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This review is devoted to a new object in nonlinear physics—Rossby solitons. The following
questions are examined in greatest detail: 1) experimental observation of Rossby solitons in the
laboratory; the geometric and kinematic properties, stability, collisions, and methods of
generation of Rossby solitons; 2) self-organization of a Rossby autosoliton in unstable
oppositely directed (zonal) flows; 3) a stationary laboratory model of natural vortices of the
Jovian Great Red Spot (JGRS) type based on the Rossby autosoliton; 4) the question of the
uniqueness of the JGRS along the perimeter of the planet; and 5) paired Rossby vortices. The
theory and experiment are compared. The analogy between Rossby vortices and drift vortices
in a plasma is pointed out.
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INTRODUCTION

This review is concerned with structures which appear
to be vortices on the one hand and solitary waves or solitons
on the other. Their vortex properties are determined by the
Coriolis force, associated with the global rotation of the me-
dium in which they exist, while the soliton properties are
associated with the equilibrium between dispersion and non-
linearity. These dualistic structures can be called both vor-
tex solitons and wave vortices. As waves they belong to the
branch of Rossby drift waves, which exist in the oceans and
in planetary atmospheres; the frequencies of these waves are
much lower than the global rotational frequency of the plan-
et, while the wavelengths can be of a planetary scale—they
are much larger than the depth of the ocean or the atmo-
sphere. When their amplitude is large these waves transform
into planetary vortices. The largest of these vortices is called
the Jovian Great Red Spot (JGRS)." This atmospheric vor-
tex, which is significantly larger than the earth, has been
observed for 300 years. Apparently, synoptic vortices in the
earth’s oceans and also stationary planetary vortices (so-
called blockings® ), which could be responsible for prolonged
droughts on earth, have the same structure. With respect to
such long structures the atmosphere or the ocean is a quasi-
two-dimensional medium and can be rgarded as ‘“‘shallow
water.” This, as well as the comparatively slow rotation, is
what fundamentally distinguishes them from cyclones,
whose intrinsic rotational frequency, on the contrary, is
much higher than the global rotational frequency of the
planet. (To better distinguish waterspouts and hurricanes
from the planetary vortices studied in this review and their
models in laboratory experiments in shallow water we rec-
ommend to the reader Refs. 1-5.)

Planetary waves (vortices) are named after the Swedish
geophysicist Rossby, who showed that they play an impor-
tant role in global atmospheric circulation processes.”?
They can be successfully simulated in the laboratory.®''-"?
The theory of planetary waves is reviewed in Refs. 23-27,
blockings are studied in Refs. 18, 10b, and 44, and synoptic
vortices in the oceans are studied in Refs. 19 and 20. Rossby
waves are physically analogous to drift waves in a spatially
nonuniform magnetized plasma. It is possible that they are
linked with the generation of magnetic fields in nature.?"??

Rossby solitons are solitary planetary waves or non-
spreading nonlinear Rossby wave packets, in which the dis-
persion spreading (characteristic of a linear wave packet) is
balanced by nonlinear self-compression, and the wave pro-
pagates without a change in shape. The term “soliton” is
sometimes applied only to such a solitary wave, which
emerges unchanged in collisions with a similar wave (see, for
example, Refs. 28-29). This definition is widely used pri-
marily by mathematicians. Physicists, however, usually de-
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fine a soliton as a solitary wave, irrespective of the results of
mutual collisions of such waves (see, for example, Refs. 32—
35). Weshall do so also. Until recently Rossby solitons were
studied only theoretically, and there are many reviews of this
work%*3% (see Refs. 30 and 31 for the early work on the
theory of solitons in plasmas). This review is devoted to ex-
perimental investigations of Rossby solitons, which were ini-
tiated after solitons were observed in the laboratory at the
beginning of 1981. The basic results of the theory are pre-
sented, and compared with experiment.

Experiments with Rossby solitons have passed through
several stages. In the first stage the Rossby soliton was re-
garded as a non-steady-state vortex, produced by the short-
time action of a generator, existing without spreading signif-
icantly longer than a linear wave packet and decaying
gradually owing to viscous losses of momentum. In the sec-
ond stage, steady-state structures—chains of Rossby soli-
tons, generated by unstable, oppositely moving, zonal
flows—were obtained. In the third stage, a self-organized
and self-maintained steady-state anticyclonic solitary vor-
tex—a Rossby autosoliton—was generated in a system of
flows. This structure can be regarded as a physical, experi-
mental model of the Jovian Great Red Spot,*5® constructed
by the method of physical, analog simulation in shallow wa-
ter.” This method is based on the analogy between the equa-
tions of two-dimensional gas dynamics and the equations of
shallow-water dynamics.'®" Analog physical simulation has
substantial advantages over standard computer simulation,
one of which is the simplicity of the experimental implemen-
tation. The illustration of the advantages of this method—
using as examples the simulation of planetary vortices—is
the main goal of this review. (See Ref. 40 for a discussion of
the analog physical simulation of phenomena on a cosmic
scale.)

1. ROSSBY WAVES

1.1. Conditions of existence and nature

Rossby waves arise in the atmosphere or in the ocean on
a rotating planet and are distinguished by their low frequen-
cies (w) and long wavelengths (1), namely, o €, and
A'» H (the “shallow water condition) where {2, is the angu-
lar rotational frequency of the planet and H is the effective
depth of the planet’s atmosphere (ocean). The conditions
for the existence of these waves can be easily determined
with the help of Euler’s equation:

%+(vV)v+2[Qov]=—%Vp. (1)

Since dv/dt =wv and (vV)v=wv, the first two terms on the
left side of (1) are much smaller than the third term, and (1)
assumes the form of the equation of geostrophic equilibrium:

M. V. Nezlin 808



2(Qv]= — < Vp (2)

—the Coriolis force is balanced by the hydrostatic pressure
gradient p = pg*H, wherep is the density of the medium and
g* is the acceleration due to the resultant of the gravitational
force and the centrifugal force from the global rotation. The
ratio of the centrifugal force from the rotation of a particle in
the wave to the Coriolis force is called the Rossby number,
Ro. In the regime under study (called the Rossby regime)
we have
’ (vV) v
Qe

o 3
~ g <t 3)

Thus under the conditions of existence of Rossby waves the
Coriolis force plays the decisive role. Rossby waves arise asa
result of the spatial nonuniformity of this force, associated
with the dependence of the local vertical component {2, of
the angular rotational velocity vector £, of the system on the
latitude (@), namely, },, = Q, cos a, where a = 7/2 — @.
Rossby waves propagate westward, opposite to the global
rotation of the planet. This propagation is a drift motion,
occurring perpendicular to both the direction of the angular
rotational velocity vector of the planet ), and the direction
of the gradient of the Coriolis parameter

f=2Q,cos a. (4)

The mechanism of this drift?®® is essentially analogous to the
mechanism of the drift of charged particles in a nonuniform
magnetic field “crossed” with its own gradient.®?

