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Passage from the microscopic to the macroscopic description of the electromagnetic field is
achieved with the use of Maxwell equations in integral form. Certain integrals in these
equations depend on the topological relations between the integration domains and the
molecule volumes. This dependence gives rise to two methods of field-vector averaging, and
leads to the doubling of the number of field vectors for the macrodescription. The physical
meanings of the vectors D and H and of the equations into which they enter are elucidated
more clearly and more fully in such an exposition.
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1. ON THE VECTORS E AND D

1.1. It is a tradition, going back to H. A. Lorentz, to
derive the Maxwell equations for a molecular medium in the
macroscopic approximation by averaging the corresponding
differential equations for the microscopic quantities through
integration over the volume. '~5

But we can use for this purpose the equations for the
microscopic quantities in integral form; this procedure pos-
sesses important methodological advantages.

Giving rise to the macroscopic vectors E and D is the
Maxwell equation

= 4ji \ pf i, dv. (D

Here and below we use the system of Gaussian units. The
subscript m denotes the microscopic value of the vector; p^
is the polarization charge density of the molecules; and/af is
the density of the free, or better still of the nonpolarization,
charges.

The total polarization charge in the volume of any mol-
ecule is equal to zero. Therefore, only those molecules which
are intersected by the surface E bounding the volume v make
a contribution to the last integral in (1), which reduces this
integral to an integral over the surface 2. By shifting sections
of 2 by microscopic distances of the order of the intermole-
cular separation, we can include in the resulting volume sub-
stantial excess positive or negative charges: therefore, the
Ppo, integrals taken over a set of microscopically differing
volume form a set of random quantities with a relatively
large spread in the values.

But there are among the indicated set of volumes two
subsets for which the integrals in question assume determi-
nate values.

First, these are the volumes whose bounding surfaces
are fairly smooth, and are randomly disposed among the
molecules. Such surfaces are denoted below by the letter S.
In the general case the sections A5 cut across the volumes of
the molecules themselves. The number of such intersections
for a small section AS is a random quantity, but the total
number of intersections for many sections loses the random
character. This is a consequence of the statistical properties
of a molecular medium and the law of large numbers.

Secondly, the integrals over those volumes whose
bounding surfaces nowhere intersect the molecules them-
selves assume determinate values. Such surfaces are denoted
below by the letter a (in Fig. 1, by C). For the volumes
bounded by surfaces of the type a, the ppol integrals are al-
ways exactly equal to zero.

In (1) the integral over Em is the only other quantity
sensitive to microscopic changes in the surface: the polariza-
tion charges contribute to the Em vector flux from a closed
surface of the type S, but not to the flux from a closed surface
of the a type.

1.2. As is well known, the mutual relationships between
two surfaces remain topologically equivalent if the surfaces
do not intersect, or, conversely, their intersections are pre-
served in the course of the variation of their shape and dispo-
sition.6 Therefore, we can assert that the S and a surfaces
differ in the types of topological relations they have with the
molecular volumes. These relations are important for the
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FIG. 1. For the definition of the vectors E and D.

/9po] and Em integrals, and give rise to two methods of Em -
vector averaging in the transition to the macroscopic de-
scription.

The Em -vector fluxes through surfaces of the S type
give rise to the vector E(x,y, z,t). This is a vector whose
components along the normals n to arbitrarily oriented
small plane areas AS (Fig. 1) with centers at the point
(x, y, z) satisfy the equation

~- \ En,dS (2)

AS

for the moment of time t.
According to the established terminology, AS is a phy-

sically infinitely small area.
The Em -vector fluxes through surfaces of the a type

give rise to the vector D. But the a surfaces are not explicitly
considered in the macroscopic description. Therefore, in de-
termining D, we map the Em -vector fluxes through the a-
type surfaces onto the S surfaces. This is achieved through
the following definition.

