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The current state of the classical theory of hydrodynamic instability is examined by viewing
the mathematical theory (as well as experimental data) concerning the randomization of
motions of liquids and gases as a problem in bifurcation theory of families of dynamic systems.
Along with a discussion of the theory of linear operators encountered in hydrodynamics (a
theory which is still not entirely complete), the author also gives illustrations of powerful
nonlinear methods used in the analysis of hydrodynamic instability, such as Landau's
amplitude equations and V. I. Arnold's variational method. The multiplicity of possible
scenarios for randomization of fluid motions is noted, of which the most thoroughly
investigated is M. Feigenbaum's universal sequence of period-doubling bifurcations. Recent
experimental data concerning the bifurcations of G. Taylor flow between rotating cylinders
and E. Lorentz flow in the case of convection in a planar fluid layer are analyzed.
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INTRODUCTION this area, the discovery by M. Feigenbaum2 of a universal
sequence of period-doubling bifurcations has had the great-

In the seven years following the publication in Uspekhi est impact; in the case of one-dimensional quadratic map-
of our review' on the onset of turbulence, a number of theo- pings it turned out to be possible to sort out rather fully also
retical and experimental results pertaining to this problem their super-critical stochastic behavior with "lacunae" of pe-
have been obtained which warrant the attention of physi- riodic regimes. It has become clear that there is a multiplic-
cists. ity of possible scenarios for randomization of motion. It is

The theory of bifurcations formed the foundation for pleasant to note the "rehabilitation" of the scenario devised
theoretical study of the randomization of fluid motions. In by L. D. Landau3 and E. Hopf4: If one considers bifurca-

843 Sov. Phys. Usp. 29 (9), September 1986 0038-5670/86/090843-26S01.80 © 1987 American Institute of Physics 843



tions not of the quasiperiodic trajectories but of the tori
which contain them, the "reproach" that this scenario lacks
structural stability is eliminated.

However, the theoretical work is perceived to be pri-
marily general-mathematical in character, as well as lacking
in relevance to real-world hydrodynamics. Therefore we
deemed it expedient to combine a presentation of this theo-
retical work with a review of the contemporary state of the
classical theory of hydrodynamic instability, proceeding
chronologically through Rayleigh, O. Reynolds, W. Heisen-
berg and G. Taylor, and containing along with a discussion
of the theory of linear operators encountered in hydrodyna-
mics (which is still not entirely complete) a description of
such powerful nonlinear methods as L. D. Landau's3 ampli-
tude equations and V. I. ArnoFd's5 variational method.

It is also useful to draw the attention of a wide circle of
physicists to the specifics of hydrodynamic instability in geo-
physical flows, for which stratification of the density in the
presence of the gravitational field and of the rotation of the
planet are important—the Taylor instability, the Richard-
son number and the so-called baroclinic instability, i.e., the
growth of perturbations due to the available potential energy
of the primary flow, with it being specific to the situation
that the sufficient condition for the stability of a zonal flow
(as established by the nonlinear method of V. I. ArnoFd) is
provided by transition to a rotating frame of reference which
moves faster than the flow.

At the same time, we will not consider here the well-
known nonlinear instability processes—self-modulation,
self-focusing, decaying and explosive instability, etc. (see,
e.g., the book of Ref. 8), since, in contrast to bifurcation
theory, these processes are of little help so far in helping to
decipher the mechanisms by which motion is randomized; in
addition, these phenomena are by no means specifically
characteristic only of hydrodynamics.

We also will not consider the so-called "coherent struc-
tures," long-known in studies of the mechanics of turbulence
under the name of "macrostructural elements." In recent
years, they have been subjected to active experimental study
(see, e.g., the review by B. Cantwell93 and the books of Refs.
94, 95); however, there is no theory for these structures as
yet, except for general considerations on self-organization
(as opposed to randomization; see, e.g., Chapter 24 of the
book of Ref. 8) and the numerical calculation techniques
developed by O. M. Belotserkovskii.96

The experimental possibilities for investigating the pro-
cesses of randomization of fluid flows are enriched by new
methods of imaging flows, by the use of laser Doppler ane-
mometers in conjunction with computers, and by using exot-
ic liquids (classic liquid helium and others). However, it
appears that the new experimental results are for the time
being fewer in number than the theoretical results; among
these should be mentioned, first of all, confirmation of the
theory of period-doubling bifurcations, and the observation
(in circular Couette flow) of more complex behavior than is
included in the existing theoretical scenarios.

Much of the material in Sees. 1-2, 4 and 6 is contained
in the monograph of Ref. 6 and in the small book of L. A.

Dikii7; that in Sees. 3 and 5-6 in the recent books of M. I.
Rabinovich and D. I. Trubetskov8 (devoted to nonlinear os-
cillations) and A. Lichtenberg and M. Lieberman9 (devoted
primarily to Hamiltonian systems).

1. INSTABILITY OF IDEAL-FLUID FLOWS

For adiabatic small oscillations of a fluid relative to a
quiescent state (or a fluid in steady-state motion described
by one of the solutions of the linearized hydrodynamic equa-
tions ), the time independence of the total energy implies that
the frequency of these oscillations a- is real, so that a small
initial perturbation neither grows nor decays with time. This
is correct under the condition that the density stratification
is stable, i.e.,

(1.1)

where z is the vertical coordinate, increasing upward; p is the
density of the liquid; g is the acceleration of gravity; c0 is the
velocity of sound; A7" is the so-called Vaisala-Brunt frequen-
cy.

1.1. Static (Taylor) instability

Let us investigate the opposite case of an unstable den-
sity stratification, i.e., N2 = — M2<Q. We here limit our-
selves to the Boussinesq approximation, replacing the con-
tinuity equation by the acoustic-wave filtering condition
that the velocity field be solenoidal: V - u = 0, so that the
linearized hydrodynamic equations take the form

divu = 0. -———' = » r , d.2)

where p+ is the so-called potential density, determined by
the relation d In p^ /dz = M 2/g;p" = (p- /p0)p' is the nor-
malized deviation p' of the pressure from the hydrostatic
distributionp0(z); 77' = (/>' — c\ p')//?0Co is the dimension-
less entropy perturbation;/?' =p — p0 is the density pertur-
bation. The local energy equation takes the form

). (1.3)

As a specific example, for a layer 0<z<A between horizontal
solid plates we find

= 0, (1.4)

i.e., the difference of the total kinetic and thermobaric ener-
gies of the perturbations does not change with time; as for
the behavior of each of these two terms in the energy taken
separately as given in (1.4), no conclusions of any kind can
be drawn (they both grow exponentially with time). We will
investigate only two-dimensional perturbatiions of motion
in the (x^) plane; using the fact that the velocity is divergen-
celess, we introduce a flow function i/>, setting u = — d^/dz,
w = dif>/dx. After calculating the curl of the velocity (as-
suming the potential density/>„ isquasiconstant) and elimi-
nating ij' with the help of the third equation (1.2), we obtain
for ^ the equation

_M*-^|- = 0 (1.5)
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with the boundary condition w = 0, i.e., ̂  = 0 for z = 0, h.
Since M2 does not depend on x and t, an elementary solution
to this equation can be sought in the form ^ = ^(z)exp
X [i(kx — at)]. We obtain from (1.5) an equation for the
complex amplitude i[>(z)

0. (1.5')

For quasi-constant M, the solution which reduces to zero for
z = 0 has the form ^~sin mz, where m = — ik[ 1 + (M V
(T2) ]1/2. In order for ift to vanish at z = h also, we must set
mh = tm, n =0, +1, ± 2,... from which we have

-l/2
(1-6)

so that for each fixed k there is a denumerable set of elemen-
tary solutions, and for all of them the quantity a turns out to
be pure imaginary. Thus, in this case there always exist ele-
mentary solutions which grow with time. This phenomenon
is called static (Taylor) instability. Its mechanism involves
an acceleration due to the Archimedes force as liquid parti-
cles shift from their equilibrium positions along the vertical
direction. Thus, according to the third equation (1.2) the
interaction of the vertical velocity ur with the unstable gra-
dient of the potential density M 2/g leads to growth of the
perturbation 77' of the entropy, and according to the second
equation (1.2) its contribution grj' to the Archimedes force
leads to growth in ur .

1.2. The Rayleigh equation

The growth of small perturbations can be due not only
to an unstable density distribution in the equilibrium state,
but also to certain kinds of velocity distributions in this state.
For example, let us address the question of stability of plane-
parallel steady-state flow of an incompressible ideal fluid,
directed along the x axis and having a velocity
u0 = [t/(z),0,0]. The linearized hydrodynamic equations
take the form

The local energy equation now has the form

i d . ,9 . 1 d rr ,
-^-+divp'u = 0,

(1.8)

from which, e.g., for a layer 0<z</z between horizontal solid
walls we obtain

_£. f
dt (1.9)

so that the kinetic energy of the perturbation can change
with time due to the work done by the stresses —p0uw on
the gradient of the equilibrium velocity dU/dz. As above, we
investigate only two-dimensional perturbations u = — d\fi/
dz,w = d-^/dx. Then after calculating the curl of Eq. (1.7)
we obtain an equation for i/> analogous to (1.5):

However, the question of how solutions ^ to this equation
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behave turns out to be much more complicated than in the
case of (1.5). Let us again seek an elementary wave-like so-
lution in the form ^ = ^(z)exp[/(fcc — at)}. Then we ob-
tain the so-called Rayleigh equation for the complex ampli-
tude i

(1.11)
where c = o/fc is the phase velocity. This equation, to begin
with, has a singular point z0; for "neutral" perturbations
(realc) the coefficient U — c^U'(z0)(z — z0) of the leading
derivative d 2^/dz2 can reduce to zero at this point, so that
the derivative dif//dz~ (\f>V "/U')0ln(z — z0) ismultivalued
there; the problem then arises of choosing the correct branch
of the solution. Secondly, as a rule, the set of discrete eigen-
values of c turns out to have only a finite number of elements,
so that we can no longer determine the stability of a given
solution to Eq. (1.10) by representing it as a superposition of
the corresponding elementary wave solutions. True, there is
still a continuous spectrum of eigenvalues c in this case; it is
easy to convince oneself of this by writing Eq. (1.1) in the
form

(U-U'X-1)^^^ # = -£--*2, Vi = Xy d.ll ')

(here and henceforth, the dashes denote derivatives with re-
spect toz), from which it is clear that c is an eigenvalue of the
sum of a multiplication operator U(z) (having a real contin-
uous spectrum which fills the interval J7min <c< C/max) and
the completely continuous operator U"&~l (the addition
of which does not change the continuous spectrum). How-
ever, the operator U" ££ ~' is not self-adjoint, and the theo-
rems on expanding an arbitrary function using its discrete
and continuous spectrum do not hold here. Thirdly, because
of the lack of self-adjointness of this operator even the real
eigenvalues c, say, of the discrete spectrum, if they are multi-
ples can lead to instability in the form of "secular" perturba-
tions which increase linearly with time.

1.3. Lyapunov stability

The example of the Rayleigh equation shows that it is
expedient to start from a more general criterion for hydrody-
namic instability than the presence of eigenvalues of the lin-
earized equations which have negative imaginary parts. So
as to give a more general definition, let us introduce the con-
cept of the phase space of the fluid, whose "points" M are
complete sets of independent (i.e., not coupled by synchro-
nous relations) thermodynamic fields which characterize
the instantaneous states of the moving fluid. In the case of an
incompressible fluid, this is the velocity field u(x) in the
region of space occupied by the fluid which satisfy the re-
quired boundary conditions. In the general case we add to
these the fields of the density p(\), entropy i ) ( x ) and impu-
rity concentration s(x). The evolution of the fluid flow in
time is imaged in the phase space by some curve M = M(t),
i.e., the phase trajectory of the flow; for steady-state flow it
consists of a single point, while for a periodic flow it forms a
closed curve (a cycle). The ensemble M(t) =F'M(0) of
phase trajectories traced out through every point of the
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phase space M — M(0) and extended along the entire time
axis determines a group of transformations F' of the phase
space into itself, called thephaseflow. It describes the evolu-
tion of all the fluid flows in the given geometry for all possi-
ble initial conditions.

Let us introduce into the phase space the norm \\Af\\ for
its elements. Then the general definition of the stability of a
phase trajectory M = M0(t), according to A. M. Lyapunov,
is the following: for any arbitrarily small positive number £
there exists a positive number 8 = 8(e) such that for any
trajectory M = M(t) with initial value M(0) which satisfies
the condition \\M(0) -M0(0)\\ <S, for all times t>0 the
inequality \\M(t) — M0(t) \\ <e holds. It is not hard to con-
vince oneself that from the presence of even one unstable
infinitesimal wave perturbation M'(t) = M(t) — M0(t)
(with an eigenfrequency a with negative imaginary part
Y = Im <7<0) there follows the instability of the trajectory
M0(t) according to Lyapunov. For, even if the perturbation
M' (t) is small, it actually grows according to the law e'r'' of
the linear theory; then, as a rule, this growth slows down and
reaches some finite limit. Decreasing the amplitude of the
initial perturbation only prolongs this process, but does not
change its ultimate limit. This nonuniformity with respect to
time of the convergence to zero is what implies the absence of
Lyapunov stability. Since in reality small perturbations are
always present, the linear instability of a flow M0(t) implies
that the flow is in practice unrealizable (such as, e.g., the
state of rest in the presence of an unstable stratification; es-
sentially it is this fact that underlies the basic significance of
the concept of hydrodynamic instability.

In many cases one can prove the opposite assertion—
that linear stability guarantees Lyapunov stability. Thus, for
Eq. (1.10) the following theorem holds (L. A. Dikii7): A
two-dimensional plane-parallel flow with a monotonic ve-
locity profile U(z), 0<z<A, in which neither U(0) nor U(h)
are eigenvalues, can be unstable only in the presence of a
discrete spectrum of complex or multiple real eigenvalues.

The idea of the proof involves solving the Cauchy prob-
lem for Eq. (1.10) (assuming i/> depends on x as e"" ) for
arbitrary initial values i/>(z,Q), by finding the Laplace trans-
form in time and using the Green's function G * (z,£,s) of the
transformed equation. So as to elucidate whether or not the
function if>(z,t) is bounded as t-> oo, we must investigate the
behavior of the inverse Laplace transform of G * (s). It can be
proved that the function G *(s) can be analytically contin-
ued from the upper half j-plane to the lower half-plane ever-
ywhere except the points s = (7(0), U(h), U(z) and U(£),
where it has a pole whenever s equals an eigenvalue of the
homogeneous equation (of the same multiplicity as the
eigenvalue); if s = £7(0) and s = U(h) are not eigenvalues,
then there is a finite number of eigenvalues in the upper half-
plane in any given neighborhood of the interval (U(0),
U(h)).1o calculate G(t) from G*(s) we must lower the
integration contour in the s plane by a fixed distance below
the real axis, allow it to rise from there along the edges of the
vertical branch cuts to the points s = U(0), U(z), U(g),
U(h) and go around these points along circles with radii of
the order of c/t. Then as r-» oo the integrals along the hori-

zontal parts of the contour decay exponentially, while along
the circles and vertical segments they remain bounded; we
then need only add the sum of the residues at the poles
between the old and new contours of integration — at those
points s which are eigenvalues. For a simple pole the residue
is proportional to G*(s)e~ikst, for a k-multiple pole it is
proportional to<9* ~ ' [G *(z)e ~ ikst ]/dsk ~ l . These residues
pick out the wave solutions, which are the only reason for an
unbounded growth of i/>(z,t); and this proves the theorem of
L. A. Dikii.