1.2. Dispersion

The dispersion equation for Rossby waves can be easily
obtained with the help of the standard procedure. From the
equation of motion (1) and the equation of continuity for a
liquid with a free surface

oH : _ 5
25 4 div (Hv) =0 (3)

one easily obtains a solution whose expansion in a series in
powers of the Rossby number (3), followed by linearization,
yields an equation for the frequency w and the phase velocity

vp of Rossby waves with arbitrary wavelength 4 =27/
k23'24:

Y (6)
RN

© Bri 7

Ud,:-rx—-::—m, ( )

where k> = k2 + k2; k, and k, are the wave numbers cor-
responding to oscillations along the parallel and along the
meridian; x is the coordinate along the parallel (the east-
ward direction being positive) and y is the coordinate along
the meridian (the northward direction being positive); 8 /
dy = (1/R)3 /3¢, R is the radius of curvature of the system
(radius of the planet);

rr=["Yg*H)\2 (8)

is the characteristic size of the dispersion or the Rossby-
Obukhov radius; and, H is the equivalent depth of the medi-
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um. In the case of an atmosphere consisting of molecules
with mass M and temperature 7%

H — KT/ Mg*, 9
rr =cg/f, (10)
where ¢, = (kKT /M)"/? is the isothermal velocity of sound.

We shall present several examples. For the earth H~8 km
and rg =~ 3000 km; for Jupiter H =25 km and ry ~ 6000 km;
and, for Saturn H =80 km and rz ~ 6000 km.

The parameter 8 appearing in (6) and (7) is deter-
mined by the relation

_ 12 oH/{
ﬁ_‘—'l_.f_a@-"v

(1D

or

Bl 1 oH (11)

—_————

oy H oy °

It is evident from (11) that a Rossby wave arises as a result
of the meridional nonuniformity of the Coriolis parameter
or depth of the liquid. This phenomenon is called the S ef-
fect. The direction of propagation of the wave is determined
by the sign of the expression (11). In particular, for
H = const, which occurs, for example, in a planetary atmo-
sphere or ocean of uniform depth,
=9 (117)
ay
The phase velocity of Rossby waves for H = const is
oriented westward [“minus” sign in (6) and (7)]. Under
other conditions, namely, in the presence of a quite large
northward gradient of the thickness H of the layer of liquid,
the phase velocity of Rossby waves, as is evident from (11),
can in principle also be directed eastward. Although this
situation occurs on planets only in the presence of a quite
strong wind (see Sec. 1.4), it can be realized without diffi-
culty experimentally (see Sec. 3.1.4).
The velocity of the waves depends on their wavelength,

A = 2n/k. For the longest waves (k—0) the phase velocity

approaches the limit—the so-called Rossby velocity

Va={P|rk. (12)
In the particular case A = const, according to (11”),
VR = r’R g_jfl . ( 12’)

It is important to note a different approximation, which
is practically always used in the theoretical analysis of
Rossby waves. This is the so-called S-plane approximation:
the waves propagate not on the spherical surface of the plan-
et, but rather (in order to simplify the analysis) on the tan-
gent plane to this surface. In this approximation the Corlohs
parameter is glven by

f=fo+ y fo+By. 4

where y is the northward displacement in the S plane from
the point under study, and in addition S is assumed to be
independent of y; corresponding to (4')

19
b=—% 5
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where R is the radius of curvature of the meridian of the
planet.

1.3. Nonlinearity of Rossby waves: scalar and vector

According to Oertel’s theorem?>-2° about the conserva-
tion (‘“frozen-in” nature) of a potential vortex in shallow
water

d [/ rotv4t
& (7o), =0,

where the first term in the numerator is the local vorticity of
the liquid, f = 29, is twice the projection of the angular ve-
locity vector of the system on the local vertical,
H = H,+ 8H and 6H is the perturbation of the surface of
the liquid (h = 8H /H,<€1). In the case of two-dimensional
motion studied here, one can introduce the stream function
¥, whose derivatives ( — dy/dy, dy¥/dx) determine the com-
ponents of the velocity of the liquid along the parallel and
along the meridian. Under the conditions of geostrophic
equilibrium (2) and (3) we have §H = ( f/g)¢. Expanding
[1+ (8H /H,)] ! in a series and omitting terms of order
higher than second order, from Oertel’s theorem we obtain

(A% — &) — Pl + A (V) + BJ (A, $) =0, (13)

where J(Ay,¥) = Ay, ¢, — Ay, ¢, is the Jacobian; the sub-
scripts denote differentiation with respect to x (along the
parallel) and y (along the meridian) in units of @ and with
respect to ¢ in units of R /vg ; 4 and B are coefficients asso-
ciated with the parameters of the system, such as (,5,R,ry .

It is assumed that S is independent of y( B = const). The

first two terms in Eq. (13) determine the dispersion of
Rossby waves. Indeed, making the substitution
¥, »wy, Ay = — k¢, in the linear approximation we ob-
tain from (13) the dispersion equation (6). The third and
fourth terms in (13) account for the two nonlinearities of
Rossby waves: scalar and vector, respectively. The scalar
nonlinearity*’ is related directly to the change in the thick-
ness H of the layer of liquid. It is usually included in equa-
tions for nonlinear waves, for example, in the Korteweig—de
Vries (KdV) equation,*>? whence follows the positive-ele-
vation soliton on shallow water—the first soliton in the his-
tory of science, observed by Scott Russell 150 years ago.”*¢

The vector nonlinearity need not be associated with the vari-
ation of H. These nonlinearities can be separated strictly
speaking only in asymptotic model situations. Thus the sca-
lar nonlinearity vanishes when the liquid does not have a free
surface, while the vector nonlinearity does not occur when
the following two conditions are satisfied simultaneously:
the vortex is axially symmetric and the Rossby velocity is
constant in space. 42 Taking the ratio of the third term to the
fourth term we obtain the following conventional estimate of
the quantitative relation of these nonlinearities*?:

Scalar nonlinearity _ a®

=— (14)
Vector nonlinearity 74

Therefore when
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a>rg (15a)
the scalar nonlinearity predominates, while when
a<<rg (15b)

the vector nonlinearity predominates. These rough relations
are of an evaluative nature and (as will become obvious from
the discussion in Sec. 8) are useful for the experimental
search for conditions under which one or the other nonlin-
earity may be expected to predominate.

