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This article reviews recent theoretical and experimental investigations in the development of
femtosecond lasers based on optical parametric oscillators. Phenomena responsible for
producing tunable high-power femtosecond pulses in media with quadratic susceptibility
(parametric chirp, chirp reversal in real time, parametric self-compression of pulses with
strong energy exchange) are discussed.
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1. INTRODUCTION

The development of sources of high-power tunable fem-
tosecond light pulses is a problem of great importance in
laser technology. Its solution opens up entirely new possibi-
lities in the physics of fast processes. At the present time the
techniques of generating extremely short light pulses (a few
femtoseconds at the visible wavelengths) are based mostly
on the formation of phase-modulated pulses in media with
cubic nonlinearity, for instance in optical fibers,1 and the
subsequent compression of these pulses in devices with nega-
tive group velocity dispersion or by self-compression in an
optical fiber.2"4 Compressors based on optical fibers make it
possible to compress pulses to 8 fs.5 At the same time, mode-
locked dye lasers have recently been developed that produce
30 fs pulses.6 However, the energy in the pulses produced by
these systems is usually small, not exceeding 10~8-10~9J,
so that it is necessary to amplify these pulses, a task that is
beset with great difficulties.7

We would prefer, in this review, to refer our readers to
publications1"10 devoted to the methods mentioned above,
and concentrate on novel methods of controlling the phase
of light waves, methods based on parametric interaction of
the light waves. The most recent work has shown that these
methods are very promising for the purpose of generating
high-power femtosecond tunable pulses.

Substantial progress has been made over the past ten
years in the development of picosecond and femtosecond
radiation sources based on parametric amplification and

generation of light waves in quadratically nonlinear media,
the so-called optical parametric oscillators. Optical parame-
tric oscillators combine a broad tuning range (from the ul-
traviolet to the infrared), a broad frequency band, and a high
gain, with various possibilities of changing the amplitude
and phase characteristics of the pulses.

The physical principles of optical parametric oscillators
and possible schemes for tuning were outlined in 1962 by
Akhmanov and Khokhlov11 and also by Kroll12 and Kings-
ton.13 Optical parametric oscillators in the nanosecond
pulse-length range were developed for the first time in the
work reported in Ref. 14. An important stage in the develop-
ment of parametric generators of picosecond and femtose-
cond pulses was the appearance of theoretical investiga-
tions15'16 which introduced the idea of parametric
compression of light pulses under conditions of strong ener-
gy exchange and group velocity mismatch. Subsequently,
parametric generation of light pulses in the picosecond17'18

range, and somewhat later in the femtosecond19'20 pulse-
length range was attained. We stress that the pulse compres-
sion observed in these studies was the result of amplitude
modulation and group velocity mismatch of the interacting
light pulses. In accord with the theory, the maximum degree
of compression did not exceed one order of magnitude, and
the pulse lengths varied from 300 to 900 fs.19'20

In recent investigations21"23 it was shown that substan-
tial progress in the femtosecond pulse length range was pos-
sible by the use of three-wave parametric interactions of
phase-modulated light pulses. The results of these investiga-
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tions and the ideas formulated in them make it possible to
approach in a new way the problem of fast control of the
phase of the light waves. To the present time studies have
been made of the effect of phase modulation of the pumping
light pulses on parametric amplification,24'25 and processes
such as conversion of quadra tically phase modulated pump-
ing (linear frequency variation—the frequency "chirp")21

into phase modulation of the generated pulses,21'22 parame-
tric generation of broad-band pulses (a continuum),26"29

sign reversal of the frequency modulation, "chirp reversal"
in parametric amplifiers,23 parametric pulse compression
under conditions of second order dispersion, 3&~32 soliton for-
mation,3 li33-34 and others.

The results that have been obtained leave no doubt as to
the high degree of promise inherent in this direction of inves-
tigation. The balance of this review is devoted to a specific
discussion of these results.

2. PARAMETRIC AMPLIFICATION IN A PHASE-MODULATED
PUMPING FIELD

Let us examine how new features arise in parametric
generation of light waves in a phase-modulated pumping
field. The equations that describe the three-photon interac-
tion of plane light waves in a nonlinear medium have the
following form in the first approximation of dispersion the-
ory24:

(1)

where A} (j= 1,2,3) are the complex wave amplitudes,

=J_ i_ = j L.
21 u2 «i ' 31 «s "i ' '

tij are the group velocities of the waves, and cr1 and <72 are the
coupling constants. A coordinate system is chosen in which
the first pulse is stationary. We note that Eqs. (1) are written
in the approximation of a specified pumping field. The solu-
tion of (1) in general form involves the integrals of the Rie-
mann function (see Ref. 25) and its analysis is difficult.

