have been written for
analytic signals*>”). This theorem clearly does not apply to
field states with photon antibunching or SPPS or to squeezed
states.” For such states, the weight function P(a), if it ex-
ists, is at any rate not positive definite, and it cannot be asso-
ciated with the probability density of a classical complex
field amplitude. As an example we consider the variance of
the number of photons in a single radiation mode, assuming
the existence of a P representation:

Dm]=((e*a—{a*a)}?) = {e*aa*a)— m?
=m+((ata—m)2) =m+ S d2aP () (jo|2—m)%
(1.7)

here m = (a*a) = fd*aP(a)|a|?, and :(...): means the
normal-ordering operation.®® In the case of SPPS the second
term in (1.7) is negative [but it must of course be greater
than ( — m)], so there exists a region of a values in which
the condition P(a) <0 holds.

A theoretical description of photon antibunching and
SPPS requires a thorough analysis of the measurement pro-
cedure and a correct determination of the operators of the
quantum-mechanical observables which are associated with
the measured quantities. Here it is particularly important to
allow for the noncommutativity of the dynamic variables
and discrete photon detection events.® In Sec. 2 it is shown
that the expression

K (@)= 17 (0), J (@)« =) 8 (1) + K, (x) (1.8)

[expression (2.5)] should be used for the photocurrent au-
tocorrelation function (in an experiment with a single pho-
todetector). The term with the &-function reflects the dis-
crete nature (shot noise) mentioned above. Only the regular
part of (1.8), K,(7), contains a field correlation function of
fourth order, but it is not proportional to the correlation
function of the intensity of the incident light. In a classical
description of the field in a single beam we would be dealing
with a single function: the light intensity I(#,r), which takes
on (regardless of measurements) a definite value at each
point (t,r) (even if this is a random value before the mea-
surement; the concept of a random field is unavoidable
even in a classical approach). From the inequality
{(I(0) — I(7))?)>»0 and the condition for a steady state,
{I(7))={I(0)), we then find

Kiq@=ad O (<< T0)P)= Kia(0).

(1.9)

This inequality is incompatible with antibunching. The
function K, (7), which arises in a systematic quantum calcu-
lation of the photocurrent correlation function (1.8), does
not necessarily obey condition (1.9), since it is not propor-
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tional to {(I(0)I(7)). We could have K,(0) <K,( ) and
K,(0) = 0 (strong antibunching).

Analogously, in an experiment with two photodetec-
tors, in which the mutual correlation function of the intensi-
ties of two beams is measured, there are two functions,
I,(t,r),I,(t,r), in the classical description. The mutual cor-
relation function is

(I (3, ) L (2, o2 < (3 (4, ) {3(t,, 1)), (1.10)

Experiments on the photon correlations of two beams (@)
and (w,) which arise in spontaneous parametric frequency
(wy £ ®, + w,) down-conversion®®*® and in cascade radia-
tive transitions®’® have revealed a “*violation™ of inequality
(1.10) at small values of |1, — ¢t,| (the violation is particular-
ly marked in the first of these cases®®). In other words, it has
been found that the classical description of the field does not
hold.*

The definitely quantum nature of photon antibunching
and SPPS is sometimes thought of as peculiar to these ef-
fects. This is not the case. In the experiments which we men-
tioned above on the correlations of two beams, no photon
antibunching occurred (it would be more appropriate to
speak in terms of a superbunching in time). We would cite
yet another important example, closely related to the topic
of this review, which demonstrates the need for the quantiza-
tion of a field in the analysis of the correlation properties of
the ordinary spontaneous emission of independently excited
and decaying atoms.*”" Aleksandrov et al.”' measured the
intensity fluctuation spectrum of this emission or, more pre-
cisely, the spectrum of the correlation function K(7)
[see (1.8)]. The concept of a classical wavepacket
& = &, exp( — yt /2)c0s w,,t, emitted by each atom leads
to the incorrect prediction that the intensity fluctuation
spectrum should manifest correlations in a single train
(from a single atom), in the form of a Lorentz line at @ =0,
with a width y and an intensity proportional to the number
of atoms, N (not proportional to ¥ ). The appearance of
such a line in the intensity fluctuation spectrum would have
to be associated with the possibility of a ““division” of a wave
packet between two atoms of the photodetector. The experi-
ment of Ref. 71 reliably established that there is no such peak
in the intensity fluctuation spectrum above the spectral level
of the shot noise. A systematic quantum theory’? for the
intensity fluctuation spectrum under these conditions yields
results which agree entirely with the experimental results,”"
The variance of the number of photon counts, determined by
the correct function K(7), also has no traces of excess
bunching over times of the order of 7> ¥~ .

There is a characteristic manifestation of photon anti-
bunching in an intensity fluctuation spectrum. The strong-
antibunching condition K, (0) = 0 means that the spectrum
of the function K, (7) has zero ‘‘area,” i.e., contains negative
components. In the spectrum of the photon correlation func-
tion K(7) these components are seen as dips against the
spectral background of the shot noise [the first term in
(1.8)]."® The spectrum of the overall autocorrelation func-
tion of K(7) is of course nonnegative everywhere.**3¢ The
suppression of shot noise in a certain frequency region is a
general property of radiation with photon antibunching and
SPPS. It may be important for applications. Measurements
of intensity fluctuation spectra have several advantages over
other methods for studying photon correlations.'>?>4 Tt
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was in intensity fluctuation spectra that manifestations of a
squeezed state were first observed. 167 (Sec. 4 of the present
paper).

This review gives preference to the problem of the de-
velopment of macroscopic light sources of elevated regular-
ity. The studies carried out through December 1985 which
have been of greatest importance, in the opinion of the auth-
ors, and also some later studies are considered. In some
cases, the only source which we cite is a review which con-
tains references to a group of earlier studies in a common
direction.

2. MEASURABLE QUANTITIES
2.1. Photocurrent correlation function

A quantum theory of photodetection pertaining to re-
search on photon correlations and the coherence of light was
derived to a decisive extent by Glauber® (see also Refs. 6 and
7). Smirnov et al.” give several versions of the derivation of
the expression for the photocurrent correlation function.
Those derivations immediately reveal the (photodetector re-
sponse)-field-(source dynamics) path. We will be con-
cerned for the most part below with the statistical character-
istics of the radiation which are associated with the
photocurrent autocorrelation function:

K (b, t))y= (5 [J (t), T ()]0, 2.1)

Here [4,B] . is the anticommutator,® and J(¢) [s '] is the
photocurrent operator (in the Heisenberg picture), given by

J(t=-5 N =2 3 V), (2.2)
3

where the operator N(z) represents the number of atoms of
the photodetector which are ionized by the light by time ¢,
and N, (¢) is a single atom operator with eigenvalues 0,1.
The angle brackets in (2.1) and below mean the quantum-
mechanical expectation value: (4 ) = Sp{ p4} where p is a
statistical operator (density matrix) of the system, in this
case the source-field-photodetector system. In accordance
with expression (2.2), we write the correlation function
K(t,t,) in the form K(¢,,¢,) = K, (¢,,t,) + K,(¢,t,), where

Kyt t=gig 2 (5 N, Na (k). (23)
R

Kyt t) =g 2 2 (5 N (t), Vi)l ).
hs1 (2_4)

The first term determines the shot noise; the second is the
informative part of the correlation function. In order to ex-
press (2.3)-(2.4) in terms of the field characteristics we
should use a perturbation theory in the interaction of the
field with the atoms of the photodetector. We ignore any
optical nonlinearity of the photodetection. The lowest non-
vanishing order in the interaction for K, (¢,,t,) is the second
order [i.e., K, (z,,t,) is proportional to the mean light inten-
sity); that for K,(z,,t,) is the fourth order. We assume that
the spectral sensitivity function of the photodetector is con-
siderably broader than the spectrum of the radiation under
study. Under this condition, the photoabsorption event is
localized in time (the particular instant of course remains
random!), and a 6-correlated shot component of the signal is
generated. This component is unrelated to the correlation
properties of the light K,(#,,t,) 0 6(t, — t,).
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Under these approximations we find the following
expression for the correlation function”™ (2.1):

K(th tz)
=t ) [ 48 (B (1 ) BE (1, )8 (82— 1)
It
. .
+(mma)” 2 | 48 {48, KER (2) B (2) B (2,)
u,v
XELY (1)) 0 (t,—¢y)
H{z o T)). (2.5)

Here g is the quantum yield (efficiency) of the photodetec-
tion; ¢ is the velocity of light; w, is the central frequency of
the radiation; the subscripts 1z and v represent Cartesian co-
ordinates; E‘*’ (x) are the positive- and negative-frequency
parts of the operator representing the electric field of the
light wave®; x = (z,r), where (r are those points on the pho-
tocathode over which the integration is carried out; and
@(r) =1at 7>0and &(7) = 0 at 7 <0. The interaction of
the field with the photodetector atoms was already incorpo-
rated in the transformation from (2.3), (2.4) to (2.5). The
operators E £’ (x,) in (2.5) are thus written in the Heisen-
berg picture of the source-field system.

For experiments with two separate photodetectors,
in which the correlation function I?(t,,tz) = ((1/2)[J,(z,),
J>(t,)1, ) is measured, the expression for K(1,,t,) differs
from (2.5) in that the first (shot) term is absent and in the
circumstance that the integration is carried out separately
over the surfaces of the first (r,) and second (r,) photocath-
odes.

In the steady state the correlation function K(¢,,2,) de-
pends only on the difference 7 =1, — ¢,.

In addition to direct measurement of the time evolution
of the correlation function, it has become common to mea-
sure the intensity fluctuation spectrum, i.e., the spectrum of
the function®>* K(7):

G (0) :f drexp (iwt) K (7). (2.6)
The first term in (2.5) corresponds to the constant back-
ground-the spectral level of the shot noise—in the intensity
fluctuation spectrum (in reality, this background is limited
along the frequency scale by the inertia of the measurement
apparatus). In a study of the radiation from a polyatomic
system the second term in (2.5) contains a term
(J(1))) X (J(1,)) ES TV xDEST (x)IE LT (%))
X E {7 (x,)) in the integral]. At any rate, it is useful to
single out this “corpuscular” component (photons which
are each definitely emitted by one of the elementary radia-
tors; Subsection 3.3) even if it does not arise by itself. The
remaining (cumulant) part of the correlation function re-
flects the statistical dependence of the photon counts.

2.2. Characteristics of photon antibunching and sub-Poisson
photon statistics ‘

The experimental criterion for photon antibunching is

the inequality
Kyt 1) < {V (1))  (22))} (2.7)
at small values of 7 = ¢, — ¢,; the more restricted condition
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for antibunching is the equality K,(t,t) = 0. We again note
that the first term in (2.5) bears no relation to photon corre-
lations, but it does actually contribute to the correlation
function of the photocurrent when two time intervals of the
photodetector response overlap. At small values of 7 this
component is unavoidable, and it must be eliminated in the
course of the statistical analysis.

To calculate the probability p(#;T), for the detection of
n photon counts over the observation time 7, we need to
determine the field correlation functions of all orders* (see
also Subsection 3.2). Let us examine the variance of the

number of photon counts in the steady state:
T T

Din, T)=(ndy—mt={ dt, § dty K (84, ty)— ()27
0

T
—2 Sd‘c(T—T) (K (1) — (J)2. (2.8)
]

Here we have used K (¢,,t,) = K(7). It is useful to single out
in D[n,T] the universal Poisson term (n)r, which stems
from the first term in (2.5) [the one with §(7)]:

(n)p{l +E(D)}.
The parameter £(7T), which is a measure of the deviation
from the variance for a Poisson distribution, is

T

8D = § AT (T —7) [K, (1) — (J)3).

Dn; T) = 2.9)

(2.10)

In the case £(T) we shall call £(T) the “SPPS parameter.”
We wish to emphasize that according to the precise meaning
of the terms which we are using we should be speaking not
about photon statistics “in general” but about the distribu-
tion of photon counts under definite measurement condi-
tions, over a definite time interval 7. We will use the notation
£, =&(T) for T> 1., where 7, is the time scale of the
variations in K,(7) [more precisely, the time scale of the
irreversible decay of the correlations—for the vanishing of
theintegrandin (2.10)]. If§ | <0, we will speak in terms of
SPPS (without any special explanation).

The conversion of a flux of photons into photoelectrons
which is performed by an ideal photodetector (which has no
“dead time” or false counts) is a binomial conversion. In this
case we would have i = g and £ " (T) = g& ™ (T) for
any probability distribution p(rm,T), where m is the number
of photons, # is the number of photoelectron counts, and ¢ is
the quantum yield. The Poisson distribution is preserved
(with the replacement 7 — 7). It is useful to single out the
parameter & for the following reason. As was mentionted
in the Introduction, photon and antibunching leads to char-
acteristic dips in the intensity fluctuation spectrum below
the level of the shot noise. There is also a spectral expression
of SPPS. At T'> 7., We can write

(2.11)

E(T) NEW: 1 (K, (1) — (J)?).

c'—-’-;g

It is not difficult to see from expression (2.5) that K,(7) is
an even function. The doubled integral in (2.11) is therefore
the value of Fourier transform (2.6) at the pointw = 0, after
the spectral density of the shot noise, {J ), and the part of the
correlation function factorized in terms of the photocurrent,
equal to {J )?6(w), have been subtracted:
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(G (@) — (/)28 (@) — () o=o- (2.12)

=15y
The parameter |£_ | is therefore equal to the relative in-
crease (in the case & > 0) or decrease (£ <0) in the pho-
tocurrent noise spectrum G(w) in comparison with level of
the spectral density of the shot noise at @ ~0. This manifes-
tation of SPPS after a long time may be important for ex-
tremely precise measurements by methods of correlation
spectroscopy. The dips in the intensity fluctuation spectrum
do not necessarily appear in the region @ =~ 0; just where they
appear depends on the dynamics of the system and the par-
ticular measurement version (Secs. 3, 4).

In general, different characteristics of radiation incor-
porated in K, (7) may prove useful for applications. For data
trasmission in analog form the suppression of the shot noise
in the frequency band of the signal modulation is important.
In other words, we need to know the details of the shape of
thedipin the intensity fluctuation spectrum. In digital trans-
mission the reliability improves with decreasing ‘“‘miss”
probability p(0,T), where T 'is the duration of a single pack-
et.”® For SPPS, p(0,T) is smaller than for a Poisson distribu-
tion (for equal values of 7). In determining the instanta-
neous value of the signal-to-noise ratio one needs to know
K,(7) at small values of 7.

Let us examine the relation between photon antibunch-
ing and sub-Poisson photon statistics.”® We introduce the
normalized correlation function (with a normal ordering of
field operators)

V() = ’i;;:) =& (?;)’ () (2.13)

The following assertions are obvious from the dependence of
the sign of the integral in (2.10) on the properties of the
integrand:

1) It follows from the condition for SPPS for a given T,
&(T) <0, only that there is a time interval 7, 7< 7, in which
the relation ¥ ?(7) <1 holds [the condition ¥ ®(0) =0
does not necessarily hold]. The converse of course is not
correct.

2) If y (1) <1 at 7 < T, then for measurement inter-
vals T<T, SPPS holds: £(T) <0.

3) In particular, it follows from the antibunching in the
restricted sense of the term, ¥ ?(0) =0, by virtue of the
continuity of ¥ ®(7), that there exist intervals of T which
may be small) in which the relation £ (7T") <0 holds (SPPS).

4) It follows from assertions 1) and 2) that photon anti-
bunching and SPPS are equivalent if ¥ *'(7) is a monotonic
function and if ¥ () =1 (and only under these condi-
tions).