The vector D(x, y, z,t) is a vector whose components
along the normals n to the above-indicated small areas AS
satisfy the equation

(3)£>„ = J E m da,

where Aa is a surface that does not intersect the molecules,
and rests on the contour of the area AS. In the general case it
is assumed that the surface ACT differs microscopically from
AS, and passes on either side of the latter with the same
probability (see Fig. 1).

1.3. Let us derive from (1) the relation between the
macroscopic quantities. Let us assume that the surface 2
coincides with a surface of the a type. Then the last term in
(1) vanishes.

Using again the definition (3) , we obtain

rv> D dS = 4it \

1.4. Let us find the relation between the vectors D and
E. From (2) and (3) we obtain

(Dn-£n)AS = j Emda- j EmdS. (4)
Ad AS

Let us denote the volume enclosed between ACT and AS
by Ay. Using (1) , we can reduce the right-hand side of (4) to
integrals taken over the volume Ay:

(Dn - En) AS = 4n J Pt Av + 4n j Ppol Av. (5)
Ay Av

It is clear that we must assign different signs to the por-
tions of the volume Ay that are located on different sides of
the area AS (see Fig. 1). Therefore, ihepf integral vanishes,
but the uncompensated polarization charges of either sign
that are obtained from the molecules intersected by the area
AS (see Fig. 1) make a positive contribution to the/jpol inte-
gral (see Fig. 1).

It can be shown that the last integral in (5) remains
unchanged when yOpo, undergoes any changes that preserve
the magnitude of the molecule's first-order electric moment.
This assertion is equivalent to the neglect of the higher-order
electric moments of the molecules in the traditional exposi-
tion.2'4 Therefore, let us, without loss of generality of the
final result, assume that the polarization charges are point
charges + q located at a distance a from each other, and
producing identically oriented dipoles (Fig. 1). The number
of dipoles intersected by the area AS is equal to vaAS cos a,
where v is the number of molecules per unit volume and a is
the angle between the direction of the dipoles and the normal
n to the area AS. Consequently, the charge that falls within
the volume Ay is equal to vqa&S cos a. Let us note that vqa
cos a = Pn is the component of the polarization vector P in
the direction of the normal. From these relations we obtain a
relation of the nature of a theorem:

D — E = 4nP. (6)

1.5. It is clear that the averaging (2) is the same as
volume averaging. Indeed, the averaging (2) over sufficient-
ly close and parallel areas AS leads to fairly close En values;
therefore, the averaging over one area with center at the
point (x, y, z) will be equivalent to averaging over a family
of parallel areas located at equal and arbitrarily close dis-
tances in a small volume Ay with center at the point (x, y, z),
and this amounts to the traditional volume averaging.

The averaging (3) does not possess such a property.

2. ON THE VECTORS B AND H

2.1. Giving rise to the vectors B and H for the macro-
scopic description of the magnetic field is the Maxwell equa-
tion:

9
~dt

E dS-

where p is the volume averaged free-charge density.

P- I J,,», dS;
2\ t* £ 2

(7)

here jmol is the density of the molecular currents closed with-
in the boundaries of each molecule and jcond is the conduc-
tion current density.

In (7) the topological effects are given by the last inte-
gral. This integral receives contributions from only those
molecular currents whose lines of flow surround the contour
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A (the contour / in Fig. 2). This reduces it to a contour
integral, and microscopic deformations of this contour can
be substantially reflected in its value. The integrals over jmo,
assume determinate values only on contours whose topologi-
cal relations with the volumes of the molecules are the same
as for the surfaces of the 5 and a types.

Firstly, these are contours formed by sufficiently
smooth curves randomly disposed among the molecules.
Such curves are denoted below by the letter L. In the general
case the sections AL intersect the molecules. The total num-
ber of such intersections for a number of sections loses its
random character. This results in the integral assuming a
determinate value.

Secondly, these are contours formed by curves that go
around the molecules. Such curves are denoted below by the
letter A. For such contours the integrals under consideration
are always equal to zero.