We shall analyze (1) for the case of Gaussian pump
pulses with quadratic phase modulation A3 = a30

exp[ ( — (t2/T\) ( 1 + iy3) ] . Let us introduce the dimen-
sionless time 77 = t/r3, the group interaction lengths L21

= r3/| v21 , and L3i = r3/| v311, and change to the new func-
tions

= 42 exp

(2)
wherep2 = 1 — pl a.ndpt = v32/v12. We have as a result

(3)

dflg
dz

We shall assume that l^L3l and y3l
 2/(L31L32) < 1, where /

is the length of the nonlinear medium. In this approximation
the mismatches v31 and v32 are important only when the
phase modulation of the pumping is taken into account. We
thus obtain

, + = - *Vl, (T,) (4)

The system of equations (4) are to be solved with the bound-
ary conditions at z = 0: B^ (77) =AJO (17) exp( — ip-tfff).
The solution of Eqs. (4) is known (see Ref. 35). We shall
assume that the amplification is large, />£n) where Lnl

= l/[(aia2)'/2a3o] and Z,21>/. We note that the value of
L21 is calculated for a pump pulse length r3. Recovering the
functions A , andA2, we have

\ — oca:)2]

(5)

where a = TC /T3, where TC = (lLnl) ' \v
Let us note some regularities that can be inferred from

(5). In the absence of phase modulation of the pumping, the
waves at the output of the optical parametric oscillator are
phase-conjugate. We shall discuss the fundamental impor-
tance of this fact later. Here we point out that the phase
conjugation is maintained with accuracy to quantities of the
order y^v2 also for pumping with phase-modulated pulses.
The quantity rc determines the parametric amplification
bandwidth A<ua for monochromatic pumping. In particular,
setting 73 = 0, Aw~8(t), and A2Q = 0, we have
/4,~exp( — ?2/r2) and the amplification bandwidth, A<aa

= 4~y/ln2/|v21 l/(/Lnl), which is analogous to the results
of Ref. 35. If the fact that the amplification bandwidth is
bounded is not relevant (a-»0), then in the caseA20 = 0 it
follows from (5) that AI = G4IO(77)/2) exp[(//£)„,
(1 — T?2) ]. Phase modulation of the pumping has no effect
whatever on the signal (copropagating) wave. Moreover, it
is noteworthy that phase modulation of the pumping is en-
tirely superimposed on the idler (outgoing) wave, a result
that agrees with the conclusions of Ref. 24. If it is of basic
importance that the amplification band is bounded (a^0),
then the effect of phase modulation of the pumping on wave
generation in the optical parametric oscillator is more com-
plicated. Using the Fourier transformation

deo,

we have

x j SIO(o>)exp[Hot-|-(«o+^)2]dco. (6)
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FIG. 1. Frequency shift of the amplification band of the signal waved), and
idler wave o>2 in an optical parametric oscillator pumped by a pulse with
linear chirp.

phase modulation). In this case the quantities A ,0 and A20

[expressions (5) ] are the amplitudes of wide-band random
processes ( A*o> A«a ) resulting from quantum noise in the
parametric oscillator medium. Without loss of generality at
high amplification />I,nl , we may consider these random
processes as being steady-state and Gaussian, with a correla-
tion time Tc^rc. It is of interest to calculate the correlation
function B# (T) of the quantity

-X> d*.

It can be seen that amplification with pumping by phase-
modulated pulses is equivalent to amplification with a time
shift in the amplification frequency band (Fig. 1). We note
that the physically similar effect of a signal of changing fre-
quency on a resonant system has been studied previously
(e.g., Ref. 36) . The central frequency in the band contour of
the signal wave amplification varies as col = <alo — 2p1y3t/
r\ . Taking into account that co3 = a>30 — 2y3t /i\ , we obtain,
for the frequency deviation Aodl = /71A«3 and A<od2

= />2A<y3. If | PI <^ 1 and | p2 < 1, then the deviation of the
central frequency of the amplification band will substantial-
ly exceed the frequency deviation of the pump pulse. The
specific values of/?, and/>2 are determined by the dispersion
properties of the nonlinear medium. It is easy to estimate the
value of/J, for an interaction of the oo-e type near the degen-
erate mode. In this case, p{^F/(l — 2x), where
F = v32/a>3k " and the degeneracy parameter is PC = ct)2/a>3.
The values of F for a number of crystals and two pumping
wavelengths are given in Table I. The nature of the effect of
pumping on the amplification due to phase modulation is to
a large extent governed by the ratio of the deviation A&>dl to
the amplification band width A<ya . Let us estimate this quan-
tity, A<odl/A£ya.

