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All the formulas pertinent to dynamic diffraction in either the Bragg geometry or the Laue
geometry are derived for an arbitrary one-dimensional periodic potential for which the
reflection amplitude (r) and the transmission amplitude (t) for a single period are known.
These formulas are derived by strictly algebraic methods. The diffraction of neutrons by
monatomic and diatomic ideal single crystals is analyzed as an example. A general relation
between the phases of the reflection and transmission amplitudes is proved by a gedanken
experiment for an arbitrary nonabsorbing potential barrier.
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1. INTRODUCTION

Periodic potentials are nearly ubiquitous in solid state
physics. They are related most directly to crystals and multi-
layer systems, which are presently finding progressively
more technological applications. In many cases, crystals
themselves may be thought of as multilayer systems; i.e.,
they can be described by a one-dimensional periodic poten-
tial.

Although the solution of the problem of the behavior of
a particle in a one-dimensional periodic potential (an elec-
tron in the band theory of solids or a netron, for example, in
the scattering of a particle by a crystal) was found a long
time ago, the method for solving this problem is still far from
perfected. Since it was formulated by Mathieu,1 Floquet,2

and—for quantum mechanics—Block,3 it has remained es-
sentially unchanged. It is true that attempts have been made
to solve this problem by recurrence relations (e.g., Refs. 4-
6), but these attempts have also been far from perfect and
have resulted in some rather cumbersome expressions. In the
present note we make use of specifically the method of recur-
rence relations. Using it, we put the solution of the problem
of the behavior of a particle in a one-dimensional periodic
potential in its simplest form. We do make the assumption
that the transmission and reflection amplitudes for a single
period, t and r, are known and are scalar functions of the
energy of the particle.

Actual problems are usually three-dimensional, but to

some extent they can be reduced to one-dimensional prob-
lems. An example is the case of Laue diffraction by a single
crystal, which we will examine briefly at the end of this note.
In some cases, three-dimensional effects can be dealt with by
transforming from scalar functions t and r to matrix func-
tions.

2. RECURRENCE RELATIONS; SEMI-INFINITE PERIODIC
POTENTIAL; REFLECTION AMPLITUDE

We imagine an ideal semi-infinite periodic potential
(Fig. 1) in which the periods are separated by infinitely nar-
row gaps of widths e, in which the potential vanishes. It is
physically obvious that infinitely narrow gaps will have no
effect of any sort on the behavior of a particle, but their
introduction makes it possible to monitor the motion of a
particle without regard to its actual wave function in some
specific potential or other. (We should stipulate that al-
though we are talking about a wave function here, i.e., al-
though we are talking in terms of quantum mechanics for
definiteness, the arguments below also hold in other fields of
physics in which periodic layered media arise: optics, acous-
tics, hydrodynamics, etc.) A real potential is usually not
perfectly periodic, since the outermost periods will differ
from the inner periods if there are long-range forces. This
point, however, can be dealt with by introducing a surface
potential and calculating the scattering by that potential sep-
arately.
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FIG. 1.

We assume that we know the outcome of scattering by
an isolated period. In other words, we know the reflection
amplitude r ( k ) and the transmission amplitude t(k) if the
isolated period is flanked on its right and left by a vacuum;
here k is the wave number of the incident neutron (for defi-
niteness, we will be talking exclusively in terms of the scat-
tering of neutrons, simply because that is the field of special-
ization of the author). If an isolated period is not symmetric
with respect to its center, we need to distinguish between the
cases of incidence on the potential from the left (we denote
the corresponding amplitudes by ? and t) and from the right
f and t). In quantum mechanics we have the relations
t = t = t,? = ?X exp (2/77) = re"1, in the case of an asymme-
tric potential,7 where 77 is a phase which is real if the poten-
tial is real. We will show that this phase is inherited in the
amplitude for reflection from the entire periodic potential
with a finite or infinite number of periods.