The asymmetry of the nonlinear properties of cyclones
and anticyclones (we recall that in cyclones and anticy-
clones the vorticity is oriented parallel and antiparallel, re-
spectively, to the vector £, ) follows from Eq. (13). Indeed,
it is evident from the equation of geostrophic equilibrium
(2) that for a cyclone 4 <0, while for an anticyclone 4 > 0.
When the cyclone is replaced by an anticyclone the signs of
all terms in Eq. (13), except for the third one, are reversed,
while the sign of the third term remains unchanged. This
sign is such that, as is easily seen, the scalar nonlinearity can
balance dispersion (i.e., cause an effect opposite to that of
dispersion) only in the case of an anticyclone.*” For a cy-
clone, however, the dispersion and scalar nonlinearity have
the same signs and, therefore, cannot mutually compensate
one another. This implies that if there exists a “scalar”
Rossby soliton (a solitary wave in which the dispersion
spreading is compensated by the twisting produced by the
scalar nonlinearity), then it can only be an anticyclone, i.e.,
only a positive-elevation soliton, as in the case of the classical
Russell soliton mentioned above. This cyclone-anticyclone
asymmetry, as we shall see below, largely determines the
possibility (or impossibility) of the formation of solitary
vortices with different polarity (see Secs. 3, 4, 5, 8 and
Ref. 42).

It will be shown below that planetary vortices of the
Jovian Great Red Spot (JGRS) type occurring in nature as
well as solitary (monopolar) Rossby vortices observed in
the experiments studied in this review satisfy the relation
(15a). Therefore when we talk about vortices we refer to a
model which does not ignore the scalar nonlinearity, i.e., it is
constructed based on taking into account both types of non-
linearities, as done, for example, in Ref. 42. The fundamental
deficiency of the first soliton model of the JGRS (see Sec.
2.2) is that the scalar nonlinearity is ignored. Under the con-
ditions of existence of dipolar vortices (see Sec. 8), however,
the vector nonlinearity can predominate—in accordance
with the relations (14), (15a), and (15b).

An important variant of the vector nonlinearity is stud-
ied in theoretical papers of Ref. 39. It occurs in the presence
of a gradient of the magnitude of the Rossby velocity along
the meridional coordinate y {when 8 #const in Eq. (13)].
This gradient can be due to the variation of any of the param-
eters appearing in the expressions (11) and (12) along the y
axis. The nonlinearity associated with the dependence H( y)
and the so-called topographic Rossby solitons generated by
it are studied specifically in Ref. 39. This nonlinearity can
appear in planetary atmospheres and in the oceans; another
case in which it can appear is mentioned in Sec. 6.
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1.4. Manifestation of Rossby waves on earth

Among the manifestations of Rossby waves on our
planet we shall study first of all the most interesting one from
the viewpoint of this review—synoptic vortices in the oceans
discovered by Soviet researchers.” In the interpretation of
these vortices it is necessary to take into account the nonuni-
formity of the density of the ocean along the vertical coordi-
nate (owing to the dependence of the density on the tem-
perature, pressure, and salinity). But this nonuniformity, as
it turns out,'®?% makes it necessary to take into account the
wave motion not only along the horizontal direction (as
done above), but also along the vertical direction. Taking
into account the vertical wave motion in Rossby waves leads
to an interesting result: the dispersion equation for the waves
remains structurally identical, but the characteristic size of
the dispersion is now no longer the Rossby-Obukhov radius
(8) (itis called barotropic), but rather the so-called internal
(or baroclinic) Rossby radius:

NH

7“ = m y ( 16)
where N is the Brunt-Viisild frequency of the vertical oscil-
lations of a nonuniform liquid, which is stable with respect to
convection (the density of the liquid p decreases in the verti-
cal direction). In an incompressible medium

_{_ 8 3p\12,
N=(-53)"

(17
compressibility leads to the appearance in the parentheses in
(17) of a second term, equal to g*/cZ, where c, is the velocity
of sound in the medium; m is the number of the vertical mode
in the top layer of the ocean. Under the conditions prevalent
in the ocean, for m = 1, the quantity », =50 km (much
smaller than the quantity 7z =~ 2000 km) is very close to the
dimensions of the synoptic vortices observed, while their
drift velocity {westward), which is of the order of several
cm/s, approximately corresponds to the Rossby velocity Br?
(but certainly not to Sr, which would correspond to a ver-
tically uniform medium). For this reason synoptic vortices
in the oceans are regarded?® as baroclinic Rossby waves.
They fit into the ocean precisely because their dimensions
are determined by the quantity 7, =50 km, and not by the
quantity rp =~2000 km. Another example of an analogous
rule is the natural atmospheric vortex in the Jovian Great
Red Spot (see Sec. 2.2) and deep (internal baroclinic) anti-
cyclonic vortices (“lenses”) with dimensions ~7; in the
oceans on earth (see Sec. 5.2).

We shall now study the important question of the for-
mation of a standing planetary vortex formed as a result of
the stopping of a Rossby wave by wind blowing in the oppo-
site direction.'®?*#* Assume that the Rossby wave propa-
gates in a medium which itself moves relative to the planet
with a velocity u (the positive direction of this velocity is
eastward). If the atmosphere is uniform in a motionless me-
dium (i.e., no wind), then the wind makes it nonuniform:
the Coriolis force, proportional to fu, which gives rise to a
hydrostatic pressure gradient balancing it [see (2)], acts on
the wind:

g——=—1fu.
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Now the velocity of the Rossby wave relative to the wind is
determined by the relations (6) and (11), while the velocity
of the wave relative to the planet equals

yo@ . ol
T ke - 145} *
It is evident that if the wind velocity satisfies the condition
1 of

then the Rossby wave, propagating westward in the absence
of the wind, is stopped by the oppositely blowing wind. Un-
der terrestrial conditions this equality for the wavelength
A = 27/k =~ 3000 km can be established with a wind velocity
of several m/sec. We shall now take into account the fact
that a Rossby wave with a sufficiently large amplitude exhib-
its the properties of a vortex: it retains “its’ particles and
does not allow external particles to enter it (see Sec. 3.2.3
below). In addition, after ““its” precipitation pours out, stag-
nation phenomena such as a prolonged drought can be ob-
served in the region of the Rossby vortex [for example, such
as occurred in our country (USSR) in 1972]. These are the
so-called blockings.'® If the wind velocity exceeds the value
indicated above, the Rossby wave is carried along by the
(oppositely directed) wind eastward. It is interesting to note
that the propagation velocity of very long Rossby waves
(A»rg, k?rk -0) is unaffected by wind: the displacement
of the wave by the wind is precisely compensated by the
increase in the velocity of the wave relative to the wind owing
to the effect of the hydrostatic pressure gradient that ap-
pears. For this reason a Rossby soliton® is not displaced by
the wind (flow).**