We have A&>dl ~pi¥3/T3 and Afi»a~r<r1, from which
follows A<ydl/A«a =7/3 (/£„,)' /2/L32. Within the limits
noted above, the shift of the frequency band is less than its
width, Awdl <A<ya, and so the phase modulation of the
pumping will have little effect on the amplification of nar-
row-band signals, for which Aa> •< A«a . In the case of ampli-
fication of wide-band signals, A<y > A<ua , the role of phase
modulation of the pumping may prove to be significant. It
would appear that the condition A<wdl ^ A«a can be realized
if there are no limitations imposed by the conditions />Z,31

Let us examine the characteristics of wave excitation in
an optical parametric oscillator from the noise level for the
case of pumping by pulses with a linear chirp (i.e., quadratic

TABLE I.

Crystal

KDP
CDA
LiNb03
LiI03

0.53 pm

0,16
0.39
0.54
0.56

l.06ftm

0.20
-0,21

The characteristic scale of the variation of A 10 is of order Tc .
For/ — Tcxz;Tc wehaveexp[t/7,y3(/ — rcjc)2/rf ] ;=! and

oo

<D(i)=-^=- f A10 (t-rcx)e-*'Ax.
Y n J

Thus, the correlation function B^(r) = <b(t)$*(t + r) is
given by the expression

oo

) = 4- jjexp(-*?-*;)

(7)

According to Ref. 35,

where 5 ,Q is the noise intensity spectrum for positive fre-
quencies. As a result we have

(8)

Taking into account the condition Tc ̂ rc we have

-vV). (9)

Therefore, the amplitudes of the generated waves at the out-
put of the optical parametric oscillator can be written in the
form

(10)

where A^ (?) is the stationary Gaussian noise, with the cor-
relation function

It follows from ( 10) that the waves generated at the output
of the optical parametric oscillator are noise pulses. Their
amplitudes are equal to the product of two amplitudes: one,
corresponding to the regular signal, which is determined by
the envelope and the chirp of the pump pulse, and the other,
corresponding to a random signal, the correlation time of
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which is determined by the parametric amplification fre-
quency band and does not depend on the temporal properties
of the pumping noise. As can be seen, the quadratic phase
modulation of the pulses that are produced can substantially
exceed that of the pump pulses. In this connection the quan-
tity pl (as well as^2) can be called the quadratic phase mod-
ulation (linear chirp) gain. It is evident that in this case one
can attain considerably more effective dispersive compres-
sion of the optical parametric oscillator pulses and in this
way form pulses substantially shorter than the pump pulses.

3. PARAMETRIC AMPLIFICATION OF PHASE-MODULATED
PULSES AND CHIRP REVERSAL IN REAL TIME

A unique feature of parametric light amplifiers is the
possibility of effectively amplifying phase-modulated pulses.
Let us specify the conditions for which compression of the
amplified signal spectrum does not occur. This is important
from the standpoint of forming femtosecond pulses. We
shall assume that the pumping pulses are transform-limited.
Then setting y3 = 0 and A20 = 0 in expressions (5), we ob-
tain

.£*.
°i

(11)

It is seen, then, that two powerful phase-conjugate waves can
be formed at the output of the parametric amplifier. In this
approximation the mismatch of the group velocities of the
waves has no effect whatever on the parametric gain. The
mismatch v21 determines the amplification frequency band.
In particular, this approximation is valid near the degener-
ate mode (an interaction of the type e-oo). We note that if
the mismatch v31 is of fundamental importance, then some
decrease or saturation of the gain will occur.

The fact that the phase modulation of the idler pulse is
reversed in time relative to the phase modulation of the sig-
nal pulse should be considered to be the most important con-
clusion that follows from (11). Considering the high speed
of response of second order electronic nonlinearities and the
large spectral width of the parametric amplification band,
which can be as high as several thousand cm ~' (Ref . 29), we
can say that the parametric amplifier can produce phase con-
jugation of extremely short light pulses. We further assume
that upon entering the medium the pulse amplitude has the
form Alo =alo exp[ — (t2/r\)(\ +iy\)]- In this case
A^t) describes a phase-modulated Gaussian pulse:

A, (i)=^-exp [-^-.--^-.

-1/2
(12)

where

If the pump pulse is sufficiently long (the approximation of
monochromatic pumping, r0-»0), then T" ZZT[ and y" zz Y\ •
Hence the nonmonochromaticity is unimportant if (r[ /r0)

2

< 1. For the conditions (rc/r,)2( 1 + y2)«1, T{ ~r,, and
Y\~Yi< tne pulse is amplified without amplitude or phase
distortion. For y\ > 1 the condition obtained can be rewrit-
ten in the form

0.3Ti
Vi (13)

As a general statement the amplification takes place without
distortion if the spectral width of the signal is less than the
amplifier bandwidth.