We consider the nth gap. We denote by ij>n the ampli-
tude of a wave which is incident on the right wall of the gap,
beyond which there is another infinite number of periods.
We denote the amplitude_for reflection from the semi-infi-
nite periodic potential by R. A wave reflected from the right
wall of the «-th gap is then

rjjn = Rtyn. (1)

-* -*

The wave i(in can be expressed in terms of i/>n _, through the
use of the recurrence relation

The first term corresponds to a wave which has passed from
left to right through a single period, between the nth and the
(n — l)st gaps; the second term corresponds to a wave
which is reflected from the same period from the left. It fol-
lows from (1) and (2) that we have

tn-l
(3)

We now seek the wave ̂ n _ , , for which we can write rela-
tions similar to (1) and (2):

(4)

Using (3), we then find

(5)

For R and, similarly, for R, we thus have the equations
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R = r + tfl (1 — rR)-H, (6a)

fl ="7 +~tR (1—7 R)~3. (6b)

Substituting into Eq. ( 6a,b ) f = ? exp ( 2/77 ) = r exp ( irj ) , we
find R = R exp(2/?7), i.e., the phase ij is indeed inherited.

Multiplying both^ sides of Eq. (6a) by expO'r/), and us-
ing the notation R = R exp ( irj ) , we can put ( 6a ) in the form

tR(i- (6c)

which is characteristic for a symmetric potential. In the case
of a scalar potential, Eq. (6) is a quadratic algebraic equa-
tion:

2r

The roots of the equation

x* - 2px + 1 = 0

can be written

*i,2 = [(P + l)l/2 =F (P -
X[(p + 1)V2 ± (p _

Clearly, these roots are mutually reciprocal x2 =
the case of Eq. (7) we have

„ , , _ _ (r±l)2-(»

(7)

(8)

(9)

'*,. In

(10)

.-D»-,y/. • Hla)

Of the two possible roots we have selected that which leads
to a zero reflection amplitude if the periods are fictitious, i.e.,
r = 0. If, on the other hand, we have r = ± 1 and t = 0, then
we also have R = + I .

For an asymmetric scalar potential it is easy to verify
that the following relations hold:

v -i_ ^r

so we can write

D [(r+1)2 —t2]1/2 —[(r—I)2 —
/t = —:

£ = - ^ R, R=±-

where R is given by (1 la) with

( l ib )

(12)

3. BLOCH WAVE VECTOR

The complete wave function within a periodic potential
is written in the form *(x) =<p(x)ex.p(iqx), where <p(x) is
a periodic function, and q is a so-called Bloch wave vector.
To find its magnitude, we need only compare the wave func-
tions in two adjacent periods. It is not always possible to find
the wave function in a single period for an arbitrary poten-
tial. Here again, however, we make use of the gap, since it is a
part of a period, and in it, in the «th gap, for example, the
wave function is

n = exp (iql) yn_t = exp (iql)

(13a)

Since the waves i/> and if/ are linearly independent, relation
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( 1 3a ) holds for each of the waves separately:

(13b)

Making use of this circumstance, we rewrite Eq. (4) as

(14)

and by substituting (14) into (2) and using ( 13b) we find

exp (iql) =1 +7 exp (iql) [1 — Fexp (iql)]-lr. (15)

In the case of a scalar potential Eq. (15) becomes

jP_«4!±!=£L+1=o, J (16)

where we have introduced X=exp(iql), r =(??), and
t = t = t. Of the two solutions of Eq. (16) we choose

D'-rT/' M 7v
t_t,lt . (17)

which, in empty space with a fictitious period [r = 0, t
= exp(ikl) ], leads to q = k, where k is the wave vector of

the free neutron. Comparison of (17) and (1 la) reveals

X (r, t) = R-1 (t, r). (18)

4. PERIODIC POTENTIAL WITH A FINITE NUMBER OF
PERIODS

To determine the reflection amplitude Rff and the
transmission amplitude TN of a periodic potential with N
periods, we can make use of the fact that a potential which is
periodic with a period / is also periodic with a period Nl. We
can thus replace r and t by RN and TVrinEqs. (6), (7), (15),
and (16). Asaperiod/in (15) and (16) we should take Nl.
As a result we find the equations

exp (ZiqlN) -2exp (iqlN) (T'N+i-R*N) (&„)-* +1=0.