Consequently, photon antibunching and SPPS are gen-
erally not equivalent, and neither characteristic follows from
the other. This assertion remains correct with regard to
three characteristics, i.e., when we incorporate the
“squeezed” nature of the field state.

The antibunching effect, i.e., the dip as 7—0 on the
curve of the photon-pair count rate (Fig. 1), can be impor-
tant only for weak sources: (I )7, S 1. We wish to stress
that for a macroscopic source ({I )7, > 1) the manifesta-
tions of SPPS may be significant, even though the photon
antibunching is slight: There can be dips in the intensity fluc-
tuation spectrum, which can in principle go to zero

£ - —1.
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2.3 Squeezed field states and SPPS (examples)

Let us examine an example which demonstrates the re-
lationship between squeezing and SPPS in a steady-state ex-
periment.®*7"’® We assume that we are detecting photon
counts in a field consisting of a superposition of an intense
field in a coherent state with a complex amplitude
% = % 4" and the radiation of interest, which is character-
ized by operators E* . For sufficiently short observation
time intervals 7, and in the zeroth order approximation in
the intensity ratio (E'7'E'*")/ %2, the parameter £(T)
[Egs. (2.9) and (2.10)] can be expressed in terms of the
variances of the quadrature field components® X, = (1/
2)(E(+) + E(—)), XZ — (l'/z)(E(—) _ EH»)):

E(T)=4nT :(AX,)™),
if 8=0,0ri=2, if 6=

Nltl

i=1,

(2.14)

Here 7 is a dimensional constant which characterizes the
photodetection efficiency. The condition for SPPS is related
to the squeezing property: (:(AX; )} <0. For these particu-
lar values of 8, these characteristics are equivalent. We recall
that for a field in a coherent state we have ((:AX;)*) = 0.
The frequency-conversion method thus makes it possible in
principle to establish the presence of a squeezed state in
terms of the distribution of photon counts. We note that the
phase of the reference wave, 8, must be determined with
respect to the phase of the signal under study (Secs. 3, 4).

For long observation times, the parameter £ and the
photocurrent spectrum are expressed in terms of the correla-
tion functions of the quadrature components. The observ-
able effects also depend on the phase relations.

In Sec. 4 we will examine the conditions under which
the variance of the number of photons of the resultant signal
from a degenerate parametric amplifier can be written in the
form

(Am)?)y = 4 (m), (AX)?),, i=1 or j=2

(2.15)

where 1 is the signal formation time in the nonlinear medium.
Using the identity

(AX )Y =0+ CAX,)),

i=1, 2, (2.16)
we find the parameter £, (for the number of signal photons
at the output from the amplifier):

=4 ((AX)2), i=1 or i=2. (2.17)

In this case the conditions for SPPS and for squeezing are
thus the same.

3. NONLINEAR RESONANCE FLUORESCENCE OF
NONINTERACTING ATOMS; PHOTON ANTIBUNCHING AND
SUB-POISSON PHOTON STATISTICS

Resonance fluorescence was one of the fundamental
problems during the development of the quantum theory of
radiation.®®®! The advent of lasers was followed by the deri-
vation of a theory for the nonlinear resonance response of
matter to intense light, including a theory for nonlinear reso-
nance fluorescence (see Ref. 82 for a detailed account and a
bibliography). The predictions of the theory of nonlinear
resonance fluorescence®*®® (in particular, the appearance
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of an noncoherent background near the coherent-scattering
line and—the most vivid effect—a triplet induced by an in-
tense field) were confirmed quantitatively in the experi-
ments of Refs. 87-89 (see also the literature cited in Refs. 82
and 89). Nonlinear resonance fluorescence also turned out
to be the first type of radiation in which the new statistical
effects in which we are interested here were observed.

The balance of this section of the paper is based on a
calculation of the field correlation functions by a diagram
technique in time-dependent perturbation theory for a den-
sity matrix.°® This version of the diagram technique has
proved to be very convenient in radiation theory when sever-
alinteractions are taken into account, both coherent interac-
tions and those which result in relaxation processes.® In-
stead of the corresponding diagrams, however, we will be
using figures here which are similar to Young’s experimental
layout toillustrate the physical meaning of the various com-
ponents of the correlation functions.

3.1. Group decomposition of correlation functions

We consider a system of N immobile, noninteracting,
identical atoms in a region with a length scale L. The atoms
are in a monochromatic plane light wave with an electric
field

g(t, r)= %%’0 exp ( — iwgt + tkyr) 4- c.c. (3.1)

The frequency o, is close to the atomic transition frequency
@,, (level E| is the ground level; the levels are assumed to be
nondegenerate). Secondary radiation is detected at a dis-
tance R> L. The difference between the light propagation
times from different atoms to the surface of the photocath-
ode (or of two photocathodes) is assumed to be much
shorter than the important photocurrent fluctuation times
which are determined by the evolution of the atom in the
field:

Lominfy, vl Vi), (3:2)

where y is the radiative width of the upper level,
Vo = @y — @y, is the deviation from the resonant frequency,
2V, = |d,, & ,|/# s the Rabi frequency, and d,, is the transi-
tion dipole moment. Under condition (3.2), the temporal
retardation does not influence the photocurrent fluctuations
and can be ignored.

Before we examine the field correlation functions in the
integrands in (2.5), we would like to clarify a manifestation
of the superposition principle for the field in the example of
the expectation value (E'*'(z, r)) (in optics, this expecta-
tion value usually vanishes or is essentially the same as the
field of the transmitted radiation from the external source;
however, it is not devoid of meaning; Subsection 3.3). Using
the expression

EO (=i )

k.a=1,2

( 21w

12 ;
7 ) e, (k) eikr ay o

(3.3)

for the field operator in the Schroédinger picture, we write the
expectation value of a Heisenberg operator in the form

(ED(t, 1)) =Sp(St(L, 1) ED (1) S (., t) 0 (t)]:

=i 3 (F72) " ey (k) exp (ikp)

k.,

XSp [S71(t, ty)ax, « S(t. ty) o ()]s (3.4)
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here o =clk|, e,(k) are unit polarization vectors
(a = 1,2); Vis the nominal quantization volume; S(z,z,) is
the operator representing the evolution of the system con-
sisting of [atoms in an external coherent (classical) field]
+ (quantized field); and o(¢,) is the statistical operator of
this system at the initial time.

In nonresonator problems a quantized electromagnetic
field in an unbounded volume can be thought of as a reser-
voir at zero temperature with respect to the dynamic (atom-
ic) system (despite the arbitrarily prolonged conversion of
the light incident on the atoms into secondary radiation).
We can thus write o(1) = p (1) |®,) (®,|, where the operator
[®) {P,| is the projection operator onto the ground state of
the continuum of radiative oscillators (vacuum), and p(t) is
the statistical operator of the system of atoms. For the last
factor in (3.4) we find

Sp(...1=Spay (DofS7H(t, to) ax,aS (£, L) o (L) (Do),
(3.5)

where the trace (spur) is now taken over only the states of
the atoms, and p(¢,) = I1(]1),, (1)), is the initial statistical

operator of the atoms (for the steady-state response, the de-
pendence on the initial state of the atoms essentially disap-
pears after the limit /— « orz;— — oo is taken). The opera-
tor @, , in (3.5) must be paired with the creation operator
for a photon of the same type,***? a,},. The operator a,,
must be “taken’ from the operator S(t,t,) in each order of
perturbation theory. After this is done, however, the effect of
the “newly assembled” operator S(t,z,) (more precisely, the
evolution of the statistical operator of the atoms) does not
change: The radiative oscillator of the type (k,a) in each
term of the type in (3.5) in sum (3.4) is one of a continuum
- (after the limit V' — oo is taken). The energy operator of the
free field contains a,, only in the product g, ,, and the oper-
ator representing the interaction of the field and the atoms,
H, = — 3 d'“KE(r,), is linear in a,/ . It is thus possible to
make the (extremely useful!) assumption that a, , is paired
with a,, from each H |, while the summation over all the
atoms, 2, -+, is preserved. The superposition principle be-
gins to “‘work” in this step of the calculations.
We skip over the calculations to the result (which is
correct in the wave zone):
. &3
(ED (t, r)y =i 2 B"a
a

(n, [d@n,]] p5Y

xexp(— lwgt +ikoR, + ikory),
(3.6)

where r, are the radius vectors of the atoms, R, =r —r,,
n, = R,/R,, and p.? is the steady-state value of a nondia-
gonal element of the density matrix of atom @ [a factor
exp( — iwyt + { kor, ) has been singled out]. The quantity
d,, 5, is the positive-frequency complex amplitude of the
steady-state expectation value of the dipole moment of the
atom, so (3.6) agrees with the expression for the dipole radi-
ation field in classical electrodynamics®* [in this case, (3.6)
is essentially the field of a coherently scattered wave]. The
summation over the atoms and the average over their ran-
dom positions make the quantity in (3.6) vanishingly small
at all observation points r except those in a diffraction cone
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R

FIG. 3. Diagram illustrating the calculation of the expectation value of
the positive-frequency part of the electric field of the radiation from an
atom.

along the direction of the transmitted laser light, with a solid
angle of the order of (1,/L)>

When this procedure is used in problems without coher-
ent external radiation (spontaneous emission,’**° resonance
transfer of excitation, and the formation of cooperative co-
herent emission®®°’) the “‘classical” expressions are found
for the probability amplitudes for radiative transitions (the
average field vanishes in these cases).

We associate the quantity in (3.6) with the diagram (as
an exception: “genuine”) and the drawing in Fig. 3.

At this point we go back to photocurrent correlation
function (2.5). The correlation function in the first term in
(2.5) reduces to two diagrams (Fig. 4). The correlation
function in which we are interested, in the second term,
splits up into the sum of a rather large number of diagrams

(Fig. 5). The nonshot part [K,(7) ] of the photocurrent cor-
relation function K(7) is therefore represented as the sum of
“two-photon” contributions of the secondary radiation of
individual atoms and groups of two, three, and four atoms.

The circles labeled with letters on the diagrams repre-
sent atoms. A summation is understood to be carried out
over the corresponding arrangements (over all possible
combinations of the N atoms, taken 1, 2, 3, and 4 at a time;
and over all permutations of the indices of the atoms within
each combination). The average is taken over the positions
of the atoms. The arcs are regions of the photocathode; 1
represents (Z, r;), and 2 represents (f + 7, r,). One might
also think in terms of an experiment with two photodetec-
tors in a delayed-coincidence arrangement. The lines run-
ning from atoms to points on the photocathode are the pho-
ton propagators “from creation to annihilation.” The lines
with backward arrowheads are complex-conjugate propaga-
tors.

The use of diagrams with definite rules governing the
correspondence between their elements and the analytic ex-
pressions makes it possible to link each component of the
correlation function of interest with elements of the density
matrix of the system of atoms. Clearly, a similar group de-
composition holds for correlation functions of all orders.

We believe that Figs. 3-5 explain the manifestation of
the superposition principle for a quantum-field analysis of
optical measurements. In any calculation of a measured sig-

t,r

F1G. 4. Diagrams for the expectation value of the radiation intensity. a—
Monatomic component; b—diatomic (interference) component of the in-
tensity.
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nal we are dealing with expectation values of Heisenberg
field operators. The interaction of the field with the source
links the photon propagators to the elementary radiatorsin a
natural way. The interference laws for classical waves are
reproduced at the level of such ““directed” photon propaga-
tors or probability amplitudes. However, only events involv-
ing the detection of an increment in the energy (or of the
momentum transfer or of the angular momentum) are ele-
mentary physical events (which are conveniently interpret-
ed from the particle standpoint). It is to these events that we
can directly apply the customary concepts of probability
theory and the theory of random processes.®’

=
N
EG

3.2. Photon antibunching in the fluorescence of a single atom

We have arrived at the first experimental study of pho-
ton antibunching.'>'® Photon antibunching is an organic
part of the nonlinear resonance fluorescence of a single
atom. The diagram in Fig. 5a corresponds to the next com-
ponent, X $*’ (7) of the informative part, K, (r) of the photo-
current correlation function'>™" [Eq. (2.5)]:

69 (1) = NV (qop)? pappss” (1), (3.7)

where the coefficient @ depends on the experimental geome-
try, p,- is the steady-state value of the probability for finding
the atom in the upper level, and the superscripts in p$}" ()
specifiy the initial conditions p;;"" (0) = 4,6, (8, is the
Kronecker delta) ]. The equalities

(11) (11)

P22 (0)207 P22 (00)2522 (3'8)

mean that there is an antibunching of photons emitted in
succession by the same atom., At N> 1, the “single-atom”
component of (3.7) is usually (but not always—see the dis-
cussion below ) suppressed by the “polyatomic’ components
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FIG. 5. Diagrams which form the fourth-order field
correlation function of the radiation of a polyatomic
system [expression (2.5); the second term is K,(7)].
See Subsection 3.3 for a detailed analysis.

fji

of a Gaussian nature. At N = 1, on the other hand, it is the
sole component. In connection with expression (3.7) it is
pertinent to note that a study of steady-state correlations can
reveal the time-dependent behavior (dynamics) of the radi-
ating system under specified external conditions (although
this comment would be trivial from the standpoint of ran-
dom processes, studies of this sort would not be trivial in the
optical region and with an individual atom or group of atoms
as the source of correlations in the radiation). In this case
the photon antibunching associated with expression (3.7)
reveals the process by which the upper level of the atom is
populated. The detection of a photon at time ¢ reliably fixes
the atom (which is not subject to a destructive effect of the
measuring instrument!) in the ground state. The probability
(per unit time) for detecting a second photon at the time
¢t + 7 is proportional to yp$;" (7). The quantity p53" (7)
serves as a conditional probability.

Kimble et ¢l.'?, and Dagenais and Mandel'® detected
emission (nonlinear resonance fluorescence) of sodium
atoms from a low-density beam along a direction approxi-
mately perpendicular to the beam. The exciting laser beam
intersected the atomic beam at strictly right angles, mini-
mizing the Doppler effect during the excitation. The laser
light acting on the atoms was as resonance with the transi-
tion (3°S,,,, F=2) — (3?P,,,, F = 3). The intensity of this
light was carefully stabilized (to within a few percent), as
was its frequency (within 1-2 MHz). Two states, (325, ,,,
F=2,mp=2)and (3°P;,,, F= 3, m = 2), were singled
out with the help of a circularly polarized ‘“‘preparatory”
beam from the same laser, in the approach which was taken
in Refs. 87 and 88 and in some earlier studies carried out to
observe the spectrum of nonlinear resonance fluorescence
(see Refs. 88 and 18 regarding the details of the method).
The photons of the nonlinear resonance fluorescence were
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collected by a microscope objective. The light was then split
into two beams, of approximately equal intensity, and de-
layed coincidences were counted (the distribution in 7 of the
number of photon-count pairs). Kimble et al.'*> estimated
that in their first experiments there were simultaneously one
or two atoms (almost certainly no more) in the observation
region. In Ref. 17 Kimble et al. reported the average number
of atoms to be 1/3 (within an uncertainty of 50%). The
effect of fluctuations in the number of atoms {a ruinous ef-
fect for photon antibunching in this case) has been studied in
several places.'®'37>9) A very careful analysis of the ex-
periments carried out under various conditions, in particu-
lar, at various densities of the atomic beams'”'® inspires con-
fidence in the results.