If condition(13) is not satisfied, then as the quantity
TI/YI decreases, first there will be phase distortion and then
amplitude distortion of the amplified pulse. It follows from
(12) that in such a case the phase modulation of the pulse
always decreases. It is easy to show that there is on the whole
spectral filtering of the amplified pulse. In the limit
(Tcy/r,)2 > 1, with r"=;rc, the duration of the pulse that is
produced is determined entirely by the frequency band of the
amplifier.

What sort of features are produced in the amplification
of phase-modulated pulses in the field of the pump pulse? Let
us assume that condition (13) is satisfied. In this case T"
= T1/[l + (r2/r2)]1/2 and y" =?V[1 + (^/r2)]. As

can be seen, in the amplification of the pulse, both its dura-
tion and chirp decrease. The spectrum of the pulse can either
expand or contract. Compression does not occur if Y\<TI/
TO. We note that in the amplification of a transform-limited
pulse (yl = 0) in the field of a pump pulse, the duration of
the former pulse always decreases and its spectrum broad-
ens. An experimental investigation of parametric amplifica-
tion of phase-modulated pulses has been reported in Ref. 23.

It is of interest to evaluate the role of dispersion spread-
ing during parametric amplification of broad-band light
pulses. When a phase-modulated Gaussian pulse At(t)
= fli0exp [ — (t Vr2) (1 + /y,) ] propagates in a dispersive

medium it spreads out. At a distance z its amplitude is given
by the expression37

where ^ = 1 — i(z/Ldl ) ( 1 + iyt ) . It can be seen that the
pulse length and the phase modulation parameter are given
by the expressions

\ 2 z« -11/2rf. , z \ 2 z«=TI| ( i + Y i - 7 — ) +77-L\ L,A, I La.

Let us consider the case y\ < 1 • If Y\Z/LA\ 41 we have Y\~Y\
and T( SST-J, and the dispersion spreading of the pulse is un-
important. We note that for Y\ = 0, this conditions takes the
form z<Ldi. It is easy to show that for a pulse with a given
spectral width the dispersion spreading is less pronounced
for phase-modulated pulses. If the length of a spectrally
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bounded pulse is r, then its dispersion spreading is unimpor-
tant for z 4 T\ /21 k „ |. In the case of a phase-modulated pulse
of length TO and a phase modulation parameter Y\ = TO/TI>
the spreading is negligible at distances z<Tj/(2|fc^|y,)
= r?7,/(2|/t^|). It can be seen that when there is phase

modulation, this distance is increased by a factor y\- Let us
make an estimate. In a KDP crystal, for a pulse of length
T! = 10 fs and A, = 1/um, wefindZ,di ss0.4 cm. Ifr0 = 1 ps,
then YI = 100 and Ldl s;40 cm. As a general conclusion we
can state that in amplifying femtosecond pulses with a given
spectral width, amplification of phase-modulated pulses is
preferable. In addition this tactic permits an increase in the
amplitude saturation threshold.

4. PULSE SELF-COMPRESSION WITH STRONG ENERGY
EXCHANGE

To a certain degree, pulse self-compression in quadrati-
cally nonlinear media is analogous to pulse self-compression
that takes place in optical fibers and is a result of the simulta-
neous effect of cubic nonlinearity and of group velocity dis-
persion. The former effect may be understood in terms of
nonlinear dispersion.38 Under conditions of strong energy
exchange between the waves there is substantial broadening
of the spectrum of the interacting pulses, and their disper-
sion spreading is compensated by a compression resulting
from the nonlinear dispersion. A series of papers have been
devoted to these problems.30"32 To achieve experimentally
the compression of femtosecond pulses, optimization of this
process with allowance for the actual parameters of the non-
linear medium is extremely important. It is therefore advis-
able to examine the results of an analysis of parametric com-
pression under conditions of strong energy exchange and the
dependence of the compression on the ratio of the dispersion
spreading lengths of the interacting pulses. To this end we
present the results of a numerical solution of a system of
truncated equations which describe the three-wave interac-
tion of light packets in nonlinear media, taking into account
the dispersion spreading. We shall assume that the amplifi-
cation takes place in the degenerate mode under conditions
of group synchronism. The dispersion spreading is deter-
mined by the quantities k ,̂ ( j = 1,3), which may be either
positive or negative.39 The number of parameters that enter
into the problem can be reduced. In place of the dispersion
spreading lengths Ldl and Ld2 it is advantageous to intro-
duce the quantities Z,dl/Ld3 and LdlLA3. In this case the
regularities of the pulse compression are determined mainly
by the ratio Ldl /Ld} and the sign of the product k £, k £3. A
variation of LdlLd3 is equivalent to a variation in the cou-
pling coefficient of the waves or in the initial pumping inten-
sity. Such variations will mainly produce quantitative
changes, but the overall behavior of the compression is unal-
tered. In order to observe compression the value of LdlLd3

must exceed a certain minimum which is determined by the
conditions at the input to the nonlinear medium. Figure 2
shows the intensities at the peaks of the signal (curves 1) and
pump (curves 2) pulses at the point of their maximum com-
pression as a function of the ratio Ldl/£,d3 for two cases:
£ Zi k «3 > 0 (the solid curves) and k '^k £3 < 0 (the broken

