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The present status of the theory of the late stage of diffusive decomposition of multicomponent
solid solutions, owing to diffusive interaction of macrodefects, is reviewed. Methods for solving
the systems of equations describing the decomposition process are analyzed. The evolution of
the critical dimensions of precipitates and the transformation of an arbitrary distribution
function into a universal function for different mechanisms of mass transfer are studied in
detail. The conditions for coexistence of phases in the presence of decomposition of
multicomponent systems are examined. The results of the theory are compared with
experiment.
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1. INTRODUCTION

The widespread use of multicomponent dispersed sys-
tems in different areas of science and technology (ranging
from the physics of semiconductors to photography, materi-
als science, and chemical technology) has stimulated the in-
tensive study of diffusion processes occurring in them. Since
the free energy of a supersaturated solid solution which is in
a metastable state and whose equilibrium diagram exhibits
limited solubility of one or several components is greater
than that of the equilibrium phases, diffusive decomposi-
tion—the formation and subsequent growth of regions of
new phases in the form of different chemical compounds (or
separate elements) of some of the dissolved components,
giving rise to a transition of the system into an equilibrium
heterophase state—occurs with time in such a solid solution.

Diffusive decomposition of multicomponent solid solu-
tions is often crucial in many important processes and phe-
nomena, such as creep of composite dispersion-hardened
materials under conditions of high temperatures and irradia-
tion, recrystallization of heterogeneous structures, dimen-
sional and thermal instability of structural and fissioning
materials, processes accompanying nucleation and crystal
growth in multicomponent systems, sintering, hot pressing,
etc. Decomposition can be extremely useful, and it forms, for
example, the foundation of the technology for forming age-
hardened alloys, but it can also present a very serious danger
of degradation of materials owing to undesirable growth of
different defects while the materials are in use, actually de-
termining the lifetime of the material (swelling, degradation
of semiconductors, etc.).

In practice macrodefects are often specially introduced
into real structures in order to give them the required prop-
erties. Materials engineers now increasingly seek solutions
to the problem of creating modern materials with the re-
quired complex of limiting properties in order to realize he-
terogeneous structures with finely dispersed precipitates of
other phases. Thus the main idea of widely used dispersion-
hardened materials consists of employing purposefully in-
troduced inclusions of a second phase as stoppers for dislo-
cations moving in the process of deformation. Precipitates of
particles of a second phase play a decisive role in the forma-
tion of the required characteristics of high-strength steels,
refractory alloys based on nickel, cobalt, and aluminum, and
other different composite materials. Here the questions of
the thermal stability of the structure of these materials and
the absence of significant growth of the particles, which is a
necessary condition for the preservation of the high mechan-
ical and other characteristics at these temperatures, are of
special significance.

Diffusive decomposition is the process that leads to the
formation of heterogeneous structures in a solid with a defi-
nite volume distribution of macrodefects or to undesirable
destruction of optimized structures. This is essentially what
determines the enormous role of diffusive decomposition in
the formation and evolution of different properties of solids
(electrical, optical, mechanical, etc.). Without taking into
account the distribution, interaction, and kinetics of such
defects it is impossible to formulate a correct physical pic-
ture of the behavior of real materials under the conditions of
external perturbations, and therefore it is impossible to plan,
in a scientifically well-founded manner, the development of
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materials with improved performance parameters and to op-
timize the performance characteristics of materials. There-
fore the construction of a systematic kinetic theory, ade-
quately describing the evolution of different types of defects,
and extensive experimental investigation of this evolution
comprise the foremost problem in many areas of solid state
physics, materials science, and technology.

There exists in nature an infinite number of dispersed
systems which are initially characterized by completely dif-
ferent size distributions of macrodefects. Therefore a com-
plete theoretical description of the evolution of arbitrary dis-
persed systems appears to be an unsolvable problem,
especially since in the overwhelming majority of the cases
the initial distribution of macrodefects is, as a rule, un-
known. It turned out, however, that under the conditions of
diffusive decomposition any dispersed system, irrespective
of its initial state, transforms asymptotically in time into a
unique, in the corresponding variables, state, determined
only by the mechanism of mass transfer operating in the
system. This fundamental finding radically changes the situ-
ation and enables the prediction of the asymptotic states of
dispersed systems at a late stage of diffusion decomposition.

New phases can form in the process of diffusive decom-
position of supersaturated solid solutions by two fundamen-
tally different mechanisms: spinodal decomposition or fluc-
tuation nucleation and subsequent growth of discrete
regions of new phases.1"5 In spinodal decomposition the
starting solution decomposes spontaneously into two solid
solutions with identical structures and close lattice param-
eters; nucleation of a new phase is not necessary. Spinodal
decomposition occurs in the entire volume of the solution
with continuous reduction of the free energy of the system.

In decomposition by the second mechanism the forma-
tion of new phases, accompanied by a general reduction of
the free energy, will not occur at the initial stages of the
decomposition because of the energetically unfavorable ef-
fect of the appearance of an interface until viable precipitates
with sizes exceeding some critical dimension appear.6 For
this reason the decomposition process in this case is at first of
a fluctuation character and is determined by the fluctuation
formation of supercritical precipitates. These ideas about the
nucleation process are primarily associated with Volmer,
Weber, Bekker, and Doring.7'8 Making the assumption that
the nuclei form not by means of a sudden large fluctuation,
but rather as a result of a large number of small fluctuations
and taking for the elementary processes which alter the sizes
of the nuclei the attachment or evaporation of one atom,
they were the first to formulate the kinetic problem for the
case of stationary nucleation from supersaturated vapor and
they obtained an expression for the flux of nuclei in size
space. Ya. I. Frenkel' 9 arrived at the important conclusion
that precipitates of a new phase are also present in a stable
system in the form of the so-called equilibrium heterophase
fluctuations.

Further substantial progress was made in the funda-
mental work of Ya. B. Zel'dovich,10 in which the general
problem of the formation of precipitates of a new phase in a
metastable system was studied. The kinetic equation ob-
tained by Zel'dovich for the size distribution function of the
precipitates of the new phase has the form of a Fokker-
Planck equation with two coefficients, expressed in terms of

the probabilities of transitions associated with a change in
the number of atoms (molecules) in the precipitate by one.
The determination of these probabilities is the main problem
in the description of the kinetics of decomposition of a meta-
stable system. The existing relationship between the coeffi-
cients appearing in the kinetic equation, derived in Ref. 10
from the requirement on the distribution of equilibrium he-
terophase fluctuations, makes it possible to reduce the prob-
lem of describing the decomposition to finding one of the
coefficients, for example, the rate of growth of the precipi-
tates, if the distribution of the equilibrium heterophase fluc-
tuations is known.)1>12 This approach is especially fruitful
for small precipitates. The limitations in the case of large
precipitates are linked primarily with the fact13'14 that dur-
ing the growth (dissolution) gradients of the concentrations
of dissolved substances exist around the precipitates, while
the distribution function of equilibrium heterophase fluctu-
ations is determined on the basis of thermodynamics under
the assumption that the solution around the precipitates is
uniform.

References 7-10 form the foundation of the classical
theory of nucleation. In this theory the description of the
kinetics of the decomposition of a metastable phase is based
on a kinetic equation of the Fokker-Planck type for the size
distribution function of the precipitates of the new phase and
the equations of material balance. The specific feature of this
system is manifested in the structure of the transition proba-
bilities, by means of which the coefficients in the kinetic
equation are determined.

The process of diffusive decomposition of a metastable
system, decomposing by the mechanism of nucleation of a
new phase, can be divided into three stages. We shall consid-
er a crystal which is supersaturated with point defects,
which give rise to diffusion mass transfer (by atoms of the
dissolved material accompanying the growth of precipitates
of different phases from a supersaturated solid solution, by
vacancies and interstitial atoms accompanying growth of
pores and dislocation loops, by atoms of dissolved gas ac-
companying growth of gas-filled bubbles, etc.). The starting
stage of the decomposition, when the supersaturation by
point defects is quite high, is characterized by intensive for-
mation of viable nuclei of macrodefects, whose size exceeds
the critical size (in what follows, by macrodefects we shall
mean precipitates of a second phase, pores, dislocation
loops, and gas-filled cavities, at least one dimension of which
is macroscopic). At this stage the amount of matter in the
nuclei is small compared with the prescribed amount, and
supersaturation is practically constant. The study of the ki-
netics of diffusive decomposition at this stage on the basis of
classical ideas,7"10 as already pointed out, borders on the
microscopic theory and reduces to the calculation of the
steady-state flux of nuclei of macrodefects in the size space.
Although the system of equations itself is quite simple in this
case, since the surface tension can be neglected, the solution
at this stage depends substantially on the nucleation mecha-
nisms. Definite progress has been achieved in the description
of homogeneous nucleation and the transitional stage.15'16

Heterogeneous nucleation, however, is decisively deter-
mined by the initial distribution of nucleation-initiating de-
fects and cannot yet be given a complete theoretical descrip-
tion.
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The transitional stage of decomposition begins when
the amount of matter in the new phase is comparable to the
starting amount, and the supersaturation begins to decrease.
At this stage the number of precipitates is virtually constant,
and the volume of the new phase increases primarily owing
to the growth of precipitates.15'17

Finally, at the third and later stage of diffusive decom-
position, when the nuclei attain quite large sizes and macro-
scopic concepts can be applied to them, while supersatura-
tion becomes small, surface tension and the laws of
conservation of point defects, forming a very unique kinetic
growth of macrodefects, begin to play a determining role.
This stage of decomposition was first discoverd in 1900 by
Ostwald.18 It is characterized by the fact that the average
size of macrodefects in dispersed systems at the later stage of
decomposition increases as a result of diffusion mass transfer
of matter from small particles to large particles (the large
particles "consume" the small particles), which is encour-
aged by the decrease in the free energy of the system owing to
the decrease in the area of the interface separating the
phases. Fluctuation creation of new nuclei is, of course,
practically excluded at this stage, since they must have mac-
roscopic dimensions. Strong "diffusion" interaction arises
between the macrodefects as a result of the fact that each
macrodefect "feels" the self-consistent diffusion field of
point defects, determined by the entire ensemble of macro-
defects. This fact is linked in an obvious way with the laws of
conservation of point defects in a solid solution and in ma-
crodefects.

This phenomenon is called "ripening of the Ostwald
type" or more often "coalescence," although the last term is
essentially incorrect. Decomposition at this later stage, de-
termined by the diffusive interaction of macrodefects, has
been studied many times theoretically,19'22 however solu-
tions of an incomplete system of equations, leading to size
distribution functions of macrodefects for which the law of
conservation of point defects is not obeyed, were usually pre-
sented. The characteristic features of the kinetics of a dis-
persed system cannot be determined on the basis of such an
incomplete description.

A systematic theory of the evolution of dispersed sys-
tems at the later stage of diffusive decomposition was first
constructed in Refs. 23-25. It turned out that the transfor-
mation of any initial size distribution function of macrode-
fects into a unique universal distribution function, depend-
ing on the mass-transfer mechanism operating in the system,
is determined by the law of conservation of point defects,
which leads to substantially nonlinear kinetics. Thus the ex-
istence of a stable asymptotic state of dispersed systems,
characterized by a universal distribution function, was first
predicted and theoretically substantiated in Refs. 23-25.
This leads to a unique kinetics of growth of the ensemble of
macrodefects, whose average size R varies with time at long
times according to the "t1/3 law," i.e., R~tin (in the case
when the mass transfer is controlled by volume diffusion of
point defects), instead of the customary parabolic law, char-
acteristic for diffusion processes.