1.4. The Rayleigh and Fjortoft theorems

We will note without proof that for a flow with "type ,4 "
velocity profile — monotonic U ' (z) > 0 and with one point of
inflection z = z_(so that U " = 0) in which U ' (z) is a maxi-
mum (so that U'" < 0) — to be stable, it is necessary and suffi-
cient that no complex eigenvalues c be present at k = 0, or
that the condition of N. Rosenbluth and A. Simon10 hold:

. (1.12)

In particular, it is sufficient that there exist a constant K0

such that ( U - K0 ) U " > 0 ( R. Fjortoft ' ' ) , or simply that no
point of inflection be present (Rayleigh, 1880). Conversely,
a flow with a "type A " velocity profile for 0<z< h /2 which is
symmetric about the point z = R /2 is always unstable (V.
Tollmien12). Tangential discontinuity in the velocity
U(z) = U0 for z > 0 and ( — U0~) for z < 0 are also unstable
(the so-called Helmholtz instability).

The Rayleigh and Fjortoft theorems can be proved for
arbitrary initial data without considering elementary wave
solutions. Thus, from Eq. ( 1. 10) the following integral rela-
tion can be derived for a solution i/> which depends on x as
eikx:

J z — 2Rei&

(1.13)

Let there exist a constant K0 such that ( U — K0) ( U " ) ~ ' is
everywhere continuous. Multiplying (1.10) by
( ̂ * " - k V* ) ( U - K0) ( U " ) ~ ', integrating over z, taking
the real part and adding it to ( 1. 13), we obtain

•If J
(1.14)

so that when Fjortoft's condition holds, the smallness of this
integral implies the smallness of the mean square values of i/>,
\l>' and i/>" at any moment of time, i.e., stability of the flow.

1.5. Arnol'd's varlatlonal method

The meaning of the quadratic integral invariant in
(1.14) can be understood once we consider, following V.
I. ArnoFd,5 the Lyapunov stability of nonlinear two-dimen-
sional flow of an incompressible ideal fluid, for which the
function i/>(x^,t) satisfies the equation for the curl:

>, A<t>)
dt d ( x , z ) (1.15)
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(Linearizing this equation relative to if>i — i/> + f* U(z)dz
leads back to Eq. ( 1. 10) ) with the boundary conditions that
the boundary is impenetrable ^(F) = const, and that the

r A i
circulation along the boundary (p —3- dF = const is con-

J dn
served. Here, not only the kinetic energy (per unit mass)
& = | / |V^|2dxdz is time-independent, but also any func-
tional ̂  = / <f>( A^)dxdz of the vorticity. In order to inves-
tigate the stability of a steady-state flow with a flow function
i/>0 [which we will assume is a monotonic function of the
vorticity i/>0 = *P( A^0) ], we will choose the conserved func-
tional F(i}>) = W + & , so that for i/> = if>0F has an extre-
mum. It is easy to convince oneself that in order to reduce
the first variation 8F to zero one must set 4> ' = *. For plane-
parallel flow with velocity u0 = U(z) we will have
^'(A^o) = U(z)/U" ( z ) , and in a frame of reference mov-
ing relative to the original one with constant velocity K0 we
obtain

(1.16)

If the Fjortoft condition holds, this quadratic form in 8if> is
positive and can be adopted as the square of the norm
||5^||(i) • For the linearized equations, according to (1.14) it
will be an exact invariant. For the nonlinear equations the
leftside of ( 1. 16) also acts as the square of the norm \\8ift\\ 2n .
However, these norms are equivalent in the sense that there
exist positive constants Cj<C2 which ensure the inequality

) . If the initial norm
is small, then the invariant norm ||<5^||22) is also

small; then H^HiD stays small for all times, so that in this
case the nonlinear Lyapunov stability follows from the lin-
ear stability.

1.6. The Richardson number

In natural flows one often encounters cases in which the
stabilizing action of a stable stratification N% (z) > 0 com-
petes with the destabilizing influence of an unstable velocity
profile U(z). In these cases, in place of Eqs. (1.5) or (1.10)
we obtain the following combination of them:

(1-17)

For elementary wave solutions of the form ^(z)exp
X [ik(x — ct) ] we obtain

(U — c)[(U (1.18)

Let us denote U — c by W and introduce a new unknown
function * = if/W ~1/2. Then Eq. (1.18) is brought to the
form

where

= 0, (1 .19)

(1.20)

is the so-called Richardson n umber. We multiply Eq. (1.19)
by the complex conjugate quantity ** and integrate the re-
sult over the layer 0<z<A for boundary conditions * = 0
(i.e., w = 0) at both ends of this segment; we then write the
imaginary part of the equation so obtained:

(1m c)

(1.21)

If Ri (z) > 1/4 everywhere, then this equation can hold only if
Im c = 0, i.e., if there are no unstable wave solutions. Thus,
the condition Ri> 1/4 is sufficient for stability of the strati-
fied flow (J. Miles13 and L. Howard14).

Up to now we have considered only two-dimensional
wave perturbations u, w(x^) of plane-parallel flows
u0 = {£/(z),0,0}, because their stability is sufficient to en-
sure the stability of three-dimensional wave perturbations
also (only the projection u0kA: ~ l of the primary flow affects
the waves exp[/(fc,;c + k^y — at)]. With the help of the in-
variant (1.14) we can also demonstrate this for perturba-
tions which have arbitrary time dependence: if the two-di-
mensional perturbation of velocity and vorticity is bounded,
then the three-dimensional perturbation of the velocity mul-
tiplied by U " and the z-component of vorticity are bounded
(while the other components of the latter can grow linearly
with time).

1.7. Axially-symmetric flows

Let us also discuss briefly the stability of stationary ax-
ially-symmetric flows parallel to the x-axis having the veloc-
ity profile U(r), r=(y2 + z2)112. Using cylindrical coordi-
nates (x,r,<p), we consider small perturbations of the form
u(r)exp[ik(x — ct) + in <p\. Then for the complex ampli-
tude/ = ur (r) from (1.7) we obtain the following analog to
the Rayleigh equation:

<?=• dU
dr

(1.22)

with the boundary conditions/->0 as /•-> oo (for an axially-
symmetric jet in an unbounded space) orf(R) =0 (for a
circular pipe of radius R). Multiplying (1.22) by
rf*(U— c)~l, integrating over r and taking the imaginary
part, we obtain

(Ime) (1.23)

from which it is clear that in order to have an instability (i.e.,
for the condition Im c^O to hold) it is necessary for the
derivative dQ/dr to change sign at some point (Rayleigh,
1892). For example, in Poiseuille flow in a circular pipe,
U(r) = £/max(l — r2//?2), and growing non-axially-sym-
metric wave perturbations (n^O) are impossible (forn = 0,
dQ/dr=0 here and the Rayleigh equation has no eigenval-
ues in general). If dQ/dr changes sign at a point rc and
U(rc) = Uc, then in order to have instability it is necessary
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for the Fjortoft condition (U — Uc )dQ /dr < 0 to hold some-
where in the flow. Here, the stability problem, apparently,
reduces (as above) completely to an investigation of the dis-
crete spectrum of the Rayleigh equation. We note that G.
Batchelor and A. Gill,15 who studied axially-symmetric jets,
and H. Sato and O. Okada,16 who studied axially-symmetric
wakes, found only the n = 1 possibility for instability.

2. BAROCLINIC INSTABILITY

In the previous section we saw that adiabatic perturba-
tions of the velocity field of an incompressible fluid can grow
only because of the kinetic energy of the primary flow; see
the energy Eq. (1.9). Such instabilities are termed barotro-
pic, since they are characteristic of barotropic fluids (in
which p is a function only ofp); this is because in such fluids
the barotropic potential energy which arises because of the
two-dimensional compressibility is very small. In baroclinic
fluids, however (i.e., fluids in which/? depends not only on/>
but on Jands) it is possible also to have so-called baroclinic
instability—the growth of a perturbation due to available
potential energy of the primary flow state. This instability
plays a major role, in particular, in the formation of synoptic
processes in the terrestrial atmosphere and in the World
Ocean.

2.1. The potential vortlclty equation

As an example of this, let us consider quasihydrostatic
flows in the atmosphere, using the hydrodynamic equations
to describe these flows in isobaric coordinates (in which the
x axis points east, the.j> axis points north and the pressure/? is
used as a vertical coordinate). We then will be assuming that
these processes are also quasigeostrophic in the sense that
pressure differentials approximately counterbalance the
Coriolis force. Then (see, e.g., the book of Ref. 17) the fol-
lowing equation can be derived from the hydrodynamic
equations for the so-called potential vorticity fi = J?^ +/:

d ( x , y) = 0,
(2.1)

where/ is the Coriolis parameter (twice the vertical projec-
tion of the angular velocity vector of the rotation of the
Earth );/0 is its quasiconstant local value; z is the height of
the isobaric surfaces; a2 = H 2N 2c0~2 is the dimensionless
Vaisala-Brunt frequency (H is the so-called thickness of the
homogeneous atmosphere). The difference between this
equation and (1.15) lies in the replacement of the two-di-
mensional Laplace operator A by a three-dimensional opera-
tor & (which for stable stratification is elliptic), and in a
correction term (d//dy)dijj/dx caused by the rotation and
sphericity of the Earth. The boundary condition at the
Earth's surface (reduction of the vertical velocity to zero)
reduces to the form17:

=° for *- (2.2)

We will show that the nonlinear equations (2.1)-(2.2) have
a quadratically-integrable invariant—the total energy

(2.3)

Indeed, if we differentiate this expression with respect to
time, and integrate quantities like (dz/dx)d(dz/dt)/dx by
parts and use the Gauss-Ostrogradskii formula, we obtain

JL^-Ja. f ,*L
dt g J dt

(2.4)

where 2 is the lateral (curved) surface of the cylinder, n is
the normal unit vector to 2, and S is the sea-level pressure
p = p0. As a consequence of (2.1), the first term of this equa-
tion is proportional to the integral of d(z2,fl)/d(x,y) which
after integration by parts leads to an integral of
( z 2 f i x ) y — (z2(iy)x, and then to the integral
/ dp # z2(Sixdx + fiydy); therefore, / dp # z2dfi = 0, be-
cause on the lateral surface if p = const we must have
z = const (the impenetrability condition). The second term
in (2.4) reduces to zero because the circulation is constant
around the boundary $ nVzd/= const. By using (2.2) in
place of (2.1) we can prove that the third term is zero as is
the first term. So, d$/dt = 0.

We note that z — F( p) is again a solution of Eq. (2.1)
with the boundary condition (2.2), with /"being an arbitrary
function ofp. Therefore, in (2.3) we can subtract from dz/dp
an arbitrary function ofp, and from z an arbitrary constant c.
From this follows the invariance with time of the average dz/
dp of 'dz/dp over x and.y for each/;, and also the average value
zforp=p0. If we set F ( p ) — z ( p ) and C = z(p0), we ob-
tain the minimum value of the energy (2.3):

(2.3')+T

Here the first term corresponds to kinetic energy, while the
second corresponds to the baroclinic and the third to the
barotropic available potential energies. The ratios of these
quantities are \:(L /L R )2:(L /L0)

2, whereL is the horizon-
tal scale of the perturbation, L R = HN0f^' is the so-called
Rossby deformation radius and L0 — c/0~' is the scale of
barotropic perturbations introduced by A. M. Obukhov.18

2.2. Barotropic stability

We begin investigating the question of stability of quasi-
geostrophic flows with the simpler case of barotropic flows.
A method of deriving these flows was formulated in Ref. 19:
it consists of taking the limit a -»0, in which limit the deriva-
tives dz/ds no longer depend on p. Then as a result of this,
Eq. (2.1) takes the form

d (x, V)
-.0,

(2.5)

The potential vorticity (averaged over the thickness of the
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atmosphere) equals ft = •¥ \$ +f, while the total energy
(2.3') loses its second term (the baroclinic available poten-
tial energy) . We will analyze the stability of stationary zonal
barotropic flows with potential vorticity ft0 by the method of
V. I. Arnol'd, where no depends monotonically on latitude
so that the current function can be cast in the form
^0 = * ( flo ) • Then in analogy with ( 1 . 1 4 ) , the first variation
of the functional F(if>) = %> + S<3>(Cl)dx dy reduces to zero
for 4>' = *, while the second turns out to be equal to

' (5.) (2.6)

from which it is clear that for a flow to be stable (i.e., reduc-
ing F to a minimum for ^ = rfi0, or fulfilling the condition
S2F> 0) it is sufficient that the inequality *Xft0) > 0 to be
fulfilled. Usually the opposite inequality *'(ft0) < 0 holds in
general atmospheric circulation, because zonal flow is di-
rected from west to east, i.e^, i/>0 increases from north to
south, while the behavior of fI0 is determined essentially by
the term / which grows from south to north: ̂ 0 turns out to
be a decreasing function of (10. But this behavior can be re-
versed if we transfer to a frame of reference rotating relative
to the origin with constant angular velocity which exceeds
that of the zonal flow. In this case, the following analog of the
Rayleigh theorem is true: for a zonal barotropic flow to be
stable, it is sufficient that the potential vorticity be a mono-
tonic function of latitude (S. L. Kuo20).

2.3. Baroclinic stability

Sufficient conditions for stability of zonal baroclinic
flows can be determined in a fully analogous fashion. In this
case, according to (2.2) there is also a boundary invariant

and the stability of a zonal flow with the current function ^0

is ensured by a minimum for if> = i/>0 of the functional

, Q ) d x d y d p

(2.7)
J>=P.

where <I> (/>,£!) is an arbitrary function of two variables,
while P is an arbitrary function of one variable. In order to
reduce the first variation SF to zero for if> = if>0 we assume
that for every p fl0 is a monotonic function of latitude, so
that we can set ̂ 0 = *( />,no), and that

also is a monotonic function of latitude, so that for/7 = p0 we
can set

Then it is not difficult to convince oneself that in order to
satisfy the requirement that SF = 0 we must set
dfl = *, and

P =_ X\ CJ a" /p-p,

and the second variation S2F takes the form

J [^W-*'(^+

For stability of a zonal flow, i.e., S2F> 0, one might think
that it is enough to fulfill both conditions: di/>o/d£l0 > 0 for
every p, and X' < 0 for p = p0. As in (2.6), the first of these
conditions is ensured by going to a rotating frame of refer-
ence which "leads" the zonal flow. However, the second
condition reduces, roughly speaking, to an unnatural re-
quirement on the growth of the surface density from the
poles to the equator. Let us replace it by the condition

-—h —^1 = const
P P ' P=PO

(roughly speaking, this is the requirement that the surface
density be constant); then the variations of this expression
will equal zero, and for stability of zonal baroclinic flow it
will be sufficient that for each p the potential vorticity de-
creases from north to south (J. Charney and M. Stern21).