1.5. Analogy with drift waves in a plasma

There is a profound analogy between Rossby waves and
the so-called drift (gradient) waves in plasmas, confined
transversely by a strong longitudinal magnetic field. In the
case of drift waves the Lorentz force plays a role analogous
to that of the Coriolis force. The drift waves appear as a
result of the transverse (relative to the magnetic field) non-
uniformity of the electron temperature or plasma density,
just like Rossby waves appear owing to the transverse (rela-
tive to the local angular velocity of the system) nonunifor-
mity of the Coriolis parameter or depth of the liquid. The
spatial scale of the dispersion of drift waves is the ‘“Larmor
radius of the ions at the electron temperature,” analogous to
the Rossby-Obukhov radius 7z and equal to the ratio of the
ionic sound velocity c, to the Larmor rotational frequency of
the ions in a magnetic field (@,,, ), while the quantity oy is
analogous to the Coriolis parameter f;. The quantity k7, /
M =¢? is analogous to the specific hydrostatic pressure
g*H. The analog of the Rossby velocity is the characteristic
drift velocity v,, , whose magnitude and sign are determined
by the spatial (transverse) gradients of the plasma param-
eters and of the magnetic field; this velocity is proportional
to the “drift” coefficient 8 4,, analogous to the coefficient 8
for Rossby waves (11). The spatial orientation of drift waves
is determined by the wave numbers &, and k,, correspond-
ing to the azimuthal coordinate x (along the “parallel”
around the direction of the magnetic field) and the radial
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coordinate y (across the magnetic field). Based on what we
just said, it is understandable that the dispersion equation
for drift waves is analogous to the equation for Rossby
waves. The indicated analogy between the two types of
waves in such different media, according to the recollections
of M. Obukhov, was first pointed out by M. A. Leontovich
about 20 years ago, and was then studied by other authors
(see, for example, Refs. 45 and 46). It follows from this
analogy that analogously to hydrodynamic Rossby drift soli-
tons, observed experimentally (Sec. 3), drift solitons should
also exist in a magnetized plasma.

2. ROSSBY SOLITONS (BRIEF OUTLINE OF THEORETICAL
RESULTS)

2.1. Solitary Rossby wave as the result of equilibrium
between dispersion and nonlinearity

The following association of dispersion and nonlinear-
ity [see relation (7)] is characteristic of Rossby waves: dis-
persion is negative (the phase velocity decreases with in-
creasing wave number), while the nonlinearity is positive
[the phase velocity (7) increases as the wave amplitude, i.e.,
the height of the liquid H increases (since riz ~H)]. This
association of properties is a necessary prerequisite for the
existence of a solitary wave— (rotating) hump in a liquid
with a free surface (Fig. 1). In reality, the sides of the hump
(steep slopes of the profile)® correspond on one side to the
lowest phase velocity (owing to the negative dispersion) and
on the other to the highest phase velocity owing to the posi-
tive nonlinearity; as a result, it is possible (it has not been
excluded) that the dispersion spreading of the wave packet
(which is characteristic of a classical linear wave packet)
can be compensated by nonlinear self-compression of the
packet resulting in the formation of a solitary wave (soli-
ton). It is easy to see that in the case of a negative-elevation
wave (a profile with a depression) the effects of dispersion
and nonlinearity would be oriented in the same direction,
and the nonlinearity would only intensify the dispersion
spreading. The theory therefore predicts that a solitary nega-
tive-elevation wave is impossible in this case.” But the equi-
librium hump studied here (radius a, amplitude AH), ac-
cording to the equation of geostrophic equilibrium (2),

FIG. 1. Anticyclone—equilibrium rise in the surface of a rotating incom-
pressible liquid. F,, is the Coriolis force. a) Trajectory of a particle in the
vortex, b) height profile of the liquid.
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must rotate in a direction opposite to the local rotational
velocity of the system: in this case the Coriolis force, acting
on the circular current of particles in the vortex, is oriented
toward the center of the vortex and balances the hydrostatic
pressure associated with the hump. Therefore, the expected
Rossby soliton can be an anticyclone but not a cyclone, In a
medium with uniform H the soliton must propagate west-
ward.

The qualitative considerations presented above also en-
able us to estimate the possible size of the soliton. Indeed,
from the dispersion equation (6) and the graph in Fig. 2 it is
evident that for Rossby waves with a long wavelength
(k2rk <) there is no dispersion and nonlinearity predomi-
nates; for short waves, on the other hand, dispersion pre-
dominates; conventionally speaking, the long waves sepa-
rate from the short waves near the point k= 1/rg,
corresponding to the maximum of the dispersion function
(k). For this reason, mutual compensation of dispersion
spreading and nonlinear self-compression (which must re-
sult in the formation of a soliton ) is possible only at locations
where both the nonlinearity and dispersion are significant,
i.e., somewhat to the left of the extremum point, &k, =~ 1/rg.
This means that the characteristic size of the soliton must be
somewhat greater than rg . In addition, the higher the ampli-
tude, the farther to the right the soliton is located in Fig. 2,
i.e., the smaller the soliton is.

The above considerations illustrate the physical signifi-
cance not only of the “scalar” but also of the “vector’” mono-
polar Rossby soliton. This follows from the fact*® that the
vector soliton (one of whose dimensions is much larger than
the other, and is greater than the radius ry —like in the
JGRS) is also described by an equation of the KdV type,
whose soliton solution, as already pointed out, physically
corresponds well to the qualitative analysis presented here.