Simple expressions for p;'"’ (1) can be written only for
limiting relations among the parameters V, , ¥, |v|:

a) weak field, V2 «max{y>v}},

1%
~ | e (o)

—2exp (——%) cos (vo‘r)] ;
(3.9)

p!'33 (v)

b) strong field, 2>y 2,1’3,

oo ~ ——fi exp( 4 )cos (ZVOT)]

Figure 6 demonstrates the good agreement between the
corrected experimental curves and the smooth functions
pil (1) (Ref. 18). The corrections dealt with transit-time
eﬁ'ects and correlations in the scattering from pairs of atoms
and were based on theoretical expressions.

A theoretical study was made in Refs. 102-104 of the
effect of a frequency spread, amplitude fluctuations, and
phase fluctuations of the exciting laser light on the intensity
correlations in nonlinear resonance fluorescence.

Figure 7 demonstrates the properties of the photocur-
rent noise spectrum [expression (2.6)] when the single-
atom component is singled out: Against the background of
the shot-noise spectrum Gy, (@) = {J ) there are dips cor-
responding to antibunching.'® The spectrum is less sensitive
to fluctuations in the number of particles in the observation

(3.10)

2.0 — T T T T T
151 } 7 .
10+

a5 4

20 40 80 80

FIG. 6. Comparison of theoretical {solid lines) and corrected experimen-
tal results on the correlation function pi}" (7)Vp,, (from Ref. 18). 1—
Vo=0Ty,vo= — L1;2—V,=L1ly,v,= — L7
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FIG. 7. Examples of intensity fluctuation spectra of the nonlinear reso-
nant fluorescence of a single atom. a, b—weak field, ¥} <(y*/4) + %;
a—y, = 0; b—v, = 3y; c—strong field, V3> '7% (gz =1).

region (and less sensitive to the interaction of these particles
with the exciting laser beam) than is the photon-count corre-
lation function itself. Under the condition y7,. 1 (7,, is the
transit time), and with a large collection angle (Subsection
3.3), a peak with a width of the order of 7,; ' €y appears in
the region @ = 0 in addition to {(/ )*§(@) (from pairs of inde-
pendently radiating atoms; Fig. 5b). The characteristic dip
persists and can be seen even at!>?2 N> 1.

Short and Mandel'®?° have reported establishing that
the distribution of photon counts is of a sub-Poisson nature
under the same conditions in the observation of the nonlin-
ear resonance fluorescence of a single atom. The flux density
in the atomic beam corresponded to an average distance of
the order of 1 cm between atoms and to a time interval of
about 10 us, with a 200-ns duration of the count of photon
pulsesin asingle “n” realization. Special measures were tak-
en to monitor the “arrival” of an atom in the observation
region. The statistics of the photon count were determined
from the results of 24 725 000 realizations, in each of which
from O to 3 photon counts were actually detected. The pa-
rameter £(T) [see (2.9)] was found from these measure-
ments to be ( — 1.48 4 0.25)-1073, and the value found
after corrections was ( — 2.20 4 0.23)-107>, The correc-
tions were made for the dark (background) counts, the dead
time, false photon counts, and the possibility that two atoms
were present in the observation region. Short and Man-
del,'®?? estimate the theoretical value of £(T) [see expres-
sion (3.12) below] tobe E(T) = — (2.4 +0.6)-107>,

Using expressions (2.10) and (3.7), we find the follow-
ing expression for the parameter £(7') in the observation of
the nonlinear resonance fluorescence of a single atom:

T
2 —
£(7) = qay Tgmw—n@“m—m» ol

Since we have p§i" (0) = 0, there will always be SPPS if T'is
sufficiently small, 7€min {y~", |v,| =", V5 '}:
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E(T) ~ —qayTpy; (3.12)

in the saturation regime, with 2>y 2 v3, at TV !, we
would have

E(T) ~ — qovT- (3.13)

At small values of T the relation |£ | €1 always holds.

For long observation time intervals, 7> ¢~ ", one will
not always observe SPPS?1-23;

2V3 [vi—(3y¥/4

T Tt F VAP - (3.14)
The condition for SPPS is v3 <3y 2%/4, £™ = — 3ga/4
(and is reached at V2 =y %/8, v, =0).

For a brief discussion of the photon-count distribution
p(n; T), we follow Ref. 25 (see also Refs. 24, 26, and 27). In
order to calculate p(n; T) we need to determine the field
correlation functions of all orders: They contribute factorial
moments from which the distribution is reconstructed.*

The situation is simplified in the case of the nonlinear
resonance fluorescence of a single atom by the circumstance
that each factorial moment Q,, (7) is expressed as the
(m — 1)-fold convolution of the function p$}" (£, — t; _;)
(k =2,3,...,m) with a factor (gay)™ p,,. The Laplace trans-
forms of the functions Q,, (T) in the variable 7, i.e., @m (s),
can thus be expressed in a fairly simple way in terms of the
Laplace transform of the population of the upper level, g53"
(s). Taking the inverse Laplace transforms of course gener-
ally leads only to some extremely complicated expressions.
However, it is entirely possible to study limiting cases and to
carry out numerical calculations for small values of n. Fig-
ure 8 illustrates the narrowing of the p(n; T) distribution in
comparison with the corresponding Poisson distribution.
For a long observation time 7, under the condition
{n) = gayT p,,> 1, the central region of the distribution,
|n — {n)| €(n), can be approximated well by a Gaussian

E(TY~ Ew=1qu

=
_‘
d b
o ®
(o]
(o]
(0]
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e 01 LU LG 'm_mt
gy 1 2 3 4 &5 & 7 8 8 70 n

FIG. 8. Photon-count distribution in the detection of the nonlinear reso-
nant fluorescence of a single atom (columns). 7i =5, v, =0, V2 = ¥ /8.
The circles show a Poisson distribution with i = 5.
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distribution with a variance D[n] = (n) X (1 4 £_ ), where
£, is given by expression (3.14). This result agrees with the
central limit theorem: At 7> r_,,, a sample of duration T
contains many uncorrelated regions of a random process.”

In Refs. 23, 24, and 27 the distribution of the number of
nonlinear-resonance-fluorescence photons was related to
the statistics of momentum transfer to atoms from a laser
wave. The problem is analyzed most comprehensively, and
the literature reviewed, in Ref. 27.

3.3. Polyatomic effects in the nonlinear resonance
fluorescence of a system of atoms

A classification of the contributions to the correlation
function K () from groups of two, three, and four atoms in
the observation of the nonlinear resonance fluorescence of a
system of atoms was given in Ref. 15. Despite the large num-
ber of interference processes which lead to intensity fluctu-
ations, and despite the circumstance that most of the corre-
sponding terms are small because of an averaging over the
positions of atoms,'’ some of them may be distinguished by
virtue of the characteristic correlations in terms of the prop-
agation directions of the photons. Certain processes lead to a
bunching of photons, while others promote photon anti-
bunching and SPPS.”®:'>'% Under ordinary observation
conditions, with &> 1, the direction n, of the directly trans-
mitted light of the exciting laser is eliminated from the pho-
ton collection angle. The dominant processes are then those
depicted in Fig. 5b and c. Their sum corresponds to Gaus-
sian field statistics and to a variance D[n] =n(1 +68') in
the number of photon counts (see the Introduction). The
diagram in Fig. 5b corresponds to the component of the cor-
relation function which we have already considered back in
Subsection 2.1. Thisis a trivial component in the absence of a
statistical dependence of the excitation events and if the evo-
lution of the excited atoms is independent (the opposite situ-
ation is dealt with comprehensively in Secs. 5 and 6). The
diagram in Fig. 5c corresponds to a partial factorization of
the fourth-order field correlation function [expression
(2.5)] in the form (E$ 7’ (1) EST (2(EL(2)
X E () (1). At the semiclassical level, this would be wave
noise: beats of the spectral components of the radiation. In
the intensity fluctuation spectrum, it is a convolution of the
ordinary optical spectrum of the nonlinear resonance flu-
orescence. The pairs of photons which actually determine
this part of the correlation function are strongly correlated
in terms of propagation direction in a solid angle of the order
of (A /L)? where L is the size of the scattering region. On the
whole, there is no sharp directionality in terms of the pair
detection directions. Angular correlations lead to a decrease
of this “two-atom’” wave noise in comparison with the direct
process (the diagram in Fig. 5b) in a ratio o, /S at S> o,
where o, is the area of the spatial coherence at the surface of
the photocathode, and S'is the area of the photocathode. The
contribution of the wave noise can therefore be suppressed if
observations are taken over a wide solid angle.** In the inten-
sity fluctuation spectrum, it is also lowered, by a ratio y/
dwp, by virtue of the Doppler effect; in measurements of the
intensity fluctuation spectrum it is thus possible to distin-
guish a “single-atom™ signal with photon antibunching
(dips against a background of shot noise and wave noise),
also in the case of the nonlinear resonance fluorescence of a
polyatomic system.
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All the other processes (all the diagrams from Fig. 5d
on) are characterized by a sharp directionality or, more pre-
cisely, a selectivity in terms of the regions on the photocath-
ode or the arrangement of two photodetectors (in an experi-
ment on mutual correlations). For example, the diagram in
Fig. 5d corresponds to a factorization (E ™’ (1)) (E§™’
(2)EL*’ (2) ELT) (1)), Thisdiagram is the dominant one
in an experiment with two photodetectors, one of which de-
tects the radiation in a small solid angle in the direction n,,
while the other detects the radiation in a wide solid angle, in
directions quite different from n, (‘‘sideways-forward” pho-
ton correlations). The diagram in Fig. Se (note the direc-
tions of the arrowheads) leads to so-called anomalous corre-
lation functions [the partial factorization (E (™’ (1) E§™’
() (EST(2)ELT (1)) ]. A method for identifying this
signal in a mutual-correlation experiment was proposed in
Ref. 106.

In an analysis of photon correlations or the intensity
fluctuation spectrum in a solid angle ) near the direction n,
(nonlinear resonance diffraction), the diagrams in Fig.
5(f)-(h), are dominant.”® Physically, they correspond to
beats of the diffractive (two-atom) component (Fig. 4b)
with the single-atom fluorescence (Fig. 4a). The corre-
sponding partially factorized terms in the fourth-order field

. correlation function are as follows [for convenience in com-
parison with the diagrams, the index of the atom whose evo-
lution contributes the corresponding correlations is speci-
fied below; a summation over all sets {a£b ¢} is to be
understood ]:

for the diagram of Fig. 5f,

(BT AESTQEL () (ELT (D).,
for the diagram of Fig. 5g,

(ELTMNAEFTQIE (D) AEFT (),
for the diagram of Fig. 5h,

(EST () (ET (), (BT (ELT (D),

(the last quantity includes an anomalous correlation func-
tion). The role played by anomalous correlation functions in
the statistics of radiation has been pointed out in several
papers.'*>~'111579 In this case, it is with the vanishing of
these correlation functions at 7 = 0 that the photon anti-
bunching and the SPPS are associated: The reconstruction
of an induced dipole moment of the atom (not the popula-
tion of an excited level!) is manifested after the atom *‘par-
ticipates” in the emission of the ‘““first” photon. A coherent
contribution of this sort promotes a compensation for the
Gaussian noise and tends to increase the regularity of the
radiation. The correlation function (E§5*’ (2) ES7’ (1))
( 4+ c.c.) can be distinguished in a frequency-conversion
scheme. On the diagrams in Fig. 5b, this case corresponds to
the addition of all possible versions of the replacement of the
photon propagators by the classical complex amplitudes
&\, & of the field of the reference signal (from the same
laser which is used to excite the fluorescence). Let us assume
that its intensity, J,, is high in comparison with that of the
fluorescence, and let us assume that the field ', is shifted in
phase by an amount 8 with respect to the exciting field. We
write the photocurrent correlation function’:
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K (1) = (J) 8 (1) + ()% + (i) gxF oy [(puapit” (T) — |pgg]?)
X {1 +exp [2i (A— gp)]}

+ P2 1047 (1) + 2" (7) exp (2iy)] -+ c.c.]; (3.15)
here F,= (3/87d2) [d,, —my (dymy)]% x> =NQ if
Q< (/D) orx = v, A2Lif Q> (1 /D)% v, isthe density
of atoms; D and L are the dimensions of the interaction re-
gion respectively transverse and longitudinal with respect to
thelaser beam [under the condition Q > (1 /D)2, the param-
eter x determines the linear absorption at the center of the
line]; and A is the phase of the induced dipole moment of the
atom with respect to the exciting laser wave, i.e.,
P21 = |1 |exp(iA), where A =arctg [(#/2) X (@,
— w,) ~']. Let us examine the variance of the number of
photon counts over a small time interval 7, using expression
(3.15) (without the first term) in (2.10), and assuming
o™ (1) =p™ (0) = 8, 84, Weset @, = A. We then find

E(T) ~ 2quFyT (522"‘2|512|2)

Vi [2VE— (y/4) —vi]
(¥4 +v§+2Vi]°

= 2quF 3T (3.16)

(we are using the steady-state values p,,, p,,). We find
E(D)<O0 for Vi< T 4 (@ — ) (3.17)

here £.,n (T) = — (1/8)gxFyyT {this value is reached at
Vi=(1/6) [(y*/4) +2]}. It is useful to compare this
result with expressions (2.14). According to the comments
following those equations, we should identify the condition
@n — A =0, under which (3.16) was derived, with the con-
dition 8 = O in Subsection 2.3. We reach the conclusion that
thereis a squeezing of the quadrature component of E, of the
resonance-fluorescence field in the diffraction cone when in-
equality (3.17) holds. There is the further possibility that
SPPS and squeezing in the nonlinear resonance diffraction
of coherent radiation by a system of atoms could be observed
under other conditions and in other types of measurements
(squeezed states were not specifically mentioned in Ref. 79).
Under optimum conditions, a dip with a relative depth of
0.28 can thus be achieved at w ~ 0 in the intensity fluctuation
spectrum. In connection with the experimental possibilities,
we would like to point out a subtle experiment''? on the
angular dependence of the intensity of nonlinear resonance
fluorescence within the diffraction cone.

The relationship between SPPS and squeezing in non-
linear resonant fluorescence has been the subject of several
Studies.63'64’l 13—-116

To conclude this section of the paper, we will mention
some other studies of the statistics of photons in nonlinear
resonance fluorescence and related experiments.

eMutual correlations among the spectral components of
the Stark triplet in the nonlinear resonance fluores-

cence of a two-level atom, '9%!"7-11?

eIntensity correlations, including photon antibunching
and SPPS, in the nonlinear resonance secondary radi-
ation of multilevel systems: systems with three lev-
els!?"129-123 (the simplest model in which Raman scat-
tering occurs); model systems of interacting boson
modes'?*; electronic-vibrational systems (two-level
molecules)'?>'?%; and impurity centers in crys-
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tals.'?”"32 Of major interest here, in our opinion, is the
possibility of achieving a spectral separation of the
components of the secondary radiation and carrying
out correlation studies of the various pathways and
stages in the relaxation of complex systems.

oTime-varying®'** and cooperative'?*~'3¢
photon antibunching and squeezing.

eSqueezing in the nonlinear resonance fluorescence of a
regular chain of two-level atoms. '*’

oThe effect of light in a squeezed state and/or with pho-
ton antibunching and SPPS on an atom and the trans-
formation of the statistics of photons upon the propaga-
tion of light through a resonance medium. '**'°

effects in

4. SQUEEZED STATES

Searches for sources of a radiation field in a squeezed
state have now been the subject of many theoretical papers
and several experimental studies. Models have been pro-
posed which are based on several nonlinear optical effects:
two-photon generation® (see the criticism in Refs. 31 and
140-142), parametric amplification,’*'**~'*¢ harmonic gen-
eration,'*’~!*° parametric generation in a resonator,'**'*!
lasing on free electrons,'>*"'>* Raman and hyper-Raman
scattering,'*>'*® and four-wave mixing.'**'%’

In this section we will examine two-photon coherent
states and trace the relationship between squeezing and the
dynamics of the source in the particular example of a degen-
erate parametric amplifier. We will discuss four-wave mix-
ing, which is presently regarded as the most promising ap-
proach, and the experiments which have been carried out.