It was later proved26"29 that asymptotic states of dis-
persed systems also exist for other mechanisms of mass
transfer (by means of grain-boundary diffusion, diffusion
along the dislocation network, etc.). The theory of decom-
position is generalized to multicomponent dispersed systems

in Refs. 30-35. It turned out that a universal (in appropriate
variables) size distribution function of macrodefects, which
is the same for precipitates of all phases which survive
asymptotically in the process of competitive growth, also
forms in such complicated systems at the later stage of de-
composition.

Different aspects of the problem of diffusive decompo-
sition of one-component and multicomponent supersaturat-
ed solid solutions were studied in a number of articles.36'71

We note that macrodefects can also grow by means of
their diffusion as a whole in different force fields followed by
coalescence on direct contact. These questions were ana-
lyzed in detail by Ya. E. Geguzin and M. A. Krivoglaz57 and
we shall not consider them here.

In this review we shall examine the present status of an
important branch of physical kinetics—the theory of diffu-
sive decomposition of multicomponent dispersed systems at
the later stage, determined by diffusion interaction of macro-
defects, when the possibility of fluctuation formation of via-
ble nuclei of a new phase can be neglected, while supersatur-
ation by point defects decreases.

2. THEORY OF DIFFUSIVE DECOMPOSITION OF ONE-
COMPONENT SOLID SOLUTIONS

A systematic theory of diffusive decomposition of mul-
ticomponent dispersed systems must answer the following
questions: which phases remain stable in the process of diffu-
sive decomposition and what are the boundaries of the re-
gions of coexistence of these phases? It must also describe the
evolution of the characteristics of the precipitates of coexist-
ing phases (the size distribution functions of macrodefects,
the number and average size of macrodefects, etc.), and it
must indicate the limits of applicability of the approxima-
tions adopted.

To understand better the basic characteristics of diffu-
sive decomposition of multicomponent solid solutions at the
late stage and the essential features of the method used to
analyze the complex systems of nonlinear equations describ-
ing such decomposition, we shall first examine in detail the
simplest case of diffusive decomposition of a one-component
solid solution, namely, the late stage of the process, con-
trolled by volume diffusion of the dissolved component.23"25

In what follows by macrodefects we shall mean precipi-
tates of particles of a second phase, though all results can be
transferred (with the appropriate changes) to other types of
macrodefects.

2.1. Formulation of the problem

In formulating the problem we shall study large uni-
form systems in which there are no macroscopic diffusion
fluxes, and for simplicity we shall assume that the precipi-
tates are spherically shaped.

The equilibrium concentration CR at the surface of pre-
cipitates of radius R is determined by the well-known Gibbs-
Thompson relation

C» = c» + l, (2.D

where c^ is the concentration of the saturated solid solu-
tion, a = lac^ v/kT, a is the interphase surface energy, and
v is the volume per atom of the dissolved material.
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Therefore the equilibrium concentration of the dis-
solved material is higher at the surface of small precipitates
than at the surface of large precipitates, and a flux of the
dissolved component from the small precipitates into the
matrix and from matrix to the large precipitates thus ap-
pears. Neglecting the "interaction"between the precipitates
in a polydispersed ensemble (which is valid because the ratio
of the average size of theprecipitates to the average distance?
between them is small, R <7), we obtain for the diffusion flux
of the dissolved material per unit surface area of the precipi-
tates in the self-consistent diffusion field approximation

The self-consistent field approximation can be used because
of the smallness of R/l~Q'0

/3^l, where Q0 is the initial
relative amount of matter in the precipitates. We note that
even when Q o/3 S 1 taking into account in an effective man-
ner the distribution of precipitates does not qualitatively
change the form of the diffusion flux.

The change in the volume of a precipitate is determined
by the flow of dissolved atoms per unit time up to its surface:

d (4/3) nRa _ _
dt ~

and therefore the change in the radius of the precipitate as a
function of time is given by

—
At

—
dr

To calculate dc/dr the corresponding diffusion problem
must be solved:

It is easy to see that if the initial saturation is small,
A0 = c0 — cx < 1, in order to find JK it is sufficient to solve
the stationary diffusion problem. Indeed, the ratio of the
characteristic time over which a stationary diffusion flux of
the dissolved component is established at the surface of the
precipitate rdif ~R 2/D to the characteristic time over which
the precipitate changes

R R*
fchar~ Ddc/gr

s

^^~A0<cl.
rchar

Solving the steady-state diffusion equation (dc/dt = 0), we
obtain finally

(2.2)

It is obvious that this formula also holds in the case when the
supersaturation is a function of the time, if the characteristic
time over which the supersaturation varies is significantly
longer than the time required for a steady-state flux to be
established at the precipitate. We note that the boundary
condition at the surface of the precipitate is predicated on
the fact that local thermodynamic equilibrium is established
at the surface of the precipitate. Once again, this is valid if
the rates of growth of the precipitates are low or, in other
words, the supersaturation is small A0 ̂  1.

As is evident from (2.2), for any value of the super-
saturation A there exists a critical radius Rc = a/
A = 2ovcao /kT(c — c^ ), for which the precipitate is in
equilibrium with the solid solution (dR/dt = 0), and in ad-
dition when R>RC the precipitate grows, while when
R<RC it dissolves. This obvious fact is the reason that the
small precipitates are "consumed" by large precipitates. The
supersaturation A ( f ) itself, and together with it R k (?) also,
vary with time.

We shall now write the full system of equations describ-
ing the diffusive decomposition of a one-component system.
The first equation is the equation of continuity in size space
for the size distribution function of the precipitates of the
precipitated phase/ (R,t) at a given moment in time

.
dt dR (2.3)

while dR /dt is determined by (2.2). The second equation is
the equation of conservation of matter in the precipitated
phase and in the solid solution

Ao + Qo = Qo = A + <?, (2-4)

where

is the number of atoms in the precipitated phase (v0 is the
volume per atom in the precipitated phase), while Q0 is the
total initial number of atoms of the material, including the
initial number of atoms in the precipitates q0 per unit vol-
ume. The distribution function (2.3) is normalized to the
number of particles per unit volume, so that

is the number of precipitates per unit volume.
Equations (2.3) and (2.4) form a complete system for

finding the asymptotic solution under the given initial condi-
tion, when the fluctuation formation of nuclei of the phase
can be neglected.

We note that only the hydrodynamic term is retained in
Eq. (2.3). In reality, of course, this expression is approxi-
mate, and an equation of the Fokker-Planck type withjhe
next terms in the expansion in the small parameter a/R in
the flux dR /dt can be written down. One would think that
these corrections could be very significant in the region
where dR /dt is very small. Because the supersaturation de-
creases monotonically, however, this region is always mov-
ing, and precipitates with a given size reside in this region for
only a very short time. Under these conditions the diffusion
term does not play a significant role. This will become espe-
cially clear when we transform to relative variables.

2.2. Evolution of critical sizes

In what follows it is more convenient to employ relative
variables (U,T), u = R /Rc = RL/a, and to replace super-
saturation by x = A0/A(/). Equations (2.3) and (2.4) will
assume the canonical form, if the "time" is replaced by the
quantity T = ln x3, which for quite long times, when the su-
persaturation is small and is decreasing, gives a unique rela-
tionship with the standard time t. In these variables we ob-
tain for du/dr from (2.2)
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(2.5)
where

d 1 dx

For the distribution function over relative sizes (p(u,r) we
have <p(u,T)du =f(R,t)dR, and correspondingly the equa-
tion of continuity (2.3) assumes the form

dtp
IFF (2.6)

FIG. 1. Equation of motion du^/dr = f ( u ) for different values off.

where

while the equation of conservation of matter (2.4) assumes
the form

- -vo
<p (u, T) u3 Au, (2.7)

where

Knowing the characteristic (2.5), as is well known, one
can write the exact solution of (2.6) in the form
tp(u,r) = (f>u(v)dv/du where v = V(U,T) is the characteristic
(2.5). The law of conservation of matter assumes the form

-
Vo

<p0 (v) u3 (v, T) (2.8)

«o(T)

where y()(
r) is tne solution of the equation U(VO,T) = 0, i.e.,

DO(T) is the lower limit of the initial sizes of the precipitates
which have not dissolved by the time T. The introduction of
the relative variables (M,T) is very important, since in these
variables, starting at some instant of time, an ordered disso-
lution of precipitates always exists, while the distribution
function at this time is determined by the asymptotic behav-
ior of the initial distribution function. This enables the anal-
ysis of the complicated nonlinear system of equations de-
scribing diffusive decomposition. The equations (2.5)-
(2.7) comprise a complete system for determining the
asymptotic behavior of the critical sizes. The unknown func-
tion in these equations is y(r), and these equations can be
used to determine y, '•£•> ultimately to determine A ( f ) and
therefore Rc (t) also.

There are three possibilities for the asymptotic behavior
o f y ( r ) in the limit T-> oo: 1) y(r)^> oo; 2) y(r)-*const; 3)
y(r)->0. We shall start the analysis of these possibilities
with the case 7— const. Depending on the values of y the
graph of the rate dz/3/dr — f ( u ) can touch the abscissa axis
(at y = y0 = 27/4), pass below the axis (when y<y0), or
have a section of positive values ( for y > y0 ) (Fig. 1 ) .

a ) In the case y>y0ati points to the left of u , move to the
left and vanish on reaching the origin. All points to the right
of u , move toward the point u2 and asymptotically approach
it from the left or right. Therefore the integral on the right
side of (2.8) approaches in the limit r-> oo the constant
value

while the total volume of matter in the precipitates on the
right side increases as er ( q = xJ0e

T — oo ), and Eq. (2.8) is
not satisfied. The fact that the constant value y>y0 is
reached only asymptotically does not change the assertions
made above: it is only necessary to shift the point from which
the time is measured and to refer the expression/0(y) to the
moment when y(r) is already close to its asymptotic value,

b) In the case y < y0 all points move to the left, and the
origin is reached within a finite time. By the time T, as fol-
lows from (2.5), all precipitates whose initial size is less than
UO(T), determined from the equation

; = T,

dissolve. For r> 1 we have VO(T) = er/3 . Therefore the total
volume of precipitates will be determined by the "tail" of the
initial distribution:

/„ (V) u3 (v, T) dv • x | /0(i>)i
et'/3

f o ( v ) > - j r i for v-+oo, n> 4.
In this case q ( r ) approaches zero, and Eq. (2.8) once

again does not have a solution. The arguments presented for
the cases y > y0 and y < y0 are even more valid for the cases
y->oo and y->0, respectively. Therefore only the case
Y(T) =y0 = 27/4 need be studied. We note first that for the
exact equality y = y0 all points to the right of the tangent
point u0 = 3/2, moving to the left, cannot intersect the tan-
gent point u0, called the "stopping point" and become
"stuck" on it. Therefore, like in the case y>y0, Eq. (2.8)
cannot be satisfied (<? ( r )~e r -»oo as r ->oo) . This means
that the expression y ( r ) must approach y0 from below, i.e.,

Y = YO (1 - e2 (T)), e2 (T) -> 0, t-^oo.