2.2. Monopolar (solitary) Rossby solitons. Theoretical soliton
model of the Jovian Great Red Spot (JGRS)

Soliton solutions for solitary Rossby waves have been
found in theoretical studies of Refs. 39b, 41, 42a, 47-58 in
particular in application to the problem of the JGRS. These
studies were preceded by the papers of Ref. 50. In Ref. 50a
the vortex of the JGRS was interpreted on the basis of a
“Taylor column”—a beautiful hydrodynamic phenomen-
on,** whose physical meaning follows directly from Oertel’s

FIG. 2. Dispersion curve for Rossby waves: dependence of the angular
frequency of the wave on the wave number k, , corresponding to the mo-
tion along the parallel.
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theorem about the conservation of a potential vortex*>-?*

(see Sec. 1.3). Consider a flow in rotating shallow water over
a solid underlying surface, containing a topographic fea-
ture—a “stump” (i.e., alocation over which the thickness of
the layer of liquid A is less than at neighboring locations).
Then the indicated theorem

(25 o

(18)

implies that above the stump the total vorticity of the flow
[the number in the numerator in (18)] will be less than in
neighboring locations, i.e., an anticyclonic vortex will exist
above the stump (in addition the first and second terms in
the numerator have different signs). According to Ref. 50a,
the anticyclonic vortex of the JGRS is associated precisely
with such a topographic feature. It is now known, however,
that, first of all, there is no solid surface beneath the clouds of
Jupiter (the gaseous atmosphere extends to the deepest lay-
ers of the planet, and there is ““no place to drive in a stump,”
and, second, the vortex of the JGRS drifts relative to the
planet (circling the planet along the entire parallel over a
period of 10-15 years). Therefore the hypothesis of Ref. 50a
is now of only historical interest. In Ref. 50b, under a num-
ber of simplifying model assumptions, it is shown by a nu-
merical method that the well-known equation for a vortex in
a system with oppositely directed zonal atmospheric flows
(see below) implies that a vortex whose characteristic size is
much greater than the Rossby-Obukhov radius can exist
even if there is no underlying surface (as in the case of the
JGRS).

Among the soliton models of the JGRS we call atten-
tion first to the chronologically earliest (within the last ten
years) theoretical model.*® Its main results are as follows. 1)
A Rossby soliton exists in Jupiter’s atmosphere against the
background formed by oppositely moving zonal flows,
whose velocity in the west-east direction varies along the
meridian both in magnitude and in sign (Fig. 3).* 2) The
Rossby soliton is a solitary (monopolar) vortex, whose di-
mension along the parallel is much larger than the dimen-
sion along the meridian. 3) The Rossby soliton can be either
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FIG. 3. Zonal flows in the Jovian atmosphere: wind velocity (m/s) as a
function of the geographic latitude.”!
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barotropic (two-dimensional) or baroclinic (three-dimen-
sional) and is characterized correspondingly either by an
external or internal Rossby radius (Sec. 1.4). 4) The main
type of nonlinearity responsible for the formation of the
Rossby soliton is the vector nonlinearity. 5) The solution
obtained in Ref. 49 has the form of a soliton and corresponds
qualitatively to the observed properties of the vortex of the
JGRS: like in the observations, the Rossby soliton is a west-
ward drifting anticyclone whose size exceeds rg . This model
has certain difficulties. One difficulty is that it predicts a
much too high drift velocity of the vortex, exceeding the
observed value by approximately an order of magnitude.
This result is obviously linked with the fact that the scalar
nonlinearity was ignored (see Ref, 42).

With regard to the problem of the JGRS, one must, of
course, first consider those papers in which the soliton solu-
tions for Rossby waves (vortices) are obtained in the form of
structures which are self-consistent with the oppositely mov-
ing zonal flows existing in planetary atmospheres: these
flows drastically affect the nature of the nonlinearity of the
wave studied as well as the possibility of the formation of
steady-state solitary vortex structures. In this connection,
following Ref. 49, we call attention to the theoretical articles
of Refs. 56-58, where model situations, in which either the
vector®®® or scalar®’® nonlinearity of the Rossby waves pre-
dominates, are studied.” In Ref. 42 both of these nonlineari-
ties are taken into account at the same time in a detailed
numerical study, in particular, in application to the JGRS.
The results of Ref. 42 also demonstrate the asymmetry stud-
ied in Secs. 1.3 and 2.1 in the possibility of the existence of
solitary vortices with different polarity: the anticyclones are
the only nondecaying structures.

In another group of theoretical studies, so-
Iutions of the monopolar Rossby soliton type were found
under conditions when there are no zonal flows, i.e., when
the shallow water rotates as a whole (of course, in the pres-
ence of the 7 effect, described in Sec. 1.2). Thus a particular
solution for a Rossby soliton, linked predominantly with the
scalar nonlinearity, previously known in oceanography,**-!%
was found in Refs. 41, 54, 55. In the first of these studies,>*
such a soliton was studied in application to vortices in the
ocean and for this reason was assumed to be guasi-two-di-
mensional (baroclinic; see Sec. 1.4). In the second var-
iant,*'>* the Rossby soliton is two-dimensional (barotro-
pic). The physical meaning of the soliton is, of course, the
same in both variants. According to Refs. 41, 54, and 55 the
Rossby soliton is an anticyclonic vortex with an oval (nearly
circular) shape, rotating in the state (3). Its profile is deter-
mined by a function of the hyperbolic secant type. In the
barotropic case*!"> its characteristic size (radius) is much
larger than the Rossby-Obukhov radius (8); there is a defi-
nite relation between the radius (a) and the amplitude (the
relative rise in the liquid # = AH /H): the diameter of the
vortex is

2a = 3.5 rgh™?,

41,54,55,70,73,98

(19)

and in addition it is assumed that A< 1. The soliton propa-
gates westward with a velocity somewhat higher than the
Rossby velocity (11, 12):
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Vdr > VR' (20)

In the baroclinic variant®* the parameters of the soliton are
analogous to those just discussed, but the internal radius of
the deformation (16), rather than the external radius of the
deformation rg (8), plays the role of the characteristic size
of the dispersion.

A substantially different variant of a two-dimensional
anticyclonic monopolar Rossby soliton of size g > ry is stud-
ied in the theoretical papers of Refs. 73 and 98, where a
qualitatively new effect is taken into account: the trapping of
particles of liquid at the center of the soliton.!" Such a region
appears in the soliton at some amplitude A4 of the soliton, so
that in Refs. 73 and 98, unlike Ref. 55, A4 is not assumed to be
small and can reach 1. The trapped particles, rotating
around the axis of the vortex with velocities V,,,, exceeding
the drift velocity of the vortex (20) [see the relation (40)
below], give the soliton new properties. Amongst them we
should note first of all the existence, in the trapping region,
of “memory” of the initial disturbance (which was responsi-
ble for the formation of the soliton), or, in other words, the
nonexistence—unlike (19)—of a definite relation between
the amplitude of the soliton and its characteristic size. It is
fundamentally important that such solitons, which have
quite arbitrary (in the indicated sense) sizes and amplitudes,
are attractors. This means, in particular, that they are inde-
pendent of the particular solution (19).%° In addition, since
there are many Rossby vortex solitons of the type under
study, while the solution of (19) is unique,*’ it follows that
the probability for the realization of the solution (19)3*—for
a sufficiently large amplitude of the vortex (when it carries
trapped particles)—is practically vanishingly small. It is im-
portant to keep this circumstance in mind both when com-
paring theory with the experimental data examined below
(Sec. 3.3) and in discussions of the soliton model of the
JGRS (Sec. 5.1).