4.1. Two-photon coherent states

Two-photon coherent states, which were introduced by
Yuen,* include a subset of states which minimize the prod-
uct of the variances of the quadrature components and a
subset of squeezed states [ defined by inequalities (1.4) ], but
they do not include all squeezed states. The concept of two-
photon coherent states has proved to be useful for analyzing
the production and detection of squeezed states.

For a fixed mode of radiation field one constructs the
operators

b=pa-va*, b*=p*a*-+v*a (4.1)

(@™ and a are the photon creation and annihilation opera-
tors), where the complex numbers i and v satisfy the condi-
tion

fpP—1iv =1 (4.2)

Transformation (4.1) under condition (4.2) is canonical (a
Bogolyubov transformation); i.e., we have (b, 6 *] = 1. By
introducing the operator b ™5, we can construct states with
definite numbers of quasiparticles (*‘biphotons’). By analo-
gy with ordinary coherent states |a), the vectors (3}, , of
two-photon coherent states, which are eigenvectors of the
operator b, are defined:

b 1B = BIB s (4.3)

The variances of the quadrature components of the operator
a [see (1.2)] in the state | ) u,v can be found easily by using
the transformation which is the inverse of (4.1):

863 Sov. Phys. Usp. 30 (10), October 1987

a=p*b—vb*, a*=pb*—v*p, (4.4)
The results are
. q

(AX)) = |p=-v]% (AX)h =1 [n+v[E (45

The minimum value of the product of uncertainties,
86X, 6X, =, is reached in the limit 4, v— o« under condi-
tion (4.2) and with real (u/v). If (u/v)—1, the state
|8 Yu,v becomes an eigenstate for X ; if (u/v)— — 1, it be-
comes an eigenstate for X,.

Canonical transformation (4.1) corresponds to a uni-
tary transformation Usuch that b = U "aU (Ref. 168). We
treat the operator U as an evolution operator governed by
the Hamiltonian H: U = exp[ — (i/#)Ht]. We can then
find two-photon coherent states from the ground state or
from any coherent state |@ > (as an initial state) at ¢>0,
provided only that H contains quadratic terms proportional
to (a*)% a’. More-general transformations b =ua
+ vat + x, where x is a c-number or a c-function of the
time, lead to a superposition of a coherent state and a two-
photon coherent state. Equalities (4.5) remain in force. As
we will see below, such states may be characteristic of SPPS.

4.2. Degenerate parametric amplifier

We treat the degenerate parametric amplifier herein an
extremely simple and slightly formal model, but one which is
popular in the literature: The fundamental signal—a wave at
the frequency w—is treated as an undamped oscillator excit-
ed parametrically at the frequency 2w (actually, it is excited
by a pump wave in the interaction of two waves in a medium
with a quadratic polarization.****'*® We choose the Hamil-
tonian of the system in the form

H = hwa*a + & [ia* + f, (a*)? + Hal], (4.6)

where the parameters f| and f, characterize the effect at the
frequency @ (which simulates a wave at the entrance) and at
the frequency 2w (the parametric excitation by a pump
wave), respectively. To calculate the variances of the
quadrature components, we use the equations of motion in
the Heisenberg picture. The relationship among the canoni-
cal transformation, a unitary transformation, and the Hei-
senberg picture of the motion in the problem of forced oscil-
lations and the parametric excitation of a quantized
oscillator was analyzed in Ref. 168 (Chapter VI), where
there was essentially a tracking of the formation of states
which were called “two-photon coherent states” in Ref. 34
and which were studied in detail. A solution of the equations
of motion for the operator a'(¢t) = ay (1) exp (iwt) [ay (¢)
in the Heisenberg picture] is**

a' (t) = ach 2R (t)) — i exp (—ip)

xa*sh 2R () + = (1), (4.7)
where
R(t) = ( dt'r (1),
)
t
x (t)= —iS dt’ {fch [2R (' — )] —iexp (— i)
[
X f*sh[2R (' — 1)1V, (4.8)
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h = fexp (—iwt), f=|f]|exp (ip)
fa = r (t) exp (—i (20t + ¢)] (4.9)
Assuming r(#) = const to simplify the problem, and choos-
ing a specific pump phase ¥ = 7/2, we find

(AX,)%) = exp(—4rt), (AX,® = exp (42).
(4.10)

Expressions (4.10) are identical to (4.5) in the case
u = cosh(2rt), v = sinh(2rt). The ratio (u/v) = ctnh{2rr}
approaches unity at r£>1. In other words, the state ap-
proaches an eigenstate for the quadrature component X,.
There is no squeezing in the case ¥ = 0. At r#0, a phase shift
of 7 can transfer the squeezing from one component to the
other. The expectation values of X, and X, are expressed in
terms of the quadrature components x, = (f+f*)/2,
x,=i(f*=f)/2:

(Xp) =3[ —exp (—2rt)],

(X5) =3~ [exp (2rt) —1]. (4.11)
To interpret the results and to make a comparison with the
classical theory®> we consider two operating regimes of a
degenerate parametric amplifier. We choose the phase
of the signal at the input in such a way that we have
x; = 0(cos ¢ = 0): a nonamplifying regime. Omitting fac-
tors which are not important for the present purposes, we
write the field operator E£(¢) in terms of quadrature compo-
nents. In the latter we single out the expectation values and
the operators representing deviations from the expectation
values:

E () ~ ({X;) + AXy) cos ot + AX,sin 0t (4.12)
In the case of a strong parametric effect, with rt> 1, we find

Xy~ g, (BXP <
i. e., the first term in (4.12) stabilizes, and acquires a semi-
classical regular nature. Taking some license, we transform
(4.12) as a nonoperator trigonometric expression:

AX,

E(t)m(X,)cos(mt—(—XJ). (4.13)

Despite the operator meaning of (4.13), it can be asserted
that in this regime amplitude fluctuations are suppressed
{and phase fluctuations are intensified ). When the first term
in (4.12) is singled out, the instantaneous signal-to-noise
ratio {(X,)/6X, can be made arbitrarily large (in this mod-
el). If we choose a different phase for the input signal, such
that we have x, = 0, cos ¢ = 1, we obtain a regime of maxi-
mum amplification. If exp (4r) > 1, we find that the phase
fluctuations are suppressed and the amplitude fluctuations
intensify:

E (t) o» ({X,) + AX,) sin ot. (4.14)
Expressions (4.12)—(4.14) can be used to trace the analogy
with the classical theory of a degenerate parametric amplifi-
er. In particular, there is a relationship with the classical
“phase quantization” effect.>>'’® The difference in the re-
sults of the quantum theory stems primarily from the com-
plementarity (noncommutativity) of the quadrature field
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components [see uncertainty relation (1.4)] and thus the
complementarity of the amplitude and phase random modu-
lation. On the other hand, we are speaking here in terms of a
decrease in the quantum noise, to the extent allowed by the
conditions for the discrimination of squeezed components of
the signal.

Let us examine the observable quantities in this model.
The expectation value and the variance of the number of
photons in the fundamental mode are'”’

(m)y=(a*a)y = |%|>-+ sh? (2rt), (4.15)
(AmpD = ((a* @)y —(a*a)}
= | ch (2rt) — in* exp (— i) sh (2rt))2
+ 2 sh? (2rt) ch? (2rt). (4.16)

Under what conditions would SPPS follow from squeezing
in this case? The result now depends on the relation between
the phases of the input signal and the pump. We set
ix* exp( — i) = ». Under the condition |x|?» exp (4rf) we
find

(mp =~ | » 2,
{(Amy®y, =~ 4 | % |2 ((AX))?) &~ {m) exp (—4rt).

(4.17)

If the condition r¢> 1 also holds, the photon distribution is
substantially sub-Poisson (Fig. 9). In contrast, the condi-
tion |x|? <1 leads to an example of a squeezed state without
SPPS.

4.3. Realization of squeezed states

The example discussed above shows how squeezed
states can arise in phase-sensitive effects of nonlinear optics.
However, there are serious difficulties in the realization of
squeezed states. For example, the incorporation of a damp-
ing of the “®©” mode in a degenerate parametric amplifier
leads to the following expressions™ for the variances of X,
and X, at rt> 1:

(AX)Py ~ p 4 (v + 29170, ((AX,)*)—> oo (4.18)

(v is the damping constant). If the squeezing is to be sub-
stantial, the ‘2%’ pump wave must be very intense; i.e., we
must have 27> y. The attainment of a squeezed state requires
satisfying some stringent phase relations. For example, tak-

FIG. 9. Polar diagram of the Fano parameter F= 1 + &t = ((Am)?)/
{m}) versus the phase of the resultant signal from a degenerate parametric
amplifier, which is proportional to x» under the condition |x|*%> exp (4rt)
[expression (4.16)]. Here the values 47t = 1.1 and ¥ = O are assumed.
There is the possibility of SPPS here: F,,, = 0.34. The experiment of Ref.
172 revealed a tendency toward this phase dependence of F.
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ing an average over the pump phase ¥ [see (4.16) and Fig.
9] disrupts the squeezing and the SPPS. Fluctuations in the
amplitudes of the incoming waves are also pernicious. Pho-
ton correlation effects in the scattering by groups of atoms
may mask a squeezing.

The greatest difficulties seem to stem from the small
value of the nonlinear susceptibilities and the short interac-
tion time (in the preceding section, f was actually the time of
transmission through the nonlinear medium). The interac-
tion time increases in a parametric generation arrange-
ment.'5*!5" There is the possibility in principle here of
achieving squeezing in a steady state. Calculations'>" ' in-
corporating a resonator damping yield ((AX;)?) = § as the
minimal variance for the quadrature of the wave which is
generated.

The possibility of achieving squeezed states during
four-wave mixing has been discussed intensely in recent
years,'*~'%7 The schemes which have been proposed share
the following idea. From an interaction determined by a
third-order polarization of the type P = yEEE, the part
which can be associated with an effective interaction opera-
tor is singled out by the experimental conditions:

Hy=h(kafat+Ha.). (4.19)

Here ko E, E,, where E,, and E, are the complex am-
plitudes of the pump waves (the latter may be regarded as
classical), and a;" ,a," are operators representing the para-
metrically excited waves. We assume that the frequencies of
all waves are the same (the case of complete degeneracy).
We form a linear combination of the operators a;” and a,":

*=s,0% + S,a%, |82+ [sp)2=1. (4.20)
Such a transformation might correspond to, for example, a
mixing in a beam splitter. Operator (4.19), expressed in
terms of b * and b, contains terms of the type B ¥b ™, bb; i.e.,
it can generate squeezed states in the course of the evolution
(Subsection 4.1). Four-wave parametric processes can thus
lead to the production of a field in a squeezed state and to
SPPS observable under special conditions.

The experiments of Refs. 160 and 161 used an arrange-

ment of degenerate four-wave mixing involving the photon
-

conversionk,; +k,; =k, + k,, withk,, = —k_;. Astudy
was made of the statistics of the photons of the probing and
phase-conjugate waves; these statistics turned out to be Pois-
son, in agreement with the predictions of the theory for the
actual experimental conditions. It was thus demonstrated
that there was a compensation for the Gaussian (wave) fluc-
tuations of these waves separately as a result of the squeez-
ing. The extent of the squeezing, however, was substantially
limited by losses in the medium (sodium vapor). It was not
possible to reduce the fluorescence background and thereby
raise the efficiency of the four-wave mixing in order to bring
out the SPPS in the mixing of two waves at the exit. For this
reason, and also because of the inadequate stability of the
interferometer, no analysis was made of the photon statistics
for the superposition of the probing and phase-conjugate
waves.

Levenson et al.'® studied nondegenerate four-wave
mixing in an optical fiber. In the photocurrent noise in the
course of the frequency conversion, they singled out a spec-
tral region which was free of the harmful manifestations of
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stimulated Brillouin scattering. They developed a strategy
for future searches in experiments of this type. During the
frequency conversion of the output radiation (with frequen-
cies , + dw), one could expect a lowering of the spectral
noise level at the frequency of the pump wave, @,, in the
intensity fluctuation spectrum with respect to the shot noise
in the region @ =~ w.

Slusher et al.'®” were the first to establish the character-
istics of the squeezed state in the photocurrent fluctuation
spectrum. We will examine this experiment in slightly more
detail. They used an arrangement of nondegenerate four-
wave mixing in an optical cavity (Fig. 10). A beam of sodi-
um atoms served as a nonlinear converter. The deviation of
the frequency of the exciting dye laser from the nearest reso-
nance (the D, line) was substantially greater than the radia-
tive width and the residual Doppler width (the latter result-
ing from the divergence of the laser beam). Cavity R,
formed a standing wave of the laser light (the pump). In
cavity R,, a superposition of pairs of phase-conjugate waves
of different frequencies appeared. The laser frequency was
the same as one of the frequencies of cavity R, (the stabiliza-
tion system is not shown in Fig. 10). They measured the
photocurrent spectrum in a balanced arrangement'” with
frequency conversion at the frequency of the laser, w, of the
waves leaving the cavity with frequencies w, + 3v, (v,isthe
interval between the natural modes of cavity R,).

This experimental arrangement made it possible to
minimize the factors which would disrupt squeezing: spon-
taneous emission, amplification, and reabsorption. The loss
was determined primarily by the exit of photons from cavity
R,. The situation can be described approximately by the
equations of motion for the operators of two real waves with
frequencies w, , = @, + 3v,, by making use of the effective
interaction in the form in (4.19) and by allowing for damp-
ing (the constant C). Let us examine the mixing of the waves
leaving the cavity with the field of the reference signal at the
frequency o, . Using expression (2.5) we find

K(t)— () =q )8 (1) +5CPTy 2 (b7 (1)

4+ lexp (2igy) (b*b* (1)) + ccl}. (4.21)

FIG. 10. Layout of the experiment of Ref. 167 on four-wave mixing in an
optical cavity. See the text proper for an explanation. The stabilizing and
control parts of the arrangement which were used in Ref. 167 are not
shown here.
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Here 7, and ¢, are the intensity and phase of the signal of the
local oscillator (heterodyne), and b+ = (a;" +a;" /2.
The anomalous correlation functions depend on the phase of
the complex coupling constant: {b *b * (7)) «exp( — 2ii?).
The non-Poisson term in photocurrent correlation function
(4.21) is minimized under the condition ¢=¢, — ¢ =7/2,
and it is negative in this case. In the intensity fluctuation
spectrum we should expect the appearance of a dip below the
level of the shot noise, in the form of a Lorentz line centered
at the frequency 3v, + |k |, with a width C /2.

Figure 11 is a schematic drawing of the basic result of
Ref. 167 (Slusher et al.'%” showed photographs of the signal
on a spectrum analyzer at the output from the balanced ar-
rangement, along with a detailed explanation of the various
aspects of the experiment). Slusher ez al.'®’ estimate the rel-
ative depth of the dip to be 7%, which they say corresponds
to a 20% squeezing. At any rate, there is no doubt that a
positive effect was achieved, and this result strengthens the
hope that it will be possible to achieve an effective lowering
of the quantum noise in parametric processes.

There is a close analogy between result (4.21) and cor-
relation function (3.15), which characterizes the photocur-
rent fluctuations during the frequency conversion of the
light of resonant fluorescence in the diffraction cone.” The

_ superficial difference between (4.21) and (3.15) results
solely from the fact that the correlation functions for the
field operators are expressed explicitly in terms of the ele-
ments of the density matrix of the source atoms in (3.15).