At the same time, the points approaching u0 from the right
"leak through" increasingly more slowly through the region
of the stopping point u0 = 3/2. The rate of leakage is deter-
mined by the value of E(T), which, like y(r), must be deter-
mined from Eq. (2.8) and the equation of motion (2.5). This
form of the function y(r) is necessary in order that the pre-
cipitates move in an ordered manner from right to left in
relative sizes, which corresponds to du/dr <0 for all u. In
the opposite case, "leakage" in the space of precipitate sizes
on the right into the region on the left from the stopping
point M0 = 3/2 will not occur, and since Rc (t) = a/A-* oo
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for r-> oo, A->0, the amount of material in the precipitates
will increase without bound, which is impossible. The "leak-
age" must be such that there is enough time for a size distri-
bution function satisfying the condition of balance of matter
to form.

We note that for 7 > y0 = const there formally exists an
infinite number of special initial conditions under which du/
dr vanishes at the point u = u0. In addition, there exists an
infinite number of solutions satisfying both the equation of
continuity and the equation of balance of matter. If, how-
ever, fluctuations are taken into account, then this means
that there is a definite probability for precipitates to appear
to the right of u0, which would immediately destroy the bal-
ance of matter. Therefore all such solutions (for
Y > Yo — const) are unstable and are physically meaningless.

It is shown in Ref. 23 that the amount of matter to the
right of the stopping point u0 is negligibly small. If this mat-
ter is completely neglected, then this means that / must be
set equal to zero together with £2(r). We shall call this ap-
proximation the zeroth-order hydrodynamic approxima-
tion. Therefore in the zeroth-order approximation there
does indeed exist a unique stable solution corresponding to
Y = Yo- Since in this approximation the rate du/dr must
have a zero of second order, taking into account the fact that
£2(r) = 0, the asymptotic values of «„ and y0 and together
with them the asymptotic values of the critical sizes and su-
persaturation can be immediately determined:

du
= 0;

a (dtt/
du = 0, (2.9)

whence we obtain the values u0 = 3/2 and y0 = 27/4, which
we already know. Correspondingly, for the critical size we
have from (2.5), taking into account the fact that Rc

= a/A,
-i/3

where Rc0 is the critical size of the system at the stage when
the decomposition can be described by the asymptotic equa-
tions. It is easy to show that R ~RC always_holds, while for
mass transfer by means of volume diffusion R = Rc ,

69>7° and
we arrive at the t'/3 law, determining the kinetics of the evo-
lution of the ensemble of particles, i.e., at the later stage of
diffusive decomposition the cube of the mean size of the par-
ticles is proportional to the time. Numerous experimental
data show convincingly that this law is obeyed in the over-
whelming majority of the cases of diffusive decomposition
studied.71 Some examples are presented in Sec. 4. Compari-
son with experiment shows7' that the / ' /3 law is quite power-
ful and even holds outside the limits of applicability of the
theory (when/J~7).

The equations (2.10), obtained in the zeroth-order ap-
proximation, are asymptotically exact. A detailed analysis61

yields corrections to the / "3 law, which, naturally, depend
on the parameters determining the asymptotic behavior of
the initial distribution function/,,. The relative value of these
corrections decreases rapidly as T increases, and the zeroth-
order approximation (2.10) becomes all the more accurate
with the passage of time.

The method developed in Ref. 61 makes it possible to
construct an iterative process for finding corrections to Rc

for arbitrary asymptotic behavior of the initial distribution
functions and different mechanisms of mass transfer.

Thus the theory gives a complete description of the ki-
netics of evolution of the mean size of macrodefects in a
dispersed system at the late stage of diffusive decomposition.

2.3. Asymptotic behavior of the distribution function

As already pointed out, in the zeroth-order approxima-
tion Y = To and <p(u,r) =Qu>u0 = 3/2. We denote

JfL__,w,A_ 1 („ 3\ /»j-<tt
dT — SW — -^-(u — jJ(u + d),

and, obviously, the equation of continuity (2.6) has the
asymptotic solution

( i 3
I FM^+I')' u < -2 - (2.n)

where

,
"~ i— (2/3) w

while x is an arbitrary function, which must be determined
from the condition of conservation of matter, which in this
approximation (neglecting the term e ~T/3 ^ 1) has the form

3/2

0

From here we obtain

X = A exp [ — (T-f - if)],

where

3/2

~\K}e ~gW ul

Introducing the probability P(u)du that the size of the parti-
cle falls between u and u + du we obtain

a'exp {-!/[!-(2/3) al) =_3_
>[(3/2)-H]"/3 ' ^ " 2 ' ( 2 > 1 3 )

U>U 0 .

The number of precipitates per unit volume is given by

P(u) {
3le a8 exp {— 1

lvri^+Wl
0,

These formulas completely determine the asymptotic
distribution of precipitates over sizes and in time. A graph of
the probability density P(u), determined by (2.13), is
shown in Fig. 2a. Thus we have obtained one of the most
important results of the theory—a universal size distribution
function of precipitates, which is independent of the initial
conditions, forms at the late stage of diffusive decomposi-
tion. In the size range/?>(3/2)A the distribution function
equals zero in the zeroth-order approximation. This con-
stant form of the function remains until the system arrives at
equilibrium. In other words, during the decomposition pro-
cess, with the passage of time and precisely at the late stage of
decomposition, any dispersed system "forgets" its initial
state and transforms into a state which is stable and asymp-
totically identical for all systems [in the relative variables
(U,T)], characterized by a universal distribution function
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them. This means that the distribution function will "bunch
up" in a self-consistent manner.

For asymptotic forms of/0 which decreases more rapid-
ly than a power-law function, for example, an exponential
asymptotic function

FIG. 2. Universal distribution function, a) Zeroth-order approximation
(2.14). b) First order approximation.

which depends only on the mechanism of mass transfer oper-
ating in the system. In dimensional variables (R,t), how-
ever, the distribution function varies continuously in time. It
is therefore natural that this unique state could be observed
experimentally (see the review of Ref. 71) only after it was
first predicted theoretically in Ref. 23. Subsequently Wag-
ner26 obtained the results (2.10) and (2.13) by asimplerand
clearer, but less rigorous method. The heuristic approach
which he used is not closed, since the existence of an asymp-
totic solution in the form (2.11), where terms depending
only on the time and only on the size can be separated, is
assumed at the outset, and this is by no means obvious.

The results (2.10), (2.13), and (2.14) were obtained in
the zeroth-order hydrodynamic approximation. In this ap-
proximation, however, the dynamics of the formation of the
universal distribution function and its relationship with the
initial distribution cannot be studied. It is also impossible to
obtain the distribution function in the region of the stopping
point «0 and beyond it, to calculate more accurately the
asymptotic behavior from the time of saturation of the solu-
tion, and to determine the time TO at which the asymptotic
description of the diffusive decomposition as a function of
time can be used with adequate accuracy. All these quanti-
ties are closely related with the structure of the initial distri-
bution function.

A method which enables the derivation of an exact
equation relating £ 2 ( r ) with the structure of the initial dis-
tribution/,, and the determination of both £ 2 ( r ) and the dis-
tribution function for all sizes, including also beyond the
stopping point UH, was developed in Ref. 61.

The behavior of e2(r) , as studied in detail in Ref. 61, is
determined by the behavior of the initial distribution func-
tion for quite large sizes. In the limit r — oo £ 2 ( r ) -»0, since
as r increases under the conditions of ordered motion from
right to left increasingly more distant regions of the initial
distribution function, which is a decreasing function of its
argument/^/?)<!//?", wheren >4as/?-» oo, form the dis-
tribution function at a given moment to the left of the stop-
ping point, making the main contribution to the balance of
matter. Indeed, since du/dr < 0, with the passage of time
increasingly fewer particles remain to the left of the stopping
point, and therefore they must "leak" more slowly through
the transformation region near the stopping point so that
there would be enough time for all excess matter to settle on

the transformation region rapidly becomes negligibly small
and degenerates into the point u0.

To determine more accurately the distribution function
for all sizes (including beyond the stopping point for u>u0)
it is necessary, generally speaking, to find the solution of the
characteristic equation for an arbitrary function £ 2 ( r ) and
then the boundary conditions will lead to a functional equa-
tion for £ 2 ( r ) . This program cannot be carried out analyti-
cally in general form. As shown in Ref. 61, the asymptotic
behavior of physical initial distribution functions, decreas-
ing with increasing size, is such that it is possible to develop
an iterative procedure which permits reducing exactly or
with adequate accuracy the problem to the solution of ordi-
nary differential equations for £2(r) and finding the charac-
teristic and together with it the distribution function for all
sizes under quite general initial conditions. The distribution
function calculated by the more accurate method (in the
first hydrodynamic approximation) (see Fig. 2b) to the left
of the transformation region for «<«2 is identical to the uni-
versal distribution obtained above (2.13) in the zeroth-or-
der approximation. To the right of the transformation re-
gion, however, the distribution function depends
substantially on the asymptotic behavior of the initial distri-
bution function, which forms a "tail" decreasing with time
beyond the stopping point u0. The weaker the asymptotic
behavior of the initial distribution function, the more matter
there is in the "tail" of the distribution function and the later
the times at which the late stage of the diffusion decomposi-
tion process appears.61 The reason for the appearance of the
"tail" lies in the fact that the system has not yet completely
"forgotten" the initial distribution function, and this "mem-
ory" is manifested in the "tail" for u > u0.

This result should be noted. Large precipitates beyond
the stopping point u0 = 3/2 (for u ̂  2) are observed experi-
mentally quite often on the histograms. 7 ' In the zeroth-order
approximation, however, the theory predicts (2.13) that
there are no precipitates with sizes R > (3/2)/?, on the basis
of which some investigators even conclude that the theory is
not valid.

We emphasize once again that there is no "tail" in the
theoretical distribution function only in the zeroth-order ap-
proximation in the state in which the system will arrive as-
ymptotically after some (for some systems possibly quite
long) time. The methods developed in the theory61 permit
constructing not only with arbitrary accuracy the "tail" of
the distribution function but also reconstructing, when nec-
essary, the initial distribution /0 from the known "tail."

The accuracy with which the "tail" of the distribution
function is determined for u > u , is determined, as should be,
only by the accuracy with which the characteristic is deter-
mined. Generally speaking, it makes no sense to improve
specially the "hydrodynamic" approximation, since local
fluctuations in the concentration at the precipitates will be-
come more significant with the passage of time. This is at-
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tributable primarily to the direct diffusion interaction
("collisions") of precipitates of the new phase, which can
appear at distances less than their sizes. Taking this circum-
stance into account leads to the formation of an additional
"tail" in the distribution function for u > «„, which is deter-
mined primarily by the distribution function for u < u0.

We note that the maximum of the distribution function
does not coincide with the point at which the rate of growth
is highest, but rather is shifted to the left. This is attributable
to the fact that in any approximation the distribution func-
tion for u > w0 is a decreasing function. Therefore, having
"leaked" through the region of the stopping point u0, it has
enough time to assume the maximum value only at some
distance from u0, which is also virtually independent of the
initial conditions in the limit T-+ oo.