(20)

Since R, exp(/#/), and thus also e\p(iqlN) are known and
are given by expressions (1 la) and (17), we can solve Eqs.
(19) and (20) for RN and TN. After some simple algebraic
manipulations we find
RN = R {I _ exp (ZiqlN)] [1 — R2 exp (2iqlN)] -x,(21a)
TN = exp (iqlN) (1 - R") [1 - R* exp (2iqlN)]-1. (21b)

These two expressions convert into each other upon the sub-
stitution R++exp(iqlN) or.R<-»-exp( — iqlN), as they should.
In the case ofjin asymmetric potential, R in (21) should be
replaced by (R_/R)t/2. Furthermore, the reflection ampli-
tudes UK and It,? contains the factors (R /R)1'2 and (R /
R)l/2, respectively.

IfR and q are real, the phase RN differs from the phase
TN by ± 7T/2; we will need to make use of this relation below
in proving a general theorem.

5. EXAMPLE 1. RECTANGULAR POTENTIAL

If the potential of a single period is simple enough, we
can find analytic expressions for the amplitudes r and t. We

"

li-i- !!

, ji i!
1 i
n H

21

FIG. 2.

begin with the rectangular potential step of height U0 shown
by the solid line in Fig. 2. The Schrodinger equation for a
scalar particle in such a potential is

£- [u <*)- ) = 0, (22)

where the potential U(x) can be represented by the unit step
function 6:

u ( x ) = «06(a:>0). (23)

This function is equal to one under the condition stated in
the argument; otherwise it is zero. A solution of Eq. (22) can
be sought in the form

(24)

The coefficients R and r are determined from the condition
that the function and its derivative are continuous at the
potential jump:

1 + R = T, k(i- R) = k'i.

Hence the reflection amplitude is

" "• I-/ /1.2D __

k+k'

and the wave function inside the barrier is

¥ (x) = T exp (tk'x) — - exp (tk'x).

(25)

(26)

(27)

Let us determine the amplitudes r and t for one rectangular
barrier of width /, separated from the overall rectangular
step by the first infinitely narrow gap shown by the dashed
lines in Fig. 2. As before, we can seek these coefficients by
requiring that the wave function and its derivative be contin-
uous at both edges of the rectangular potential. We then find
a system of four equations with four unknowns; this system
is not difficult to solve, but the process is tedious. It is
simpler again to make use of recurrence relations.

We denote by ^ i" the wave which is incident on the
right edge of the rectangular barrier from within the barrier.
This wave consists of the wave which has been transmitted
through the left edge of the potential, r exp(//t 7), and the
waves which have been rereflected from both edges, etc.:

i|£=tei*'i-f eih'lReih'lR^- (28)

Here R is the amplitude for reflection from the edge of the
potential from within the barrier. This amplitude is defined
in precisely the same way as (26):

-.-R. (29)
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Using (29), we easily find from (28)

ijjf = [1 — Rz exp (2ik'l)}-t T exp (ik'l).

and t, of potential (33):

(30)

We then determine the amplitude for reflection from the
overall rectangular barrier

r--=

T= 1 I ff_- 2k'
"̂  ~" i' + fc

The transmission amplitude t is

f = -

— R*e2th'l)~l,
(31)

')-'• (32)

If the potential u0 is real and if k2 > u0, the amplitude R is
real, so that the phase of r differs from the phase of r by ± IT/
2. If k2 < M0, then k' is purely imaginary, and R takes the
form exp( — 2i%). Consequently, the phases r and t again
differ by + ir/2, as can be seen easily from (31) and (32).

We also note that in the limit /-»0 we find r-»0 and /-> 1
from (31) and (32). In other words, an infinitely narrow
barrier and also an infinitely narrow potential well have no
effect on the behavior of a particle if the height of the barrier
or the depth of the well is finite. This result proves that we
are indeed justified in introducing infinitely narrow gaps in a
potential, and in doing so we do not change the dynamics of a
particle.