2.4. Linear baroclinic Instability

However, these sufficient conditions for baroclinic sta-
bility are apparently fulfilled rather rarely in the terrestrial
atmosphere and the World ocean. In order to study the un-
stable perturbations, we linearize Eqs. (2.1) and (2.2) rela-
tive to a stationary plane-parallel flow along the x axis with
velocity — di/>o/dy = U(y,p):

dt --dx — - .dp a2 dp

.
aj/2

-iL_ JL J__El du\ a?--
~ 3 y cl dp a2 d p ) dx

a2

—

_ ^ £ / f o r p =r = Po- (2.9)

The energy equation for the perturbations, which is analo-
gous to (1.9), now takes the form

P=Po

where the bar over the terms denotes the average value with
respect to x. The second term on the right side is specific for
baroclinic instability; it is proportional to the quantity
— v'p'dpo/dy and agrees with it in sign. Thus, e.g., for dp0/

dy > 0 it is necessary that v'p' < 0 to have an instability, so
that as perturbations grow the heavier particles ( p' > 0), in
sinking, must shift to the south (u '<0) while the lighter
particles ( p' < 0) conversely must rise and shift to the north
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(i/>0). Concentrating in the following on this effect, we
will assume that U depends only on p, and seek wave solu-
tions i/> of Eq. (2.9) in the form i/>(p)exp[iki(k — ct)
+ ik7y}. Then, setting k\ +k\=k'L, we obtain for the

complex amplitude i/>( p):

B==jt_ n s p* du
dy eg dp a2 dp '

and for p =p0,

(U — c) (—^--\-—ty]—Fty = Q, F — -^~\-^-U. (2.12)

Equation (2.11) differs from the Rayleigh equation essen-
tially only in the term df/dy. However, the boundary condi-
tion (2.12) is now more complex: It contains the eigenvalue
c. Replacing it by the condition dip/dp + (a^i/>/p) = 0, we
can prove stability for B > 0 (i.e., the Rayleigh theorem or a
special case of the Charney-Stern theorem), or: if B changes
sign once, then the flow is stable for (U — K)B < 0 where K
is the value of {/ at the point where .8 changes sign (an analog
of the Fjortoft theorem). The condition (2.12), however,
must give rise to instability, but only of a type in which there
cannot be more than one growing wave solution for each K.
We can prove this by a finite-difference approximation of
equations (2.11), (2.12), in which the segment Q<p<,p0 is
broken up by the points />,, . . . , pN _ { into N equal parts of
length 8 = po/N, and the equations are written in the equiva-
lent form

(Un-c)

(2.12')

where r2, _ 1/2 is some average value of/2, p2/a2c2 between
the points pn and pn_lt while s% = (a2/p)p^pn . Then the
following theorem holds (L A. Dikii22) : If all Bn>0or all
Bn <0 (the Rayleigh condition), or if the sequence Bn

changes sign once, and if there exists a constant K0for which
(Un -K0)Bn <0 (the Fjortoft condition), then Eq. (2. 11')
with the boundary conditions

has no more than one pair of non-real complex-conjugate
eigenvalues c.

The idea of the proof involves the fact that the eigenval-
ues are obtained graphically as intersections of the function
M(c) = (^ - ^0)M) and the hyperbola K(c), while M(c)
is a rational fraction whose denominator is a polynomial of
degree N — 1 without any roots that are not real.

3. BIFURCATIONS

The topological features of the phase flow
M(t) = -F'Af(O), which describes the evolution of all fluid
flows in a given geometry for all possible initial data, usually
depend on some parameter fj, which characterizes the degree

to which the phase flow is out of equilibrium: in the case of a
viscous fluid, this is the Reynolds number f\e = v~lLU
( where L and Ua.it typical length and velocity scales while v
is the kinematic coefficient of viscosity), i.e., a typical mag-
nitude of the ratio of the inertial forces to the viscous forces,
or something analogous to this ratio.

3.1. Topological features

We include among the distinctive features of the phase
flow the non-wandering phase points (a point is non-wan-
dering if any neighborhood of it is intersected by some phase
trajectory at least twice; in particular, fixed points which
correspond to steady-state solutions of the equations of hy-
drodynamics, are such points, along with periodic points
which lie on closed trajectories which correspond to solu-
tions periodic in time); limit points of trajectories:

(if such limits exist) and the limit sets CiM made up of these
points ( if MeflM , the point M is said to be stable in the sense
of Poisson); invariant sets (filled by complete trajectories;
this also includes their boundaries, so that we may consider
some of them closed sets. Limit sets are closed invariant sets;
a nonempty closed invariant set which has no subset which
has this property is said to be minimal) ; recurrent points M,
for which for any e > 0 there exists a T> 0 such that an e-
neighborhood of the segment of the trajectory {F'M},
te[r,r + T] for every r contains the entire trajectory (by the
Birkhoff theorem: For a point M to be recurrent it is neces-
sary and sufficient that the closed trajectories F'M form a
minimal set); attractors, i.e., minimal sets A of non-wander-
ing points having neighborhoods for which all trajectories
which originate in the neighborhoods asymptotically ap-
proach A (attractors which differ from finite sums of
smooth manifolds are said to be strange).

The special features of phase flows enumerated above
can be extremely varied. For example, in the simplest two-
dimensional linear dynamic system u = An, depending on
the eigenvalues A ,,/l2 of the matrix A the fixed point u = 0
can be a vertex (/11^.2

 real anc* the same sign), asaddle point
(A, and A2 real and differing in sign), a focus (Al and A2

complex conjugates) or a center (At and A2 imaginary and
conjugate ) ( see Fig. 1 ) . In particular, near a saddle point the
trajectories are hyperbolae, both of whose asymptotes pass
through the saddle point, with one of them serving as an axis
of compression (the so-called unstable manifold of the sad-
dle point, consisting of the point u = 0 and two leaving tra-

FIG. 1. Fixed points u = 0 of the two-dimensional linear equation u = Au:
a—vertex, b—saddle point, c—focus, d—center.
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jectories, i.e., the unstableseparatrixes) and the other an axis
of stretching (the stable manifold consisting of u = 0 and
two entering trajectories, i.e., the stable separatrixes).

As the defining parameter/z is varied (e.g., growth of
Re) the phase flow deforms, and for some critical values
i"icr»/"2cr » • • • some of its features appear or disappear, or un-
dergo qualitative changes. Such changes in the topological
features of the phase flow are called its bifurcations (or "ca-
tastrophes" ).

3.2. Interchange of stability

Let us exhibit the simplest bifurcations by considering
the evolution of small perturbations u(x, f ) of a steady-state
flow u0(x) of a viscous fluid, which are solutions of the lin-
earized hydrodynamic equations:

u (x, t)=A (t) I0 (x), A (t) = e-<Va = ±« + 17. (3-D

For small Re, the steady-state flow u0(x) usually con-
stitutes a stable focus in the phase space. This means that all
eigenvalues of the linearized equations have negative imagi-
nary parts 7 < 0, so that any small perturbation (3.1) decays
with time. As Re increases, the imaginary parts y of some
eigenvalues grow, and we can find some critical value Re,cr

for which some one of the eigenvalues of the linearized equa-
tions cr(Re) first crosses the real axis of the complex a-
plane, i.e., y(Rel c r) =0. The corresponding perturbation
(3.1) will be neutral, i.e., neither decaying nor growing with
time.

It may turn out that in this case we will have
<y(Re,CI.) = 0 at the same time, i.e., cr(Relcr) =0 as a
whole; this means thatA(t) = landu(x,0 = f0(x),i.e.,the
perturbed velocity field u0(x) + u(x,0 = u0(x) + f0(x)
describes the field of a new steady-state flow; it is then said
that for Re = Relcr a bifurcation occurs, i.e., an inter-
change-of-stability. This bifurcation is observed, e.g., in the
development of thermal convection in a fluid layer heated
from below (where the state of rest u0(x) = 0 is first trans-
formed into steady-state convection in the form of "rollers"
or Benard cells), and also in a Taylor flow, i.e., a circular
Couette flow between two coaxial rotating cylinders (where
stationary laminar flow is transformed into steady-state to-
roidal rolling Taylor vortices). We will discuss these flows in
detail in what follows.

3.3. Normal Andronov-Hopf bifurcation

If <y(Re l c r ) =<a1^0, then the perturbation (3.1) for
Re = Relcr is a neutral wave. For Re > Relcr there will ex-
ist eigenvalues a with positive imaginary parts y>0, i.e.,
perturbations which grow exponentially with time, so that
the flow u0(x) will be unstable relative to small perturba-
tions. E. Hopf23 proved that in phase spaces of dynamic sys-
tems of a quite general form there exists a one-parameter
family of closed trajectories for values of Re in a certain
neighborhood of Relcr; the application of this theorem to
the hydrodynamic equations was proved by N. N. Brushlins-
kaya.24 The appearance of closed trajectories for Re > Relcr

(these are limit cycles, which correspond to flows which are
periodic in time), i.e., the conversion of a stable focus into a

FIG. 2. a—Normal Andronov-Hopf bifurcation, b—Creation of a two-
dimensional invariant torus, c—Period-doubling bifurcations, d—In-
verse Andronov-Hopf bifurcation.

limit cycle (Fig. 2a) is culled a normal Hopf bifurcation (this
bifurcation was discovered 13 years earlier by A. A. An-
dronov).

3.4. The Landau equation

L. D. Landau3 described the transition of an unstable
small perturbation (3.1) to a periodic flow. While the per-
turbation is small, its amplitude A ( t ) satisfies the equation
d A 2/dt = 2y\A 2, but for finite \A \ the right side must con-
tain additional terms from its expansion in powers of A and
A *. The high-frequency oscillations given in (3. 1 ) with fre-
quencies \a> 1 1 > Y should be excluded by averaging over time
(i.e., over a period r from the interval 7
then the cubic terms drop out, while of the fourth power
terms only those which are proportional to \A |4 are saved.
To this accuracy we obtain the following Landau equation
and its solution:

6>0, (3.2)

(3.3)

For a small initial value A0 the amplitude |j4(0| initially
grows exponentially according to the linear theory as A0e

r' ;
subsequently, this growth slows down, and for t-> oo it re-
duces to a limiting value A „ which does not depend on A0,
which for small Re — Relcr is proportional to (Re
-Relcr)

1/2 (since y~Re-Relc r and <5^0). Thus, for
small Re — Reicr > 0 the perturbation reduces as time
passes to a periodic oscillation Ui (x,f ) with finite amplitude
A „ and arbitrary phase (determined by the random initial
phase of the perturbation and thus constituting a degree of
freedom of the limiting flow).

3.5. Bifurcation of periodic flows

If we write the hydrodynamic equations linearized
around a periodic solution M(t) with period T} in the sym-
bolic form dM'/dt = /' M', where /' is a bounded linear
operator which is continuous and periodic with period 7\ as
a function of t, then for every perturbation M '( t ) of the peri-
odic solution we will have M'(t +TJ = U(Ti)M'(t),
where U( Tl ) is a bounded linear operator, referred to as the
monodromy operator. Its eigenvalues pn (Re) are the so-
called multipliers; one of them is trivially equal to unity and
need not be considered henceforth. If all | pn \ < 1, then every
perturbation for each circuit of the closed trajectory de-
creases, so that the periodic flow is stable; if, however,
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I pn I > 1 for at least one n, then it is unstable. Thus, as Re
increases the bifurcations of periodic motions occur by pas-
sage of the multipliers pn (Re) in the complex plane
through the unit circle.

This means that as Re grows we may reach a new criti-
cal value Re2cr for which a pair of multipliers assume the
values exp ( ±ia) (where a^Q,ir,ir/2,2ir/3 so that reson-
ances are excluded). Then a second kind of normal bifurca-
tion occurs: a periodic flow u0(x) + Uj (x,t) becomes unsta-
ble relative to some perturbation of the form e~M fl(x,t),
where f, is a function periodic in time with period 2-n-/(ol>

while the eigenvalue a has a real part ± ea2. For fairly large
Re-Re2cr this perturbation will grow with time to a finite
limit—a quasiperiodic motion with two periods 2ir/eal and
2ir/co2, and two degrees of freedom (the oscillation phases).
Thus, from the closed trajectory we form trajectories on a
two-dimensional torus (Fig. 2b). If then a subsequent nor-
mal bifurcation follows, the trajectories lie on a three-dimen-
sional torus, etc.

If for Re = Re2cr one of the multipliers passes through
the unit circle at the point p= —\, then
t/(7\)Ar(f) = — M'(t), i.e., a small perturbation simply
changes sign after one circuit around the trajectory u0(x)
+ u,(x,0- Then after a second such circuit we obtain

M'(t + 2Tl}= -U(Tl)M'(t)=M'(t), i.e., the per-
turbed trajectory is closed. Thus, in this case for Re = Re2cr

there occurs bifurcation by period doubling—from a periodic
motion of period 7"j there arises a stable periodic motion
with twice the period 271,, while the original motion becomes
unstable (Fig. 2c). In this same way, we can have a subse-
quent bifurcation with period doubling, etc.

3.6. The Inverse Andronov-Hopf bifurcation

If the one-parameter family of closed trajectories pre-
dicted by the Andronov-Hopf bifurcation theorem appears
already for Re < Relcr, then the coefficient 8 in the Landau
expansion (3.2) must be negative while the coefficient
Y~ Re — Relor will be negative for Re < Relcr and positive
for Re>Re,cr. This means that for Re<Relcr Eq. (3.2)
takes the form

4|»+|6| M|4, (3.3)

from which it is clear that the closed trajectory is unstable:
trajectories lying inside it spiral in toward a fixed point [put-
ting this another way, perturbations with small amplitude
\A | <A1 = (2|7|/|<5|)1/2 decay with time], while trajector-
ies outside it spiral outward and move to another region of
the phase space (that is, perturbations with finite amplitudes
\A | >Al grow with time so that for Relcr >Re>Relcr-
a2\A \2 the motion turns out to be unstable relative to such
perturbations). For increasing Re < Relcr the closed trajec-
tory shrinks, and when Re passes through the value Relcr it
disappears — this phenomenon is called inverse bifurcation
(Fig. 2d). For Re>Relcr Eq. (3.2) with the coefficients
Y > 0 and 8 < 0 has the solution

(3.4)

which becomes infinite at a finite time
r, = (l/2y)ln[l + (A\/Al)]. However, it is clear that
even before this the Eq. (3.2) ceases to be useful and must be
supplemented by the next terms in the Landau expansion.
Available examples show that after an inverse bifurcation,
for Re > Relcr the motion apparently will rapidly acquire a
nonperiodic character.