As a consequence, the integral over the vector Bm also
depends on the topological relations, which gives rise to two
methods of averaging of the latter.

The circulation around curves of the L type lead to the
vector B(x,y, z,t). This is a vector whose projections onto
arbitrarily oriented segments AL (Fig. 2) with center at the
point (x,y, z) satisfy the equation

R AL= f B m d L , (8)

where n is a vector that indicates the direction of the segment
AL. The circulation of the vector Bm around curves of the A
type gives rise to the vector H. The determination of it is
somewhat complicated, since the curves of the a type, like
the surfaces of the a type, are not explicitly considered in the
macroscopic description. The vector H(x, y, z,t) is a vector
whose components along the above-indicated segments sat-
isfy the equation

, ji (9)
AX

where A/I is a segment of the curve going around the mole-
cules, and drawn from the beginning to the end of the seg-
ment AL in such a way that its separation from the latter is
minimal (Fig. 2).

FIG. 2. For the definition of the vectors B and H.
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The averaging (8) is equivalent to the traditional vol-
ume averaging: the averaging (9) does not possess such a
property.

2.2. Let us derive from (7) the equation for the macro-
scopic quantities. Let the contour A be formed by a curve of
the/I type, and let the surface 2 coincide with a surface of the
a type. In that case the last integral in (7) vanishes. Using
again the definitions (9) and (3), we obtain

dS, (10)

where j is the mean conduction current density.
2.3. Let us find the relation between the vectors B and

H. From the definitions (8) and (9) it follows that

(£„-#„) AL- j Bm dL- j Bm dX. ( I D

Segments of the straight line AL and the curve A/I form a
closed contour bounding some surface AS. Therefore, using
(7), we can represent the right-hand side of (11) by inte-
grals taken over the surface AS:

(Bn - Hn) AL = -11- j Em dS + *?- jjcond dS

-%- \ j (12)

The surface A2 consists of elementary segments con-
nected by the molecules that are threaded by the segment
AL. Each of these segments is a surface drawn across that
portion of the segment AL which is located within some mol-
ecule and that portion of the curve A/I which goes around the
molecule on the outside (see Fig. 2). Owing to the random
orientation of the elementary segments, the Em - and jcond -
vector fluxes through the entire surface AS will be equal to
zero.

Contributions to the last integral in (12) are made by
only those molecules which are threaded by the contour.
This obtains only along the segment AL. Let us assume,
without loss of generality in the final result, that all the mole-
cules are of the same kind and are identically oriented, and
that the molecular currents are linear. The last assumption is
equivalent to the routine neglect of the higher-order magnet-
ic moments of the molecules. In this case, for the mean num-
ber of molecules threaded by the segment AL, we can write
vAAL cos P, where b is the area enclosed by the contour of
the molecular current / and 13 is the angle between the direc-
tion of the segment AL and the normal to the area b (Fig. 2).
Multiplying this number by 4m/c, we find the last term in
(12): 4-iribv cos /? /c. Let us note that ibv cos 13 /c = Jn is the
component of the magnetization vector J in the direction of
the segment AL. Finally, we obtain the theorem

B — H = 4nJ. (13)

The last two Maxwell equations for the microscopic
quantities do not depend on the topological characteristics.
In this case any averaging is equivalent to averaging over
portions of the planes AS and segments of the straight lines
AL, and this leads only to the macroscopic vectors E and B.
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3. CONCLUSIONS

3.1. The traditional approach is the formal mathemat-
ical approach that leads to the macroscopic dependences by
the shortest means. This approach is justified and necessary
in" an in-depth study of the subject.

But for an initial acquaintance with the laws of electro-
magnetism, such an approach is not effective, since it does
not elucidate the obvious qualitative aspects of the impor-
tant concepts and relations. This shortcoming of the tradi-
tional method has been pointed out by Ya. I. Frenkel'2 and I.
E. Tamm.3

A shortcoming of the above-expounded method is the
increased extensiveness, since we must consider different
averaging procedures corresponding to different integrals
and different topological conditions. But this extensiveness
is compensated by a deeper understanding. Let us, for the
purpose of illustration, emphasize certain facts.