5. LUMINESCENCE IN THE CASE OF REPULSIVE STATISTICS
OF ATOMIC EXCITATIONS

In this section we examine the possibility of achieving
sub-Poisson photon statistics and photon antibunching in
the spontaneous emission of a system of atoms. We assume
that the pump does not create an atomic coherence and that
it does not saturate the radiating transition. Among all the
processes which form the photocurrent from the detected
radiation we should then consider the two-atom direct and
interference processes ( Fig. 5b and c). We have already not-
ed that the interference process ( Fig. 5c) leads to a bunching
of photons; the corresponding contribution to the parameter
£ [expression (2.9)] is g8, where & is the degeneracy param-
eter of the spontaneous emission. For the problems which we
will be discussing in this section of the paper the intensities
are comparatively low, and the luminescence linewidth is
comparatively large (in comparison with the radiative
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FIG. 11. The signal (the spectral component of the photocurrent fluctu-
ations singled out near the frequency 3v,) versus the phase shift of the
local oscillator (according to the data of Slusher ez al.'®”). Here G, is the
level of the shot noise.
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width), so that with a relative photon collection angle
Q) = S /47R * of the order of unity the expected effects of the
direct process in the statistics will be greater than the contri-
bution of the interference process (§ € 1). Weare thus exam-
ining the fluctuations in the radiation which correspond to
Fig. 5b and which are related to correlations among excita-
tion events. If the pump is assumed to be a wide-band Pois-
son process (if the spectral width of the pump exceeds that of
the luminescence line), then if the spontaneous-emission
events are statistically independent the photocurrent will
also be a Poisson process, with a correlation function

K (v) = gMQ85 (v) + (¢MQ)*; (5.1)

here M is the average number of atoms which are excited per
unit time over the entire volume (it is assumed that there is
no quenching of the luminescence). The conversion of non-
Poisson fluctuations of the pump into fluctuations of sponta-
neous emission has been studied experimentally and theoret-
ically in several places (see the bibliography in Ref. 54 and
also Refs. 95 and 174; see Refs. 76, 175, and 176 regarding
sub-Poisson excitation).

The photocurrent correlation function is expressed in
terms of the correlation function of the number of atoms
excited at the time ¢, N(¢), in the following way:

K (v) = qMQ8 (v) + (gMQ) (N (£) N () N-2,  (5.2)

where N is the steady-state expectation value of N(¢). Here
the angle brackets mean an average over the statistics of the
pump and over the statistics of the radiating atoms. In par-
ticular, if the atoms do not interact with each other, we can
write

iy
N ()N (= ar | ar )M @y

X exp [— (8, — ) — 7 (1,— )],
(5.3)

where ¥ is a radiation constant. If the pump fluctuations are
fast, the 7 dependence is determined by the value of 3. In the
spectrum of the correlation function K(7), a line of width ¥
appears. This fact underlies a method for measuring the nat-
ural line width under conditions of a predominant inhomo-
geneous broadening of a luminescence line.>*

In the case of repulsive statistics of excitations we can
expect SPPS in the luminescence. Two specific mechanisms
have been proposed for achieving SPPS by this approach:
exciting a gas with an electron beam with a depression of
shot noise’'7>'7® and de-exciting cooperative processes.'”’

5.1. Excitation of atoms by an electron beam with depressed
shot noise

The depression of the shot noise of an electron beam (in
a diode, for example) which occurs in the case of a space-
charge limitation of the current has been studied quite thor-
oughly.?>>%!7® The variance in the number of electrons
which pass through the region of the limiting space charge
and which are detected over a time 7>y, ' (7. 'is the cor-
relation time of the electrons in the beam) can be written

((Ame)2) = (me) I‘27 E:e = —(1' - I‘2) (54)
The depression factor I'? may be of the order of 1072 It
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follows from (5.4) that there is a low-frequency dip in the
fluctuation spectrum of the beam against the background of
a shot noise with a relative depth (1 — I'?), Assuming for
simplicity that this dip has a Lorentz shape, we write the
electron current correlation function in the form

T(O) T (¥)) =) 8 (%) + (12— = (1) y (1~ T?)

Xexp (—7e |1])- (5.5)

Using (5.5) (without the first—shot—term!), we can find
the correlation functions in (5.3). The variance in the num-

ber of atoms excited over a time >y~ 'is

(ANY?)p = (N (1 — (1 — T (5.6)

This quantity turns out to be important in the generation
problem of Ref. 179 (Sec. 6). From (5.2) and expressians
(2.8)-(2.10) we then find the variance of the number of
photoelectrons during the detection of the luminescence:

{(An)*)r = (n)p (1 — g9y (1 — T3], (5.7)

here 7 is the atomic excitation efficiency ({M ) = 5{I)).

The dip in the intensity fluctuation spectrum against
the background of the shot noise has a width y and is smaller
by a factor of gQ27 than the dip in the noise spectrum of the
electron beam. The reason for the weakening of the correla-
tions is a chain of transformations of the pump statistics: The
excitation of an atom by an electron occurs with a probabil-
ity 77; the emitted photon falls within the collection angle of
the photodetector with a probability Q; and, finally, it is
converted into a photoelectron with a probability ¢.

The idea of producing sub-Poisson radiation during ex-
citation by an electron beam with a depression of shot noise”®
was implemented in the experiment of Ref. 176. A study was
made of the statistics of the luminescence photons of mer-
cury vapor (the 6’P, —6'S,, with A =253.7 nm) in a
Franck-Hertz tube. Under the experimental conditions, the
atomic excitation efficiency was 7=0.15; the geometric col-
lection factor was 2 =0.1; and the depression of the shot
noise of the electron beam was characterized by the param-
eter value £ = — (1 —T'*) = — 0.9. The quantum yield
(g) of the photomultiplier at the wavelength 253.7 nm was
0.15. In addition to these parameter values, which appear in
expression (5.7), account was also taken of the filter trans-
mission coefficient (0.83), the photon emission factor,
which was reduced by secondary processes in the tube (0.8),
and yet another factor of 0.3 due to the presence of Poisson
illumination from the heater filament. Multiplying all these
coefficients together, we find § . =~ — 0.0007 as the theoreti-
cal value of the sub-Poisson factor for photoelectrons. This
value agrees satisfactorily with the experimental result when
the dead time is taken into account.

5.2. Sub-Poisson statistics of the luminescence of impurity
centers in crystals resulting from a cooperative de-excitation

A “‘repulsive” statistics of excitations can also arise as a
result of cooperative processes caused by an interaction of
impurity centers in a crystal. Among these processes are the
summation of excitations, cooperative sensitization, and
nonlinear quenching. '’
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FIG. 12. a—Summation and b—transfer of excitations.

Let us consider a radiative transition with a frequency
w. If pairs of excitations which arise close together in time
and space leave the radiative channel with a frequency o
with a high probability because of some cooperative process,
the statistics of the excitations turns out to be “repulsive”
and reminiscent of the statistics of particles of an incom-
pressible fluid.”” As an example we consider the well-studied
phenomenon of cooperative luminescence'*’; a summation
of excitations with an energy #iw of two impurity centers at
one of these centers (Fig. 12). The summation is rendered
irreversible because of the fast 2 — 3 multiphonon relaxation.
The subsequent emission of a quantum with a frequency
w3, i.e., the cooperative luminescence proper, is not of in-
terest here: We are interested in the statistics of the photons
corresponding to the 1-0 transition. A high summation effi-
ciency is achieved by virtue of migration of excitations (Fig.
12b) and transport of two excitations over distances over
which the summation occurs. If the migration is intense, a
comparatively low degree of excitation is sufficient for
achieving a significant SPPS effect. Saturation of the 0-1
transition is not required; this circumstance is an advantage
of this method over the nonlinear-optics methods which
have been proposed. Fluctuations in the number of atoms in
the effective range of the pump do not disrupt the SPPS, in
contrast with the case in other examples.

Let us assume that the pump is a steady-state Poisson
process. To calculate the population correlation function
(N,(#,)N,(t,)) in (5.2) we introduce the following defini-
tions: F(x,,x,)d*x,d*x,/¥* is the steady-state probability
for finding two excitations in volume elements around the
points X, and x,; f,(7) =p{{”’ () is the probability for the
excitation of some arbitrarily fixed atom by the pump in the
time interval (0, 7); and f,(7) =p{," (7) is the probability
that an atom excited to level 1 at time ¢, = O will remain at
this level at the time 7. We assume that the system is spatially
homogeneous and that the interaction between impurity
atoms is a central interaction. The functions introduced here
have the properties

Folt) o o 11(7) 7,00 F(Ix—x,))

T—+00

(5.8)

— fz
X, —Xg]—>o0 *

where fis the steady-state probability for finding a fixed
atom excited. If the pump is weak, and if the time scale for
the escape of an excitation from the interaction volume is
long (in comparison with ¥~ '), the correlation function for
the number of excitations can be written in the form

(Ny(t) Ny (8, =n} S a3z d3z, [Flx,—X,1) [ (T)‘Jr‘ffo M1,
(5.9)

where n, is the density. The first term in the integral corre-
sponds to the appearance of two excitations, which have
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emitted detected photons, at times in the interval ( — oo, ¢,);
the second term corresponds to the appearance of one excita-
tion in the interval ( — ,#,) and of the other in the interval
(t,, t, =, + 7). In the absence of an interaction, F = f2,
correlation function (5.7) will evidently be independent of
the time, and we find (5.1), i.e., a Poisson statistics of pho-
tons.

In the case of repulsive statistics of excitations, we can
define a correlation volume ¥, (an effective summation vol-
ume) as follows:

Vc=—jg<p>dv,

where g(p) is a pair correlation function of excitations,
which is directly related to the function F(p) introduced
above (p = |x; — x,]):

Flp=Tll+g)}

here g(p) -0asp— oo. Using (5.11), we can find the corre-
lation function for the concentrations of excitations and the
variance in the number of excitations in the volume of inter-
est:

(5.10)

(5.11)

(5.12)
(5.13)

(ny (0) , (p)) = 18 (p) + nig (p);
UAND=~4N D (4 =V ony).

The parameter £, for the photon counts during the detec-
tion of the luminescence is

T
tr= —99¥;-hlyc§§’;'?§ d(T—) £, (0). (5.14)
Taking the integral in (5.14) (divided by T') as a definition
of the average lifetime of an excitation (7,) at long times T,
we find

“

i == — 2¢Qn,V y1,. (5.15)

We introduce the accumulation constant @ [cm3/s]: a7 ) 18
the average accumulation rate per atom excited to level 1. If
weassume ¥, = a7 and 7 ' = ¥ + afi,, we can express £
in a simple way in terms of the quantum yield of the 1-0
luminescence, 7, = y7,, and the quantum yield in the sum-
mation channel, 7, = af, 7

o = —2q0M M, (5.16)

Itis not difficult to see that in this model the maximum SPPS
effect £ i = — gQ2/2 is reached at an, =, i.e., under
the condition that the summation rate is equal to the rate of
spontaneous emission.

As an example we cite data on the cooperative lumines-
cence of Er’>™ in crystals of the fluorite type'®': y = 10*s~',
a=10"" cm?/s. The condition a%, =y is reached at
7fi,~10'® cm 3. Excitation concentrations at this level are
observed at a moderate pump level (the typical concentra-
tion of impurity centers is 7o~ 10** cm ~*). A summation of
excitations under corresponding conditions is used to depo-
pulate the lower working level during generation, '821%3

Cooperative processes occur in activated crystals,
which can provide larger values of |£_|. In nonlinear
quenching,'®* for example, one of the atoms of a pair—that
at which the sum excitation arises—can revert to level 1 as
the result of a rapid radiationless relaxation (Fig. 12a). Of
two excitations which appear at nearly the same time, only
one is lost for the 1-0 radiative channel.
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Other processes characterized by large values of the
pair-de-excitation constant are collisions of excimer mole-
cules’® and the triplet-triplet annihilation of mole-
cules.'5¢'#7 In either case, a value @~ 10~'° cm*®/s can be
reached, and there is the hope of finding a specific system
suitable for realizing SPPS.

6. GENERATION OF RADIATION WITH ENHANCED
REGULARITY

So far, only a few studies have proposed theoretical
models of radiation sources with a sub-Poisson photon sta-
tistics which use the principle of lasing. Some studies which
do fallin this category are Refs. 188 and 189, which deal with
alaser with a multiphoton loss, and Refs. 179 and 190, where
the sub-Poisson statistics appears as a result of the statistical
properties of the pump. The results of Refs. 179 and 190 are
based on a refinement'®° of the quantum theory of genera-
tion'®"'*? which is important for the statistics of the emis-
sion from a laser. We begin this section of the review with a
brief description of the quantum theory of a laser which cor-
rectly incorporates the effects of the pump statistics. We
then move on to a discussion of some specific models.

The methods discussed below for reducing intensity
fluctuations (to SPPS) correspond to an ‘“‘amplitude super-
stabilization,” which goes beyond the semiclassical ap-
proach in the theory of generation. The optimum limit for
the latter is a stabilization level which corresponds to a mix-
ture of coherent quantum states with a random phase, a fixed
amplitude, and a Poisson distribution of the number of pho-
tons. Sub-Poisson photon statistics in generation does not
degrade the ordinary optical spectrum of single-mode gener-
ation in operation far above the threshold,'® where the line
width is determined primarily by phase diffusion.'®!-'%2

6.1. Incorporation of the pump statistics in the theory of
single-mode generation

The possibility of constructing a closed kinetic equation
for a field oscillator in the theory of a single-mode (gas)
laser'"'%? is based on a relation between the relaxation time
of the atom, 7, , and that of the field C ~': 7, €« C ~!, where C
is the resonator width. The starting point for the theory of a
gas laser is an equation for the density matrix F of a four-
level system (Fig. 13) and for a single mode of a quantized
electromagnetic field of the generation on the 2-1 working
transition. If an atom appears in level 2 in a time interval
At(At>T,), it will certainly appear in the same interval in
state (a) or (b), as a result of a relaxation mechanism (the
possible appearance of an atom at the right end of the inter-
val Atin a region of the order of 7, can be ignored). Defining
the density matrix p as the trace of the matrix F in terms of
atomic variables p = Sp,, F, we write the transformation of
the matrix p due to the action of one atom on the interval At:

p(t+ Al) = F, (t + A) + F,p (t + Ab). (6.1)

Here F,, and F,, are matrix elements in terms of atomic
variables and operators in terms of field variables. They can
be found by solving a system of equations for the matrix
F,(i,j = 1,2,a,b) under the initial condition F,,(¢) = p(?).
As aresult, (6.1) can be written in the form

p(t+At)y={(1+u)p(t). (6.2)
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FIG. 13. Scheme of levels and transitions in the generation theory of Refs.
191 and 192. The working transition is the 2—1 transition; the pumping is
shown in a simplified manner; the effective pump rate is a random process.