4. INSTABILITY OF FLOWS OF VISCOUS LIQUIDS

We first address the question of the stablility of steady-
state plane-parallel flows of an incompressible viscous fluid
with a velocity Uo = { U(z) ,0,0}, so that a perturbation of the
velocity field u(x,f) will satisfy Eq. (1.7) with the addition
to the left side of the equation of motion of the term vAu
which describes the acceleration of the viscous forces. Let us
refer to this as Eq. (1.7').

4.1. The Orr-Sommerfeld equation

Then for two-dimensional elementary wave solutions of
these equations, in place of the Rayleigh equation (1.1) we
obtain the following so-called Orr-Sommerfeld equation:

(4.1)

in dimensionless variables this equation will have the same
form and only v will be replaced by (Re) ~'. We note that if
we eliminate the unknowns u, v, and/?' from the four equa-
tions (1.7'), which describe a three-dimensional wave per-
turbation dependingonx,y, and/ throughexp(/£,[x — ct]
+ ik^y), we can obtain an equation like (4.1) for w in which
k2 is simply replaced by k 2 + k 2 and v by vkk f ' (that is,
Re by k2k ~'Re). This means that if for a given value Re of
the Reynolds number there is an unstable three-dimensional
wave perturbation with eigenvalue c, then there exists a two-
dimensional wave perturbation with the same c which is un-
stable at a smaller Reynolds number klk~lRe (H.
Squire25). Let us note in passing that in eliminating un-
knowns we lose solutions of Eq. (1.7') for which w = 0, that
is to say solutions for which k^u + k2v=0. In this case, u and
v satisfy the equation

dz2 v * '

with boundary condition u = 0 for z = 0,h. For k2^=0 this
equation has an additional spectrum of eigenvalues c which
is absent from that of the two dimensional perturbations;
however, it corresponds only to stable perturbations, i.e., Im
c<0 (V. A. Romanov26). Actually, if we multiply (4.2) by
u*, integrate over z and take the real part of the resulting
equation, we obtain

= 0, (4.3)

from which it is also clear that Im c < 0. Thus, as Re in-
creases the two-dimensional wave perturbations lose their
stability before the three-dimensional ones, and in analyzing
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stability with respect to small wave perturbations it is suffi-
cient to study the eigenvalue spectrum of the Orr-Sommer-
feld Eq. (4.1) with the boundary conditions ^ = d\fi/dz = 0
at z = 0,h. Furthermore, in contrast to the Rayleigh Eq.
(1.11), Eq. (4.1) has no singularities and apparently any
two-dimensional solution to Eq. (1.7') is a superposition of
elementary wave solutions (although a complete proof of
this assertion has not been published).

4.2. The vanishing-viscosity principle

It turns out that the following vanishing-viscosity princi-
ple holds: Wave solutions to Eq. (1.7) which are either neu-
tral or growing with time are the limits of corresponding
solutions to Eqs. (1.7') as v-»0, while solutions to (1.7')
which decay reduce to the corresponding solutions to (1.7)
only outside of some range of values of z (the "inner bound-
ary layer"), within which their behavior is determined by
the viscosity, no matter how small it is.

So as to formulate this principle in terms of the eigen-
values c of the Orr-Sommerfeld equation, we assume that the
function U(z) is determined not only within the segment
0<z<A but is also analytically continued to some neighbor-
hood of this segment in the complex z plane. We introduce
the function r(z) = [i(U — c ) ] 1 / 2 . Let us refer to arcs in the
z-plane which connect the points z = 0 and z = h as allowa-
ble if along them U — c ̂  0 and Re J rdz varies monotonical-
ly. We will say that c is an eigenvalue along the arc if for this c
there exists a solution to the Rayleigh equation which is ana-
lytic along this arc and reduces to zero at its ends.

Then the vanishing-viscosity principle follows from the
following theorem: if as v-»0 an eigenvalue of the Orr-Som-
merfeld equation tends to such a limit c for which we can
construct an allowable arc in the z-plane, then c is an eigen-
value of the Rayleigh equation along this arc; conversely, if c
is an eigenvalue of the Rayleigh equation along some allowa-
ble arc, then this c is the limit as v->0 of eigenvalues of the
Orr-Sommerfeld equation (C. Lin,27 W. Wasow28).

So as to determine what sort of arc is allowable, let us
consider first of all a real c, and letzc be a root of the equation
U(z) — c. Then in a neighborhood of zc we have
U — c^U'c(z — zc) . Let U(z) be a monotonically-increas-
ing function so that U'c > 0. We set

2

T) (2) = j r dz w e««/* (C/;)1/2

zc

X-f-U-zc|
3/2exp[-|-arg(2-Zc)]. (4.4)

The three curves Re 77 = 0 (the so-called Stokes lines)
emerge from the critical point z = zc at equal angles and
divide its vicinity into sectors I, II in which the interval of
0<z</z lies, and III which does not contain it (Fig. 3a). Any
two sectors are mapped by the function 77 (z) into a plane cut
along a ray whose "cut edges" are the images of the Stokes
lines. In Fig. 3b we show the image of sectors I and II on the
plane cut along the positive part of the imaginary axis. In this
plane, the points 77 (0) and rj(h) can be connected by a curve
on which Re 77 varies monotonically. Its image in the z plane

a b

FIG. 3. a—Stokes lines for real c. b—Their image under the mapping

circles the critical point from below; therefore this is an al-
lowable arc.

For U' (z) < 0, on the contrary, we must circle the criti-
cal point from above. For a profile U(z) symmetric with
respect to the point z = h /2, there are two critical points,
and one must be circled from below (when U'c > 0) and the
other from above (when U'c <0). I f l m c > 0 (instability)
and at the critical point U' > 0 on the real axis, thenzc and all
of sector HI lie above, while for U' < 0 they lie below the real
axis, which thus is also an allowable arc. If, however,
Imc <Q (stability), then the interval 0<z</! intersects the
three sectors, and Re 77 varies nonmonotonically along it,
and the direction to circle the critical point on the allowable
arc (along with all of sector III) is determined by the sign of
U' near it, the same as above. The eigenfunctions of the Orr-
Sommerfeld equation in sectors I and II reduce to the eigen-
functions of the Rayleigh equation; in sector III, however,
they apparently oscillate rapidly for small v; in the neighbor-
hood of the intersection of the Stokes lines with the real axis
inner boundary layers are formed.

4.3. Planar Couette and Poiseuille flows

Passing to the investigation of specific plane-parallel
flows, we begin with plane-parallel Couette flow with a lin-
ear velocity profile U(z) = Az. According to all calculations
performed in the past, this flow is linearly stable, that is no
normal bifurcations occur from it, and Relcr = oo (al-
though a full proof of this has not been published). At the
same time, it is well known from experiments that Couette
flow is apparently unstable relative to finite perturbations
which lie inside a certain "neutral surface" in the three-di-
mensional space of the parameters (A:,Re^4). This region
was approximately analyzed by S. Kuwabara29 and T. Ell-
ingsen, B. Gjevik and E. Palm.30 According to the first of
these authors, the instability occurs only for Re = (I/
2) v~ lAh 2 > Recr, min sr45 000 in rather small regions of the
(k^4) plane.

Planar Poiseuille flow, with a parabolic velocity profile
U(z) = 4f/max (z/h)( l-z/h) in an ideal fluid, is linearly
stable; it was observed by W. Heisenberg31 that this flow
possesses a linear instablity in a viscous fluid for large Re
(normal bifurcation), which at first sight appears paradox-
ical (since it would seem that viscosity can only be a stabiliz-
ing factor). However, subsequently the existence of this in-
stability was verified by C. Lin32 and other authors, who
investigated the "neutral curve" in the (&,Re) plane within
which j/>0 [where k is measured in units of (h/2)~\
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FIG. 4. Instability regions for planar Poiseuille flow from S. Pekeris and
B. Shkoller (1967).34

Re = ( l/2)v lhUm!Lt and y is given in (3.1 ) ]; see the con-
tinuous curve shown in Fig. 4. In this case a value of
Re,cr x- 5800 was obtained, and kcr s; 1, while both branches
of the neutral curve approach the abscissa k = 0 as Re -» oo ,
the upper curve as Re~ " ' ', the lower as Re~ 1/7. So, pertur-
bations with fixed and not-too-large k first turn out to be
stable, and then as Re increases they pass into the region of
instability; however, for very large Re (including Re = oo,
i.e., the ideal fluid) they again become stable. We should also
mention Poiseuille-Couette flow

(4.5)

For a = 0 we obtain Poiseuille flow; as a increases, Relcr

increases rapidly and becomes infinite at a as small as
=:0.55 — far from the Couette flow regime.

However, planar Poiseuille flow is nevertheless not the
best example of a normal bifurcation: the experimental data
do not confirm the existence of the "neutral curve" men-
tioned above, but rather show that the loss of stability occurs
at a value Re~ 1000-2500, i.e., much lower than the Relcr

of linear theory. This causes us to suspect the presence of an
inverse bifurcation, and thus instability relative to perturba-
tions of finite amplitude. And, in fact, W. Reynolds and M.
Porter,33 along with S. Pekeris and B. Shkoller,34 have inves-
tigated the coefficient 8 = 8i + S2 + <53 in the Landau ex-
pansion (<5j describes the influx of energy from a more unsta-
ble perturbation which deforms the laminar flow, <52 the
generation by this perturbation of higher harmonics and S3

the distortion of its form) and found 5<0 (because of <53)
everywhere in the (k,Re) plane except in the region bound-
ed in Fig. 4 by the dotted curve. Thus, the curves
y(k,Re) = 0 and 5(/c,Re) = 0 divide the plane into four
regions with various combinations of signs of y and S. Par-
ticularly interesting is the region y > 0, S > 0, in which finite-
amplitude periodic motions can exist. According to D.
Meksyn,35 ReCI.imin ~ 1000 is obtained for certain three-
dimensional flows.

4.4. Instability of the boundary layer

In contrast, a normal bifurcation has been quite reliably
observed in the flow within the boundary layer next to a flat
surface, which is treated in calculations as approximately
plane-parallel. The "neutral curve" for this bifurcation was

first calculated by W. Tollmien36 in 1929, for a profile U(z)
made up of linear and parabolic segments, and in 1930 for
the Blasius profile (for Relcr = 420, where Re = v~l8*U;
8* is the so-called displacement thickness and C/is the (uni-
form) flow velocity of the approaching fluid). This same
calculation was performed again by H. Schlichting, and later
by other authors; its validity was confirmed experimentally
by G. Schubauer and H. Skramstad,37 who used perturba-
tions ^(z)exp [i(kx — eat)], produced by a vibrator with a
fixed (real) frequency ta, which for Im fc<0 grow down-
stream (however, since co — ck the "neutral curves"
Im k = 0 and Im ea = 0 coincide). The "neutral curve" here
is qualitatively the same as in Fig. 4, but later calculations
showed that for velocity profiles U(z) with inflection points
the flow is more unstable: for Re-» oo the upper branch of
the "neutral curve" tends toward an asymptote k = kx > 0,
so that a perturbation with k<kx which is unstable for
some Recr remains unstable for all Re > Recr up to the ideal
fluid (see Fig. 8b below).

The experiments of P. Klebanoff, K. Tidstrom and L.
Sargent38 along with other authors showed that later evolu-
tion of the unstable Tollmien-Schlichting wave in the bound-
ary layer near a flat surface led for some Re2cr to a second
normal bifurcation—the superimposing of a three-dimen-
sional flow onto the initially two-dimensional flow, which is
periodic in the transverse y direction and has a group veloc-
ity along x which is close to the phase velocity of the first
wave. This secondary wave grows downstream with extraor-
dinary speed, creating vortices with longitudinal axes which
give rise to an abrupt transverse redistribution in the intensi-
ties of pulsations in the longitudinal velocity u (Fig. 5); the
wave then becomes nonlinear. This last effect leads to focus-
ing of the secondary wave packet at the crest of the first
wave, and also to the disappearance of those parts of the
secondary wave with positive anomalies in the longitudinal
velocity U>0, leaving only the parts with negative pulses
I/<0 (this effect was explained by M. Landahl39). First a
single pulse forms within one cycle of oscillation of the vibra-

2,0

-2,0

0,01 0,03 0,05 0.07 UJU

FIG. 5. The growth downstream of pulsations in the longitudinal velocity
in a secondary wave within the boundary layer above a planar surface. 1—
for x = 7.6 cm; 2—forx= 15.2cm; 3—forx= 19cm.
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FIG. 6. Bubble "isochrones" (i.e., lines of constant time: side view) in a
boundary lay er near a planar surface, generated by a vertical filament (the
left edge of the photograph; the flow is from left to right).

tor, then two downstream etc.; apparently, after the forma-
tion of four pulses in a cycle the flow becomes chaotic.

Making the flow visible by using chains of micron-sized
bubbles periodically generated by electric current in a plati-
num filament and microinjection of a dye (S. Klein et
al.40~^5), and also with the help of suspended particles (E.
Corino and R. Brodky46), indicated the presence of two in-
teracting small-scale flows in the viscous sublayer next to the
wall: vortices with transverse axes and the same sign as U',
and streams of decelerated fluid in the troughs of the second-
ary transverse waves.

These streams are formed at heights z+

= v~lu^z = 2.5 — 10 (M# is the "velocity of friction" at
the wall), and have a width Sy+ = 10-30 and are separated
by spacings of Aj>~*~ ~ 100. They slowly float to the surface
under the action of the longitudinal vortices, but, because of
the negative pressure gradients under the transverse vortices
above them drifting by, they break free of the wall and pene-
trate upward into the more rapidly-moving fluid, creating in
the instantaneous velocity profile deformations with points
of inflection (Fig. 6). After this, oscillations arise in the
stream and shortly thereafter its end "explodes," creating
chaotic motion (mainly at a height z+ = 10-30 and at a dis-
tance Sx + ~ 1000-1500 down from the separation point). It
is calculated that these "explosions" are responsible for al-
most all the generated turbulent energy.

When separation of the stream occurs, the central part
of the transverse vortex connected with it floats up and de-
parts downstream, creating a "horseshoe" (Fig. 7; the longi-
tudinal cross section of the "leg" of this "horseshoe" is visi-
ble in the photograph in Fig. 6). The upper part of the
"horseshoe," which overtakes from above, the next down-
stream decelerating stream causes a negative pressure gradi-
ent over it; this leads to its separation and generates a new

FIG. 7. Formation of a horseshoe-shaped vortex.

"horseshoe." The superposition of two "horseshoes" causes
them to combine; more often, however, they cross and gener-
ate an "explosion": this leads to local "randomization"and
transfer of energy to the small-scale region of the spectrum.