Thus far we have studied the decomposition of a super-
saturated solid solution, when mass transfer between macro-
defects occurs by means of volume diffusion. Many experi-
ments have demonstrated (see, for example, Ref. 71) that
depending on the external conditions and the structure of
the material the predominant mechanism of mass transfer
could be grain-boundary diffusion, diffusion over a disloca-
tion network or along dislocations, or the kinetics can be
controlled by the rate at which point defects cross the phase
boundary, in other words, by the rate of formation of bonds
on the growing surface of the macrodefect. It is therefore
important to study the possibility of the existence of a stable
asymptotic state in a dispersed system, if the process of
growth of precipitates is controlled by some other mecha-
nisms of mass transfer of point defects.

It is shown in Refs. 26, 27, 29, and 54 that the complete
system of equations describing the late stage of diffusive de-
composition controlled by different mechanisms of mass
transfer in all cases remains the same as in the case of mass
transfer via diffusion, and it is given by Eqs. (2.3) and (2.4).
The difference lies only in the expression for the rate of
growth, determined by the effective mechanisms of mass
transfer, which in general form is given by the expression.

(2.15)AR _ Dna
n'3

At ~~ Rn~3

It turns out34-69'70 that the method presented above for
solving nonlinear systems of the type (2.3) and (2.4) is com-
pletely applicable to all problems of this type, whose velocity
field can be represented in the form (2.15). Using this meth-
od it is possible to obtain the values of all parameters of
decomposition (Pn ( u ) , Rc, u0, YQ) for specific mechanisms
of mass transfer (for definite values of «), which are given in
Table I. Figure 3 shows the tabulated distribution functions
for different mechanisms of mass transfer. Therefore even in
the case when other mechanisms of mass transfer, differing
from mass transfer by means of volume diffusion, operate,
stable asymptotic states, characterized by universal distribu-
tion functions independent of the initial conditions and de-
termined solely by the operative mechanisms of mass trans-
fer, exist in a dispersed system. Such states, however, are
intermediate states, since in the process of evolution the sys-
tem finally transforms into the most stable asymptotic state,
determined by mass transfer by means of volume diffusion.

In a real situation several of the mechanisms of mass
transfer mentioned above can operate simultaneously. For
example, transfer along grain boundaries, blocks, and dislo-

cation lines can occur together with volume diffusion. We
note that all these mechanisms "operate" simultaneously for
all precipitates of the new phase, since as a result of the diffu-
sion interaction only the most rapidly growing precipitates
survive at the late stage.

A method for solving the equations describing the diffu-
sive decomposition under conditions of simultaneous oper-
ation of several mechanisms of mass transfer was developed
in Ref. 56. The complete system of equations for determining
the characteristics of diffusive decomposition under condi-
tions of simultaneous operation of several mechanisms
differs from the corresponding system (2.3) and (2.4) by
the form of the velocity field (2.15), on whose right side the
factor Dn a" ~3 /R" ~2 is replaced by a function A(R,t) con-
taining terms determined by some separate mechanisms of
mass transfer. They are all proportional to (a/R)"
(n = 2,3,4, ...). It is important that D(R)-^D0 as R^K,,
and all fluxes are proportional to (c — CR ). Therefore in the
general form dR /At =f(c — CR ,R,t). Using the smallness
of c — CR we can write

2jj-ivA(R, t)(c-Cli). (2.16)

The function A(R,t) is a quite complicated function. Its
asymptotic behavior for very small precipitates is deter-
mined by the rate of formation of chemical bonds on the
surface of the precipitate; in this case, A = const.56 For larg-
er precipitates^ (R,t) is a sum of contributions from each of
the operative mechanisms of mass transfer.

The most rapidly decreasing term is proportional to a/
R and is determined by mass transfer with the help of volume
diffusion, i.e., the final asymptotic form of the diffusive de-
composition is determined by the mechanism of mass trans-
fer by means of volume diffusion. Thus A(R,t) in this case
has the form

The constants, a,, b^ ... are related with the angle-averaged
components of the tensors of diffusion coefficients (deter-
mining the operative mechanisms of mass transfer), the sur-
face tension tensor, and also the stress tensor for stresses
accompanying the growth of precipitates of the new phase.
Table I shows the values of a { , b,,... for the isotropic case for
specific mechanisms.

Thus if several mechanisms of mass transfer can operate
simultaneously in a dispersed system during diffusive de-
composition, then in the course of evolution the system will
continuously transform from one intermediate asymptotic
state into another. At the same time, depending on the hier-
archy of mass transfer mechanisms, the distribution func-
tion passes through a series of asymptotic forms (Table I)
and finally (?-> oo ) transforms into the form corresponding
to the mechanism of volume diffusion. In the process of this
transformation the position of the stopping point and to-
gether with it the kinetics of variation of the critical sizes of
the precipitates change.

This method was used in Ref. 65 to analyze the histo-
grams85 under the assumption that the kinetics of growth of
finely dispersed precipitates, studied in Ref. 85, is controlled
by mass transfer by means of volume diffusion and chemical
reaction on the precipitate-matrix boundary. The exact form
of the theoretical distribution functions P( u,u0) for different
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TABLE I. Parameters of diffusive decomposition for different mechanisms of mass transfer.
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FIG. 3. Distribution functions corresponding to different
mechanisms of mass transfer [for different values of « = 2-7
(seeTable I)] .

2.0

values of the parameters characterizing the contribution of
different mechanisms of mass transfer was calculated on a
computer. As can be seen from Fig. 4, for definite values of
these parameters it is possible to obtain significantly better
agreement between the theoretical function P(u,u0) and the
experimental data than for the case of one selected mecha-
nism of mass transfer.

In the hydrodynamic approximation, as shown above,
the "tail" of the distribution function vanishes asymptotical-
ly (<p(u,r) = Ou>u0). Numerous experimental studies
demonstrate71 that while the tl/" law is well satisfied the
experimentally observed distributions in many cases are
wider than those predicted by the theory, and in addition
precipitates with relative sizes much greater than «0, form-

0.4 0.8 1.2 1.B 2.0 U OA O.B 1.2 1.6 2.0 U.

721,0.-119A f.s

0 0.4 0.8 1.2 1.6 2.0 U,0.4- 0.8 1.2 1.6 2.0 u
A-/, 0-2, -- 3

FIG. 4. Comparison of histograms with theoretical
distribution functions. I ) experimental data85 (Ni-
6.35 Al, 625 °C); 2) theoretical distribution function
for simultaneous action of two mass-transfer mecha-
nisms; 3) universal function P(u) (2.13). For Figs, a-
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FIG. 5. Extraction replicas of NiAl precipitates in the alloys Ni-49 at. %
Co-12at. % Al.6"

ing a quite extended "tail" beyond the stopping point, are
often observed.65 We have already discussed one reason for
the appearance of a "tail," associated with the transforma-
tion of the initial distribution function into a universal func-
tion. We shall now study another possibility for the forma-
tion of a "tail" as a result of the significant volume fraction of
the precipitates. The results obtained above are valid, strict-
ly speaking, when the volume fraction of the precipitates
approaches zero and the mean size of the precipitates is
much smaller than the mean distance between them R <7.
Equations (2.5) and (2.6) correspond, as already pointed
out, to the "hydrodynamic" approximation in size space.
The equation (2.5) expresses the velocity field du/
dr — — g(u,r) at each instant of time as a function of the
supersaturation A(r ) . Local fluctuations of the concentra-
tion near a growing or dissolving precipitate are thereby ne-
glected, as a result of which the velocity in reality does not
equal precisely its mean value — g(u,r). This circumstance
can be taken into account with the help of the mechanism of
"collisions" between precipitates.24 The main idea of this
mechanism is that precipitates separated by distances of the
order of their sizes coalesce; this is attributable to the spatial
fluctuations of the distances between the precipitates at the
initial stage of nucleation (we emphasize that the distances
between the centers of the precipitates in this case remain
fixed, and the precipitates do not move as a whole). The fact
that this mechanism can occur in a real situation is clearly
demonstrated in Fig. 5. From physical considerations as well
as from the analysis performed in Sec. 2.2 it should be ex-
pected24 that collisions should reduce the value of y com-

pared with 70, since the precipitates transferred by collisions
through the stopping point must have the possibility of leak-
ing back. Using the method of successive approximations to
solve Eqs. (2.5) and (2.6) it can be shown24 that collisions
alter somewhat the distribution function in the region of the
stopping point and lead to the appearance of an exponential-
ly decreasing infinitely extended "tail" of the order of Q0

beyond the stopping point.
Numerical methods for realizing on a computer the

iterative procedure for calculating the collision integral24

were employed in Ref. 68. The results obtained showed very
clearly that when the volume fraction is taken into account
with the help of "collisions" the rate of change of the mean
size of the precipitates remains proportional to t "\ like in
the zeroth-order approximation, but the rate constant in-
creases as the volume fraction increases. When the volume
fraction changes up to 60% the rate constant is approxi-
mately doubled. The effect of the volume fraction on the
parameter 7 (after 12 iterations) is also presented here.

Figure 6 shows the results of calculations of the distri-
bution func t ionP(u) and the collision integral Jco} using the
iteration procedure described above. As the number of itera-
tions n is increased the distribution function shifts toward
increasing values of u; in addition, part of the matter is
"transferred" by the "collisions" into the region beyond the
stopping point u(} = 3/2, which leads to the appearance of a
"tail" in the distribution. As the number of iterations is in-
creased the corrections to the "tail" become increasingly
more accurate, though, naturally, they become increasingly
smaller (Fig. 6) because of the good convergence of the iter-
ation process.

The distribution function depends strongly on the vol-
ume fraction of precipitates Q0, becoming increasingly wider
and more symmetrical (since the largest changes occur in
the vicinity of the stopping point). As Q0 increases the size of
the "tail" of the distribution increases. The existence of pre-
cipitates with a large radius in the experimental histograms
becomes easily explainable, since when "collisions" are tak-
en into account there is in principle no upper limit to the
sizes, though, undoubtedly, the probability for the appear-
ance of large precipitates beyond the stopping point de-
creases rapidly as the sizes of the precipitates increase.