3.2. The transition to the macroscopic description is
necessitated not by the difficulty of the microscopic descrip-
tion of large bodies, a difficulty which is usually cited in the
traditional exposition,2'5 but by the statistical laws govern-
ing the integrals of the microscopic quantities in the Max-
well equations in the case when the domains of integration
are of sufficiently large dimensions.

3.3. The macroscopic vectors E, D, B, and H emerge as
equally necessary statistical characteristics of the field in the
molecular medium, and in the process the simple force
meaning of the vectors Em and Bm is lost.

In the conventional exposition the statistical nature of
the vectors D and H is not revealed, and they are introduced
as auxiliary quantities devoid of a clear meaning.

3.4. In the traditional exposition the vector D is repre-
sented by the sum

D = E

(15)
so that we can then write concisely

div D = 4np.

We then lose sight of the instructive features of the simi-
larity of, and difference between, Eqs. (14) and (15), or
better still, (6) and (15).

The similarity lies in the fact that (6) and (15) can be
regarded as particular cases of (1) . As to the difference
between them, it is due to their different forms and the topo-
logical character of the volumes v. In (15) it is, roughly
speaking, a unit volume bounded by a surface of the a type. It
encloses a charge equal top. In (6) it is a volume bounded by

a unit area AS and an adjoining surface A<r. The total charge
enclosed by them amounts to the polarization charges cut off
by the area AS (Fig. 2). It is numerically equal to the compo-
nent of the vector P along the normal to AS. It is the depen-
dence of this charge on the orientation of the area that gives
rise to the vectorial character of Eq. (6).

3.5. Analogous similarity and difference features obtain
for the equations

B —H = 4jtJ,
i 3D , 4n__^_

(13')

(16)

In order to show this, let us scalar-multiply (13) and
(16) by the unit vector n, but we shall assume that n is the
directed unit segment AL in the case of (13) and the oriented
unit area AS in the case of (16). We can consider the equali-
ties obtained to be Eq. ( I I ) for the case in which the integra-
tion domains 2 and A have different shapes.

For (13) the curve A is formed by the unit segment AL
and the adjoining segment A/I; they circumscribe a surface
A2 (Fig. 2). For (16) the surface 2 is the surface ACT adjoin-
ing the unit area AS, and bounded by a A-type curve that
adjoins the edge of AS.

In the above-presented arguments the currents genera-
ted by the motion of the polarization charges are taken into
account implicitly, since the net current through a a surface
is equal to zero. But if for the derivation of (10) and (16) we
use as 2 in (7) a surface of the S type, then these currents
must be taken into account explicitly.
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advice and to N. D. MilovskiT and G. S. Egorov for useful
comments.

1 H. A. Lorentz, Theory of Electrons, 2nd ed. (1915), Dover Publications,
New York, 1952 (Russ. Transl., Nauka, 1965).

;Ya. I. Frenkel', Electrodynamics (In Russian), Vol. II, ONTI, M., 1934.
3I. E. Tamm, Principles of the Theory of Electricity (In Russian), Gos-
tekhizdat, M., 1946.

4E. M. Purcell, Electricity and Magnetism (Berkley Physics Course Ser.:
Vol. II), McGraw Hill, New York, 1984 (Russ. Transl., of earlier ed.,
Nauka, M., 1975).

5D. V. Sivukhin, General Physics Course, Vol. Ill: Electricity (In Rus-
sian), Nauka, M., 1977.

6V. A. Efremovich, Basic Topological Concepts (Encyclopedia of Ele-
mentary Mathematics, Vol. 5) (In Russian), Nauka, M., 1966.

Translated by A. K. Agyei

63 Sov. Phys. Usp. 30 (1), January 1987 I. Ya. Brusin 63