4.5. Flows in an unbounded region

Of the various plane-parallel flows in an unbounded re-
gion we first discuss the planar jet, e.g., with a velocity pro-
file U(z) = f/o[cosh(z/A) ] ~2, which is always unstable rel-
ative to antisymmetric perturbations, with Recr>min

= (v~'At/oh, =:3.7 and hkcr =;0.25; as Re grows, the up-
per branch of the "neutral curve" increases monotonically
(Fig. 8c). The laminar "mixing zones" which smooth out a
tangential discontinuity in the velocity are unstable for any
Re: the lower branch of their "neutral curves" coincides
with the entire positive axis k — 0, while the upper branch
rises monotonically with increasing Re (Fig. 8d).

4.6. Poiseuiile flow in a pipe

For axially-symmetric flows, we will limit ourselves
here to considerations of Poiseuiile flow in a circular pipe. In
this case, the question of eigenvalues of the Orr-Sommerfeld
type of equation, which generalizes the Rayleigh Eq. (1.22)
to the case of a viscous fluid, turns out to be very complex
mathematically, and has been analyzed only in a few special
cases (axially-symmetric perturbations with n = 0 and a few
others).

Unstable perturbations of this flow have not been ob-
served, so that Poiseuiile flow in a pipe, like planar Couette
flow, is apparently linearly stable, i.e., Relcr = oo.

At the same time, experiments starting with those of
Reynolds himself (in 1883) showed beyond any doubt that
this flow will always remain laminar, i.e., regardless of the
size of the perturbation at the entrance of the pipe, only if
Re = 2V1R C/max < Recr,min ~ 2000; above a certain Recr it
loses its stability—evidently relative to finite perturbations,
since a decrease in the initial perturbation can "drag" the
laminar regime out to very large Re (according to W. Pfan-
niger,47 even out to Re = 100 000). The loss of stability oc-

kh,

Re

FIG. 8. Regions of linear instability in the (kh. Re) plane:
a—for plane Poiseuiile flow; b—for a boundary layer near a
plane surface; c—for a planar jet; d—for a planar mixing

=^ zone.
Re
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curs in the form of the appearance of intermittent "turbulent
bottlenecks" which are short with respect to x but which
occupy the entire cross section of the pipe, and which mov-
ing downstream lengthen and fuse with one another.

The region of instability in the space of the parameters
(k, Re, A) for this flow was studied by A. Davey and H.
Nguyen.48 We note that in the presence along the axis of the
pipe of a rod on the surface of which the velocity has to
become zero the flow behaves in a manner similar to that of
planar Poiseuille flow as shown in Fig. 4. It acquires both a
region of linear instability and a region of inverse bifurca-
tion.

4.7. Wakes behind bodies

To conclude Section 4, we enumerate the bifurcations of
a wake behind a cylindrical body of circular cross-section
perpendicular to the incident current, as a generic example
of the behavior of wakes behind bodies with a viscous fluid
streaming past them. For Re~10 an exchange of stability
occurs: in place of a monotonic smooth stream behind the
cylinder, a pair of steady-state vortices forms. For Re > 40,
these vortices alternately detach from the cylinder, and are
replaced by new vortices; the detached ones flow down-
stream, forming a Karman vortex street. For Re > 100 the
vortices are rapidly replaced by turbulent regions which al-
ternately detach from the boundary layers. For Re > 105 the
boundary layers are turbulent even prior to detachment, and
the detachment point moves downstream. The turbulent
wake then constricts and the drag decreases (the drag cri-
sis). For Re~ 10s the turbulent wake widens and the drag
increases again.

Finally, for Re~ 107 the wake begins to oscillate as a
whole. If the fluid has a free surface, all these phenomena can
change their form, and so-called "ship waves" can be super-
imposed on them in addition. In a stratified fluid they will all
be accompanied by the generation of various kinds of inter-
nal waves.

5. RANDOMIZATION

In a viscous fluid, a finite number of lower (large-scale)
modes of the motion determines all the remaining modes,
since the higher (small-scale) modes are strongly damped
due to viscosity and only replicate with decreased amplitude
the fundamental modes of oscillation (in particular, they
have the same kind of spectrum—discrete or continuous).

5.1. Finite dimensionality

In connection with these issues, E. Hopf 4 has advanced
the hypothesis that every set of phase trajectories of the Na-
vier-Stokes equation is attracted for t— oo to a finite-dimen-
sional set. For two-dimensional flows of a viscous fluid this
hypothesis can be proved (C. Foias and G. Prandtl,49 O. A.
Ladyzhenskaya50). Let us recall the natural estimate of the
number of degrees of freedom in fully-developed (i.e., large
Re) local three-dimensional turbulence N~ (Re/Recr )

9/4

(L. D. Landau and E. M. Lifshitz51). An analogous estimate
for two-dimensional turbulence with spectral transfer of
"entrophy" (i.e., the square of the vorticity) to the small-

scale region N~ Re/Recr is less accurate, since this spectral
transfer is not entirely localized. A more general estimate of
the dimension of the attractors of the two-dimensional Na-
vier-Stokes equations will be given in Sec. 5.7 below. Thus,
the hydrodynamic equations of a viscous fluid can be written
in the form

i = F (u, Re), u = (u1 (t) UN (t)), (5.1)

where uk ( t ) , e.g., are the coefficients in the Galerkin ap-
proximation.

5.2. Dissipation

Viscosity gives rise not only to finite-dimensionality of
the phase space but also to dissipation of the phase flow, i.e.,
an average compression of the phase volume "downstream."

N

Let <5F(u0,0) = JJ <5«o be a small initial element of the
k= 1

,phase volume around the point u0 and 8V(u0,t) be its value
after displacement down the phase flow over a time t. From

N

small t we will have 5F(u0,0 = TT Suk where 8uk

k= 1

s (duk/du^ )8uk,. SincedSuk/dt^ (diik/du^Su^, the rela-
tive rate of change of 8 V with time equals

(5.2)

At different phase points u0 this quantity can be either posi-
tive (expansion) or negative (compression). The phase flow
is called dissipative if for every u0

A0 (u0) = lim t"1 In
(-«»

0, t)
, 0)

<0 (5.3)

(or, for a more general definition, if every sphere of suffi-
ciently large radius with its center at the origin in phase
space is an absorbing region). Because of dissipation, attrac-
tors have zero phase volume (and dimensionality smaller
than AO.

5.3. Definition of randomness

Of special interest to us here are the strange attractors,
on which phase trajectories display the following properties
of randomness:

(1) An extremely sensitive dependence on initial condi-
tions, due to exponential divergence of trajectories which are
initially close together (and leading to their unpredictability
or nonreproductibility for initial conditions which are given
with arbitrarily high (but finite) precision). (2) The every-
where-denseness at the attractor of almost all trajectories,
i.e., their arbitrarily close approach to any of the attractor's
points (which implies that they return infinitely often to the
attractor), and the property that any initial nonequilibrium
probability distribution (measure) over the phase space (or,
more precisely, over the region of attraction of the strange
attractor) reduces to some limiting equilibrium distribution
at the attractor (an invariant measure). (3) The mixing
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property: For any (measurable) subsets A and B of the at-
tractor, the probability after emerging from A of arrival at B
is proportional after a long time to the measure of B:

\imP{(F<A)(]B} =
J-.00

(5.4)

where the symbol fl denotes set intersection. A consequence
of the mixing property is the fact that the time-averaged val-
ue {<&[«(/)]) of any function 4>(«) defined on the strange
attractor is independent of the initial conditions u0 (for al-
most allji0), and that this average value coincides with the
average <!>(«) over the invariant measure (ergodicity):

T

<<D> = lim T~l \ < D [ u ( t ) ] d t = f CD (u) P (du) =s 3>. (5.5)
r.oo J J

One mark of the mixing property is a rather rapid decay of
the correlation functions as r-» oo:

B>1 (T) = ([u? (t) - (u>) ](ul (t + T) - (u1)]) (5.6)

which is to say continuity of their Fourier transforms with
respect to T, i.e., their spectral functions.

It appears expedient to have the term turbulence refer to
the random evolution [ in the senseof(l)-(3)above]ofthe
flow of a (viscous) fluid which possesses vorticity. Stochastic
potential flows of a fluid are by preference referred to as
random wave fields, while for nonhydrodynamic systems
one should preferably restrict oneself, where necessary, to
the adjective stochastic.

5.4. Hyperbolicity

Let us now focus on the first property of randomness.
Exponential divergence of nearby trajectories as the phase
volume is compressed is possible if expansion occurs along
some directions uk in the phase space {u} and compression
occurs along others, i.e., the nonwandering phase points
must be similar to two-dimensional saddle points. Such
points are called hyperbolic. A fixed point u0 is hyperbolic if
the Jacobian A (u0) = {dF k /du'} at this point has K eigen-
values with positive and N-K eigenvalues with negative real
parts, where 0<K<N. The sets W^ and Wlo of phase
points u0, through which trajectories pass tending to u0 as
t -» + oo and t -» — oo, are referred to as the stable and un-
stable manifolds of the point u0, respectively; in a small
neighborhood of the point u0 they are subspaces, spanned by
the 7V-K and K eigenvectors of the matrix A (u0) which cor-
respond to its eigenvalues with negative and positive real
parts, respectively.

Points of intersection of the stable and unstable mani-
folds W\ and W\ which differ from the point u itself are
called homoclinic (while intersections of the stable manifold
Wa for one fixed point u with the unstable manifold W* for
another fixed point v are called heteroclinicpoints). In their
neighborhood, the structure of the phase flow can be par-
ticularly complex (see below).

A periodic trajectory is a hyperbolic set if some multi-
pliers (see Sec. 3) are within while others are outside the unit
circle (we again do not consider the trivial multiplier one).
The sets Ws and W n of trajectories attracted to a limit cycle

as r-» + oo and t-* — oo are referred to as the stable and
unstable manifolds of the limit cycle. If the sum of their di-
mensions equals N-\, then their intersection is said to be
transversal.

As an illustration of homoclinic structures, let us con-
sider the intersection of a stable and an unstable manifold of
a periodic trajectory in three-dimensional phase space. Here
it is convenient to use the so-called Poincare mapping, which
in its general form for an JV-dimensional phase space in-
volves listing the sequence of points v0, v,, v2... of intersec-
tions of trajectories (in the same direction, without tangen-
cy) with some secant-like N-\ dimensional surface 1, in the
phase space, which determines a mapping VB + 1
= II(vn ,Re) of the surface 2 into itself. Because a solution

u(u0>0 ofEq. (5.1) exists for all t, this mapping is invertible.
In the case N = 3, the secantlike surface 2 can be taken

to be some plane. A periodic trajectory on 2 corresponds to a
fixed point of the mapping n, while the stable and unstable
manifolds correspond to the stable and unstable separatrixes
(Fig. 9, in which for clarity we have connected the sequence
of intersection points of 2 with the phase trajectory with
smooth curves). If there is a common point on the separa-
trixes, then all its images as n -* oo and preimages as n — oo
are also intersection points of the separatrixes, so that they
form a denumerable set. They belong to the so-called homo-
clinic trajectory, which is doubly asymptotic in the sense
that for t -» + oo it either unwinds from the original periodic
trajectory or winds upon it. On an approach to a fixed point
where the motion becomes exponentially slow, the homo-
clinic points "condense," while the amplitudes of oscillation
of the separatrixes increases. In the neighborhood of a ho-
moclinic trajectory, any small phase volume as? -> + oo un-
dergoes a complex deformation and "blurring," so that al-
most all trajectories diverge exponentially. This local
instability of the trajectories enclosed within a bounded vol-
ume of phase space is what leads to a particularly complex
phase flow which here includes a denumerable set of periodic
trajectories and a nondenumerable set of trajectories doubly
asymptotic to them.

An invariant set is hyperbolic in general if at each of its
points u the space 7"u tangent to the phase space (i.e., the
linear space of tangent vectors at the point u) is a direct sum
of the one-dimensional subspace E \ spanned by the phase
velocity vector and the stable and unstable subspaces
EB

U = {£} and E° = {i\} such that the action on their ele-
ments of the differential of the phase flow DF' (which is a

FIG. 9. Homoclinic trajectory on a secant-like surface. The shaded parts
of the plane are mapped into one another.
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linear mapping from Tu to TF,a ) obeys the inequalities.

for
(5.7)

for

where a, 6, c are certain positive constants which do not
depend on u. The phase points v for which F' v unrestrictedly
approaches F'u as ?-» oo (or as f-» — oo ) form the stable
manifold Ws

a (or the unstable manifold W^ ) of the point u;
this manifold is tangent at this point to Es

u (or E^). The
union of these manifolds for all u for a given trajectory makes
up the corresponding manifolds W* and W n for that trajec-
tory. Their intersections, just as above, form homoclinic
structures.

5.5. Structural stability

Thus, exponential divergence of neighboring trajector-
ies in dissipative systems is connected with the presence of
hyperbolic sets in the phase spaces of these systems. Are
these sets characteristic of many dynamic systems, or are
they, on the contrary, exceptions? In the latter case, a small
perturbation of such a system (say, by the "noise" always
present in nature) would deprive it of this property. In con-
nection with this, it is useful to employ the concept intro-
duced by A. A. Andronov and L. S. Pontryagin56 of a struc-
turally stable (or "coarse-grained") system, which for (5.1)
is formulated as follows: For any e > 0 there is a S > 0 such
that for any perturbed system u = F, (u) which is "distant"
from the original system (in terms of a certain metric
||F, — F|| ) by no more than S there exists a mutually single-
valued and mutually continuous transformation of the phase
space into itself, which shifts its points by no more than £ and
maps the trajectories of the unperturbed system into the tra-
jectories of the perturbed system. Structurally stable systems
form an open set in the space of all possible dynamic systems.

In one- and two-dimensional phase spaces the so-called
M. Morse-S. Smale systems possess structural stability. In
these systems, the sets of nonwandering points consist only
of a finite number of fixed points and closed trajectories,
which are all hyperbolic, and the stable and unstable mani-
folds corresponding to any such points are transversal (i.e.,
either they do not intersect, or the sum of spaces tangent to
them at each point u of their intersection forms the complete
tangent space Tu ) .

In phase spaces with a large number of dimensions, the
hypothesis of S. Smale53 says that in order to have structural
stability, it is necessary and sufficient that for each transfor-
mation F ' of the phase space arising from the phase flow the
set ft of nonwandering points should be hyperbolic, while
the set of periodic points should be everywhere dense in fl
(this is the so-called "axiom A "); furthermore, each stable
and each unstable manifold of points from fl should be
transversal. The sufficiency of this condition has been
proved in a quite general form; the necessity, however, has at
this time been proved only within the context of a more re-
stricted definition of structural stability.

Thus, for N>3 it is in some sense typical for phase flows

to have an infinite set ft of hyperbolic nonwandering points,
with a set of periodic trajectories everywhere dense in ft (D.
V. Ansonov54 has even found flows in which the entire phase
space forms a hyperbolic set).