The effect of the volume fraction on the process of de-
composition of solid solutions was studied in Refs. 43, 50,
and 64, but in these studies attention was directed entirely
toward a more accurate determination of the "hydrodynam-
ic" rate of growth. The basic assumptions which are made in
these studies in order to determine the effect of the remain-
ing precipitates on the growth of a particular precipitate are
quite arbitrary and are not self-consistent. In addition, it

2PO

FIG. 6. Calculation of the distribution function
P(u) (a) and the collision integral /.„, (b) us-
ing an iteration procedure.-4 Volume fraction
Qu = 0.2; n is the number of iterations.6*
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should be noted that no matter how accurately the "hydro-
dynamic" rate of growth is determined, in this approxima-
tion it is impossible to obtain extended "tails" of the distri-
bution function, since a stopping point always exists in this
approximation. It is obvious that the volume fraction has a
definite effect on the rate of growth of the precipitates, and it
can introduce a significant quantitative change in the size
distribution function without changing its qualitative char-
acter. This rate of growth can be determined in the most
systematic and self-consistent manner by combining the
"sphere of influence" approximation62 and the "effective
medium" approximation.50

In the above analysis a number of factors affecting the
kinetics of diffusive decomposition—elastic stresses arising
during the growth of the precipitates, anisotropy of precipi-
tates and of the matrix, etc.—were ignored. It is shown in
Ref. 24 that taking into account many of these factors re-
duces merely to renormalization of the coefficients of diffu-
sion and supersaturation, but in the dimensionless variables
this does not change either the form of the distribution func-
tion or the conclusions regarding its stability. The role of
stresses, of course, can be substantially more complicated
than described in Ref. 24 for spherically shaped precipitates,
for example, if the solid solution and the precipitate are an-
isotropic. Precipitates shaped like needles, plates, ellipsoids,
etc., are quite often observed experimentally. In this case the
relative arrangement of the crystallographic axes and of the
matrix affects the form of the growing precipitate. Since the
arrangement of these axes is random, there is a distribution
of precipitates not only over sizes but also over shape. In this
case (p(/u.,r) also depends on the parameters characterizing
the shape, while the equation of continuity (2.6) does not
change. Integration over the shape parameters is added on
the right side of Eq. (2.7). Equation (2.5) depends on these
parameters, while the curves corresponding to it in the (du3/
dr,u) plane fill an entire band. If the precipitates are aniso-
tropic, but grow in a similar manner, then, using the analysis
performed in Sec. 2.2, it can be shown that the band asymp-
totically approaches the « axis from above. All precipitates
with the exception of those whose shape corresponds to the
top edge of the band have a finite negative velocity and van-
ish with time. Only precipitates with the most favorable
form, for which all preceding results are valid, remain.

Diffusion growth in ionic crystals, glasses, and other
nonmetallic systems exhibits a number of peculiarities com-
pared with the decomposition in metallic matrices.59'71 For
ionic crystals the charge present on the diffusing particles
and the appearance of electric fields in the material can have
an important effect on the growth process. As shown in Ref.
44, this significantly deforms the distribution function and
even leads to the appearance of "double-hump" distribu-
tions.

3. THEORY OF DIFFUSIVE DECOMPOSITION OF
MULTICOMPONENT SOLUTIONS

We shall now consider the late stage of diffusive decom-
position of multicomponent solid solutions. This case is the
most common and the most practically interesting one, since
the overwhelming majority of real materials are supersatur-
ated multicomponent solid solutions, in which under certain
conditions precipitates of different phases, determining the
properties of these materials, form. The theory of the evolu-

tion of precipitates of these phases in the process of diffusive
decomposition is constructed in Refs. 30-35. As will be evi-
dent from what follows the conditions of quasithermodyna-
mic equilibrium distribute the matter of the components in a
more advantageous manner over the phases and determine
the regions of their coexistence, while the action of surface
tension leads to a universal, in the zeroth order approxima-
tion (with respect to as/Rs < 1, where Rs is the mean size of
the precipitates of the sth phase while as is proportional to
the surface tension of the sth phase), size distribution of the
precipitates of the coexisting phases.

At the earliest stage of diffusive decomposition the
growth of the precipitates depends on the history of the ma-
terial, and at quite long times a precipitate size distribution
function which is independent of the initial distribution and
which, because of the nonlinearity of the process, becomes
universal in the zeroth-order approximation forms. The cor-
rections depending on the initial conditions decrease as the
decomposition process unfolds. The initial conditions also
determine the time at which the system emerges into the
asymptotic state. The emergence into the asymptotic state
can be determined by comparing the theoretical and experi-
mental distribution functions or by the saturation of any
property of the material which is sensitive to the impurity
concentration in the solid solution (dilatometry, lattice pa-
rameters, electrical resistance, etc.).

We shall study an ̂ -component solid solution in which
as a result of decomposition k different phases (of chemical
compounds) consisting of components present in the solu-
tion can form. The possibility of coexistence of different
phases in the matrix is determined by the ratio of the initial
concentrations of the components, forming a phase, and the
thermodynamic advantageousness of these phases. Among
all chemical compounds which can exist in the given multi-
component system only those for which the solution is su-
persaturated can be stable. This condition is necessary, and
for low concentrations of the components (c° 4,1) when the
law of mass action is applicable to the chemical reactions
which occur, it can be written in the form

II CD*'
(3.1)

where cf is the initial concentration of the /th component in
the solid solution, k "„ is the equilibrium constant of the sth
chemical reaction, and v\ and^u- are the stoichiometric coef-
ficient and the chemical potential of the /th component of the
sth phase. In this case, if the phases forming in the system do
not contain common components, the condition (3.1) is also
sufficient, i.e., the precipitates of different phases will grow
independently. If, on the other hand, the phases contain
common components, it turns out that although based on
separate components for some phases the solution was at
first supersaturated, in the process of decomposition the
matter can be redistributed over the phases, and for these
phases the solution will become unsaturated. For this reason
the relation (3.1) in this case is only a necessary condition
for selecting those phases whose precipitates can participate
in further competitive growth occurring in the process of
diffusive decomposition.
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3.1. Basic system of equations and its solution

The full system of equations describing the process of
diffusive decomposition in an .^-component system, forming
k phases with the stoichiometric composition, including
pure components and compounds with the matrix material,
consists of k equations of continuity (3.2),N laws of conser-

vation of the matter of the components (3.3), ̂  ns — k stoi-
S

chiometric relations for the diffusion fluxes/^ and/c laws of
mass action (3.5):

Sr(fVJ = 0. (3.2)

is the average volume per atom of the compound, p •' = v]/Ns

are the reduced stoichiometric coefficients, v] is the atomic
volume of the/th component of the 5th phase, and/ = 1,2,...,
ns is the number of components in the given phase, we obtain

n A IN"
* =

(3.6)

at
For the rate of growth of the precipitates of the 5th phase,
using the equations

(C?H) ' = /&,

where/5 (R,t) is the distribution function of precipitates of

the 5th chemical compound (phase) in the matrix, ̂  indi-
s(

cates summation over all phases containing the /th compo-
nent, c, is the average concentration of the /th component in
the solid solution at a given moment in time, c5^ is the equi-
librium concentration of the /th component on the surface of
the particles of the 5th phase, «0 is the number of sites in the
matrix per unit volume, k S

R is the equilibrium constant of
the 5th chemical reaction on the surface of the precipitate of
radius R, and ns is the number of components in the 5th
phase. Since at the late stage of decomposition the super-
saturation of the components A, is much less than unity, this
makes it possible, as in the case of the one-component solu-
tions, to use the expressions for the quasistationary fluxes of
atoms of the /'th kind toward the precipitates of the 5th phase
Js

iR per unit surface area of precipitates with radius R, ob-
tained in the self-consistent diffusion field approximation:

rS DillQ 7~ s \

J iR = —ft— (c — ciR) i

where />, is the coefficient of diffusion of the /th component
in the matrix. In this case, the ratio of the characteristic time
for establishing the diffusion flux of the most slowly diffus-
ing component rdif ~/J, / 6Z>, to the characteristic time over
which the size of the inclusions changes

Jt^l ^1char ~ D, dr ~ D,&,

(3.3)

(3.4)

(3.5)

v, /Vifi (
^ D cs

7 = 1 ' l°°

where

"s - ,

^ Pi c\x

' J iR
s
1

° IVs> V -

s — — A, <^1. The smallness of the parameter A, also

makes it possible to use the quasiequilibrium conditions on
the surface of the precipitates. Since A, -»0, at the late stage
the laws of mass action can be employed, and the interaction
of the components can be neglected.

Since the composition of the precipitates and therefore
the ratio of the equilibrium concentrations also are indepen-
dent of the radius for sufficiently large precipitates, the con-
centration of the components at the surface can be represent-
ed in the form c*R —cs

im exp<5^. Since ( k R ) l

^==^-(A*-7*),

we obtain from (3.4)

_
Dsvsn (3.7)

In the approximation which is well applicable for the
overwhelming majority of precipitates, making the main
contribution to the laws of conservation of matter, when the
average size of the precipitates is already quite large,
Rs >a5, the rate of growth is given by the expression

(3.8)/ dR \'_ D'v'na /A.__oM
\~dTl ~ R \ R I'

Using (3.7) and integrating (3.3), taking into account
(3.2), it is easy to transform the laws of conservation (3.3)
into the form

_P -
Pi 4n (3.9)

where

is the total amount of matter of the /th component initially,
and

jr«_

is the relative number of molecules of the 5th phase in the
precipitates per unit volume. The laws of conservation of
matter written in the form ( 3.9 ) are a natural generalization
of the law of conservation (2.4) for the one-component solu-
tion. Using As and substituting c, from (3.9), we obtain

A - - S P J

p{(g'~c'J
)1/A"exp(as/JR), where as = 2o~v*/kT,
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Introducing, as in the case of the one-component solutions,
dimensionless variables and analyzing the conservation laws
it can be shown33 that in order for a solution to exist As must
approach zero as t ~ l / 3 :

A - < = ( - ~1/3

Since As > 0 and J s > 0, the values of c, -,cs
ix and Js are,

generally speaking, functions of time, but for long times
(t-> oo ) they approach some constant limiting values, and in
addition A1 ->0. This behavior is a consequence of the fact
that the system approaches thermodynamic equilibrium.
This implies that in the zeroth-order approximation (up to
terms of order t -1 /3) the system of equations (3.2)-(3.5)
splits into j independent subsystems.

The situation noted above is an exceedingly important
result of the theory, since the complicated system of nonlin-
ear differential equations in the canonical variables can be
written with asymptotic, with respect to time, accuracy as a
collection of independent equations, determining the distri-
bution functions and the parameters of decomposition of all
precipitating phases.

The equations of continuity (3.2), together with the
laws of variation of the sizes of the precipitates of the sih
phase ( 3.8 ) and taking into account the fact that the volume
of a precipitate of a given phase approaches constant values
Jsvsnn, determined by the laws of conservation of matter
(3.9), constitute 5 complete, independent systems of equa-
tions, identical to the system obtained and studied in Refs.
23-25 for one-component solutions and which we examined
in detail in Sec. 2. Therefore the method of solution de-
scribed in Sec. 2 is completely applicable to each of the inde-
pendent subsystems, which makes it possible to write out
immediately the asymptotic solutions of this system for the
sih phase, making the following substitutions in Eqs. (2. 10)
and (2.14)
R * = a VA!:

^as = 2(fvs/kT,

IP rt V ".(R, t) = —=r- =
ps <

11/3
_R

R
Ui <~

— —- ^^T

o,
(3.10)

This result is one of the basic results of the theory, which
predicts the formation of a single, universal (in the appropri-
ate relative variables us = R /Rs), asymptotic in time size
distribution of the precipitates of arbitrary phases, precipi-
tating in the process of diffusive decomposition of multicom-
ponent solid solutions. Physically this is a result of the fact
that the action of the interphase surface tension forms a uni-
versal, in appropriate variables, distribution function, which
is identical for particles of all coexisting phases irrespective
of their initial distributions. Thus, even in the most general
case of a multicomponent dispersed system, there exists a
unique, in appropriate variables, stable asymptotic state into

which the system transforms, completely "forgetting" the
initial distribution.

The evolution of the average sizes of the precipitates of
all phases also obeys a universal law—"the t1/3 law"—for
decomposition controlled by volume diffusion of the compo-
nents.