When we set up an infinite number of rectangular bar-
riers of widths / side by side, separated by infinitely narrow
gaps, we eventually obtain a semi-infinite potential, which is
a simple potential step. The amplitude for reflection from it
is the same as in (26). If we instead set up N such barriers
side by side, we find that the amplitudes RN and TN calculat-
ed from (21) are the same as (31) and (32) after replace-
ment of q by k', since the Bloch wave vector q calculated in
accordance with (17) is exactly equal to k'.

6. EXAMPLE 2. KRONIG-PENNEY POTENTIAL

We now consider the potential shown in Fig. 3. We let
the height of the rectangular barrier go to infinity, U0-> oo,
and the width a go to zero, in such a way that the product
Uffl is a constant: Uga = 2p0. In this case we find the poten-
tial

U (x) = 2Po8 (x). (33)

The wave function of the Schrodinger equation with poten-
tial (33) is continuous at the point* = 0, while its derivative
has a discontinuity of 2p0 at this point. From these two con-
ditions we find the reflection and transmission amplitudes, r

i 1 1 i 1 1 i

FIG. 3.
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(34)

The Kronig-Penney potential is the sum of potentials
(33) separated from each other by a distance /. How do we
identify the period in this potential? For example, the period
could be chosen to be asymmetric,

u ( x ) = 2Pt6(x)Q(0^x<l),

by placing a ̂ -function at the beginning of the period. In this
case we have ? = r and f = r exp (2ikl). If the period is to be
symmetric, we must place the <5-function at its center:

u (x) = 2p00 (0< x< I) 6 (x — 1/2).

In this case we have

7 = 7 = r = r exp (ikl), 1 =1 = t = Texp (ikl). (35)

Substituting (35) into (11) and (17), we find

rt (x \~ D tflf Jp)^/' ~~ (x~~~ P Ctff X\^f Jcl I
•** ~~ /_ i _ .»_ _\1 /* i /„ — <*4. A — »1 19. * ' O ' r ~~~ .r 0 f\ '

(36a)

(37a)ctg s_ j (.,. tg a_

In the case of monatomic crystals we have p0 = u0l /2 and
u0 = 4irN^j, where #0 is the number of atoms per unit vol-
ume, and b is the coherence length of the scattering.

Expressions (36a) and (37a) have branch points at
x = xn = -irn/2 n = 0, 1,2,... . Near the point xn it is conven-
ient to introduce a function

a*

which is regular at xn and to rewrite expressions (36a) and
( 37a) in a simpler form. In the case an >0 we have

o _ ,jn»

[sinan

where kn = irn/l. In the case an <0 we have

R tgprtoifa 1116 P l IR n

(36b)

(37b)

(* I a, | +P/n)1/"-H* I l+(P«n//n)l1/!1 '

(36c)

(37c)fl = fcn_,+!-arcsm [sinan_,. (l + -fjr

It follows from (36b) that under the conditions p> 0 and
0 <xan <pfn there is a total reflection. Here

= arsh[sinan. (^--l)1'2]. (37d)

With increasing k inside the interval of total reflection, x
increases from — w/2 to 0. In the case/> < 0, total reflection
occurs atpfn <xan <0, as follows from (36c). The corre-
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sponding equations can be found from (36d) and (37d)
through the substitutions an -» \an \ and/» -»\p \. The width of
the region of total reflection is found from the equation xan

= pfn. Within uj 2 this width is

(38)

If we ignore corrections ~«o/2, we can approximate Eqs.
(36a) and (37a) near the case of Bragg reflection by

z > _ / ^n
1 L>

q « [*• T ( - *» -

(36e)

(37e)

where the sign inside the radical should be chosen in such a
way that in the case u0 > 0 the condition q < k always holds,
while at «0 < 0 the condition q > k always holds. The quanti-
ty q is determined in a single-valued way by the value of k,
not in a double-valued way as follows from many text books.