5.6. Cantor sets

The set ft can have an extremely complicated geometric
structure. For example, Smale55 has proved that in a wide
class of typical dynamic systems, each homoclinic point be-
longs to some invariant subset K of the set ft which is a
"Cantor discontinuum," i.e., a closed nowhere-dense set
with no isolated points.

The standard example of a Cantor set is constructed in
the following way: (1) remove the middle third of the seg-
ment [0,1], i.e., the open (without endpoints) interval (I/
3,2/3); this gives us a set AT, made up of the two segments
[0,1/3] and [2/3,1]; (2) remove from each of the two seg-
ments of the set A", its middle third; this gives us the set K2

consisting of four segments;... (n) remove from each of the
2" ~ ' segments of Kn _ t its middle third; we obtain the set
Kn consisting of 2" intervals; etc. The intersection of all the
sets Kn then forms the Cantor set K. If each number on the

interval [ 0,1 ] is written in base 3, i.e., as ^T an 3 ~~" where all
n= 1

the an take one of the values 0.1, and 2, then K consists of
points for which all the an equal to either 0 or 2. This means
that a one-to-one correspondence can be set up between K
and the set of all binary sequences, i.e., the entire interval
[ 0,1 ]. That is, the set K is nondenumerable (it has the power
of the continuum).

As an example of the formation of a Cantor set in phase
space, let us consider a dynamic system which in a fixed time
T gives rise to a mapping II (u) which takes the interior U of
a two-dimensional torus into itself, such that II(u) is the
interior of a torus contained in U with one loop, as shown in
Fig. 10. The circle S, being the cross-section of the body U,
thus is mapped into two small circles 11(5") within S. A sec-
ond iteration FI2(5) gives two even smaller circles inside the
circles of 11(5), etc. The intersection of all the iterates
11" (S) gives a Cantor set of points in S, so that the intersec-
tion of all the iterates II" ( U ) is a Cantor set of curves—the
so-called one-dimensional solenoid of R. Williams.

5.7. Fractallty

The Cantor set is fractal, i.e., its Hausdorff dimension
dimH K exceeds the usual topological dimension (which in its
case equals zero). The quantity dimHAT is defined using the

fl(u)

FIG. 10. A mapping fl(£/) of the interior Vof a two-dimensional torus
into itself which gives rise to a strange attractor.
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Hausdorff a-measure of the set A:

mesH „ (A) = lim inf ̂  [D (U)}a,
e-O rU)

(5.8)

where the lower bound is taken over finite or denumerable
covers F of the set A by spheres U with diameters D(U) <£.
The dimension dimHA" is defined as that number a0 such
that the measure ( 5.8 ) for a>a0 equals zero and for a < a0

is infinite. If in (5.8) we use only covers made up of spheres
of diameter £ and we take the upper or lower bound (i.e., the
largest or smallest limit for a subsequence of values £-»0),
then we obtain the upper capacitive a-measure mesc,a (A )
or the lower capacitive a-measure me ^ (A); then
or dimc/4 is the lower bound of values of a for which the
upper or lower measure equals zero (or the upper bound of
values a for which the measure equals infinity). Then dim-
H^<dimc^< dimc^. If the latter two values coincide here,
then they define the capacity of the set A :

j. , ,.dim. A = limc ; —In l/e) (5.9)

where Nc (A) is the smallest number of spheres of diameter e
which cover the set A. The sets KN used above to construct K
consist of Ne = 2" intervals of length e = 3 ~ ", so that
dimcK = lim (In 2")/(ln 3") = In 2/ln 3^0.631.

Yu. S. Il'yashenko,97-" O. A. Ladyzhenskaya,100 and
A. V. Babin and M. I. Vishik,101-103 using rigorous methods,
have obtained estimates of the Hausdorff dimension of the
attractors for two-dimensional Navier-Stokes equations
with periodic boundary conditions (in Refs. 97, 98 for the
Galerkin approximations to these equations), expressed in
the form C,Re<dimA<C(Re).4

5.8. Lyapunov exponents

The exponential divergence of neighboring trajectories
averaged over time can be qualitatively characterized by the
so-called Lyapunov exponents, for which at points u ( f ) of a
trajectory with initial conditions u(0) = u0 we introduce the
tangent vector w = w(w0,f) with initial conditions
w(u0,0) = w0 so that ||w(u0,f) || characterizes the projection
onto the direction w of the distance at time t between trajec-
tories with neighboring initial points u0 and u0 + w0. The
vector w satisfies Eq. (5.1) linearized relative to u(r), which
is of the form w = A [u(f) ] w where A = {dF k /du'} is the
Jacobian at the point u ( f ) . This equation has a complete
system of fundamental solutions Wj, w2,..., w^, and for each
of these we determine its own Lyapunov exponent:

^. (5-10)

We list the solutions in order of decreasing a-. a,>0-2>. • •
><TA, . One of the first researchers to use the theory of Lya-
punov exponents to analyze random motions was V. I. Ose-
ledets.104 The divergence of the phase flow (5.3) equals

N

A0 = ^ o-j, so that for dissipative flows not only aN < 0 but
/= i

in addition the modulus of the sum of negative at is larger
than the sum of positive a,,. If a trajectory u(0 is attracted to

a fixed point (or to a periodic or quasiperiodic trajectory),
then all a( (or all except al = 0, where the vector w, is di-
rected.along the limiting trajectory) are negative.

If a trajectory is attracted to a strange attractor A, then
necessarily crl > 0. If on the attractor there exists an invar-
iant measure and ergodicity holds, then the time-averaged
values in (5. 10) do not depend on u0 and can be replaced by
an average over the invariant measure. Let k be an integer

k+ 1

such that ^ cr, >0 and ̂  cr, <Q. Then the quantity

I'
(5.11)

is referred to as the Lyapunov dimension of the attractor A.
T. Li and J. Yorke56 have advanced the hypothesis that this
quantity coincides with the Hausdorff dimension of the set A
(defined as the lower bound of the Hausdorff dimensions of
sets of unit invariant measure, which is a bound for the
Lebesgue measure in phase space). Numerical calculations
for several two-dimensional mappings and a single three-
dimensional flow have shown that the quantities (5.11) and
(5.9) practically coincide.

6. SCENARIOS FOR RANDOMIZATION

Until now, the specific sequence of bifurcations which
leads as Re increases to the conversion of steady-state (lami-
nar) flow to random (turbulent) flow has not been identi-
fied, with the required degree of rigor, for even a single vis-
cous-fluid flow geometry. The material presented in Sec. 4
shows that for different flow geometries such bifurcation se-
quences can apparently be extremely varied. The most prob-
able hypotheses concerning the sequence of bifurcations
which lead to randomness we will call scenarios; let us inves-
tigate a few of these.

6.1. Landau-Hopf scenario

This scenario involves a sequence of normal bifurca-
tions which gives rise to a limiting quasiperiodic flow
u[x,^! (t),..., <pN ( t ) ] . This flow has a period of 27rin each of
the arguments <pk (t) = a>kt + ak with frequencies colt ...,
u>N which are in general incommensurate, and occupies a
region in phase space corresponding to all possible sets of
initial conditions (phases) «„ ..., a^. The flow is ergodic in
the sense that a trajectory belonging to such a flow will in the
course of time come arbitrarily close to any point of this
region (because at times tk = Iirk/a)^ k = 0,1,2,..., where
(Pi(t)=al, the phase of any other oscillation
f>2(tk ) = 2irko}2/(0i after reduction to the interval [0,2i7]
can have a value arbitrarily close to any previously given
point).

The temporal velocity correlation functions will in gen-
eral not reduce to zero at infinity; however, they at first de-
crease rapidly (as N ~'/2), and the time T until the next max-
imum (the Poincare recurrence time) is extremely long:
T~eaN where a~l (V. I. Arnol'd57). Much worse is the
fact that the sequence of normal bifurcations and the result-
ing quasiperiodic motion do not possess structural stability
(J. Eckmann58), and are atypical even in the sense that
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phase flows which are subject to this scenario do not form a
Baire set in the space of all phase flows (i.e., a denumerable
intersection of open everywhere-dense sets). In connection
with this, G. Sell59 suggests that we make this scenario more
precise as a sequence of bifurcations of ̂ -dimensional tori
T k -» T k +1, without requiring that the flow on these tori be
quasiperiodic. Such bifurcations are possible, and in the
presence of strange attractors they also possess structural
stability in a certain sense.

6.2. Ruelle-Takens scenario

This scenario involves the appearance of a strange at-
tractor after three normal bifurcations. It possesses struc-
tural stability: for every sufficiently small neighborhood of a
phase flow with an «-dimensional invariant torus, for n>3
there exists an open set of phase flows with a strange attrac-
tor satisfying axiom A (while the "smallness" of the neigh-
borhood is understood in the sense of the C" ~ ' norm:

||F||= max |D<*>F|,

where D<ky F(u) denotes any derivative of order k, and for
n>4inthesenseoftheC°° norm). In 1971 this theorem was
proved for n>4 (and attracted universal attention to the
study of randomizing processes in dissipative systems),
while for the case n = 3 it was generalized in a paper by
the same authors (Ruelle and Takens) together with
S. Newhouse.61

The proof of the Ruelle-Takens theorem is based on the
possibility of approximating a flow with torus T k by a flow
with a closed trajectory wound around the torus (where all
o)i/(ok for i = 1, ...,k — 1 are small rational fractions), into
which is imbedded a Cantor attractor, e.g., of the Williams
solenoid type. In other words, in this mechanism the three-
frequency motion is destroyed by means of nonlinear syn-
chronization (generation of resonances) of its higher har-
monics. This mechanism is apparently too "soft" (in the
words of B. V. Chirikov in the book of Ref. 9, too "gentle")
for turbulence to arise. In the experiments which have been
performed, the observed randomization is more similar to
disruption of a two-frequency motion T2—i.e., probably
through synchronization of beating between the two per-
iods, and then either period-doubling bifurcations of the re-
sulting cycle or coalescence and disappearance of stable-sad-
dle-point cycles (and formation of an attractor from the
homoclinic structure of the saddle-point cycle or from folds
in an originally nonsmooth torus).

6.3. Feigenbaum scenario

This scenario involves the appearance of a strange at-
tractor as a result of an infinite sequence of period-doubling
bifurcations. Let us investigate these bifurcations first on the
example of a one-dimensional non-invertible (single-valued
and continuous) mapping xn + l =n(x n , / u )of the segment
0<x< 1 into itself, where the functions II has one quadratic
extremum on this interval, which we will assume is a maxi-
mum. Iterations of such a mapping are conveniently por-
trayed on a so-called Konigs-Lameria diagram (Fig. 11), on

FIG. 11. The Konigs-Lameria diagram.

which the value xn is plotted on the abscissa and the value
xn +1 is plotted on the ordinate; the graph of U(x) is drawn
along with the bisectrix of the coordinate angle, and between
these two curves the Lameria ladder is constructed, so
that the image xn +1 becomes the pre-image of xn + 2,
n= 0,1,2

The point x^ = II (*„,) where the graph of II (x) inter-
sects the bisectrix is a fixed point of the mapping, x^ is stable
if there is a sufficiently small neighborhood of x^, all points
of which converge to x+ when iterated. A sufficient condi-
tion for this is II' (x+ ) | < 1 (in this case, when the graph of
H(x) intersects the bisectrix at an angle either smaller than
45°—for which the iterations converge monotonically to *„,,
or larger than 135°—for which the iterations converge in an
oscillatory way). The set of points xl+} — H(x,)^xlt

i = 1,2,..., n — 1 where*,, + l = U(xn) =xt f°rman»-fold
cycle (its Lameria ladder is closed). Each of its points is a
fixed point of the n-fold-iterated map IIn; this cycle is stable
if FI^ (x) | < 1 for one of these points. Retaining only the
quadratic part of H ( x ) , the mapping can without loss of
generality lead to the logistic equation

= ua:n (1 — xn). (6.1)

We are interested only in the range 1 </i<4 (since for fi< 1
all trajectories are attracted to the point x = 0, while for
/u>4 values tt(x) > 1 appear). For these values of// the
mapping has two fixed points—an unstable one x = 0 and
the point x0 = 1 — fi~' whose stability is determined by the
eigenvalue of the linearized version of Eq. (6.1). It is not
difficult to convince oneself that A = 2 — fi, so that the re-
gion of stability \A \ < 1 of the point x is 1 <fi < 3. For
/i>/*i = 3 this point is unstable and in addition a two-fold
cycle appears—the two roots ;c?,xi of the equation
x = FI2(x) which are different from x0. A plot of this func-
tion shows two maxima, while the minimum between them is
entirely similar to the inverted graph of I I ( x ) : for
Pi </z </^2=;3.45 the points x° and x\ are stable, while for
yU>/*2 they become unstable and in addition in their neigh-
borhood two twofold cycles (x°,xl

2) and (x2,x2) of the
mapping U2 appear, generating a fourfold cycle for the map-
ping II which for//2 </* </*3 is stable, etc.

Thus, for the valuespn,n = 1,2,3,..., period-doubling
bifurcations occur: a 2" ~ ' -fold cycle loses stability while a
stable 2" -fold cycle appears. M. Feigenbaum observed that
the sequence //„ con verges (to a limit /*„ x 3.57) asymptoti-
cally as a geometric progression with a rather large geomet-
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FIG. 12. Bifurcation diagram for the mapping xn +, = 1—fj.x\ of the
segment — l<x<l into itself for 0.35</i<2.

nc ratio:

~ 6 = 4.6692 . . . . (6.2)

Furthermore, using functional equations he proved that this
law and the value of 6 are universal: they are correct not only
for the mapping ( 6. 1 ) but also for any mapping D (x ) of the
general form described above. Thus, knowing fi0 and//!, we
can predict

M. Feigenbaum proved this universality also for the distri-
bution on the segment 0<je<l of the periodic points of
the sequence of 20,2',22,23,...-fold cycles x0, (x°,x\ ),
(x°2,x\ji\,x\),.,. . These points are stable on the intervals
3</z</u1,/z1</u<//2,/f2</z<,u3,...; o n a p l o t x ( f i ) is repre-
sented by segments of curves which at the points ju,,//2,/z3,...
divide (asymmetrically) in two, in sum forming a "tree"
[ ( Fig. 12), constructed numerically for a quadratic map-
ping equivalent to (6.1)]. The universality of this "tree"
consists of the fact that each sequential doubling is similar to
the preceding one with similarity coefficients for the differ-
ent branches equal to ( — a~ ' ) or a~2, where a = 2.5029...
(the similarity is also asymptotic; however, it is already es-
tablished practically after the first few iterations:

J
l

— a, 0<A<2n-1,
(6.3)

For large n, replacing (by interpolation) the sequence
x° ,x\ , . . . by a function with continuous argument xn ( f ) and
representing it in the form of a Fourier series:

*B(0 = S*k2Bi*'/!B, (6.4)A
we can establish universality of the similarity law for the
amplitude \X*\. Thus, we obtain

*. (6.5)

For even k = 2l, we obtain from (6.3) that
xn + i(t)~xn+}(t + 2 n ) = z x n ( t ) and then (6.5) takes the
form X2

n'+, zzX'n, i.e., at this frequency the Fourier ampli-
tude does not change for all succeeding bifurcations. For odd
k = 21 + 1, we derive from (6.3)-(6.5) the recursion rela-
tion

XW - - -£ [1 - (- l)'i] [l + (-1)' -i] S,
(6.6)

Assuming that the modulus of the amplitude X n
m + is a

smooth function of m and that its phase is random, when we
replace 21 + 1 by a continuous argument J" in (6.6) we obtain
the similarity law

„ ,£, L Y ( — \ I

7 ' (6.7)
Y = 2a2(l+a2)~1/2«4.65.