We note that although the form of the solution is uni-
versal, the solution itself depends on the system of

(N + ̂ V + k) limiting parameters c,-, cs
im ,J

S. To deter-
s

mine them it is necessary to use the limiting form of Eqs.
(3.4), (3.6), and (3.9) asR-> oo. As an additional system of
equations (accurate up to terms of order t ~ 1/3) it is neces-
sary to use the condition of existence of the solution As = 0,
which at the later stage replaces the initial conditions for the
distribution functions of the phases. Using (3.4), we obtain

— v njDs . „ / 7 I | \
c ciaa = -!-!—— A . (j.ll)

From here it follows that asymptotically, when As = 0,

c^ = Cilo = c^= . .. = c-™ = cioo = ̂ . (3.12)

This condition has a simple physical meaning: precipitates of
only those chemical compounds for which the equilibrium
concentrations of the common components are identical can
exist. Therefore asymptotically the concentrations of the
components on the surfaces of the precipitates are indepen-
dent of the specific phase. The obtained asymptotic (in
time) "kinetic" condition of coexistence of phases in the
process of diffusive decomposition corresponds to the "ther-
modynamic" condition for coexistence of phases. Indeed,
Eqs. (3.12) imply that the chemical potentials of the ;th
component are equal in the corresponding phases
(fj,] = 1(1, + kT\n c*x ). Introducing xt = c,/2, and keep-
ing in mind (3.11), we obtain from (3.6) and (3.9) a system
of equations for determining the limiting parameters x,
and/5:

n (*.-

These equations can be written with an accuracy up to terms
of order (As )2 in the form

Solving the system (3.13), the values of the limiting param-
eters x, and Js can be obtained with an accuracy up to terms
of order (As)2.

Physically it is clear that the collection of roots xt and
Js of the system (3.13) must satisfy the inequalities
0<;t, < 1, /J>0 (Xj > 1 would indicate that the final amount
of matter in the solution exceeds the given amount). It is
easy to show that the collection of these roots is unique.
Indeed, the left side of Eqs. (3.13) contains polynomials,
which in the region of existence of the "physical" roots are
monotonic functions, and they form in the space of the vari-
ables Js in this region open hypersurfaces with a curvature
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of the same sign, whose intersection determines the unique
system of roots. If the concentration of some components
exceeds their limit of solubility in the matrix, then the coex-
isting phases can be precipitates of pure components, while
the corresponding rate constant of the chemical reaction
equals the limiting solubility of these components c,, and in
addition v; = 1, v,v, = 0. Such a chemical reaction formal-
ly corresponds to the equation ciao = c,.

We note that all phases for which the solution is super-
saturated must be included in (3.13). The solution of these
equations asymptotically selects phases which asymptotical-
ly survive as a result of competitive growth during diffusive
decomposition. If in (3.13) one of the roots J * < 0, then we
must set Js = 0, and the corresponding law of mass action
[i.e., the corresponding Equation (3.13)] need not be stud-
ied, since for this phase the solution becomes unsaturated in
the process of decomposition. If, on the other hand, as a
result of the solution it turns out that Xj• > 1, then the solid
solution is unsaturated for all chemical reactions in which
they'th component occurs, and, as is evident from (3.13), all
JSj must be set equal to zero and the corresponding laws of
mass action need not be studied, while the system (3.13)
must be solved anew with s, fewer equations. If the system
(3.13) decomposes into several subsystems, not containing
common components, then for them the decomposition oc-
curs independently.

It should be emphasized that the main results of the
theory of diffusive decomposition of multicomponent solu-
tions at the later stage regarding the formation of a universal
distribution function and the fact that the full system of
equations describing this process decomposes into s identical
subsystems for determining the size distribution functions
for each of the phases and s systems of algebraic equations
for finding the limiting parameters, are independent of the
mass-transfer mechanism and are determined solely by the
conservation laws.

Only the form of the distribution function depends on
the specific mechanism of atomic mass transfer, i.e., on the
form of(dR /dt)s. Brownian motion and coalescence of par-
ticles, the possibility of precipitation of the precipitate, and
also the random appearance at small distances could alter
somewhat the distribution function. These changes can be
taken into account with the help of the "collision inte-
gral," 24 which corresponds to the introduction of correc-
tions to the volume fraction of the precipitates. Since the
general system of equations decomposes into independent
subsystems for each phase, all results regarding the effect of
different factors (taking into account elastic stresses, anisot-
ropy of the precipitates, fluctuations in the arrangement of
the precipitates and their strong diffusion interaction) on
the stability of the universal distribution function, obtained
in the study of one-component solutions (see Sec. 2), are
also valid for the case of multicomponent systems.

The system of equations (3.13) couples the external pa-
rameters, i.e., the parameters which are determined by the
external conditions, with the internal, adjustable param-

I

eters. In the case under study the external parameters are g,
and k ̂  , while the internal parameters are c, and Js. In the
general case the external conditions enable classification of
the limiting parameters into external and internal. If, for
example, the concentration of some component is main-
tained constant, then it becomes an external parameter,
while the corresponding relative amount of the substance
becomes an internal parameter, which must be determined
from the system (3.13).

We note that if in the process of decomposition com-
pounds with the matrix material are formed, then this is
analogous to the precipitation of the pure component, and in
this case we must set formally in the expressions obtained
DmM = oo and the concentration of the matrix material
must be regarded as given.

As an illustration we shall obtain in an explicit form
some results for the simplest case of diffusive decomposition
of precipitates with the stoichiometric composition of the
type,4 J,|' A "', dispersed in a matrix Af.32f34 This case often
arises with the use of practically important materials, con-
taining inclusions of the oxide, carbide, nitride, etc., type.

The system (3.13) in this case assumes the form
l — x- = -?i-J ( i=l 2) p — v' (3-14)

xPixp'2=ki(Vi+V2><oPiop2ri=k (3-15)

We note that £„ < 1 must always hold, since otherwise the
solution would be unsaturated. The analytic solution of even
such a simple system cannot be obtained in a general form.
We shall find the solution for the physically most interesting
limiting cases, often realized in practice. In a specific case
the system (3.14) and (3.15) can be solved on a computer
with the required accuracy.

1. We shall examine a weakly supersaturated solution
(1 — jc, < 1). Expanding the system (3.14) and (3.15) with
respect to the small parameter ( pt /Qi )J, we find

1 fcoo . 1 koor *, = ! —
_Pl

<?1 F <?2 <?1

Taking into account the fact that c,-0

we obtain

»(*)=-

4-

/-£L-4--pU
V <?1 <?2 /

, and using (3.10),

t.

kT (_rf.^._J!!_)

(3.16)

2. If the initial concentrations of the components corre-
spond to the stoichiometric composition (Qt/p{ = Qi/p^),
solving (3.14) and (3.15), we obtain

n(t)= Pi
(3.17)

0.22vn0 PI R*=4r-

3. When the initial concentrations of one of the compo-
nents is much greater than that of a second one, for example,

pi/p2) — 1, we have

(3.18)
P\

-+-
pf

flrf. 1—£^=-
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If the coefficient of mass transfer of one of the components is
much higher than that of a second component, then, passing
to the limit in (3.16)-(3.18) (/>,-» oo ), it is easy to obtain
the results of Ref. 72. Thus an important feature of the diffu-
sion process in multicomponent solid solutions, unlike one-
component solutions, is the dependence (3.13) obtained for
the parameters of decomposition on the ratios between the
initial concentrations of the dissolved substances and rate
constants of the chemical reactions at the boundaries of the
precipitates. Physically this is determined by the fact that
the concentrations of the components on the surface of the
precipitates are rigidly coupled by the laws of mass action. In
the case of multicomponent systems additional parameters
Qi appear, which are determined by the history of the mate-
rial and make it possible to affect the rate of decomposition
by means of optimal selection of the ratios of the relative
quantities of the dissolved substances.

The results regarding the diffusive decomposition of
one-component precipitates under conditions of simulta-
neous action of several mass-transfer mechanisms are ex-
tended in Ref. 65 to the case of binary precipitates of stoi-
chiometric composition. The expressions obtained formally
have the same form as in the case of the growth of one-com-
ponent precipitates. However, an important difference is
that the effective coefficients Dcff and (Kp )e(f appearing in
the final formulas contain the concentrations cioo, which are
no longer given, but are determined self-consistently by the
asymptotic form of the laws of conservation of matter and
the law of mass action. In addition, it is important to empha-
size that these coefficients depend on the external param-
eters Qi and k ^ . It is this dependence that permits, by vary-
ing the external parameters, to affect purposefully the
characteristics of the diffusive decomposition in the transi-
tional asymptotic region in order to improve the thermal and
phase stability of the materials created.

We point out especially that the theory constructed also
solves the inverse problem of determining the parameters of
multicomponent systems in experiments on diffusive de-
composition. This makes it possible to formulate a funda-
mentally new approach to the experimental measurement of
important, but difficult to measure parameters of multicom-
ponent systems—the rate constants of chemical reactions
occurring in the solid k s

x , the specific surface energies of the
phases a", and the partial coefficients of diffusion of the
components of the precipitates Dt. To determine them the
evolution in time of the experimental size distribution func-
tions of the phases (histograms) must be compared with the
theoretical function, depending on these parameters. In or-
der to obtain agreement with the experimental size distribu-
tion function of the precipitates the constant parameters in
the theoretical size distribution function must be determined
with the required accuracy on a computer.73"75

It is also possible to determine the parameters ks
m,crs

and D, by measuring the rate constants of the decomposi-
tion. In the case of one-component solutions the quantities
D, a, and c „ appear in the expression for the rate constant in
the form of a linear combination, so that aside from data on
the rate of decomposition independent experiments on the
measurement of supersaturation must be carried out, as is
done, for example, by Ardell.76 In the decomposition of mul-
ticomponent solutions the rate constant, even in the simplest
cases, is a nonlinear function of these parameters and the

relative amounts of the substances Q,, and this makes it pos-
sible, by measuring the rate constant of decomposition for
different values of Ql and solving (3.13), to determine D,,
as and k ̂ . Thus in the case of a slightly supersaturated
solution under conditions of decomposition A ̂  A (

V
2) [Eqs.

(3.16)] the unknown parameters are Z),,D2, a, andfc^, and,
therefore, in principle four values of the rate constants of
decomposition for different values of Ql and Q2 (satisfying,
of course, the condition of a slightly supersaturated solu-
tion) are sufficient to obtain from (3.16) a system of equa-
tions from which the unknown parameters can be deter-
mined numerically using a computer.

3.2. Regions of coexistence of phases

To determine the regions of coexistence of the phases it
is necessary to find the boundaries of the regions of coexis-
tence of all possible k phases in the space of the relative quan-
tities of the substances Q, in an TV-component supersaturat-
ed solid solution. These boundaries are hypersurfaces with
dimension (N— 1). In the general case the equations for
these surfaces are obtained after the Js are found from
(3.13) and equated to zero:

J* (Qi, <?a. • • - QN) = 0- (3.19)

This hypersurface divides the /V-dimensional space of Qt

into two regions. In the regions where Js <0 (below the
surface) the solid solution for the 5th phase is unsaturated,
and correspondingly this phase is not present. In the region
Js >0 (above the surface) the solid solution for the 5th
phase is supersaturated, and it precipitates in the form of
deposits. The physical region of values corresponds to Q, > 0

N

and ]T £?,<!, which will be divided by the hypersurfaces of

all possible phases into cells in Qt space. For values of Qt

lying in some cell, evidently only those phases coexist for
which/1 (Q,,Q2, —, QN) >0. Since the algebraic equations
for determining / * are nonlinear, and amongst their solu-
tions it is necessary to select at each point of {Q/} space those
which satisfy the above-indicated physical conditions, the
hypersurface Js = 0 in the general case will be piecewise
continuous. If it is necessary to determine the hypersurface
which separates the regions of coexistence and absence of
phases containing the /th component, x/ = x, (Q,, ..., QN )
must be found from (3.13) and equated to unity, which cor-
responds to a saturated solution for the /'th component.