The region 0 < x 5 w/2 should be analyzed separately.
In this region expressions (36a) and (37b) are conveniently
written

_, (xt_ (37f)

The region of total reflection is determined by the relation
x2 </>/; we can then find the characteristic limiting energy
for ultracold neutrons:

Zlim — pf -*• ^llm *

From(37f) we find

(39)

cos-qi I t , P x1/2
s-|-=cosa;|l + -£-)

sin ql/2 = sin x { 1 -- £5-) .

We can thus write (36f) as

sin[(ft+j)J/2].'

(37g)

(36g)

This expression can be continued in a natural way to the
entire domain of k. In particular, inside the interval of Bragg
reflection we find from (36g) the approximate result

gn _ l
•-« -2u0)J

i/2

from which we immediately find expression (36e).
In approximation (36e) it is a straightforward matter

to calculate analytically the total intensity of Bragg reflec-
tion:

eo 00

j \R(E)\*dE= j dy, (40)

where a = 2u0fi
2/2m, m is the mass of the neutrons,

y = E — En, and En = tfk*/2m. A calculation can be car-
ried out easily not only for a real potential u0 but also for a
complex potential. We reproduce here only the final result:

>-«"«-£?-.
8Q| q> |-cos 2 | <p | — -j

X sin2 | tf | In ctg ̂  .

(41)

(42)

7. RELATION BETWEEN THE PHASES OF THE AMPLITUDES
/•AND/

We have seen in several places that the phase r differs
from the phase t by ± w/2. We can now prove a general
theorem.

Theorem. The following relation holds for an arbitrary
real potential (We are talking here about a symmetric poten-
tial; the generalization to an asymmetric potential is ob-
vious):

(43)

The validity of this relation was proved in Ref. 8. We will
prove this theorem in a slightly different way, by means of
purely physical arguments. We appeal exclusively to the uni-
tarity condition, which states that in the case of a purely real
potential there should be neither a creation nor disappear-
ance of particles.

Let us carry out a gedanken experiment, as illustrated
in Fig. 4. Partially reflecting mirrors A and B are represented
by the same potential, while mirrors M l and M2 reflect total-
ly. In other words, their reflection amplitude is — I. Two
beams interfere at mirror B, and the result of the interference
affects the count rates at detectors Z), and D2. The phase on
one of the paths can be varied in an arbitrary way. As this
phase is varied, the count rate of the detectors will change,
but the total number of particles detected will always be
equal to the number of incident particles. If the intensity of
the incident particles is one, the total count rate is also one.
Let us assume that the amplitude of the wave incident on
mirror ,4 is I. The amplitude of the wave which propagates
along the upper path in the direction of detector Dl is then
re^t, while that which propagates along the lower path is tr.
(We are considering only the phase difference on the two
paths; we are ignoring the common phase, which is irrele-
vant. ) Analogously, waves which have propagated along the
upper and lower paths, with respective amplitudes te^t and
rr, propagate in the direction of D2 after mirror B. the total
intensity detected by the two detectors is

+ tr \ 2 + + r2 | » = 1. (44)

FIG. 4.
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We open brackets. We introduce r = |
t = \t |exp(/0,) and note that we have |r|2 + \t \2 = 1. We
then find

X [cos q> + cos (<p + 28, — 28r)l = 1. (45)

Since the phase cp can be varied in an arbitrary way, and the
product \t\\r is generally not zero, we find
2(0, — &r) = (2n + 1 )TT from the last equality. Q.E.D. (see
also Refs. 9 and 10).

In particular, it follows from this theorem that if we
introduce the notation R = exp( — a) for a semi-infinite pe-
riodic potential, the quantities a and q are either both real or
both imaginary. That this is true can be proved by using the
relation

2 + | t\ 2 = 1. (46)

Replacing r and t by R N and TN from ( 20 ) and ( 2 1 ) , we find

If the resulting quantity is to have a unit modulus, either q
and R are both real, or q and In R are imaginary.