Thus comparison of these two variants of the theory of
the “scalar” Rossby monopolar soliton leads to the follow-
ing conclusion: the set of vortex Rossby solitons exhibiting
“memory” in the region of trapping of the particles’**8 con-
tains a soliton which is characterized by a fully determined
shape and a relationship between the width and amplitude of
the type (19); it is described by an analytic solution,*!-3
distinguished by the continuity of the derivatives of the vor-
ticity; against the overall background formed by these
“equivalent” vortex solitons the indicated solution obvious-
ly has a very small specific “statistical weight” and, appar-
ently, a correspondingly low probability of realization (ig-
noring some special method for generating it).

Returning to planetary vortices in the atmospheres of
Jupiter and Saturn, we note that not only the JGRS but also
virtually all large long-lived vortices on large planets are
apparently Rossby vortices. The fact that (see Sec. 5) almost
all vortices of large planets, similar to the JGRS vortex, are
anticyclones, i.e., they exhibit a cyclone-anticyclone asym-
metry, is intriguing. The “lenses” mentioned above—baro-
clinic vortices on the branch of internal Rossby waves in
oceans (see Sec. 5.4)—are also anticyclones.

814 Sov. Phys. Usp. 29 (9), September 1986

In concluding this section, we note the following inter-
esting effect. The Rossby soliton is not carried away by a
zonal flow (i.e., it is not blown away by a zonal wind). This is
demonstrated by simple calculations,* whence it follows that
the Coriolis force deflecting the zonal flow gives rise to a’
compensating pressure gradient (oriented along the merid-
ian) in whose field the Rossby velocity (11) and (12)
changes precisely by an amount that compensates exactly
the displacement of the vortex by the flow. (The linear
Rossby wave is subjected to this effect only in the asymptotic
case A — «; see Sec. 1.4.)

2.3. Dipolar Rossby solitons

The possibility of existence of a dipolar Rossby vortex,
which has the form of a symmetric pair of cyclone-anticy-
clone vortices, propagating in a medium at rest, was predict-
ed theoretically in Ref. 51. This vortex is formed by the vec-
tor nonlinearity under the condition (15b). In the interior
region of the vortex, bounded by some separatrix, the
streamlines are closed—this is the region where particles are
trapped by the vortex; in the outer region, the streamlines
are open. The anticyclone corresponds to a rise and the cy-
clone corresponds to a depression (the average level of the
liquid in the soliton remains unchanged). The vortex differs
fundamentally from the one that is described in the books by
Lamb and Batchelor’"7? by its solitary nature, which is a
result of the combined effect of the nonlinearity and the £
effect: at a large distance from the center of the vortex the
rotational velocity decreases exponentially as a function of
the distance, unlike Refs. 71 and 72, where the velocity pro-
file corresponds to the r~2 law. In addition, the characteris-
tic length (analogous to the Debye radius in a plasma) is
a = (u/B)"'? where u is the velocity of the soliton and Bis a
parameter determining the Rossby velocity according to
(11), (12). For example, if u = vy, thena = rg.

The soliton under consideration has the following fea-
ture: in a medium with a free surface and a constant depth
the velocity of the soliton can lie only in the following ranges:

a)u>0,

b)u< — Vg; (21)

in the first case, by definition, it moves eastward and in the
second case it moves westward with a velocity greater than
the maximum velocity of Rossby waves. The physical mean-
ing of the conditions (21) is that the velocity of the vortex
lies outside the range of velocities of Rossby waves [see (7,
12) ], and therefore the vortex does not lose energy to Cher-
enkov emission of these waves; in other words, the relations
(21) express the condition for the dipolar vortex to be a
steady-state one.'? The theory also predicts the existence of
a paired soliton such that the partners are not symmetric; it
is called a “rider,”” while a more general name for the paired
vortex is “modon.” 3! Experiments with such vortices are
described in Sec. 8.

2.4. Questions regarding structural stability and steady-state
behavior

The question of the stability of Rossby solitons has thus
far been studied only within the traditional “‘#-plane ap-
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proximation,” in which it is assumed that the Rossby veloc-
ity is constant, i.e., it is not a function of the coordinates. In
this approximation, according to Ref. 74, the monopolar
solitons studied above are stable. On the other hand, if the
fact that a real system (for example, a planet), in contrast to
the osculating B plane, has a finite curvature (which is,
strictly speaking, the origin of Rossby waves) is taken into
account and it is assumed that ¥, = r2 B( y) #const,'?
then, also according to the theory of Refs. 42, 57, and 70, the
monopolar soliton is subject to additional “nonviscous
damping,” which causes the vortex to decay into a zonal
flow; the decrement of this decay is

~L VR (22)

The physical meaning of this phenomenon is that the points
of the vortex with different meridional coordinates ( y) drift
with different velocities, and the vortex gradually decays.
Clearly one can talk about solitons in this case only if the
time 1/yx is much longer than the characteristic dispersion
time (see Sec. 3.1.2). This condition, as will be shown in Sec.
3.1.3, imposes quite strict requirements on the parameters of
the experimental apparatus for generating and identifying
Rossby solitons.

The stability of dipolar Rossby solitons has not yet been
studied analytically.

The question of the reality of soliton structures can
hardly be resolved with definiteness theoretically—further
input from experiments is apparently necessary.