The operator # is expressed in terms of the coupling
constants of the subsystems, the relaxation constants, the
deviation of the gain line (in this case, a homogeneous line)
from the center, and the creation and annihilation operators
for the field mode (¢, @). The operator # was found expli-
citly in Refs. 191 and 192. The contribution of one atom to
the increment in the field density matrix, Ap, over a time At
is small. The effect of many atoms on the field was taken into
account in Refs. 191 and 192 by multiplying #p(¢) by the
number of active atoms, rAt (7 is the pump rate):

(Ap)+ = rAt up (2). (6.3)

The loss is described by a linear relaxation of the field
operator with a damping constant C. Since the time scale of
the variations in p is determined by the loss, we construct the
large-scale derivative Ap/Ar (At<C ~', but Ar»7,). The
final equation is

o =)+ +(p), (6.4a)
(p)+ = rup, (6.4b)
(F;)- =C [apa* — % (atap +pa*a)]. (6.4¢c)

It was pointed out in Ref. 190 that the transformation of
the field density matrix over a time At as a result of the
excitation of many active atoms is multiplicative in the con-
tributions of the individual atoms. A more detailed analysis
of the effect of the pump leads to the expression

N
p(t+ At = (1-+wu)p (2),
il;Ii Je (@) (6.5)
14At
w; = S i () A

] (6.6)

It is assumed here that the pump is weak (w; €1) and of a
broad-band nature; i.e., an excitation event occurs during a
brief time interval (briefer than 7, ). We can write the pump
r = 2,r; as arandom pulsed process. For a correct incorpo-
ration of fluctuations in (6.5) we should retain terms in the
expansion up to #” inclusively. Terms with higher powers of
i contribute little, because of the smoothness of the depen-
dence of the matrix elements p,, ,, . ,, on the index n. We are
assuming (An)? ~7, 7> 1, where 7 is the average number
of photons in the resonator. The increment in the density
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matrix due to the active atoms is now different from the
quantity (Ap) ,, given by (6.3):

(8p)s = [ Nu+ 5 N (N — 1] p (2).

Here N = N(At) is the total number of atoms which have
been in level 2 during time interval A7. Expression (6.7) is
written for a specific realization of excitation events. Let us
assume that binary correlations of the pump are determined
by the time 7., and let us choose Ar> 7, . In this case, we can
ignore the statistical dependence of the cofactors in (6.7)
which is associated with the ends of the interval A¢, and we
can carry out an averaging over the pump statistics in accor-
dance with the rule [‘Tﬁ in (6.7). In constructing the
large-scale derivative here we should again point out that the
time scale of the variations in p is determined by the quantity
C ~'» At. Incorporating the loss by the method described
above, we find the equation

p =B V()P + (p)...

In (6.8), (p)'D differs from the corresponding quantity in
(6.4b) only in the replacement 7 —7; (p) _ is givenby (6.4c);
and (p)'?’ is the rate of change of the density matrix due to
the binary correlation of pumping events,"

(6.7)

(6.8)

()P = 7 tutp. (6.9)
The parameter ¢ is related to the pump statistics:
(ANR=N(1-+8). (6.10)

The condition At 7., means that { is analogous to the pa-
rameter £ (Subsection 2.2). In the case of a Poisson pump
we would have { =0, and Eq. (6.8) would become Eq.
(6.4a)—the equation of the conventional theory of a laser,
with the obvious replacement of the pump rate by its average
value over the Poisson statistics, 7. If the pump is sufficiently
far above the threshold (and the pumping occurs exclusively
to the upper working level) Eq. (6.4a) leads to a coherent
state of the generation field with a variance (An)" = n.

In the case of a sub-Poisson pump statistics ({ <0)
there can be an SPPS in the generation.

We introduce the simplifying conditions'*® 3, = 0 and
the system is tuned to the center of the gain line. In this case
the diagonal matrix elements of the operators #ip and #°p are

({“p)nn = —pnn+Pn—l.n—l1 (6118.)

(;zp)nn = —Ppn+ 20n-1, n-1— Pn-z, n-a- (6.11b)

Using expressions (6.11a) and (6.11b), we find that in the
continuum approximation (in n) Eq. (6.8) becomes a
Fokker-Planck equation

o _ 9 7 7 £y o
F=grl—mel+n (14 ) 55 (6.12)
where 7 = Ct, and 7 = 7/C s the average number of photons
in the resonator. Equation (6.12) leads to a steady-state dis-
tribution function p,,, , the number of photons in the resona-
tor, with a variance

Bap=n(t+5). (6.13)
We turn now to some specific examples.
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6.2. Regular pump

A scheme involving a time-varying (periodic) excita-
tion of atoms was examined in Ref. 190 in which it was possi-
ble to collect all the atoms in the upper working level during:
a pulse of length T, €7, . The field energy was modulated at
the pulse sequence period T';; under the condition T, €C ~!,
the modulation depth was small. This regular modulation is
of nointerest (it corresponds to discrete lines in the intensity
fluctuation spectrum).

In the case with which we are concerned here, of a regu-
lar pump, we should set § = — 1in (6.13). The variance of
the distribution p,,, is then half that in the coherent state.
The spectrum of fluctuations in the photocurrent from the
output radiation, G(w) is given in the case y, = 0 by

G (©) =Cpn[1—C,C (C*+w¥)™M], (6.14)

where C, gives the relative number of photons in the resona-
tor which convert into photoelectrons in 1 s. In the case of
ideal detection, i.e., if the losses due to diffraction and ab-
sorption are eliminated, and we have ¢ =1, y, =0, and
C, = C, the photocurrent spectrum vanishes at € C. This
vanishing implies the vanishing of the measurement noise,
which limits the measurement accuracy. The parameters of
the SPPS of photon counts from the output radiation, § _,
and from the radiation in the resonator, § x = £ /2, are relat-
ed by

Ew = 2ERC,C (6.15)
The factor of 2 stems from the anticorrelation of the instan-
taneous values of the numbers of photons inside and outside
the resonator. '

Among the factors which lower the SPPS effect in more
realistic models are the random nature of the events in which
state 2 decays in the case ¥, #0, the deviation of the resona-
tor frequency from the center of the gain line, and the cir-
cumstance that the detection is not ideal. These factors were
taken into consideration in an analysis of SPPS in Ref. 190.

6.3. Repulsive pump statistics

Let us examine the use of the pumping mechanisms dis-
cussed in Sec. S to produce SPPS in generation. In the case of
the excitation of atoms by an electron beam with depression
of the shot noise, the variance of the number of excited atoms
is given by (5.6). Correspondingly, the parameter {'in (6.9),
{6.12), and (6.13) is determined by the efficiency at which
the energy of the electrons is converted into atomic excita-
tions, i.e., £ = — 77(1 — I'?). For the case of ideal detection,
under conditions corresponding to a maximum manifesta-
tion of SPPS, this mechanism would thus make it possible to
reduce the photocurrent noise by a factor of (1 —5)'in
comparison with the noise from coherent radiation of the
same intensity. The SPPS parameter of the output radiation
isequal to — 7 in the case in which the loss is due exclusively
to the emission of radiation from the resonator.'’®

Let us examine the case in which repulsive pump statis-
tics, associated with cooperative effects, is included. We in-
troduce Poisson pumping to level 3, which lies above the
upper working level, 2. We assume that the atoms in level 3
are capable of undergoing a pair de-excitation (Subsection
5.2). In the limiting case y, =0, an analysis leads to the
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following value for the parameter ¢ in lasing equation'”
(6.12):

= — 20ngV3-02 (Yo Ana)% (6.15")

here ¥,_, is the rate of the 3 -2 transition, ¥, is the total
decay constant of level 3, n; is the concentration of atoms in
level 3, and «a is the rate constant for pair de-excitation of
atoms from level 3. The effective rate of pumping to the up-
per working level in (6.12) is

;=;3Y3—>2 (vs+ ang) . (6.16)

The maximum manifestation of SPPS is reached in the case
¥3 = ¥i_, = ahs, in which we have { = — 1/2. The com-
ment which we made in Sec. 5 regarding a decrease in the
SPPS parameter in other cooperative processes remains val-
id in the present case. In incorporating this pumping mecha-
nism in the laser theory developed above, we should recall its
applicability condition: 7, € C ~'. For cooperative effects in
the emission of rare earth impurity ions in crystals, the times
, are typically long (107% s) and may not satisfy the rela-
tion 7, €C ~'. In order to implement this pumping mecha-
nism we should thus seek systems with a high value of the
summation constant, such that the relation an,~7, holds
when the concentration 7, is not too high, and such that the
relation ¥, > C holds. Examples of systems with a large value
of the pair-summation constant (a~10~'° cm?®/s), which
could conceivably be used to implement this pumping mech-
anism, are given in Sec. 5.

6.4. Laser with a multiphoton loss

Herzog'®® has studied the photon statistics of a laser
with an m-photon working transition and an / /photon loss.
Pertinent to a study of the mechanisms for achieving SPPS is
a laser with a single-photon working transition and a two-
photon loss.'®*'8% A two-photon loss is incorporated in the
conventional quantum theory of a laser [Eq. (6.4a)] in
place of a linear loss (6.4¢):

O =2k [(R+2) (2 + 1) Py nig— 1 (R —1) Panl,
(6.17)

where k& is the two-photon loss constant.

It is legitimate to ignore the single-photon loss in com-
parison with the loss in a two-photon-absorbing cell if the
number of photons in the resonator is large: ik» C. At satu-
ration of the one-photon transition, with a complete popula-
tion inversion, one finds the variance of the distribution
of the number of photons in the resonator to be

(An)? = (3/4)7; i.e., one finds an SPPS. The statistics of
the output radiation was not studied in Refs, 188 and 189. It
is important to examine this question since the discussion in
Subsection 6.2 showed that the SPPS factor of the output
radiation, &, is related to the SPPS factor in the resonator,
£r,bytherelation £ = 2 C '~ (in the case of ideal detec-
tion), where I' ™! is the photon correlation time. We are thus
confronted with the question of the optimum relation
between the parameters C and I'" for a maximum manifesta-
tion of the SPPS of the output radiation.

7. CONCLUSION

After the first experiments confirming the pres-
ence of photon antibunching and SPPS in the nonlinear reso-

12,17-20
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nance fluorescence of individual atoms, a weak SPPS effect
was observed in the luminescence of a macroscopic system of
atoms excited by an electron beam with depressed shot
noise, '’ i.e., with repulsive statistics of excitation events.
Active research by several groups'®® on parametric pro-
cesses led to the establishment of the characteristics of the
squeezed state of a field in an experiment on nondegenerate
four-wave mixing in a resonator'®’ (Subsection 4.3; see Ref.
194 for a detailed theory).

After this review had been accepted for publication,
some new experimental results and some constructive theo-
retical suggestions appeared.

A characteristic of squeezing—a dip in the photocur-
rent noise spectrum with a depth of 12.5% of the level of the
shot noise—was found'® in nondegenerate four-wave mix-
ing in an optical fiber (after some preliminary research'®).

Antibunching in the nonlinear resonance fluorescence
of a polyatomic system associated with the properties of
anomalous correlation functions (Subsection 3.3) was ob-
served in an experiment by Grangier et al.'®® An experiment
by Kask et a/."”” demonstrated photon antibunching in the
fluorescence of dye molecules.

A record squeezing was achieved by Wu ez al.'”® in the
course of degenerate parametric frequency down-conver-
sion in a resonator. The role of a coherent pump (parametric
effect; Subsection 4.2) was played by the second harmonic
A, = 0.53 um), produced by frequency doubling in the reso-
nator of a Nd:YAG ring laser (4, = 1.06 um). This light
was coupled into a resonator containing a crystal with a
quadratic optical nonlinearity (MgO-LiNbO,). The wave

(4)) excited parametrically in this resonator was mixed with
part of the laser beam. The spectrum of fluctuations in the
difference between the photocurrents of two photodetectors,
in a balanced arrangement, was measured. The maximum
relative dip in the spectrum was about 50%. When the loss in
the resonator (not associated with the useful output) and
the efficiencies of the mixing and the detection were taken
into account, a tenfold squeezing was achieved, according to
estimates by Wu ez al.'”* We should emphasize that that
experiment used a sub-threshold regime of parametric exci-
tation of a resonator mode. In the theory (Subsection 4.2), it
is necessary to consider the damping and to set f equal to
zeroin (4.6) (there is no wave at the input). The excitation
of the mode (4,) remains at the level of quantum fluctu-
ations. After coherent mixing with a reference signal, the
resultant flux of photons turned out to be substantially sub-
Poisson for certain phase relations. The depth of the dip
(0.5) in the photocurrent spectrum was fixed at a frequency
roughly one-fifth of the width. In other words, the SPPS
parameter was essentially measured.

From the practical standpoint, coherent sources of sub-
Poisson radiation—lasers—might be more efficient and
more convenient (Sec. 6). The theoretical suggestions here
deal primarily with regularization of the pump: a complete
filling of the upper working level in each pump pulse,'*®
pumping by an electron beam with depression of the shot
noise of the beam, and the use of cooperative (pair) de-exci-
tation in the pumping channel (see Refs. 199 and 200 for a
further analysis). The authors of this review have shown
that SPPS can also be achieved during steady-state single-
mode generation by means of positive mutual correlations of
the pump and the adjustable rate of in-resonator loss.?"’
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The idea of suppressing pump fluctuations has been re-
alized by a negative-feedback method in the single-mode op-
eration of a GaAs injection laser.?®' Fluctuations in the pho-
tocurrent from the laser radiation, amplified and inverted in
sign, were superimposed on the pump current. In the current
fluctuation spectrum in the feedback circuit, a dip was ob-
served in the frequency band 0-15 MHz, with a maximum
relative depth of 0.81. A sub-Poisson factor of approximate-
ly this value was also found-in measurements of the photo-
current pulse distribution. We wish to stress that the sub-
Poisson statistics in this experiment were characteristic only
of the photocurrent pulses in the feedback circuit; the pho-
ton counts in the tapped part of the laser beam were not sub-
Poisson. It has been suggested that the negative-feedback
principle might be used to generate sub-Poisson radiation
which leaves the feedback circuit and which can be used for
further (useful) transformations by means of a nondestruc-
tive quantum measurement based on the optical Kerr ef-
fect.?

A dip below the shot level in the intensity fluctuation
spectrum of the output radiation from an injection laser was
recently obtained in an experiment by Machida and Yama-
moto.?% The effect was achieved by virtue of the direct sup-
pression of the noise in the pump current.

An intense search for sources of sub-Poisson radiation
is being carried out because of the promising outlook for
important practical applications. The advantages of field
states with reduced fluctuations for data transmission were
examined in Refs. 77, 78, and 203. The use of squeezed states
for extremely precise measurements, in particular, for de-
tecting gravitational waves, has been studied in Refs. 171
and 204, among other places. Kolobov and Sokolov*®’ have
shown that the use of sub-Poisson laser radiation in interfer-
ence measurements would make it possible to reduce the
measurement noise significantly.

The macroscopic manifestations of the new quantum
properties of light which have already been demonstrated,
the real possibility of lowering the noise in radiation, and
important applications make further research an urgent
matter. '
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YThe inapplicability of the classical description of photon antibunching
and sub-Poissonian photon statistics was analyzed by Reid and Walls®®
in connection with Bell's inequalities.”” We will take up some related
questions below.
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YFor one mode of a free field we would have E ("' cca exp (-iwt).

D. F. Smirnov and A. S. Troshin 871



®Some inspiring papers for a discussion of the correspondence principle in
the theory of radiation are those by Heisenberg,”® Fermi,”® and also
Fano'® and Glauber.*

"The variance, however, exhibits traces of photon correlations over short
times and may be greater than or less than (7).

#1t is possible to write (p)?’ in the form in (6.9) because of the balance
between the gain and the loss.

'R. Hanbury Brown and R. Q. Twiss, Nature 177, 27 (1956); Proc. R.
Soc., London A242, 300 (1957); 243, 291.

2C. A. Rebka and R. V. Pound, Nature 180, 1035 (1957).

3R. Loudon, The Quantum Theory of Light, Oxford Univ. Press, Lon-
don, 1973 [Russ. transl.,, Mir, M. 1976].