The later assertion can be illustrated in an interesting
way in the case of a Kronig-Penney potential. This can be
done conveniently without appealing to expressions (36)
and (37). We write the infinite periodic potential

(48)

We can seek a solution of the Schrodinger equation with this
potential in the form

^(ft,*) 8 (*€/„), (49)

where the interval /„ is the interval between two 6-functions:

Y' *» + T) ' (50)

in which the wave function $„ consists of two free plane
waves,

if>n (k, x) = exp [ik (x — xn)]

+ R (k) exp [ - ik (x - *„)]. (51)

The reflection amplitude R(k) is given by expression (36),
which is unimportant for the matter at hand. The wave func-
tions in two neighboring intervals differ by only a phase
exp(iql), which must not disrupt the continuity of the wave
function at the point xn + 1/2. It follows from this contin-
uity condition that we have

or

e*«'/2 = (eiht + R) (1 -f

(52)

(53)

It follows immediately that q is real when R is real, and we
have q = irn + /A, where A is real in the case R = exp(ix).

8. EXAMPLE 3. DIATOMIC CRYSTAL

We can use the results of the preceeding section to study
more complicated periodic structures. For example, we con-
sider a diatomic crystal. It is a simple matter to generalize
the analysis of a diatomic crystal to more-complicated crys-
tals. Polyatomic crystals are characterized by a structure
factor. Just how this structure factor is manifested in the
reflection amplitude and the Bloch vector can be found easi-
ly in the diatomic model.

We consider a periodic potential in which one period
contains two reflecting planes:

u = Q(0^x^l) [2Pld (x — I,) + 2p26 (x — It — 12)].

(54)

A potential of this sort is explicitly asymmetric. The ampli-
tudes f, Ir, and t, calculated by a recurrence approach, are

r = exp (2ikli) {r, + rzt\ exp (2iklz) [1 — r,r2 exp (2i

(47) r= exp (2ikl3) {r2 + r44tj exp (2ikl2) (i — r4r2 exp (2i

(55a)

(55b)

t = = = exp ( ikl) — rfz exp
(55c)

Substituting r, —p}/(ik —pt ) and t} — ik/(ik —pj); using
the relation t] — r? = (ik +PJ )/(ik —p} ); and introducing
P =P\ +P2> A =/>2 -Pi zndg=pj>2/k, we find

r = — i [p cos kl% + (2g + iA) sin klz)

X exp [ik (2^ + Z2)](?-S (56a)
•«-
r = — i [p cos kl2 + (2g — iA) sin klz]

X exp [tk (21, + lt)] Q-\ (56b)

t = k exp (ikl) Q-1, Q = k + ip 4- 2ig sin fcZ2 exp (ife/2).
(56c)

From (56a) and (56b) we find

(57a)

r = r exp

TI = k (l^ — 13) + -arcsin (A sin kl2 -A -1),

r = — iA exp (ikl) Q-1,

A = (F* + 2pg sin 2A;ZS + 4g2 sin2 klz)V* w F, (57b)

F = [F (2k) F (— 2fc)]V, F (x) + p2 cos xZ2. (57c)

The sign of the root in (57b) and (57c) should be chosen
such that at small values k — Q the limiting relation
F=F(0) =p holds for either sign of p. The ratio ^(x)
= F(x)/p is the structure factor of a cell (of a period).

Analogously, (57c) is determined by the geometric mean
value y = [3r(2k)3r( - 2k) ] 1/2.

Expressions (56b) and (57b) can alternatively be writ-
ten

r = — i (r) exp (iq>), t = \ t \ exp (i<p), cp = kl — x,
(58a)

<r> = sign F \ r \ = A (A2 + A;2)"1/2 w F (F2 + k*)-1/*,
(58b)
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\t\=k (A2 + A2)-1/* « A; (F2 + /c2r1/z, (58c)
sin x = (p + g sin 2W,) (42 + A2)-1/2 » p tf?2 + A:2)-1/2,

(58d)
cos x = (A: — 2g sin2 A;Z2) (A* + ft2)'1/1 « A: (F2 + A:2)-l/2.