For /z >/u0 0 , at certain /z there appear trajectories (in
pairs—one stable, one unstable) for periodic motion (whose
periods are, in order of occurrence, 1,6,5,3,...; see Fig. 12),
each of which then undergoes a series of period-doubling
bifureations with its own limit point, In addition, there now
appear on the segment 0<x<l bands of random motion,
while for the values /z^ <...<n*<fi*__l <...<//? these
bands undergo inverse period-doubling bifurcations for
which the number of bands decreases by a factor of 2 while
the bands themselves broaden (and fuse), according to a
similarity law with the same constants 8 and a as were given
above. Thus, after the (n + l)st bifurcation, the mean-
square width of a band equals Wn + , = [ (a~2/2) + (a~*/
2 ) ] l / 2 W n , from which Wn = W0P'n where 0 = r/
v2~3.29. Thus, the dispersion of the random part of the
motion is proportional to W2~(3~2" ~ ( /zj — /nx )m

where m = 2 In/?/In 6zz 1.544... [here we have used the si-
milarity law (6.2) ]. Thus, randomness does not appear dis-
continuously but rather grows gradually as/z increases (and
not monotonically, but rather interrupted by regions in
which self-organizing periodic motion occurs).

The one-dimensional mapping has a single Lyapunov
exponent (5.10):

4rr, In
N-oo dxn

(6.8)

It is independent of x0 almost everywhere; for n <nao it is
negative (since a limit cycle is present), while for
p — //„ >0 it is predominantly positive and is initially
proportional to (f*—f*a,)

k, where k = In 2/ln 8
x0.4498... (B. Huberman and J. Rudnick62), and then be-
comes a complicated function of//.

The invariant measure (probability density) p( x) fora
mapping II (x) with one extremum, as a consequence of con-
servation of the "number of trajectories," satisfies the rela-
tion p(x~)dx = p(xl)dxl +p(x2)dx2, where Jt, and x2 are
two preimages of the point x. From this we obtain the func-
tional equation
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-i
(6.9)

which can be solved numerically (by the iterative method).
For a triangular mapping U(x) with 11(1/2) = 1, the ob-
vious solution is/>(•*) = 1- Mapping (6.1) for/z = 4 is con-
verted into a triangular mapping n (x) if we replace the vari-
able x — 1ir~' arcsin x112, so that for (6.1) we have

(whose Landau exponent equals V2). Random motion with
such an invariant measure is found to have the mixing prop-
erty. For /j.^ </* <4 the distributions p(x) turn out to be
complicated (in particular, they have gaps). For fj, =//„
the attractor is ergodic, but it does not possess the mixing
property (J. Eckmann58), which seems to be a deficiency of
this scenario.

Let us now investigate the two-dimensional mapping
x n + 1 =II(xn,yu) where x*=(x,y) and the Jacobian
d(xn +1 < yn +1 )/<?(*« > Vn ) is different from zero (an invert-
ible mapping) and whose modulus is less than unity (i.e.,itis
dissipative). As an example, we can consider the mapping

zn+1 = n + \ p | < i, (6.11)

where II (x) is a non-invertible one-dimensional map. The
Jacobian of (6.11) equals — 0, and, since the Jacobian of
the kth iteration ( — /?)* -»0(&-» oo ), it is clear that the
limiting attractor lies in the neighborhood of the curve
x = II ( y/P) . Bifurcations of the two-dimensional map-
pings are subject to the same universal Feigenbaum laws, so
that it is sufficient to limit ourselves to the quadratic map-
pings which, it is not difficult to show, for a constant Jacobi-
an always can be brought to the form ( 6. 1 1 ) with a function
n(x) of the form (6.1).

Such a mapping has two fixed points — the unstable one
x = y = 0 and the stable one x = 1 — (1 — f3) n~l,y = fix.
For a certain fj, = ft , ( P ) the second of these points loses its
stability and in addition a twofold cycle appears, i.e., a fixed
point of the second iteration xn + 2 = II2 (*„ ) . In the neigh-
borhood of its fixed points this second iteration, by renorma-
lizing the values of x,/u and/?, leads to the same functional
form as the original mapping (while the renormalized
/72 = /? 2) • Therefore there occurs a sequence of period -dou-
bling bifurcations with the Feigenbaum asymptotic law of
similarity involving the same constants 8 and a, along with
the same point of accumulation /*„ (for/S^ =0) and sub-
sequent behavior analogous to what was described above for
fi >/^00 . For the following mapping, which is equivalent to
Eqs. (6.11) and (6.1):

£„ + < = ! —I (6.12)

M. Henon63 has computed 5x 106 iterations (for fi = 1.4
and P = 0.3), which make up a set of curves on the (x,y)
plane which has all the appearances of a Cantor structure,
although the randomness of this attractor has not been rigor-
ously proved yet (this has been proved by M. Misiurewicz64

when*;; is replaced in (6.12) by \XH\). Here, the first Lya-
punov exponent has been determined numerically, and the

0 10 30 SO W 30 SO 10 30 50 ffu,

50 f, Hz

FIG. 13. The phase flow of O. Rossler projected into the (x,y) plane, and
the spectral density of z ( t ) for (a)/i = 2.6, (b) 3.6, (c) 4.1, (d) 4.23, (e)
4.30 and (f) 4.6.

second is equal to <72 = In/? — a,, while the Lyapunov di-
mension of the attractor (5.11) is found to be equal to
l+a,/|a2|ssl.26.

The functional equations of M. Feigenbaum can be gen-
eralized also to the case of the (N — 1) -dimensional map-
pings of the Poincare sequence xn + , = II ( xn ^t ) for TV-di-
mensional dissipative phase flows: if for some //! in such
flows a period-doubling bifurcation occurs, then with subse-
quent growth of fil there will occur an infinite sequence of
such bifurcations which satisfy similarity laws with the uni-
versal constants 8 and a, and with a certain limit point fj, x at
which random motion arises (at first ergodic, but not having
the mixing property). As an example, we present the three-
dimensional phase flow of O. Rossler65:

(6.13)

In Fig. 13 we show the results of analogue modeling of this
system projected on the (x,y) plane, along with the spectral
densities for z(t ) for three subcritical and three supercritical
values offj, (here/u^ s;4.20); the direct and inverse period-
doubling bifurcations are clearly visible in the spectra. In the
section of this projection along the line y = 0 we obtain an
almost one-dimensional, approximately quadratic mapping
xn + i = II (xn ) ; in reality, this "curve" has some thickness,

FIG. 14. Topology of the Rossler attractor.
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because the attractor consists of an infinite set of sheets with
Cantor structure; topologically, it is obtained from a sheet
whose width is doubled as it spreads across the trajectories
and which is folded double in the longitudinal direction,
after which its right edge is attached to its left edge (Fig. 14).

6.4. Pomeau-Manneville scenario

This scenario involves the appearance of motions which
are alternately periodic and random in time after an inverse
tangential bifurcation (fusion and disappearance of stable
and unstable fixed points of the Poincare mapping, i.e., sta-
ble and unstable periodic phase trajectories); the time inter-
vals in which stochastic motion occurs are random in length,
while the periodic-motion intervals have lengths proportipn-
al to |,u — ficr | ~1/2. An example of this is the bifurcation
where the stable and unstable trajectories with the period 3
fuse for the mapping (6.1) at the value/jc is 3.83, which acts
as an accumulation point for the sequence of inverse bifurca-
tions for the doubling of this period.

M. I . Rabinovich and D. \. Trubetskov8 have pointed
out that it is possible to explain the alternation by a special
form of the Poincare mapping xn + 1 — \ l ( x n , f j , ) . Let the
graph of U(x) consist of three curved segments: 1—a steep-
ly-rising segment, 2—a part with a minimum, and 3—a
sharp decrease. For// <//c let part 2 intersect the bisectrix at
two points; they correspond to stable and unstable periodic
trajectories of the phase flow being mapped. As// increases,
let this portion rise upward so that at/i = /jc its two intersec-
tion points with the bisectrix fuse. For a very small increase
fi >yUc there appears between the bisectrix and Sec. 2 such a
narrow gap that a Lameria ladder drawn within it has many
steps: in the course of many iterations (i.e., a long time), the
flow trajectories stay close to the original periodic one.
When it leaves Sec. 2, large steps appear in the ladder (sharp
fluctuations in the trajectory); and on returns to Sec. 2 long
intervals over which the motion is close to periodic again
occur.

6.5. Circular Couette flow

The most detailed illustrations of the scenarios listed
above come from specific measurements on the loss of stabil-
ity of circular Couette flow (in the gap between two coaxial
rotating cylinders) and of a layer of fluid heated from below
(the development of thermal convection).

Circular Couette flow in cylindrical coordinates r, <p, z
with the z axis directed along the cylinders' axis has the ve-
locity components

A = (£,
B=—i '} (6.14)

where R, < R2 are the radii, Ctt and fi2 are the angular veloc-
ities of rotation of the inner and outer cylinders. In an ideal
fluid, because of the law of conservation of angular momen-
tum of a fluid particle rnrll = const in its displacement from
r0, to r>r0 its velocity will become r0U(r0)/r, and if the
centrifugal acceleration acting on it r%,U2(r0)/r

i will turn
out to be larger than its equilibrium value U2(r)/r under the

-200 -tOO 0 tOO 200 _O2

FIG. 15. Region of instability for circular Couette flow in the (fl,,fl2)
plane for R2/Rt = 1.13.

condition d(rU)2/dr<0, the flow will be unstable (Ray-
leigh, 1916). This criterion reduces to the form
(fllRl-fl2R2)U<0,so that in the case that the cylinders
rotate in opposite directions the flow is always unstable
(since somewhere in the gap U changes sign), while if they
rotate in the same direction the instability criterion takes the
form fl2/fli < CR/R2)2 (Fig. 15).

In a viscous fluid, we obtain the following equation for
the complex amplitudes of small wavelike velocity perturba-
tions of the form u(r) exp[/(fcz + n<p — at) ] with arbitrary
k and integer n

^__j_^.\_inv"| j tn_ /_d . 1
'r * ^ r } r J ' r \ dr ^^ r

av_
dr

d* 1 9 n2 ,2 to inU
~7 dr r» ">" v ~^T

(6.15)

with the boundary conditions ur = dur/dr = uv = 0 for
r = Rt, R2- These equations have no singularities, so that
obviously for fixed parameters (including k and n) there
always exists a discrete spectrum of eigenvalues <o} and the
corresponding set of eigenfunctions is complete. For a long
time it was assumed that as Re increased the first modes to
lose their stability must be the axially-symmetric perturba-
tions (withn = 0). It has been established (although not yet
proved with sufficient completeness) that the first bifurca-
tion is a change of stability—a transition from the flow
(6.14) toanewsteao?y-,steteflowoftheforniK(/') exp(/&crz)
of toroidal rolling Taylor vortices [first investigated by G.
Taylor67 for small d/R0, where d = R2 - R{ and R0 = I/
2 (R j + R2) ] . There then occur regions of instability related
to these vortices of the type shown in Fig. 15 [which show
that the viscosity here plays a stabilizing role; however, for
fl2/flt < (Rl/R2)

2 and sufficiently large Re instability de-
velops all the same]. For a long time it was assumed that
these regions agreed well with the experimental data (see the
points on the border of the cross-hatched region in Fig. 15).

However, it later turned out that for negative and not-
too-small values of fl2/£ll perturbations with n ̂  0 lose their
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stability somewhat earlier than the axially-symmetric ones.
Thus, according to the calculations of E. Kriiger, A. Gross
and R. DiPrima68 for d/R = 1/20, on the rays fl2/
ni = -0.7; -0.8; -0.9; - 1.0 and 1.25, as Re grows
the first perturbations to lose stability are those with
n = 0,1,3,4, and 5. This is confirmed by the experimental
data, in particular that of H. Snyder.69

Both theoretical calculations (J. Stuart,70 A. Davey,71

A. Davey, R. DiPrima and J. Stuart72) and experimental
data (R. Donnelly and K. Schwarz,73 H. Snyder and R.
Lambert74) show that for Re = v~1fli/?1c?>Relcr the
growth in intensity of the axially-symmetric Taylor vortices
is excellently described by the Landau Eq. (3.2).

Experiments specifically designed to verify the scenar-
ios performed by J. Gollub and H. Swinney,75 R. Fenster-
macher, H. Swinney and J. Gollub,76 V. S. Lvov, and A. A.
Predtechensky,77 and A. Brandstater et a/.,105 showed that
at some Re2cr the Taylor vortices become unstable, and azi-
muthal "buckling" waves appear on them. As Re increases,
at subsequent (apparently normal Hopf) bifurcations there
appear an additional one to three independent frequencies
(and in addition, the discrete peaks in the fluctuation spec-
trum of the velocity ur (t) at the middle of the gap broaden,
while the continuous background spectrum grows, which is
not predicted by the Landau-Hopf or Ruelle-Takens scenar-
ios). After the next bifurcation for Re = Rec there remains
only the randomized motion with a continuous spectrum.

The quantitative characteristics of the bifurcations ob-
served in these experiments vary, in particular, as a function
of the size of the cylinders and of the initial data. Thus, for
the first of these the following values were chosen
RI = 22.54 mm, R2 = 25.40 mm, d = R2-Rl= 2.86 mm,
d/Rl=0.l4 and the height of the cylinders h = 20d,
fl2 = 0, Re = 250 I.Taylor vortices appeared for R * = Re/
Rec= 0.051 (their number being kh/2ir=\l); for
R * = 0.064 buckling waves appeared on them [four over
the circumference, with dimensionless frequency /?
= 2w/1/ft1 = 1.30, while in the spectrum of ur (t) six of the

wave's harmonics were visible]; for R * = 0.54 another
(low) frequency/2 appeared; as/J * increased it decreased to
zero for R * = 0.78 where a third frequency/3*=s (2/3) /?
appeared; for R * ~ 1 randomization set in, reversibly and
without hysteresis.