3. ROSSBY SOLITONS IN ROTATING SHALLOW WATER
(EXPERIMENT)

3.1. Experimental observation of a Rossby soliton and its
properties

3.1.1. Brief history of the question

The possibility in principle of observing a “scalar”
Rossby soliton in a layer of shallow liquid, rotating together
with a parabolically shaped vessel, was pointed out in Ref.
55. This stimulated the beginning of the first stage of experi-
ments on the observation of Rossby solitons in which the
liquid rotated as a whole together with an approximately par-
abolically shaped vessel.”*~%? These experiments were under-
taken only after experimenters®® developed physical criteria
which parabolic models must satisfy so that vortices like the
Rossby solitons could be unequivocally identified in them.
These criteria are presented in Sec. 3.1.3. A Rossby soliton
was first created in the laboratory in the experiments of Refs.
78-82, which satisfied these criteria. It was shown that a
Rossby soliton exists in the free state (without replenish-
ment) for approximately the viscous time period (about 20
sec). These experiments qualitatively agreed with the then-
existing theory®® (and also Refs. 41 and 54), they revealed
the obvious clear disagreements with thetheory, and, most
importantly, they revealed a number of new fundamental
properties of Rossby solitons, which were not contained in
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the existing theory (see Sec. 3.2). This broadened the con-
cept of Rossby solitons and stimulated the development of
the theory (it also led to the development of a new the-
ory, 8 the main results of which are presented in Sec. 2.2).

This completed the first stage of experiments, associat-
ed with the study of monopolar Rossby solitons in a liqaid
rotating as a whole (dipolar vortices were studied somewhat
later®®). After this, the second stage of the experiments be-
gan—the study of coherent vortex structures in a new geom-
etry of the system, namely, with a differentially rotating liq-
uid, in which oppositely moving flows, physically similar to
zonal flows in planetary atmospheres, were superposed on
the basic rotation of the system as a whole. This stage of
experiments was no longer linked with the theory.’ At this
second stage (see Refs. 82-86) two instabilities of shear
flows were discovered: the Kelvin-Helmholtz (KH) insta-
bility and the centrifugal instability (CI), which lead to the
generation of chains of large-scale vortices (whose size ex-
ceeds the Rossby-Obukhov radius), arranged along the pe-
rimeter of the system; under certain conditions these vorti-
ces are Rossby solitons. Next, at the third stage of
experiments,®”#® performed on a modified experimental ar-
rangement with a new geometry, a regime of zonal flows in
which their instability leads to the formation of a new non-
linear vortex structure—a Rossby autosoliton—was discov-
ered. The latter is a solitary nondecaying large-scale
(a > rg ) anticyclonic vortex, which is the only one over the
entire perimeter of the system, self-organizing in flows, and
representing a steady-state physical soliton model of natural
vortices of the JGRS type. [We note here that this is an
instructive example of how the instability leads not to small-
scale turbulence, but rather to the formation of large coher-
ent structures (see also Refs. 11, 75-77, 90,91, 96, 97).] The
indicated experiments made it possible to explain simply the
fact that all large vortices on Jupiter and Saturn are anticy-
clones, with the single exception of the Brown Ovals
(“barges”) on Jupiter (14 °N.L.), as well as the physical
meaning of this exception.® (We note that the large-scale
cyclonic vortices, existing on Jupiter as an exception, could
be of the same nature and could be generated by the same
mechanism as cyclones which under terrestrial conditions
are nonexceptional; see Sec. 5.)

Experiments (also with differentially rotating shallow
water) on modeling the hydrodynamic mechanism of the
generation of the spiral structure of galaxies which have a
jump in the velocity on the rotation profile were conducted
in parallel with the experiments on the generation of Rossby
solitons by flows.?*-%°

These experiments suggested that both natural phe-
nomena—large vortices in the atmospheres of large planets
and the spiral structure of galaxies of the type indicated
above—are apparently generated by the same physical
mechanism. They are based on the hydrodynamic instability
of differentially rotating “shallow water” (the core rotating
more rapidly than the periphery®'). The theory of this insta-
bility is discussed in Refs. 92-94.

Before describing the experiments we shall clarify the
formulation of the problem.
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FIG. 4. The effective time 7, (curve 1) of dispersion spreading of a linear
packet of Rossby waves (in units of rg /¥ ) as a function of the diameter
of the packet (in units of rg). Starting formula of the packet:
h = hyexp( — r’/a*). The time 7, is defined as the time over which the
amplitude of the wave packet decreases by a factor of 2.%° The figure also
shows the change in the drift velocity (curve 2) and the range of the
packet (curve 3).

3.1.2. Formulation of the problem. When Is a vortex a sollton?
The lifetime and range of a linear two-dimensional packet of
Rossby waves

In order to identify unequivocally in experiments a
Rossby vortex as a soliton it is necessary to show that it exists
without decaying for a period of time () which greatly ex-
ceeds the time (7 ) of dispersion spreading of a linear two-
dimensional packet of Rossby waves of the same size:

T>TL. (23)

The problem of dispersion spreading of a linear two-dimen-
sional (circular) packet of Rossby waves in the £ plane was
solved theoretically in Ref. 95. The result is presented in Fig.
4, which shows three of its parameters as a function of the
diameter of the packet (which initially is Gaussian): the
characteristic lifetime (7, ), the westward propagation ve-
locity (¥ ), and the range over the lifetime (/, ). The quan-
tity 7. corresponds to a decrease in the amplitude of the
packet by a factor of two and is expressed in units of rg / Vg,
the diameter of the packet (the distance between antipodal
points on the profile at which the rotational velocity of the
particles equals 1/e of the maximum value) and /, are ex-
pressed in units of 7z, while v; is expressed in units of V.
There is a minimum spreading time: it corresponds to the
diameter of the packet 2a~2ry and constitutes

8rx
VR
The propagation velocity 7| of a linear Rossby packet of the
dimensions under study, is significantly lower than the

(24)

(7L ) min =
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Rossby velocity. Thus, for a packet of size 2a~ (2-3)rg,
V1 =~0.2¥ » . Such a packet can traverse over the dispersion
spreading time (24) a distance

L =Vyir S2ry =2a; (25)

thus the “free path length” of a linear two-dimensional pack-
et of Rossby waves with a minimum dispersion spreading
time equals approximately one diameter of the packet. In
addition, since the Rossby soliton must move with a velocity
greater than Vg, i.e., several times faster than a linear pack-
et, and its lifetime must be longer, the path /; traversed by
the soliton over its lifetime must also be much greater than
its diameter 2qa:
I, >2a. (26)
If a soliton whose radius is greater than r; carries captured
particles, i.e., it is a “real” vortex (for which ¥, , > V&),
then it satisfies the condition
TN>1, (27)

where N is the number of times the vortex can revolve
around its axis over its lifetime. This condition is equivalent
to (26).