(58e)

Substituting (58a) into (1 la) and (17), we find

„

c::pexp

(sinq>+<r»V*+(sin<p-<r»V« '

' ~C
|_cos<p)i/S-

It follows from (59a) that total reflection occurs in the re-
gion \<p — irn\<\r\. Near ipzzirn, n^O, expression (59a)
can be written approximately as

ff _ / ^n
*

(59b)

where kn = irn/l, and u0 = 2/>/. We thus see that total reflec-
tion occurs in the case \k2 — k I — w0| < \u<r^\,n^0. Near
<pzzQ expression (59a) takes the form

(59c)

Approximate values of q near ysurn can be found from
expression (60a), from which we find, in particular

cos ql = cos <p . \t I'1 » cos <p-(l + /^Ar2)1/2, (60b)
sin gi « (sin2 <p — cos2 <j> • F1**)1/1, (60c)

so that under the condition <px<pn = irn we have

(60d)

In the case f=;0 we have the simpler expression
q^(k2-uoy

/2.
It follows from (57a) that when/*, and/>2 have imagi-

nary parts the intensities of the reflection from the potential
from the right and from the left differ by an amount

6/=2/0 | fl |* (61)

where F is given by expression (57c), and /0 is the incident
intensity. In principle, this difference makes it possible to
solve the phase problem in deciphering of diffraction pat-
terns.

Reflection from a crystal of finite thickness should be
calculated from expression (21a), which we rewrite as

(62)

(63)

X[l + fl2 (1 — e»««w) (1 —

Using expression (S9b), we find

1 — 4 (sin2 <p— | r \ *)V* '

Near the Bragg reflection we assume ql = irn + a. We con-
sider a thin crystal, for which the condition 2Na < 1 holds.
In this case we can use the expression

« N (1 — e1") (1 + e*«')
_ cos2 q>)V»jV [() t | + cos (p)1/2

— l(\t | — cos

_4i

(64)
where the last equation was found by substituting in (60a).
Substituting (63) and (64) into (62) for the case of a thin
crystal, we find

_ W2 _Lr !.* (UI2-C082(P)
| t |2 (sin2 9— | r |2) •. (65)

Since in the absence of absorption the relation \t \2 + \r\2 = 1
holds, we have \t \2 — cos2 <p = sin2 <p — \r\2. Consequently,
the intensity of the reflection from a thin crystal is given by

= \ r t -z (66)

where L = Nl.
This limiting expression for a thin crystal is the same as

that found by perturbation theory, i.e., in a kinematic theory
of diffraction.

9. LAUE DIFFRACTION

Laue diffraction can also be analyzed in the one-dimen-
sional approximation. Essentially the only place where we
have to go beyond one dimension is in satisfying the bound-
ary conditions at the entrance and exit surfaces. We consider
the potential

00

u = 2/>0e(0<z<a) 2 «(*-*»-"!•). *» = »/. (67)
n«=— oo

This potential represents a crystal which has an infinite di-
mension along the x axis and which has crystal planes per-
pendicular to x and parallel to the z axis. The width of the
crystal along the z axis is a. The entrance surface can be
stopped down by a slit of finite width. For simplicity we
assume that this slit is wide enough that we can ignore dif-
fraction effects associated with the finite dimensions of the
slit.

We assume that a plane wave exp(/kr) with wave- vec-
tor components k^ and ki along the x and z axes, respective-
ly, is incident from the region z<0. Waves are excited in the
crystal; these waves are normal modes for the given medium,
just as only normal modes are excited in a waveguide. In our
case, these normal modes are Bloch waves

(&* (*€/»), (68)

where the functions ipn(kxjc) within intervals (50) are giv-
en by expression (51), where k should be replaced by kx. We
note that kx and kI differ from k\\ and kL, but we have

*8 + ft5=*|+*! = *«. . (69)