As an example we shall present the solution of Eqs.
(3.13) for a two-phase (5=1,2) three-component
(/' = 1,2,3) system in which the component / = 2 appears in
both phases. Following the procedure indicated above we
obtain the equation for the surface in the three-dimensional
space {Q\,Qi,Q.Js above which the phase I exists and below
which the phase I is absent (/' = 0):

•Ql1ViVj/V2V 3 (3.20)

and the equation of the surface above which the phase II
exists and below which the phase II is absent (/" = 0):

OV./V, V! I.V2/V1V4
(3.21)
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FIG. 7. Phase diagram of decomposition.

These surfaces intersect along the line Q \ = Q ", which, as it
is easy to see, is the same line on which the solution is satu-
rated with respect to all components: k, = k2 = 1 or

t l /V lK (3.22)

The intersection of the surfaces (3.20) and (3.21) forms
four regions. Both phases I and II exist above these surfaces.
Both phases are absent below these surfaces—the solution is
unsaturated. In the region which lies between the surfaces
(3.20) and (3.21) [(3.20) is the lower one], only the phase I
exists, and if (3.21) is the lower one only the phase II exists.

For convenience such a phase diagram of the decompo-
sition is illustrated schematically in Fig. 7 in the projection
on the plane Qt Q2 (Q3 = const). Here the lines 1 and 2 corre-
spond to Eqs. (3.20) and (3.21), and the point A corre-
sponds to Eq. (3.22). The position of the system for fixed
external conditions is determined by the point B with the
initial concentrations Q ° and Q \.

A change in the phase relationships in the system under
study or a transition of the system from one phase region into
another could be associated either with a change in the posi-
tion of the system in the space of the initial concentrations
(Fig. 8a) or with a change in the boundaries of the regions of

I and II

No phases

No phases

FIG. 8. Diagram of the changes in the phase relationships, a) Change in
the initial conditions, b) Change in the position of the boundaries.

existence of the phases (Fig. 8b). Figure 8a shows how the
system can be transferred from the state B (phase I) into the
state B' (phase II) (I — I I ) by changing the initial concen-
trations (Q°,Q02-^Q\,Q2). By changing the initial condi-
tions (the temperature, pressure, etc.), i.e., by changing k ^
only [leaving unchanged the position of the point B (Fig.
8b) ], it is possible to make a change in the boundaries of the
regions of coexistence of the phases such that the system will
transform into the other region (I->I and II).

We shall study also the solution which is slightly super-

saturated with respect to all components (Q,~ ' ^v^'J*' < 1

and all ks
x ^ 1). In this case the system (3.13) can be linear-

ized and solved in a concrete case. In other words, the hyper-
surfaces are determined in the space near their common line
of intersection k'^ =k\ ... k"^ = 1. For example, for the
two-phase three-component system, setting, as done before,
first/1 and then/11 equal to zero, we obtain the equations for
the boundary surfaces of existence of the phases. We note
that for /5 = 0 the solution must be sought near k^ =1,

k ]/t'-
i.e., Q\ = ' (1 +g) , while for / " = O Q "

= —-— (1 + tj), where f <1, r /< l . As a result we obtain

equations for the surfaces near the line k'^ = k " =1 which
are identical to (3.20) and (3.21) in this region of Q,. If the
kinetic obstacles in the formation of any phase are sufficient-
ly large, then in the real time scale it may not be realized,
though it is asymptotically stable. In this case the transfor-
mation of the phase diagram with the passage of time must
be taken into account. Solving the system (3.13), we obtain
kinetic phase diagrams of decomposition which permit de-
termining the stability of the phases taking into account
their kinetic characteristics.

Thus for a solution which is slightly supersaturated
with respect to all components

Pi (*-*

-Pi 2
Di^

(3.23)

In this case the c, are determined from (3.11), while
A" ( f ) = const-f ~ l / 3 . The expressions (3.23) determine the
dynamics of the variation of the relative quantities in the
precipitates Js and the equilibrium concentrations c*iac in
the asymptotic region. As is evident from (3.23), these
quantities depend on time as t ~1/3 and over sufficiently long
times approach constant values.

It is obvious that the boundaries of the regions of exis-
tence of the phases are smeared owing to the nonuniform
distribution of matter in the volume and fluctuations of the
temperature and concentrations of the components. The re-
gions of coexistence of the phases, as is evident from (3.20)
and (3.21), depend on the relative quantities of the dissolved
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substances Q, and the rate constants of the chemical reac-
tions k ^ .

Thus in the process of diffusive decomposition of multi-
component solid solutions surface tension forms a universal
size distribution of the precipitates of the phases, while the
conditions of quasithermodynamic equilibrium determine
the phases which precipitate in an ./V-component solution.
The types of phases can be altered by varying the ratios
between the Qt or the temperature, since k S

M vary differently
with the temperature.

The law of mass action in Eq. (3.5) can be easily re-
placed by the general equation of phase equilibrium at the
boundaries of the precipitates. In this case

As follows from the theory, this does not change the results
regarding the decoupling of the system of Equations (3.2)-
(3.5) into s independent subsystems, formation of the uni-
versal distribution function, and the law of evolution of criti-
cal sizes. Only the phase diagram of decomposition, i.e., the
regions of coexistence of the phases and the amount of mat-
ter in the phases, determined by the algebraic system (3.13)
and depending on the specific form of the equation for phase
equilibrium F(cs

iR ) = 1, changes.
We note that all preceding results are valid if k < N, i.e.,

the number of coexisting phases does not exceed the number
of components. If the external parameters/) and 7" are taken
into account, then the number of coexisting phases will be
determined by Gibbs' rule k<N + 2.

To find all coexisting phases for k > N the system (3.13)
must be divided into groups containing N phases. The total
number of possible groups equals c%. Then each of the c%
groups of equations must be solved, and only one of them
will have roots (for fixed/) and T) corresponding to the
physical conditions of coexistence of phases, discussed
above (0 </ s ,0 < x, < 1 ) . The solution of this system selects
those of the N phases which survive in the process of diffu-
sive decomposition.

3.3. Formation of precipitates with nonstoichiometric
composition

It has now been established reliably77"79 that many
compounds used as hardening precipitates are phases with
variable composition, and the deviations from stoichiometry
strongly affect many properties of real materials (TiC0.8...i,2 .
ZrO, 75. .2.12, TiV20 2 195 XH60...5.89> and others).

Physically the nonstoichiometry of a compound
(phase) is determined by components the number of whose
positions can vary within some limits. The positions of stoi-
chiometric components do not change, and their numbers in
the crystal or molecule of the chemical compound and the
ratios between them are constant. It is physically obvious
that the values of the stoichiometric coefficients Vj , though
they can vary within the region of homogeneity, under equi-
librium conditions when minimizing the thermodynamic
potential of the system are fixed asymptotically with the pas-
sage of time by the initial conditions — the ratio of the initial
quantities and rate constants of the chemical reactions. This
means that in this case precipitates with the stoichiometric
composition also grow, but the corresponding coefficients v,

are additional internal factors (relative to the stoichiometric
compounds) which must be determined. The nonstoichio-
metric compounds can be regarded in a certain sense as a
solid solution with a limited solubility. As shown in Refs. 33,
34, 80, and 81, all equations and their solutions, determining
the size distribution function, obtained above, can be em-
ployed in this case also. A significant difference is the ap-
pearance of additional equations for determining the quanti-
ties Vj in the system of algebraic equations relating the
internal parameters on which the distributions depend
ceoo >Pe and/5 with the external parameters k^ and Qe.

Thus, in the diffusive decomposition of precipitates
with a nonstoichiometric composition, precipitates with a
variable (not completely determined) composition or a
composition determined by the limits of the region of non-
stoichiometry, depending on the external conditions, can
grow.

4. COMPARISON WITH EXPERIMENT

We shall now examine the questions which to some ex-
tent concern the experimental verification of the theory of
diffusive decomposition. After the publication of Ref. 23,
containing the basic assumptions of the theory in 1958, the
number of studies concerning diffusive decomposition and
kinetics of growth of particles in different materials in-
creased markedly in the literature. An important class of
materials for which the different aspects of the theory have
been verified experimentally are steels and alloys of iron
with precipitates of carbides, nitrides, and other
phases,36"42'71 age-hardened alloys of nickel, aluminum,
etc.,37'41 dispersion-hardened composite materials,82-83 in-
ternally oxidized alloys,84 glasses and ionic crystals,59'71 etc.
We will make no attempt to give an exhaustive review of the
enormous number of experimental studies concerning diffu-
sive decomposition, and we shall examine only those studies
which, in our opinion, are most informative for comparing
theory with experiment.

In a series of studies,37'85"87 Ardell carried out careful
studies with a representative statistical sample of the growth
off precipitates (Ni3X, where X denotes Al, Ti, or Si) in
nickel alloys, forming the basis for many refractory materi-
als for high-temperature applications.

Figure 9 shows histograms of the y' precipitates in the
Ni-Al system.85 For comparison the universal distribution
function, corresponding to mass transfer by means of vol-
ume diffusion, as predicted by the theory, is also shown. It is
evident that the agreement between the theory and experi-
ment is good. In most cases the histograms have the form
predicted by the theory: quite slow growth in the region of
small sizes, the existence of a stopping point at 3/2, and a
sharp drop in the region of the stopping point. The data on
the kinetics of growth of y' precipitates86 indicate convinc-
ingly that the t'/3 law, which is characteristic for mass trans-
fer by means of volume diffusion (Fig. 10), is obeyed. The
value of the experiments of Refs. 86 and 87 is increased by
the fact that in these experiments the equilibrium concentra-
tion of the dissolved substance in the solid solution in nickel
was measured independently with the help of magnetic mea-
surements, which made it possible to study the kinetics of
variations of supersaturation in the system studied. As the
theory predicts, supersaturation decreases in proportion to
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. Figure 11 shows a histogram of Ni3Al precipitates in
the alloy Ni—22 at. % Co—13 at. % Al.68 The figure also
shows the approximation of this histogram by the theoreti-
cal distribution function calculated on a computer by Da vies
et a/.68 using an iteration scheme. It is evident that the agree-
ment between the theory and experiment is very good.

The evolution of the formation of the universal distribu-
tion function (2.13) from an arbitrary initial distribution is
demonstrated clearly in Ref. 88 on the example of the
growth of cementite Fe3C precipitates in Fe-0.79 C alloys,
spheroidized at 704 °C (Fig. 12). The histograms, which are
quite smeared at the early stages of annealing, approach with
the passage of time closer to the theoretical function (2.14),
while the value of the stopping point approaches «„ = 3/2.