“R. J. Glauber, Optical Coherence and Photon Statistics, in: Quantum
Optics and Electronics, lectures at the 1964 Les Houches Summer
School of Theoretical Physics, eds. C. deWitt, A. Blandin, and C. Co-
hen-Tannoudji, Gordon and Breach, N. Y., 1965, pp. 63-185 [Russ.
transl. in Quantum optics and quantum radiophysics, eds. O. V. Bog-
dankevich and O. N. Krokhin, Mir, M., 1966].

*R. J. Glauber, Coherent states in quantum theory: Collection of articles
(in Russian), Mir, M., 1972, p. 26 [Russ. transl. presumably of Phys.
Rev. 130, 2629 (1963), 131, 2766 (1963), and possibly others].

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965); [ Russ. transl.
in Usp. Fiz. Nauk 87, 491 (1965); 88, 347, 619 (1966)].

’J. R. Klauder and E. C. Sudarshan, Fundamentals of Quantum Optics,
Benjamin, New York, 1968 [Russ. transl., Mir. M., 1970].

¥R. Loudon, Rep. Prog. Phys. 43, 913 (1980).

°L. V. Sokolov, Zh. Eksp. Teor. Fiz. 72, 1087 (1977) [Sov. Phys. JETP
45, 568 (1977)].

1°D. N. Klyshko, Photons and Nonlinear Optics (In Russian), Nauka,
1980; Zh. Eksp. Teor. Fiz. 83, 1313 (1982) [Sov. Phys. JETP 55, 753
(1982)].

'"L. Mandel, J. Opt. Soc. B1, 108 (1984).

2H. J. Kimble, M. Daganais, and L. Mandel, Phys. Rev. Lett. 39, 691
(1977).

*H. J. Carmichael and D. F. Walls, J. Phys. B9, 1199, L43 (1976).

“H. J. Kimble and L. Mandel, Phys. Rev. A13, 2123 (1976); 15, 689
(1977).

D. F. Smirnov and A. S. Troshin, Zh. Eksp. Teor. Fiz. 72, 2055 (1977)
[Sov. Phys. JETP 45, 1079 (1977)].

'°E. Jakeman, E. R. Pike, P. N. Pusey, and J. M. Vaughan, J. Phys. A: 10,
L257 (1977).

'7H. J. Kimble, M. Daganais, and L. Mandel, Phys. Rev. A: 18, 201l
(1978).

!8M. Dagenais and L. Mandel, Phys. Rev. A: 18, 2217 (1978).

'9R. Short and L. Mandel, Phys. Rev. Lett. 51, 384 (1983).

2R, Short and L. Mandel, in: Coherence and Quantum Optics 5: Pro-
ceedings of the Fifth Rochester Conference, June 1983, N.Y. 1984.

2'D. F. Smirnov and A. S. Troshin, in: Proceedings of the Ninth All-
Union Conference on Coherent and Nonlinear Optics (in Russian), L.,
1978, p. 217.

2D, F. Smirnov and A. S. Troshin, Zh. Eksp. Teor. Fiz. 76, 1254 (1979)
[Sov. Phys. JETP 49, 636 (1979)].

L., Mandel, Opt. Lett. 4, 205 (1979).

24R. J. Cook, Phys. Rev. A: 23, 1243 (1981).

D, F. Smirnov and A. S. Troshin, Zh, Eksp. Teor. Fiz. 81, 1597 (1981)
[Sov. Phys. JETP 54, 848 (1981)]).

26D. Lenstra, Phys. Rev. A: 26, 3369 (1982).

27S. Stenholm, Phys. Rev. A: 27, 2513 (1983).

28], M. Ziman, Elements of Advanced Quantum Theory, Cambridge
Univ. Press. London, 1969 [Russ. transl., Mir, M., 1971].

M. Kozerovskii, Kvant. Elektron. (Moscow} 8, 1157 (1981) [Sov. J.
Quantum Electron. 11, 695 (1981)].

3°H. Paul, Rev. Mod. Phys. 54, 1061 (1982).

3'D. F. Walls, Nature 306, 141 (1983).

2D, Stoler, Phys. Rev. D1, 3217 (1970); 4, 1925 (1971); Phys. Rev. Lett.
23, 1397 (1974).

3E. Y. C. Lu, Lett. Nuovo Cimento 2, 1241 (1971); 4, 585 (1972).

3H. P. Yuen, Phys. Rev. A: 13,2226 (1976).

338, A. Akhmaov, Yu. E. D’yakov, and A. S. Chirkin, Introduction to
Statistical Radiophysics and Optics (in Russian), Nauka, Moscow
(1981).

3%A. Einstein, Collection of Scientific Works {Russ. transl., Nauka, M.,
1966, Vol. 3, pp. 164, 481, 489].

3'D. Ter Haar, On the History of Photon Statistics, Quantum Optics,
Varenna, Senola Internazionale di Fisica, 1969, p. 1 [Russ. trans). in
Usp. Fiz. Nauk 99, 129 (1969)].

M. A. El'yashevich, Usp. Fiz. Nauk 128, 503 (1979) (Sov. Phys. Usp.
22, 555 (1979)].

*L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed., Pergamon
Press, Oxford, 1980 [Russ. original, Vol. 1, Nauka, M., 1976].

872 Sov. Phys. Usp. 30 (10), October 1987

4°M. Born and E. Wolf, Principles of Optics, Pergamon, New York, 1959
[Russ. transl., Nauka, M., 1970].

“A.T. Forrester, R. A. Gudmundsen, and P. O. Johnson, Phys. Rev. 90,
1691 (1955).

428, A. Akhmaov, V. G. Tunkin, and A. S. Chirkin, Cited in Ref. 7, p. 388
(review of the literature).

43F, Arecchi, M. Scully, G. Haken, and W. Weidlich, Quantum Fluctu-
ations of Laser Light [Russ. transl., Mir, M., 1974].

4V, G. Tunkin and A. S. Chirkin, Cited in Ref. 46, Supplement I1, p. 341.

4H. Z. Cummins and E. R. Pike (editors), Photon Correlation and Light
Beating Spectroscopy, Plenum, N.Y ., 1974 [Russ. transl. ed. F. V. Bun-
kin, Mir, M., 1978].

463, Perina, Coherence of Light, Van Nostrand-Reinhold, N.Y., 1972
[Russ. transl. Mir, M., 1974].

*’M. Lax, Fluctuation and Coherence Phenomena in Classical and Quan-
tum Physics, pp. 271-478 in Statistical Physics, Phase Transitions, and
Superfluidity, Gordon and Breach, N. Y., 1968 [Russ. transl., Mir, M.,
1974].

*8George B. Benedek, Optical Mixing Spectroscopy, in: Polarization,
Matiere et Rayonnement, Presses Universitaire de France, Paris, 1969,
p- 49 [Russ. transl. in Usp. Fiz. Nauk 106, 481 (1972)].

“9A. S. Akhmaov and A. S. Chirkin, Statistical Phenomena in Nonlinear
Optics (in Russian), {zd. Mosk. univ., Moscow (1971).

30H. Z. Cummins and E. R. Pike (editors), Photon Correlations Spectros-
copy, and Velocimetry, Plenum, New York, 1977.

*'B. Crosignani, P. Di Porto, and M. Bertolotti, Statistical Properties of
Scattered Light, Academic Press, N.Y. 1975 [Russ. transl. Nauka, M.,
1980].

52M. Scully, Laser Focus 18, 10 (1982).

33M. Teich, P. R. Prucnal, G. Vannucci, M. E. Breton, and W. J. McGill,
Biol. Cyber. 44, 157 (1982).

S4E. B. Aleksandrov, Yu. M. Golubev, A. V. Lomakin, and V. A. Noskin,
Usp. Fiz. Nauk 140, 547 (1983) [Sov. Phys. Usp. 26, 338 (1983)].

*SW. B. Davenport, Jr., and W. L. Root, Introduction to Random Signals
and Noise, McGraw-Hill, New York, 1958 [Russ. transl. IL, M., 1960].

3¢S. M. Rytov, Introduction to Statistical Radiophysics. Part 1. Random
Processes (in Russian}, Nauka, M., 1976.

7S. M. Rytov, Yu. A. Kravtsov, and V. 1. Tatarskii, Introduction to
Statistical Radiophysics. Part 1I. Random Fields (in Russian), Nauka,
M., 1978.

58], S. Bendat and A. G. Piersol, Random Data: Analysis and Measure-
ment Procedures, Wiley, N.Y., 1971 [Russ. transl.,, Mir, M., 1974].
SSE. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon Press,

Oxford, 1981 [Russ. original, Nauka, M., 1979].

8%y, L. Klimontovich, Statistical Physics (in Russian), Nauka, Mos-
cow, 1982.

®'Yu. L. Klimontovich, Kinetic Theory of Electromagnetic Processes (in
Russian), Nauka, M., 1980.

52D, F. Walls, Nature 280, 451 (1979).

D, F. Walls and P. Zoller, Phys. Rev. Lett. 47, 709 (1981).

L. Mandel, Phys. Rev. Lett. 49, 136 (1982).

*>W. Louisell, Radiation and Noise in Quantum Electronics, McGraw-
Hill, N.Y., 1964 [Russ. transl., Nauka, M., 1972].

%M. D. Reid and D. F. Walls, Phys. Rev. Lett. 53, 955 (1984); J. Opt.
Soc. Am. B1, 547 (1984).

S7A. A. Grib, Usp. Fiz. Nauk 142, 619 (1984) [Sov. Phys. Usp. 27, 284
(1984)].

%D, C. Burnham and D. L. Weinberg, Phys. Rev. Lett. 25, 84 (1970).

5B, R. Mollow, Phys. Rev. A8, 2684 (1973).

3. F. Clausar, Phys. Rev. A9, 853 (1974).

"'E. B. Aleksandrov, V. P. Kozlov, and V. N. Kulyasov, Zh. Eksp. Teor.
Fiz. 66, 1269 (1974) [Sov. Phys. JETP 39, 620 (1974)].

2D, F. Smirnov and 1. V. Sokolov, Zh. Eksp. Teor. Fiz. 70, 2098 (1976)
[Sov. Phys. JETP 43, 1095 (1976)].

*D. F. Smirnov and A. S. Troshin, in: Theory of Cooperative Coherent
Effects in Radiation (in Russian) (ed. E. D. Trifonov), LGPI, Lenin-
grad, 1980, p. 85.

*D. F. Smirnov, 1. V. Sokolov, and A. S. Troshin, Vestn. Leningr. Univ.,
Ser. Fiz. Khim. No. 10, 36 (1977).

SR. M. Gagliardi and S. Karp, Optical Communications, Wiley, New
York, 1976 [Russ. transl., Svyaz’, M. 1978].

7M. S. Teich, B. E. A. Saleh, and D. Stoler, Opt. Commun. 46, 244
(1983).

"7H. P. Yuen and J. H. Shapiro, IEEE Trans. Inform. Theory IT-24, 657
(1978); IT-26, 78 (1980).

8], H. Shapiro, H. P. Yuen, and J. A. Machado Mata, IEEE Trans.
Inform. Theory IT-25, 179 (1979).

™D. F. Smirnov and A. S. Troshin, Zh. Eksp. Teor. Fiz. 85, 2152 (1983)
[Sov. Phys. JETP 58, 1249 (1983)].

80V. Weisskopf, Ann. Phys. (Leipzig) 9, 23 (1931); Z. Phys. 85, 451
(1933).

D. F. Smirnov and A. S. Troshin 872



8'W. Heitler, The Quantum Theory of Radiation, Oxford Univ. Press,
New York, 1954 [Russ. transl. IL, M., 1956].

82P. A. Apanasevich, Basic Theory of the Interaction of Light with Mat-
ter (in Russian), Nauka i Tekhnika, Minsk, 1977.

#3S. G. Rautian and I. I. Sobel’'man, Zh. Eksp. Teor. Fiz. 41, 456 (1961)
[Sov. Phys. JETP 14, 328 (1961)]; 44, 934 (1963) [Sov. Phys. JETP
17, 635 (1963)].

8P, A. Apanasevich, Opt. Spektrosk. 14, 612 (1963) [Opt. Spectrosc.
(USSR) 14, 325 (1963) |; 16, 709 (1964) [Opt. Spectrosc. (USSR) 16,
387 (1964)]; Izv. Akad. Nauk SSSR. Ser. Fiz. 32, 1299 (1968). [Bull.
Acad. Sci. USSR Phys. Ser. 32, 1205 (1968)].

85B. R. Mollow, Phys. Rev. A188, 1969 (1969).

%D. F. Smirnov and A. S. Troshin, Vestn. Leningr. Univ., Ser. Fiz.
Khim. No. 4,93 (1971).

¥TF. Y. Wu, R. E. Grove, and S. Esekiel, Phys. Rev. Lett. 35, 1426 (1975).

®F.Y. Wu, R. E. Grove, and S. Esekiel, Phys. Rev. A15, 227 (1977).

%98, Esekiel and F. Y. Wu, Kvant. Elektron. (Moscow) 5, 1721 (1978)
[Sov. J. Quantum Electron. 8, 978 (1978)1].

0. V. Konstantinov and V. 1. Perel’, Zh. Eksp. Teor. Fiz. 39, 197
(1960) Phys. JETP 12, 142 (1960)]. V. 1. Perel’, Coherence of the
Atoms of a Gas and Its Relaxation. Author’s Abstract, Doctoral Dis-
sertation (in Russian), FTI Akad. Nauk SSSR, L., 1966.

°IE. D. Trifonov, The Density Matrix Method in the Theory of the Sec-
ondary Emission of Impure Crystals. Author’s Abstract, Doctoral Dis-
sertation (In Russian), LGU, L., 1972.

“2A. A. Abrikosov, L. P. Gor’kov, and 1. E. Dzyaloshinskii, Methods of
Quantum Field Theory in Statistical Physics, Prentice-Hall, Englewood
Cliffs, N.J., 1963 [Russ. original, Fizmatgiz, M., 1962].

93V. B. Berestetskii, E. M. Lifshitz, and L.P. Pitaevskii, Quantum Elec-
trodynamics, Pergamon Press, Oxford, 1982. [Russ. original, Nauka,
M., 1980, p. 342].

94L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Perga-
mon Press, Oxford, 1975 [Russ. original, Nauka, M., 1973].

%D. F. Smirnov, 1. V. Sokolov, and A. S. Troshin, Opt. Spektrosk. 48,
1195 (1980) [Opt. Spectrosc. (USSR) 48, 651 (1980)].

%D. F. Smirnov, I. V. Sokolov, and E. D. Trifonov, Zh. Eksp. Teor. Fiz.
63, 2105 (1972) [Sov. Phys. JETP 36, 1111 (1972)].

971. V. Sokolov and E. D. Trifonov, Zh. Eksp. Teor. Fiz. 65, 74 (1973)
[Sov. Phys. JETP 38, 37 (1973)].

°*W. Heisenberg, Ann. Phys. (Leipzig) 9, 338 (1931).

99E. Fermi, Scientific Works [Russ. transl., Vol. 1, Nauka, M., 1971, p.
375].

1007, Fano, Am. J. Phys. 29, 539 (1961).

1'M. Schubert, K.-E. Siisse, W. Vogel, D.-G. Welsch, and B. Wilhelmi,
Kvant. Elektron. (Moscow) 9,495 (1982) {Sov.J. Quantum Electron.
12,293 (1982)].

102K Wodkiewicz, in: Proceedings of the Seventh Vavilov Conference on
Nonlinear Optics (In Russian), Novosibirsk, 1981, p. 155.

93w, Vogel, D. G. Welsch, and K. Wodkiewicz, Phys. Rev. A28, 1546
(1983).