10~2 10'f 10 La,/La

FIG. 2. Intensity at the peak of the signal ( 1 ) and pump (2) pulses at the
point of maximum compression as a function of the ratio Ldl/£d2 for
k'^k'^>Q (solid curves, Ld,id3 = 10000; dot-dash curves, LdlLd,
= 15000) andfc^/t^ <0 (dashed curves, LdlLd3 = 10000).

curves). The intensities and durations of the interacting
pulses are normalized to the initial intensity and duration of
the pump pulse. It can be seen that for Ldl <^Ld3 compres-
sion of the pump pulse occurs to a greater degree than does
that of the signal pulse. Profiles of the envelopes for Ldl /LdJ

— 0.1 are shown in Fig. 3a. The envelopes of the initial
pump pulses are shown by the dashed lines. In this case dis-
persion spreading of the pump pulse is insignificant and
hence the picture of the mutual compression does not de-
pend on the sign of k ^, k £3. As the value of Ldl /Ld} in-
creases the behavior of the mutual compression begins to
depend strongly on the sign of k £t k £3.

In the case k ̂  k £3 > 0, for Ldl /LM S 1, the intensity of
the compressed signal pulse increases and that of the pump
pulse falls off. As a result, the intensity of the signal pulse
becomes larger than that of the pump pulse. If Z,dl /Ld3, > 1,
then only the signal pulse is compressed. In this case the
intensity of the pump pulse does not exceed the initial inten-
sity, and the pulse itself splits up into several peaks whose
widths may be substantially less than the initial width (Fig.
3b, Ldl /Ld3 = 10). For the rest of this discussion we shall
assume that pulse compression occurs if the pulse intensity
exceeds the initial intensity of the pump pulse. In this con-
nection, in Figs. 2 and 4 the pulse intensities and widths are
shown only for the case of pulse compression.

The conditions for pulse compression for the case
^ai^«3 <0 are more stringent. When Ldl /Ld3 >0.04 the
compressed pulses decrease in intensity. If Ldl and Ld3 are
comparable, the phenomenon of parametric decompression
of the interacting pulses occurs.31 This condition also pro-
duces a broad dip in the curve describing the dependence of
the intensity of the compressed signal pulse on Ldl /Z,d3 (see
Fig. 2). Note that in order to observe decompression of the
interacting pulses it is still not sufficient that the condition
k a\ k u3 < 0 hold, as was suggested in Ref. 31. The profiles of
the pulse envelopes in the case of decompression are shown
in Fig. 3c (Ldl/Z,d3 =2.5). The widths of the envelopes of
the interacting pulses are increased and their intensities are
substantially reduced. The pulses are split into separate
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FIG. 3. Envelope profiles for signal (1) and pump (2) pulses
k'^ >Ofor£dl/Ld3 =0.1 M,Lal/Ld3 = 10(b),and

j <OforLdl/Ld3 =2.5 (c) and£dl/Z.d3 =40 (d).

peaks. As Ldl /Ld3 is further increased to values > 2, com-
pression is again possible, but only for the signal pulse. Typi-
cal pulse profiles are shown in Fig. 2d. If Ldl /Ld3 > 1, then
the spreading of the signal pulse becomes unimportant and
the compression of the pulse does not depend on the sign of
L- " t- "
K <al K <u3 •

Figure 4 shows the length of the signal pulse (curves 1)
and the pumping pulse (curves 2) at the point of maximum
compression as a function of the ratio Ldl /Ld3 for k £, k £3

0,5

0.1
102 La,/La

FIG. 4. Length of the signal (1) and pump (2) pulses at the point of maxi-
mum compression as a function of the ratio Ldl /La} for k Z, k '^ > 0 (solid
curves) andAr£,fc£3 <0 (dashedcurves).

> 0 (the solid curves) and k £, k £3 < 0 (the dashed curves).
On the whole, the behavior of the curves in Fig. 4 is closely
related to that of the curves in Fig. 2. The minimum lengths
of the compressed pulses are obtained in the region of maxi-
mum intensity. It can be seen that the lengths of the interact-
ing pulses as a result of compression can be an order of mag-
nitude smaller than the length of the initial pump pulse.

In conclusion we note that conditions for pulse com-
pression via their three-wave interaction can be obtained for
a wide range of dispersion spreading lengths and can be ex-
ploited for substantial decrease in the lengths and increase in
the intensities of the pulses.