The incident plane wave must convert in a continuous way
into a set of waves (68) at the entrance surface. It follows
that continuity must prevail strictly at least one point inside
the intervals /„. Since many intervals /„ can fit in a suffi-
ciently wide slit, the wave vector q must either be the same as
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H or differ from k\\ only by 2-irn/l. In other words, we must
have

, .
= *« H

2nn
(70)

Knowing the Block vector q, we can solve expression (37)
for k; i.e., we can find kx. We can then use (69) to find kz

= k2 — k I. The number of Bloch waves in the crystal is
limited by the condition k \ > 0. To determine A:, we use ap-
proximation (37e). Under the conditions u0>0 and q<kn,
we find from this approximation

q < kx = {*; + u, [1 - (1 + y2)1"]}'/2 < ft,, (71a)

where y= (k2
n — q2)/u0. Under the condition q>kn we

find

(71b)
Expressions ( 7 1 ) for kx also holds at «0 < 0; the only change
is that the signs of the inequalities in (71 ) are reversed.

From (71) and (69) we find

ft, = {ftl - no [l - (1 -r y2)1/2 + y]}'/2,
*z = {*! - "o [1

(72a)
(72b)

If A: is not too large, only two Bloch waves can appear in the
crystal. The wave function inside the crystal can then be
written

= vk»* S (*,„ (x 6 /„)

(73)
If fcu < kt, then we have 2/c, — k^ > klt so that we can deter-
mine^, and/c2l from (71a) and (72a), while we can deter-
mine kx2 and &z2 from (71b) and (72b). Furthermore, we
have kxl ~k\\ and kx2 x2k1 — k\\ . The continuity condition
at the entrance surface can be satisfied approximately if the
following relations hold:

! + RtAt = 1, A2 + R^ = 0. (74)

The reflection amplitudes R, (kxl) can be conveniently writ-
ten in the form in (36e) near the case of Bragg reflection.
Replacing k by expression (71) in those amplitudes, we find,
respectively,

l
Ri (75a)

(75b)

Substituting (75) into (74), and solving equations (74) for
A,, we find

A _ [y + (i + y*m (?6a)

(76b)
-1

2 (l + y»)V»

We have thus derived all the formulas pertinent to the dy-
namic theory of diffraction.

It follows, in particular, from this analysis that if the
crystal is sufficiently thick two Bloch waves will propagate
rather far apart at the exit surface, and at the exit surface one
will observe what appears to be two bright spots, with widths
determined by the width of the entrance slit. Each of these
spots will give the direct and diffracted waves. If the two
waves from the two spots are brought together, as is done in a
two-crystal interferometer,11 one can observe an interfer-
ence pattern. If k is large, then several Bloch waves may
appear in the crystal. If the crystal is sufficiently thick, they
may produce several bright spots at the exit surface, and
each of these spots will give the entire set of diffracted waves.
If a slit is used to single out one of the spots, it becomes
possible to separate the various orders of diffraction without
resorting to the time-of-flight method.

In the case of a thin crystal, the different Bloch waves
do not have room to move far apart; the bright spots at the
exit surface overlap and interfere, giving rise to the well-
known pattern of pendulum oscillations of the intensity. In
the case of multiwave diffraction, the pendulum oscillations
occur at different frequencies, and these frequencies com-
bine with each other.

10. CONCLUSION

A simple recurrence approach to the periodic potential
has proved very informative and has provided a fresh look at
many established concepts. We should state that this meth-
od is not limited to scalar particles and a scalar potential.
Equations (6) and (15) are written in such a way that they
can be generalized directly to the nonscalar and multidimen-
sional case, in which case r, t, and q will all be matrices.
Unfortunately, in that case I have not been able to find an
elegant general solution for the quadratic matrix equation
X2+AX + B = Q to which Eqs. (6) and (15) lead after
some straightforward manipulations. In the case of symmet-
ric or commuting matrices A and B, it is of course a trivial
matter to solve this equation, but there is the hope that either
the physical problems of interest will lead to precisely this
simple case or it will be found possible to solve this equation
in some way or other.
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