104§ N. Dixit and A. T. Georges, Phys. Rev. A29, 200 (1984).

195M. Le Berre-Rousseau, E. Ressayre, and A. Tallet, Phys. Rev. Lett. 43,
1314 (1979).

%D, F. Smirnov and A. S. Troshin, Opt. Spektrosk. 54, 887 (1983) [Opt.
Spectrosc. (USSR) 54, 527 (1983)].

197 Ya. Zel’dovich and D. N. Klyshko, Pis’ma Zh. Eksp. Teor. Fiz. 9, 69
(1969) [JETP Lett. 9,40 (1969)].

1%Yu. M. Golubev, Zh. Eksp. Teor. Fiz. 66, 2028 (1974) [Sov. Phys.
JETP 39,999 (1974)].

199p_ A. Apanasevich and S. Ya. Kilin, Phys. Lett. A62, 83 (1977).

110A P. Kazantsev, V. S. Smirnov, and V. P. Sokolov, Opt. Commun. 35,
209 (1980).

'""A. P. Kazantsev, V. S. Smirnov, V. P. Sokolov, and A. N. Tumaikin,
Zh. Eksp. Teor. Fiz. 81, 889 (1981) [Sov. Phys. JETP 54,474 (1981} ].

'2B. W. Peule, M. G. Prentiss, and S. Esekiel, Phys. Rev. Lett. 49, 269
(1982).

'3 Anantha Lakshmi and G. S. Agarwal, Phys. Rev. A29, 2260 (1984).

""*H. F. Arnoldus and G. Nienhuis, Opt. Acta. 30, 1573 (1983).

"'*R. Loudon, Opt. Commun. 49, 24 (1984).

""M. J. Collett, D. F. Walls, and P. Zoller, Opt. Commun. 52, 145
(1984).

''7S, Ya. Kilin, Preprint No. 152, Institute of Physics. Academy of Sci-
ences of the Belorussian SSR (in Russian) Minsk, 1978.

''"*p. A. Apanasevich and S. Ya. Kilin, Izv. Akad. Nauk SSSR. Ser. Fiz.
43, 1533 (1979) [Bull. Acad. Sci. USSR Phys. Ser. 43 (7), 172
(1979 1.

""9A. Aspect, G. Roger, S. Reynaud, J. Dalibard, G. Cohen-Tannoudji,
Phys. Rev. Lett. 45, 617 (1980).

'*9p_ A. Apanasevich and S. Ya. Kilin, Zh. Prikl. Spektrosk. 29, 252
(1978). [J. Appl. Spectrosc, 29, 931 (1978)].

'2!G. S. Agarwal and S. S. Tha, Z. Phys. B35, 391 (1979).

873 Sov. Phys. Usp. 30 (10), October 1987

'22B. B. Averbukh and R. I. Sokolovski i, Opt. Spektrosk. 56, 958 (1984)
[Opt. Spectrosc. (USSR) 56, 588 (1984)].

'PI.1. Katanaev and A. S. Troshin, Opt. Spektrosk. 56, 946 (1984) [Opt.
Spectrosc. (USSR) 56, 580 (1984)].

'**K. Germey, F.-J. Schiitte, and R. Tiebel, Ann. Phys. (Leipzig) 38, 80
(1981).

125K .-E. Siisse, W. Vogel, and D.-G. Welsch, J. Phys. B14, L693 (1981);
Phys. Scripta 25, 381 (1982); 28, 368 (1983); Opt. Commun. 36, 135
(1981).

'2°W. Vogel, J. Phys. B16, 4481 (1983).

'*’K.-E. Siisse, W. Vogel, D.-G. Welsch, and B. Wilhelmi, Opt. Commun.
28, 389 (1979).

'2K.-E. Siisse, W. Vogel, D.-G. Welsch, Phys. Status Solidi 99, 91
(1980); Opt. Commun. 36, 135 (1981).

'29W. Vogel, Opt. Commun. 50, 313 (1984).

**W. Vogel and Th. Ullmann, J. Opt. Soc. Am. Ser. B3, 441 (1986).

“*'I. I. Katanaev and A. S. Troshin, a) in: Proceedings of the Eighth All-

Union Feofilov Symposium on the Spectroscopy of Activated Crystals

(in Russian), Sverdlovsk, 1985, Part 1, p. 154; b) in: Cooperative Emis-

sion and Statistics of Photons (In Russian) (ed. E. D. Trifonov),

LGPI, L., 1986, p. 84.

I. I. Katanaev, in: Cooperative Emission and Statistics of Photons (In

Russian) (Ed. E. D. Trifonov), LGPI, L., 1986, p. 94.

1333, Singh, Opt. Commun. 44, 254 (1983).

'#48. Kumar, C. L. Mehta, and G. S. Agarwal, Opt. Commun. 39, 197
(1981).

'*5Z. Ficek, R. Tanas, and S. Kielich, Opt. Commun. 46, 23 (1983); Opt.
Acta. 30, 713 (1983); Phys. Rev. A29, 2004 (1984).

13¢Th. Richter, Opt. Acta 31, 1045 (1984).

'"“7W. Vogel and D.-G. Welsch, Phys. Rev. Lett. 54, 1802 (1985).

'38G. J. Milburn, Opt. Acta 31, 671 (1984).

'*I. L. Katanaev and A. S. Troshin, Deposited Article No. R3933, 1984,
Central Scientific-Research Institute Elektronika; Abstract in: Opt.
Spektrosk. 58,953 (1985) [Opt. Spectrosc. (USSR) 58, 584 (1985)].

'“9Yu. M. Golubev, Opt. Spektrosk. 46, 3 (1979) [Opt. Spectrosc.
(USSR) 46, 1 (1979)].

1“IM. Schubert and W. Vogel, Opt. Commun. 36, 164 (1981).

1“2, A. Lugiato and G. Strini, Opt. Commun. 41, 374 (1982).

143L. Mista, V. Perinova, J. Perina, and Z. Braumerova, Acta Phys. Pol.,
Ser. A 51, 739 (1977).

'**Yu. M. Golubev, Opt. Spektrosk. 46, 398 (1979) [Opt. Spectrosc.
(USSR) 46, 221 (1979)].

145Yu. M. Golubev, V. N. Gorbachev, and P. N. Zanadvorov, Opt. Spek-
trosk. 53. 876 (1982) [Opt. Spectrosc. (USSR) 53, 523 (1982)].

14¢K . Wodkiewicz and M. S. Zubairy, Phys. Rev. A27, 203 (1983).

7y, N. Gorbachev and P. N. Zanadvorov, Opt. Spektrosk. 49, 600
(1980) [Opt. Spectrosc. (USSR) 49, 327 (1980)].

'“8L. Mandel, Opt. Commun. 42, 437 (1982).

9L, Lugiato, G. Strini, and F. de Martini, Opt. Lett. 8, 256 (1983).

15°G. J. Milburn and D. F. Walls, Opt. Commun. 39, 401 (1981); Phys.
Rev. A27, 392 (1983).

151K J. McNeil and C. W. Gardiner, Phys. Rev. A28, 1561 (1983).

'*W. Becker, M. Scully, and M. S. Zubairy, Phys. Rev. Lett. 48, 475
(1982).

153G. Sibilia, M. Bertolotti, V. Perinova, J. Perina, and A. Luks, Phys.
Rev. A28, 328 (1983).

'Suranjana Rai and S. Chopra, Phys. Rev. A30, 2104 (1984).

155P. Szlachetka, S. Kielich, J. Perina, and V. Perinova, J. Phys. A12, 1921
(1979); Opt. Acta 27, 1609 (1980).

!%¢W. Tanzler and F.-J. Schiitte, Opt. Commun. 37, 447 (1981).

'57]. Perina, V. Perinovd, and J. Kodousek, Opt. Commun. 49, 210
(1984).

'3¥V, Perinova and R. Tiebel, Opt. Commun. 50, 401 (1984).

'S9H. P. Yuen and J. H. Shapiro, Opt. Lett. 4, 434 (1979).

'“R. S. Bondurant, P. Kumar, J. H. Shapiro, and H. Maeda, Phys. Rev.
A30, 343 (1984).

'¢!'p. Kumar, J. H. Shapiro, and R. S. Bondurant, Opt. Commun. 50, 183
(1984).

'2R. E. Slucher, B. Yurke, and J. F. Valley, J. Opt. Soc. Am. B 1, 525
(1984).

'**M. D. Reid and D. F. Walls, Phys. Rev. A31, 1622 (1985).

'4G. J. Milburn, D. F. Walls, and M. D. Levenson, J. Opt. Soc. Am. B 1,
390 (1984).

%M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls,
Phys. Rev. A32, 1550 (1985).

19§, Ya. Kilin, Opt. Commun. 53, 409 (1985).

'“TR. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley,
Phys. Rev. Lett. 55, 2409 (1985).

'°8A. 1. Baz’, Ya. B. Zel'dovich, and A. M. Perelomov, Sca:‘ering, Reac-
tions, and Decay in Nonrelativistic Quantum Mechanics, Israel Pro-
gram for Scientific Translations, Jerusalem; Wiley, N.Y.. 1969. [ Russ.

132

D. F. Smirnov and A. S. Troshin 873



original, Nauka, M., 1971 (2nd ed)].

Y9 A. Yariv, Quantum Electronics, Wiley, N.Y. 1975 [Russ. transl., Sov.
Radio, M., 1980].

170C. A. Akhmanov and R. V. Khokhlov, Radiotekh. Elektron. 6, 1813
(1961).

'7IC, M. Caves, Phys. Rev. D23, 1693 (1981).

'72M. D. Levenson and R. M. Shelby, Laser Spectroscopy, VII, Springer-
Verlag, New York, 1985, p. 250.

1738, Yurke, Phys. Rev. A32, 300, 311 (1985).

174, B. Aleksandrov and V. N. Kulyasov, Opt. Spektrosk. 40, 785 (1976)
[Opt. Spectrosc. (USSR) 40, 449 (1976)].

'7SM. C. Teich, B. E. A. Saleh, and J. Perina, J. Opt. Soc. Am. B |, 366
(1984).

7M. C. Teich and B. E. A. Saleh, J. Opt. Soc. Am. B 2, 275 (1985).

77D, F. Smirnov and A. S. Troshin, Opt. Spektrosk. 57, 181 (1984) [Opt.
Spectrosc. (USSR) 57, 111 (1984) ]; Ref. 131a, Part 1, p. 16.

1781, D. Smullin and G. Khaus (editors), Noise in Electronic Devices (in
Russian), Energiya, M., 1964.

1°D. F. Smirnov and A. S. Troshin, Opt. Spektrosk. 59, 3 (1985) [Opt.
Spectrosc. (USSR) 59, 1 (1985) ]; in: Proceedings of the Twelfth All-
Union Conference on Coherent and Nonlinear Optics (in Russian),
M., 1985, Part 1, p. 188; in: Cooperative Emission and Statistics of
Photons (in Russian) (ed. E. D. Trifonov), LGPI, L., 1986, p. 117.

80V, V. Ovsyankin and P. P. Feofilov, Izv. Akad. Nauk SSSR. Ser. Fiz.
37,262 (1973) [Bull. Acad. Sci. USSR, Phys. Ser. 37 (2), 37 (1973} ].

81y, V. Ovsyankin, Opt. Spektrosk. 28, 206 (1970) [Opt. Spectrosc.
(USSR) 28, 112 (1970} ].

182y 1. Zhekov, V. A. Lobachev, T. M. Murina, and A. M. Prokhorov,
Kvant. Elektron. (Moscow) 10, 1871 (1983) [Sov. J. Quantum Elec-
tron. 13, 1235 (1983) ]; 11, 189, 14, 128 (1984)].

183A. M. Prokhorov, Usp. Fiz. Nauk 148, 7 (1986) [Sov. Phys. Usp. 29, 7
(1986)].

4N A. Tolstoi and A. N. Abramov, Nonlinear Optics (in Russian),
Nauka, Novosibirsk, 1968, p. 71.

851 I. Gudzenko and S. I. Yakovlenko, Plasma Lasers (in Russian),
Atomizdat, M., 1978.

86§, K. Lower and M. A. El-Sayed, Chem. Rev. 66, 199 (1966) [Russ.
transl. in Usp. Fiz. Nauk 94, 289 (1968)].

''N. A. Borisevich, A. V. Dorokhin, and A. A. Sukhodola, Opt. Spek-
trosk. 59, 1327 (1985) [Opt. Spectrosc. (USSR) 59, 794 (1985)].

'88A. Bandilla and H.-H. Ritze, Opt. Commun. 19, 169 (1975); Phys.
Lett. ASS, 285 (1976).

874 Sov. Phys. Usp. 30 (10), October 1987

'#91. Herzog, Opt. Acta 30, 639 (1983).

'°0Yu. M. Golubev and L. V. Sokolov, Zh. Eksp. Teor. Fiz. 87, 408 (1984)
[Sov. Phys. JETP 60, 234 (1984)].

'9TM. Scully and W. E. Lamb, Jr., Phys. Rev. 159, 208 (1967).

192M. Scully, in: Quantum Fluctuations of Laser Light [Russ. transl.,
Mir. M,, 1974, p. 86.].

193A. L. Robinson, Science 230, No. 4728, 927 (1985); 233, No. 4761, 280
(1986).

1943, R. Klauder, S. L. McCall, and B. Yurke, Phys. Rev. A33, 3204
(1986).

195R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. De Voe, and D.
F. Walls, Phys. Rev. Lett. 57, 691 (1980).

'9Ph. Grangier, G. Roger, A. Aspect, A. Heidmann, and S. Reynaud,
Phys. Rev. Lett. 57, 687 (1980).

197p. Kask, P. Piksarv, and U. Mets, Europ. Biophys. J. 12, 163 (1985).

'**Ling-An Wy, H. J. Kimble, J. L. Hall, and Huifa We, Phys. Rev. Lett.
57, 2520 (1986).

191, 1. Katanaev and A. S. Troshin, Zh. Eksp. Teor. Fiz. 92, 475 (1987)
[Sov. Phys. JETP 65, 268 (1987)].

200Y. Yamamoto, S. Machida, and O. Nilsson, Phys. Rev. A34, 4025
(1986).

201§, A. Machida and Y. Yamamoto, Opt. Commun. 57, 290 (1986).

202y, Yamamoto, N. Imoto, and S. Machida, Phys. Rev. A33, 3243
(1986).

203V, B. Braginskil and F. Ya. Khalili, Zh. Eksp. Teor. Fiz. 84, 1930
(1983) [Sov. Phys. JETP 57, 1124 (1983)].

24L. P. Grishchuk and M. V. Sazhin, Zh. Eksp. Teor. Fiz. 84, 1937
(1983) [Sov. Phys. JETP 57, 1128 (1983)].

205M. 1. Kolobov and I. V. Sokolov, Zh. Eksp. Teor. Fiz. 90, 1889 (1986)
[Sov. Phys. JETP 63, 1105 (1986)].

2%V V. Dodonov, E. V. Kurmyshev, and V. I. Man'ko, Tr. FIAN SSSR
176, 128 (1986) [Proc. (Tr.) P. N. Lebedev Phys. Inst. Acad. Sci.
USSR 176 (1986)].

27D, F. Smirnov and A. S. Troshin, Opt. Spektrosk. 63,956 (1987) [Opt.
Spectrosc. (USSR 63, No. 11 (1987)].

2988, Machida, Y. Yamamoto, and Y. Itaya, Phys. Rev. Lett. 58, 1000
(1987).

Translated by Dave Parsons

D. F. Smirnov and A. S. Troshin 874