5. EXPERIMENTAL RESULTS

Experiments on parametric conversion of phase-modu-
lated pumping, parametric amplification of phase-modula-

FIG. 5. Block diagram of the apparatus for studying parametric chirp and
compression of optical parametric oscillator pulses. 1) laser, 2) second
harmonic generator, 3) optical parametric oscillator 4) compressor, 5)
pulse length measuring device, 6) dynamic interferometer.
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TABLE II.

a) Laser b) Optical parametric oscillator

^m

1.069
0,534

Ep,3

50

*.,,mJ

3
1

r, ps

12
10

E,,mJ

0.3

.£„„,, mJ

0.05

r,ps

3.5

ted pulses, chirp reversal in real time, and dispersive pulse
compression have been carried out with various kinds of la-
ser pumping, various schemes for parametric light genera-
tion, and various kinds of nonlinear crystals.21i22>23'40 These
investigations had as their purpose the determination of the
principles involved in the parametric interaction of phase-
modulated pulses and the determination of the parametric
amplification and light generation schemes best suited for
the formation of subpicosecond light pulses.

5.1 Experiments in parametric amplification with phase-
modulating pumping

A generalized block diagram of the apparatus is shown
in Fig. 5. The optical parametric oscillator (3) is pumped by
the radiation of the picosecond laser (1). The radiation from
the optical parametric oscillator is directed into a pulse
compressor (4) and then into a pulse-length measuring de-
vice (5). To study the phase characteristics, part of the radi-
ation from the optical parametric oscillator is diverted into a
dynamic interferometer (6) which includes a Michelson in-
terferometer and an "Agat SF-3" streak camera.

Parametric amplification of pump chirp and compres-
sion of pulses from a superradiant optical parametric oscilla-
tor based on a LiNbO3 crystal pumped by the second har-
monic of a passive-mode-locked YAG:Nd3+ laser was first
investigated in Ref. 21. In an extension of this work, experi-
ments were carried out with a resonator-type optical para-
metric oscillator employing a LiNbO3 crystal pumped with

Av cm '
T ' ps

B -

the second harmonic of a quasi-cw YAG:Nd3 + laser. The
comparatively long pulse length (~60 ps) and the very ex-
tended pump train (~30 pulses) made it possible to trace
graphically the dynamics of the conversion of the phase-
modulated pumping into phase modulated waves generated
by the optical parametric oscillator.

Let us examine in more detail the results of the latter
experiments on the effect of chirp amplification in an optical
parametric oscillator with synchronous pumping. The reso-
nator-based optical parametric oscillator uses a LiNbO3

crystal, which is pumped with a passive-mode-locked
La2Be2O5:Nd3 + laser. The main energy and time param-
eters of the laser radiation, of the second harmonic, and of
the optical parametric oscillator are presented in Table II.

Figure 6 shows the results of a dynamic interferometric
study of pump chirp and parametric light generation at var-
ious places in the pulse train, It can be seen that for
x = 0.467 there is a tenfold amplification of the pump chirp,
producing at the termination of the pulse train a chirp of up
to 8 cm" Vps. This is in good agreement with the theoretical
calculations.21

Since the idler pulses of the optical parametric oscilla-
tor emission have negative chirp, the compression of these

3.5 ps

FIG. 6. Pump chirp (1) and chirp of LiNbO3 optical parametric oscillator
emission (2), A = 1.02/mi, as a function of the pulse number in the train.

FIG. 7. a) Typical streak camera pictures of the idler and signal pulses at
the input to the compressor; b) at the output of the compressor for a less-
than-optimal compressor length; c) for optimal compressor length; and d)
greater than optimal length, e) correlation diagram of compressed pulse for
optimal compressor length.
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pulses was studied in a medium with positive group velocity
dispersion. The use of such media helps to increase the
throughput of the compressors and makes it possible to
eliminate the need for expensive diffraction gratings, which
are used for compression of pulses with positive chirp. For
this medium we chose a KRS-6 crystal, which has a rather
high dispersion. The crystal length necessary for optimal
pulse compression was chosen experimentally. The results of
the experiment are shown in Fig. 7. Signal pulses (Aj = 1.02
f i m ) and idler pulses (A2 = 1.12/urn), having pulse lengths
~ 3.5 ps (Fig. 7a) and chirp of opposite signs were fed simul-
taneously into the compressor. The pulse lengths were mea-
sured with an "Agat SF-3" streak camera. We studied the
pulses from the end of the train, which have the largest chirp
(8 cm ~ Vps). As the signal and idler pulses pass through the
compressor, they become separated in time and change their
lengths in the KRS-6 crystal as a result of the group velocity
dispersion: the signal pulse broadens and the idler pulse nar-
rows (Fig. 7b). This change in the lengths of the signal and
idler pulses occurs over approximately a path length in the
crystal ~35 cm. Figure 7c shows the situation after the
pulses have traversed a path of 35 cm in the KRS-6 crystal.
The pulses have separated by 16 ps and the signal pulse
length is 13 ps and the idler pulse length is < 2 ps. Figure 7e
shows, averaged over the pulse train, a correlation diagram
of the compressed idler pulse, taken for the optimum
compressor length and measured by the method of noncol-
linear second harmonic generation. If the length of the
compressor is further increased the idler pulse also begins to
broaden (Fig. 7d).