The experiments of Lvov and Predtechensky used
Rl = 17.5 mm, R2 = 27.5 mm, d = 10 mm, d/Rl = 0.57,
h = 30d, ft2 = 0. Taylor vortices appeared for Re ̂ 74 (22-
36 in number, for slow acceleration 28-30). For 30 vortices
buckling waves appeared in the interval Re = 995-1015 (six
over the circumference,/] = 1.93H,, two harmonics); then
for Re = 1040 the second harmonic/2 = 0.55(1, and also
combination harmonics appeared in the spectrum of uv (t)
and alternated with the first harmonic; then the third fre-
quency /3 = 0.95^! appeared. For Re = 1901 there were no
longer any distinct maxima in the spectrum (but separate
sharp peaks appeared and disappeared as Re increased
further). The behavior of the flow with 28 vortices was en-
tirely different (in particular, for Re = 1100-1200 it made a
transition to a state with 29 vortices). In sum, the evolution

of Taylor vortices although being similar in general outline
to the Ruelle-Takens scenario nevertheless in detail turned
out to be significantly more complicated.

6.6. Thermal convection

Let us now investigate thermal convection in a horizon-
tal layer 0<z<A, described by the Boussinesq equation

divu = 0 i=— -

(where a is the coefficient of thermal expansion) with a
fixed boundary value for the temperature T'z = 0 = T0 and
T'z = h = 7\. A steady-state solution of these equations takes
theformu = 0, T' = T'S = T0-(T0- TJz/h. Introducing
the Rayleigh number Ra = ga(T0 — T^h3/vx and the
Prandtl number a = v/%, measuring length in units of h,
time in units of h 2/% and setting
T' - T s' = (T0 - TI ) # /Ra, we bring (6.16) to dimension-
less form

(6.17)

where n is the dimensionless deviation of the pressure from
its steady-state hydrostatic distribution. Linearizing these
equations (which reduces to replacing d/dt by d/dt and
seeking the unknown functions in the form
/ ( z ) Xtp(x,y)ex.p( — icrcot), where kxp + k2<p = Q,we ob-
tain for the complex amplitude i?(z)

/ a 3 ,,\ / <?2 ,, . . \ / d*
(-a3--**)(-3?—fc' + Hl-a?—

.0 (6.18)

with boundary conditions # = i?" = t?'" — (k2 — iaco)•&'
= 0 on one face and i? = tf" = i?IV = 0 on the other. The

first bifurcation here turns out to be a change of stability (A.
Pellew and R. Southwell78). Rayleigh established this for a
layer with two free surfaces, where he obtained
Ralcr = 27;r4/4^657.5 and kci = 7T/V2=2.2; later the val-
ues Ralcr ;=1708 and kCT =:3.12 were obtained for a layer
with rigid surfaces, while for a rigid lower surface and free
upper surface Ralcr s 1100, signaling the appearance of a
steady-state motion which is periodic in x and y. Its form
<p(x,y) (convective "rollers," square or hexagonal cells,
etc.) is not determined in the linear theory.

A. Schliiter, D. Lorz and F. Busse79 established that for
very small Ra-Ra,cr > 0 of all the steady-state convective
motions only the "rollers" are linearly stable (in a narrow
band in the k, Ra plane). E. Palm80 and subsequent authors
obtained more general results by establishing that the forma-
tion of hexagonal convective Benard cells (1900) is deter-
mined by the temperature dependence of the material prop-
erties of the liquid, above all the viscosity: v' = \dv/dT \. For
a perturbation of the form

- - sin Iz (6.19)

Palm derived a system of equations of Landau type
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t — 82Al — (46a —
(6.20)

having a stationary solution A2 = +2Al corresponding to
the hexagonal cells. It was shown that for Ralcr < Ra,
< Ra < Ra2 only the hexagonal cells we're stable, while for
Ra2 < Ra < Ra3 both the hexagonal cells and the "rollers"
were stable; for Ra > Ra3 only the rollers were stable. As
v' ->Q, Ra,, Ra2 and Ra3 reduce to Ratcr, so that we recover
the results of Schliiter, Lortz, and Busse.

Let us investigate convective "rollers" extended along
the>> axis, so that for such a flow Eq. (6.17) turn out to be
two-dimensional; after introducing the flow function \fi in
the (x,z) plane we are led to the form

dt
Vy y=o^+qA 2 (p ,
d (x, z) dx T

,
\ d ( x , z ) = Ra dx

+ A6. (6.21)

As Ra> Ralcr increases, the "roller" motion ceases to be a
steady-state one and grows with time. Initially it can be de-
scribed by the three modes

nz,

0 = R0 ( Y • y 2 cos kx • sin Jiz — Z sin 2itz) ,
(6.22)

whereR0 = k ~2(Tr2 + k2)3. F. Busse81 has proved that for
infinitesimal perturbation amplitudes, the other modes are
of a higher order of smallness. Taking this into account, sub-
stituting (6.22) into (6.21) and neglecting interactions with
all other modes, we obtain for X, Y, Z the system of equa-
tions

X = -aX - oY, Y = -Y + rX - XZ,

Z = ~bZ -+ XY, (6.23)

where the dot implies differentiation with respect to
(k 2R 0)'' 3t; b = 4-ir2 (k 2R 0) ~''3 is a geometric factor (for the
Rayleigh value k = vr/VZ it equals 8/3); r = R ̂  ' Ra is the
relative Rayleigh number. This system, first obtained by E.
Lorenz,82 is famous as the first example of a system with a
strange attractor (an infinite-sheeted attractor of Cantor
structure was suspected earlier by the same Lorenz, but he
did not obtain a rigorous mathematical proof of this).

Let us emphasize that the Lorenz equations (to which
we will return later) describe real convection only for small
r. G. Willis and J. Deardorff83 have established that for
Ra2cr s;3Ralcr transverse waves appear on the convective
"rollers," as happens on the toroidal Taylor rollers men-
tioned above. Calculations based on the linear theory were
carried out by F. Busse,81 for the nonlinear theory such cal-
culations were performed by J. McLaughlin and P. Mar-
tin,84 who first calculated an eight-mode motion with rollers
(6.22) and one harmonic along the>> axis, and constructed a
Landau expansion (3.2) for them (for which <5>0 was ob-
tained, corresponding to a normal bifurcation). Secondly,
they numerically calculated a 39-mode motion with rollers
from (6.22) and four harmonics along the.y axis, and for k^/

TT = 0.072, k2/tr = 0.1 and a = 1 they obtained: r2cr zz 1.25;
for r = 1.4, a periodic motion, for r2cT = 1.45 a slightly non-
periodic motion, for r = 1.5 and 1.55 again a periodic mo-
tion, for r= 1.6 an abruptly nonperiodic regime (while
when the fourth harmonic is excluded, r = 1.6,2 and even 20
are still within the periodic regime).

Let us now investigate the Lorenz equations (6.23).
The divergence of the phase flow (5.2) is negative for these
equations: A= — (cr + & + 1), so that all trajectories mi-
grate towards a certain set of zero volume. The quantity
W = [X2+ Y2+ (Z-r-cr)2]1 / 2 satisfies the condition
W<. — Cl W + C2 with positive Cj and C2, so that all trajec-
tories enter the sphere W^2C2/Cl. The system does not
change under the substitution (X, Y,Z) -»( — X, — Y, — Z).
For r < 1, the unique fixed point is the stable vertex 0 at the
coordinate origin. For /•> 1 (the onset of convection) it loses
its stability (becoming a saddle point with a two-dimension-
al stable manifold and two unstable one-dimensional ones—
the separatrixes F+ and F~~), and two new fixed points
appear C+, C~ = ( ± [b(r- I)]1 '2 , ± [b(r- 1)]1 / 2 ,
r — 1), towards which the separatrixes move. For a < b + 1
they are stable, while for a>b + 1 (following Lorenz, we
will henceforth investigate the case u— 10, b = 8/3) they
are stable for 1 <r<r3 — a(a + b + 3)(a — b — 1 )~ '
:r24.74, while for r> r3 they lose their stability. According
to the linear theory, for r = r3 it is here possible to
have neutral equilibrium with frequency a>
= [2ba((r + l)(a-b- I)"1]"2, let us say 8X
= A cos cot. For r somewhat smaller than r3 a small nonlin-
ear correction of order \A ]2 is added to 8X, for which J.
McLaughlin and P. Martin84 set up a Landau equation
(3.2) accurate to order a~l, obtaining y=(b/
20- 1 / 2 ) [ ( r - l ) r / 2 - ( r 3 - 1)1 / 2] and 8= -37/72 a, so
that the bifurcation at r = r3 is inverse.

Below we report the results of V. C. Afraimovich, V. V.
Bykov and L. P. Shil'nikov85 (Fig. 16). For r = r,~13.92
they found a bifurcation for which the separatrixes return to
the saddle point. For r>rlt out of the loops of the separa-
trixes there appear saddle-point periodic motions L +, L ~
around the foci C +, C ~~ (at the same time, there appears an
invariant set of curves fl, which is not an attractor and which
has Cantor structure, including a denumerable set of saddle-
point periodic motions); the separatrixes F+, F~ intersect
and move towards the foci C ~, C +. For r = r2~24.06 the
separatrixes F+, P~, in place of the foci, are curled around

FIG. 16. Bifurcations in the Lorentz system: (a) for 1 <r<r,; (b) for
r = r,; (c) for r, <r<r2; (d) for r = r2; (e) forr2<r,; (f) for r = r,.
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FIG. 17. An example of a trajectory on the Lorentz attractor
for r = 28. The X, Y plane corresponds to Z = 27.

the cycles L ,L+, and instead of H, there appears an infinite
Lorenz attractor fl2 whose region of attraction is limited by
the stable manifolds of the cycles Z, ~ ,L + (so that excitation
of randomness is "hard"). For r > r2 it is stable, including 0,
T+, P~ and therefore there is no structural stability; on this
attractor the periodic motions are everywhere dense (capa-
ble of undergoing a sequence of period-doubling bifurcations
and of disappearing as r grows only by way of adhesion to the
loops of the separatrixes). For r = r3, the cycles L +, L ~
contract to the points C +, C ~ and the latter lose their stabil-
ity. For r3 < r < r4 s 220 the Lorenz attractor is the unique
stable limit set (we note that as r decreases from r4 to r2, the
phase point M(t) stays within the attractor, while for r < r2 it
loses stability and M(t) moves toward C + or C ~).

An example of a trajectory in the attractor (for r = 28,
intersecting the plane Z = 27) is shown in Fig. 17. It starts at
the coordinate origin, circles C +, and then unwinds and is
drawn to C ~, leaves C ~ and spirals toward C +, etc., while
the period of rotation around C + or C ~ equals 0.62 and the
radii of the spirals change by 6% per rotation. As pointed
out by Lorenz himself, for this example the Poincare map-
ping Za+t = II (Zn) of successive maxima has the triangu-
lar form, while | IT (Z) | > 1 everywhere; it is ergodic and has
the mixing property (L. A. Bunimovich and Ya. G. Sinai86).
Topologically,the Lorenz attractor consists of two sheets,
which widen out across the trajectories, while the right-hand
edge of each of them adheres to the left edges of both sheets
(Fig. 18). H. Mori and H. Fujisaka87 have calculated the
Lyapunov exponent cr, for the Lorenz attractor as a function
of r (the second one cr2 is zero, the third a3 — A — cr, is nega-
tive and the Lyapunov dimension of the attractor equals
2 + tTil^l"1). For r< 1 it is negative and for r = 1 (the ap-
pearance of the convective "rollers") it reduces to zero; for
1 < r < r3 it is again negative and for r = r3 it reaches zero.

FIG. 18. Topology of the Lorentz attractor.
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However, for r = r2 greater than zero there also appears a
new branch of cr, which grows for r > r2 and for very large r is
multiply interrupted by "lacunae" of zero values, corre-
sponding to periodic motion (see the example in Fig. 19 for
b = 4, a = 16; here, for r = 40 the Lyapunov dimension is
2.06).

In recent years experimental conditions for studying
convection have sharply improved as a consequence of the
use of normal (non-superfluid) liquid helium, whose heat
capacity is large compared to the walls and whose tempera-
ture sensitivity is 10~7 (the groups of G. Ahlers88 and A.
Libchaber89), and the use of laser Doppler anemometers
with sensitivities of 10~4 cm/sec (the groups of J. Gollub90

and P. Berge91'106) and computers. This made it possible to
observe (in the spectra) quasiperiodic motion with 2-3 in-
commensurate frequencies, a period-doubling bifurcation
sequence with the similarity law (6.7) for the amplitudes
(an example from the paper by J. Gollub, S. Benson and J.
Steinman, is shown in Fig. 20), the alternation property,
absolute instability of thin films, edge effects ("rollers" per-
pendicular to walls), etc.

CONCLUSION

We very much wanted to introduce into the definition
of turbulence in Sec. 5.3 the requirement that it be a multi-

O--JK.

too zoo 300 r

FIG. 19. Graph of the Lyapunov exponent <rt(r) for b = 4, CT = 16.
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FIG. 20. Period-doubling bifurcations in convective
"rollers."
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mode phenomenon, i.e., that it should be chaotic in its spatial
structure at any fixed instant of time, since, e.g., the stochas-
tic motion in geometrically regular structures of convective
"rollers" described by the equations of E. Lorenz is too far
removed from our intuitive concepts of turbulent flows in
liquids and gases one of the most important features of which
is the possibility of cascade processes whereby conserved
quantities—energy, enstrophy, potential enstrophy, con-
served impurities, wave action, etc.—are transferred down
the spectrum of scales. The model which corresponds best to
these ideas is A. M. Obukhov's chain model92 of linked tri-
plets (in which stochastic behavior in the sense of Sec. 5.3 is
possible for each of the triplets). However, we have refrained
from imposing such a supplementary requirement, prefer-
ring to retain it for denning developed turbulence and agree-
ing to relate the theory of strange attractors to processes
whereby turbulence arises.

What would we like to expect in the near future? Firstly,
the resolution of unsolved problems in the theory of linear
instability (a few of these were pointed out in Sec. 4); thus,
e.g., it is desirable to give a qualitative explanation for the
fundamental differences in the behavior of Poiseuille flow in
channels and pipes. Secondly, a mathematical elaboration of
new scenarios for randomization (which are doubtless many
and diverse), including the interpretation of mechanisms for
randomization after inverse Hopf bifurcations, and also a
mathematical description of processes of explosive randomi-
zation of small-scale flow patterns in a viscous boundary
layer at a solid wall. However, it is our feeling that the math-
ematical part of the theory is already on a hopeful track.
Thirdly, and perhaps this is something whose lack is most
keenly felt, laboratory investigations of the onset of turbu-
lence using new experimental techniques (e.g., laser-
Doppler flow measurements in glass pipes).

The author is grateful to G. I. Barenblatt for valuable
advice and discussions, and to E. G. Agafonova, N. I. Solnt-

seva and G. Yu. Alexandrova for their efforts in putting this
manuscript together.
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