The growth of precipitates in steels containing 0.25%
vanadium was studied in detail in Ref. 89, where the kinetics
of growth vanadium carbide, nitride, and carbonitride pre-
cipitates during annealing of the steel at a temperature of
790 °C was studied. At the starting stages of annealing the
kinetics is described by the equation R2~t, which corre-
sponds, according to the theory, to control of the reaction on
the interphase surface. At later stages of growth mass_trans-
fer along dislocations, giving rise to kinetics of growth R s ~ t

wi. % Al:

L-6.35
775 C *-B.71

300 -
S3
<̂ "

ZOO -

100 -

FIG. 10. Kinetics of growth of y' precipitates in the Ni-Al system."
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(see above), becomes important. Structural studies indeed
reveal in this case a high density of dislocations, forming as a
result of volume changes associated with the austenite-fer-
rite transformation. For long annealing times the over-
whelming majority of the precipitates are located on disloca-
tions. Increasing the dislocation density by means of 5%
cold deformation of steel increases the rate of growth of the
precipitates V( CN) by a factor of 30, while the t'/5 kinetics is
observed at earlier annealing times, which confirms the va-
lidity of the assumption that growth is controlled by mass
transfer along dislocations. It is interesting to note that the
precipitates with the more complicated composition V (CN)
grow more slowly than VC, which also agrees qualitatively
with the theory (Sec. 3).

It was shown in a study of the kinetics of growth of
ThO2 particles in TD-nickel90 with the use of a correlation
analysis of the experimental data that the cubic growth law
(tl/3 law) is obeyed with an exceedingly high confidence
limits P = 0.995.

It is proved in Ref. 73, employing the methods of the
mathematical theory for checking statistical hypotheses

0.4 2,0 u.

FIG. 11. Comparison of the distribution functions ( I ) , calculated accord-
ing to (2.13), and taking into account the collision integral /.„, (2) with
the histogram for Ni,Al precipitates in the alloy (Ni-22 at. % Co-l3 at
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FIG. 12. Histograms of cementite particles for Fe-0.79 C steel, spheroi-
dized at 704 °C. The numbers on the curves correspond to different an-
nealing times with t, > /2 > r, > /4. For comparison the broken curve shows
the universal function (2.13).

(Pearson's^2 test, Kolmogorov's criterion), that in a dis-
persed Mo-ZrO2 system the size distribution function of the
ZrO2 particles is described asymptotically with the passage
of time with a confidence limit of P = 0.95 by the universal
function (2.13), while a least-squares analysis of the points
for the same mass transfer mechanism shows that the growth
kinetics obeys with high accuracy the t1/3 law. To illustrate
diffusive decomposition in nonmetallic systems we present
the histograms of silver particles growing in KC1 crystals at
700 °C9' (Fig. 13). Good agreement between experiment
and theory is observed when the histograms are compared
with the theoretical function corresponding to mass transfer
by means of diffusion along dislocation lines (see Table I).
The possibility of growth of metallic precipitates in ionic
crystals by means of migration of F centers along dislocation
lines was confirmed by direct observations.92

Finally, we call attention to the results of numerical
experiments, carried out by computer simulation methods,
on the kinetics of segregation of phases in binary alloys,
quenched from high temperatures. Analysis of the results of
such experiments,67 carried out based on the ideas about dif-
fusive decomposition23"25 presented in Sec. 2, shows that be-
cause of the difference in the solubilities of particles with
different radii at the late stage, when the total numer of parti-
cles begins to decrease, growth occurs mainly by means of
"diffusive" interaction between large and small clusters
("consumption" of small particles by large particles). The
distribution of large clusters at the late stage is described
very well by the universal distribution (2.13) predicted by
the theory, while the kinetics is described very well by the
t1/3 law; in addition, there is not only qualitative agreement
but also very good quantitative agreement with the theory.

5. CONCLUSIONS

The analysis in this review shows that quite a complete
and systematic theory of the late stage of diffusive decompo-
sition—a phenomenon which plays a determining role in the

f.Su

0.5 1.0

FIG. 13. Histograms of silver particles growing in a KC1 crystal.91 For
comparison, the universal distribution function for mass transfer by
means of grain-boundary diffusion (see Table I)js shown for different
decomposition times: a) for 2R = 330 A; b) for 2R = 460 A.

formation of modern materials with prescribed properties—
has now been constructed.

The problem of diffusive decomposition of supersatur-
ated multicomponent solid solutions has been formulated
rigorously. A method for solving the fundamental systems of
equations describing the decomposition process has been de-
veloped. The equations obtained and the proposed method
for solving them enable the formulation and solution of
many problems in the kinetics of diffusion processes in sol-
ids. This method is quite general and applicable for the
mathematical description of a wide class of physical phe-
nomena (recrystallization, swelling, sintering, degradation
of the properties of semiconductors, etc.).

It was found that the nonlinear kinetics gives rise to
very unique behavior of dispersed systems at the late stage of
decomposition—any system asymptotically "forgets" its in-
itial state with the passage of time and transforms into a
unique (in the appropriate variables) stable asymptotic
state, depending only on the mass-transfer mechanism oper-
ating in the system. Physically this is attributable to the fact
that the interphase surface tension forms a universal (in the
appropriate variables) size distribution function indepen-
dent of the initial distributions, which is the same for precipi-
tates of all existing phases. The conservation laws and the
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laws of mass action in this case determine the phases which
survive asymptotically in the process of competitive growth.
The boundaries of the regions of coexistence of the precipi-
tates of these phases of both stoichiometric and nonstoichio-
metric composition were determined, which makes it possi-
ble to construct decomposition phase diagrams. The
evolution of the average size of macrodefects of a dispersed
system at the late stage of decomposition, depending on the
mass-transfer mechanism, is described by the law R~t</3,
and in addition the kinetics controlled by mass transfer by
means of volume diffusion—the t1/3 law—is asymptotically
stable.

Numerous experimental investigations on the most di-
verse materials have indicated convincingly that the theory
of the late stage of diffusive decomposition agrees well with
experiment both qualitatively and quantitatively. In the
overwhelming majority of cases the kinetics of growth fol-
lows the theoretically predicted tl/3 law, when growth is
controlled by volume diffusion of the components of the pre-
cipitates, while the distribution function has the universal
form given by the expression (2.13). The experimentally ob-
served broadening of the histograms, compared with the
theoretical asymptotic distribution function, can be de-
scribed correctly by the theory when the "collisions" and the
transformation of the initial distribution function into the
universal function are taken into account.

By studying the kinetics of the decomposition process it
is possible to determine experimentally the important, but
difficult to measure, physical characteristics of multicom-
ponent systems—partial coefficients of diffusion of the com-
ponents of the precipitates and the coefficients of specific
interphase energy. The theory enables the development of a
fundamentally new approach to the determination of the
rate constants of chemical reactions which can occur in the
solid. The acquisition of this unique information is of great
scientific and applied value for optimization of the proper-
ties of real materials.

The theory constructed forms the scientific foundation
for quantitative prediction of the evolution of complicated
multicomponent systems and thereby their structurally sen-
sitive properties, associated with the size distribution of ma-
crodefects, in the process of diffusive decomposition. The
stability criteria, formulated based on the theory, for dis-
persed systems41'42'82'83 make it possible to develop practical
recommendations, used in the development of new modern
multicomponent materials with improved characteristics
and high thermal dimensional and phase stability. As fol-
lows from the theory, minimal growth of precipitates re-
quires low values of the specific interphase energy a, solubil-
ity cx , coefficients of diffusion D(, etc. These criteria are
indeed reflected in different refractory materials.

The exceedingly low values of a—0.2 J/m2 in alloys of
the nimonic type—nickel alloys hardened by Y phase pre-
cipitates—suggest that these materials are highly stable at
high temperatures. The validity of this idea has been ade-
quately confirmed by successful application of these materi-
als in gas turbines under conditions of high-temperature op-
eration.42-93 Based on this the highly heat resistant alloy
Ford 406, for which very high creep resistance is characteris-
tic,42'94 has now been developed.

The principle of low solubility of the dispersed phase

was first realized in the production of tungsten (used in in-
candescent filaments) and TD-nickel hardened with thori-
um oxide.95 A refractory alloy based on the Fe-Al system96

and other refractory materials,42'97 in which the dispersed
phase has an extremely low solubility, were developed ac-
cording to an analogous principle.

The introduction of active carbide-forming elements,
which make it possible to form carbide precipitates with low
solubility and low diffusion mobility, is a necessary condi-
tion in the technology of fabrication of high-quality
steels.40'42 The same principles are successfully used in the
development of modern light alloys with high mechanical
characteristics.4'lK2

There are still a number of questions in the problem of
diffusive decomposition which must be resolved. The theory
does not adequately address the inteaction of macrodefects
in the decomposition process. Experimental work,16 in
which it is shown that macrodefects alone can initiate
growth of other defects, for example, in the precipitate-pore
system, has appeared in recent years. Much can be expected
from numerical experiments using computers regarding the
problem of decomposition—beginning with simulation,
construction of phase diagrams of the decomposition of mul-
ticomponent systems, and determination of the parameters
of dispersed systems (D,, k^, as), and ending with the
correct treatment of experimental data using statistical
methods. One of the important problems of the theory on
this level is the simulation of stepped heat treatment, which
forms the foundation of the technology of many modern ma-
terials.

The role of elastic stresses in the process of diffusive
decomposition can, in the general case, be more complicat-
ed. The effect of these stresses on the equilibrium form of the
precipitates can be significant, especially in the presence of
marked anisotropy (it is well known, for example, that cu-
bic, plate-like, and needle-shaped precipitates in different
systems can transform as a result of structural transforma-
tion during the decomposition process into spherical and
diskotic precipitates with an orientation which differs from
the initial orientation, etc.). This should significantly
change the form of the diffusion fields and substantially af-
fect the characteristics of decomposition. An exceedingly
high stability of the microstructure of Fe-Al alloys with very
finely dispersed, coherent, ordered deposits of Fe,Al, even
after prolonged annealing, in particular, the alloy Fe-15 at.
% Al, in which the precipitates were less than 100 A in size
and their density was of the order of 1023 m~3, was discov-
ered in Refs.98 and 99. A number of models based on taking
into account stresses which appear have been proposed in
order to explain such high stability. It should be acknowl-
edged, however, that this interesting effect has not yet been
satisfactorily explained theoretically.

The morphology, mechanisms, and kinetics of growth
of precipitates, especially at the second, slow stage,100 must
be studied further both theoretically and experimentally.
This is especially important because this effect is quite gen-
eral; it is observed in other systems100 and can be very useful
for increasing the thermal stability of dispersion-hardened
alloys in high-temperature applications. The theory address-
es wholly inadequately the effect of different external actions
(conditions of quenching, preliminary deformation, high
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pressures, ultrasound, stepped heat treatment), which can
significantly alter the kinetics of growth of the precipi-
tates.101

A detailed explanation of the characteristic features of
diffusive decomposition in ionic crystals and strongly disor-
dered materials is also a problem to be addressed by the the-
ory. Finally, a fundamental problem of the theory is to ex-
plain in a unified manner all stages and forms of diffusion
decomposition. Most of these problems can be solved based
on the ideas which have already been developed.
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