We have also studied chirp amplification and pulse
compression in an optical parametric oscillator based on an
LiNbO3 crystal synchronously pumped with the second har-
monic of an active-mode-locked Q-switched YAG:Nd3+ la-
ser operated at a pulse repetition rate up to 10 kHz.22 The
principal energy and time parameters of the laser radiation,
of the second harmonic, and of the optical parametric oscil-
lator are given in Table III.

Figures 8a-8c show dynamic interferograms of the

TABLE III.

Radiation
source

Laser
Second harmonic
Optical parametric
oscillator
Optical parametric
oscillator

T, ps

70
60
50

2.5

Number of
pulses in

i), % P, kW train

40
17

5

450
190
30

20

40
30
20

20
after the compressor

pump pulses at the beginning (a), middle (b), and end (c)
of the train, measured with an interferometer with a free
dispersion range of 3.5 cm"'. As can be seen, the pump chirp
has been increased and linearized. Figures 8d-8f show the
dynamic interferograms of the corresponding signal pulses
of the optical parametric oscillator (the free dispersion
range of the interferometer is 50 cm~'). At the beginning of
the train pulses are formed with a wide spectrum determined
by the random phase modulation (Fig. 8d). The increase of
the eflFective interaction length and of the pump chirp in the
middle of the train leads to a narrowing of the spectrum and
formation of regular phase modulation (Fig. 8e). At the end
of the train the spectrum is dominated by the regular compo-
nent, which attains a width —26 cm"1 determined by the
pump chirp amplification coefficient/?! = 7 (Fig. 8f). In the
compression of pulses from the end of the pulse train of the
optical parametric oscillator, a 20-fold compression of the
signal pulses to 2.5 ps was attained [this is close to the reso-
lution limit of the image converter camera used (Fig. 9) ].

5.2 Experimental studies on parametric amplification of
phase-modulated pulses and chirp reversal in real time

The experiments were carried out by the method of al-
most-collinear parametric amplification (Fig. 10).23 A sin-
gle 5-ps pump pulse, of energy ~ 3 mJ, was formed in a pas-
sive-mode-locked phosphate glass laser. A signal with a

FIG. 8. Dynamic interferograms of the pump pulses
(a,b,c) and the optical parametric oscillator emission
(A = 0.99 fun;d,e,f) at the beginning (a,d), middle (b,e)
and end (c,f) of the pulse train.
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FIG. 9. Streak camera picture of pulse before and after compression.

linear positive chirp was prepared in a single-mode optical
fiber 1.3m long. To form this pulse, a pulse of energy ~ 1 //J
(A = 1.054/m, insertion efficiency ~40%) was fed into the
optical fiber. As a result of phase self-modulation the spec-
trum of the pulse broadened on the average to 400 cm~' and
the pulse length increased to 10 ps. Since the phase-modula-
ted pulse has a broadened spectrum (Avr> 1 ),to obtain para-
metric amplification we used, for the quadratically nonlinear
medium, a CD A crystal (/ = 4 cm, e-oo interaction) having 90-
degree synchronism and an exceptionally broad-band ampli-
fication (to 2000 cm"1, Ref. 23). Estimates'show that the
group velocity mismatch and the dispersion spreading of the
pulses in the crystal were insignificant in the experiment. The
signal and pump pulses were fed through matching delay lines
(not shown in Fig. 10) into the crystal, in which an energy
gain of ~ 104 was attained. Since the pump pulse "cut out" a
corresponding spectral band from the wider signal pulse, after
the amplifier the frequency deviation between the signal and
the idler pulses was reduced on the average to 200 cm~'. The
time behavior of the phase was studied by the dynamic inter-
ferometric method. Figure 11 shows dynamic interferograms

of the pulse at the output of the single-mode optical fiber (a)
as well as of the signal (b) and idler (c) pulses at the output of
the parametric amplifier, these interferograms being taken
with an interferometer with a free spectral range of 555 cm~'.
The direction of inclination of the bands depends on the sign
of the chirp. As can be seen from the interferograms shown in
Figs. 1 Ib and 1 Ic, the bands slope in different directions. This
indicates that the phase characteristics of the signal and the
idler pulses are conjugate. In the compression of parametri-
cally amplified phase-modulated pulses a compression to 280
ps was obtained (Fig. lid). The power of the compressed
pulses reached 1 Gw.

6. CONCLUSIONS

In summing up we may state that three-wave parametric
interaction opens up new possibilities for the formation and
conversion of femtosecond pulses. The most important ad-
vantage is the possibility of obtaining high-energy light pulses
at the output of parametric amplifiers and light generators.
Quite recently this potential was demonstrated in the picose-
cond range41 (the energy of the pulses of the parametric oscil-
lator, pumped by a wide-aperture beam, was 2.3 J). The wide
tuning range of the optical parametric oscillators and the pos-
sibility of operation in the infrared are extremely important.
The latter of these capabilities permits the effective use of
optical parametric oscillators in studying nonlinear optical
processes in optical fibers.3'42 Of particular interest are meth-
ods of forming ultrashort light pulses in quadratically nonlin-
ear media and controlling their phase characteristics.

In the first place, the extremely wide parametric amplifi-
cation bands that can be realized in a number of crystals
(KDP, LiIO3, LiNbO3, CD A, etc.) solve the problem of am-

FIG. 10. Diagram of experiment. 1) laser; 2) second harmon-
ic generator; 3) parametric amplifier; 4) single-mode optical
fiber, 5) dynamic interferometer; 6) compressor; 7) pulse
length measuring device.

FIG. 11. Dynamic interferogram of the pulse at the output of the
single-mode optical fiber a); of the signal pulse b) and idler pulse
c) at the output of the parametric amplifier, d) streak camera
picture of the pulse at the input to the compressor, and correlation
diagram of pulse at the output of the compressor.
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plifying weak phase-modulated signals (like those that enter
from an optical fiber) by five to six orders of magnitude with-
out distorting their phase characteristics. This capability
makes it possible in principle to form, at the output of non-
aperture-limited, dispersion-type compressors, femtosecond
pulses of power exceeding tens of gigawatts. We note that in
contrast to unique femtosecond high-power dye laser sys-
tems,43 parametric amplification and generation of light
makes it possible to construct unified systems based on solid
state active and nonlinear elements.

In the second place, pulse phase conjugation, which ac-
companies parametric amplification, makes it possible to
achieve broad-band pulse chirp reversal in real time. In prin-
ciple, chirp reversal is the time analogue of phase conjugation.
The problem of chirp reversal of light signals in the process of
four-wave parametric interaction has been discussed theoreti-
cally in Refs. 44 and 45 where the suggestion was made to use
spectral component conjugation to compensate for phase dis-
tortion introduced by the group velocity dispersion. The prin-
cipal requirement for obtaining reversal over the entire fre-
quency band Av of the phase-modulated pulse is formulated
as Av< I/TR , where TR is the characteristic response time of
the nonlinear medium. Three-wave parametric processes
operate on electronic nonlinearity, the response time of which
is TR < 10~14 s, so that phase conjugation is possible for ex-
tremely broad spectral bands. The method of control by
means of the sign of the chirp plays a decisive role in the
optimization of femtosecond pulse compression, and it allows
the use of media with either negative or positive group veloc-
ity dispersion in compressors. Moreover, phase-conjugate
pulses with linear chirp opens up new possibilities in four-
photon phase spectroscopy, dynamic holography of space-
time events, as well as in information processing systems.

In the third place, study of the conversion of the phase
characteristics of the pumping during parametric light gener-
ation had led to a new method of controlling the steepness of
the chirp of ultrashort light pulses. It is noteworthy that the
steepness of the chirp of pulses from an optical parametric
oscillator can exceed by several others of magnitude the steep-
ness of the pump chirp. Futhermore, the coefficient of chirp
conversion has no relation whatever to the pumping intensity
and is determined only by the dispersion characteristics of the
crystal. Apparently this phenomenon will find application in
the subsequent development of lasers in the femtosecond
range.

Regarding the significance of numerical experiments for
studying parametric self-compression of light pulses in a qua-
dratically nonlinear medium, we shall note that they un-
doubtedly stimulate further interest in setting up real experi-
ments. At the same time, it is evident that the expected effects
will appear most clearly only in the fields of pump pulses
whose duration is some hundreds of femtoseconds. Only then
does the group velocity dispersion in nonlinear crystals begin
to play an important role.

In final summary, it should be stated that the creation of
parametric femtosecond lasers is at present in a state of in-
tense development and investigation. In the near future we
should expect new and fundamental progress in this direction.
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M. Dianov and A. M. Prokhorov, and N. G. Basov in the February issue
(Vol. 148, No. 2) [Sov. Phys. Usp. 29, No. 2] (Edit. note).
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