3.1.3. Experimental arrangement—~parabollc model of the
atmosphere (ocean) of planets. Requirements on the model
parabolold

The free surface of a liquid rotating in the gravitational
field with a constant angular velocity 2 about a vertical axis
(Fig.5) assumes a parabolic shape according to the equation

b,

FIG. 5. Equilibrium layer of liquid in a rotating paraboloid and the layout
of the experimental arrangements’® %% used for exciting and studying
solitary (monopolar) and dipolar Rossby solitons in shallow water rotat-
ing as a whole. 1) Vessel with approximately parabolic bottom profile; 2)
water surface spreading under rotation along the parabolic bottom; 3)
camera (or motion picture camera), rotating together with the vessel; 4)
rotating pumping disk. The paraboloid rotates counterclockwise around
the vertical axis with an angular velocity . View from above: the solid
arrows indicate the anticyclonic direction of rotation of the pumping disk
and the direction of rotation of the vessel; the broken arrow shows the
direction of drift of the Rossby soliton in the absence of a gradient of the
depth of the liquid (the soliton lags behind the global rotation of the
system ). The angle a is the angle between the rotational axis of the vessel
and the normal to the surface of the liquid at the working point.
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) (28)
which follows immediately from the condition of equilibri-
um of the forces acting in the plane tangent to the surface of
the liquid: % cos @ = g sin @, whence tg a=dz/dr = O’/
g, where z and r are the distances of a point on the surface
from its lowest point, measured along the rotational axis and
in a perpendicular direction, respectively; g is the accelera-
tion of gravity. The parameter

_e 29
p—g (29)

characterizes the steepness of the paraboloid.

The layer of rotating liquid can be used as a model of the
uniform atmosphere (ocean) of a planet, if its thickness is
constant, i.e., if the bottom of the vessel rotating together
with the liquid has an approximately parabolic shape, close
to (28). More precisely, the following stipulation must be
made: if the bottom and surface of the liquid have the same
shape, then the thickness of the layer of liquid will be con-
stant not along the normal to the surface, but rather along
the z axis; therefore in order for the thickness of the layer H),
to be constant in a direction toward the normal to the surface
of the liquid, the vessel must be somewhat more gently slop-
ing than (28). It is precisely vessels of this type that were
used in all of the described experiments'¥; we shall refer to
them briefly as paraboloids (see Fig. 5). In a rotating para-
boloid the layer of liquid is subjected to the resultant of two
forces: the force of gravity and the centrifugal force from the
global rotation of the system as a whole; under the condi-
tions of equilibrium the acceleration of the resultant is ori-
ented along the local normal to the surface of the liquid and
is given by (Fig. 5)

i (30)
gt= cosa’
Using the formula (30), in a paraboloid with
H = const = H, we have
__(gHq)® 31
TR=120, cosia, *
H * 3 H 1
VR:g*"a%'j_ ‘; T 5 HQpsina, (32)

where R is the radius of the meridional curvature of the para-
boloid:

8/2 [ 83z \ -1
R= [1+( )] (0r’) )
and, according to (4), f= 2}, cos a.

We shall indicate here one more result, which is impor-
tant for experiments. If the angular rotational velocity of the
paraboloid () exceeds the value (}, at which H = const by an
amount A{, then the depth of the liquid will have a meri-
dional gradient directed toward the periphery of the vessel
(and when AQ) has the opposite sign the gradient is directed
toward the center of the vessel). In addition, the Rossby
velocity (11) according to (32) will be different, since
H 3 const. The simplest expression for V' is obtained for the
parallel on the paraboloid which is located at a distance
ro = R,/V2 from therotational axis, where R is the radius of

817 Sov. Phys. Usp. 29 (9), September 1986

»i i

the vertical cylinder bounding the transverse dimension of
the paraboloid. On this parallel, for small A2/}, the thick-
ness of the layer of liquid is constant, and according to Refs.

79 and 78'%
2R/H,

Va=gHQsina [1+00 o .
It is evident that when AQ >0 the quantity ¥ increases
(the vortex drifts westward even more rapidly than for
AQ) = 0; for AQ <0 the Rossby velocity decreases and can
even change sign [then the vortex will drift eastward, as does
happen (see Sec. 3.1.4 and Fig. 7b) ].

We shall now formulate the criteria which the param-
eters of the paraboloid with shallow water must satisfy in
order for the vortices observed on it to be identified as
Rossby solitons (in other words, in order that the paraboloid
be suitable for observation of Rossby solitons).% The first
criterion follows immediately from (23), (24), and (8):

(34)

(33)

psm2a>1(xH 7

where p = Q32 /2g is the steepness parameter of the parabo-
loid. The quantity 7 is bounded from above by the viscous
time, 7. In reality, in the experiment studied below, 7
does not exceed several tens of seconds. Therefore it follows
from (34) that the paraboloid must be quite steep and that
the working region must be located quite far away from its
pole. [The condition (27) leads to the same result.] For
later comparison of the criterion under study with the condi-
tions of the experiments described below, we shall take two
examples:

1) Let H,=0.5 cm, sin2a=
gives

p>2-10"2cm™

2) Let Hy=2 cm, sin2ax
gives

1, 7=20 s. Then (34)

(35a)
1, 720 s. Then (34)

p>10"2cm~L (35b)

The second criterion is associated with the *“S-plane
-approximation,” introduced by Rossby’ and widely used in
the theory of Rossby waves and solitons (see Refs. 24,23, 51,
74, 70).'® According to this approximation in the tangent
plane to the paraboloid in the working region, V' ~const,
i.e., the change in Vg over the meridional size of the vortex
(L) is small compared with Vg:

L Vg

R ba Vg,

which combined with (32) means

L
tga> . (36)
This criterion also implies that the steepness of the parabo-
loid must be quite large and the working region must be
located quite far away from the pole of the paraboloid.

We obtain an analogous estimate from the requirements
(23), (24), according to which the lifetime of the vortex 7,
which is limited by the variability of the Rossby velocity over
the size of the vortex, 7==2(dV g /dy) ! [see (22)], must
exceed the dispersion time 7; , defined by (24) as
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or

tgo> LR (38)

We emphas1ze the fundamental nature of the require-
ments (23), (24), and (38). The point is that if these re-
quirements are not satisfied, then the wave packet has time
to decay over a time shorter than the characteristic time®® of
the dispersion spreading of a linear packet of Rossby waves.
But in this case one cannot say that the wave packet is “non-
spreading” (compared with the linear packet of Rossby
waves). This means that in this case the wave packet (vor-
tex) cannot be identified as a Rossby soliton (see also
Sec. 8.2).

Experiments on the observation and study of Rossby
solitons in a thin layer of liquid rotating as a whole’® %2 were
carried out on two paraboloids—‘small” and ‘“large,”
which are shown in Fig. 5 and whose parameters are present-
ed in Table I. These parameters were carefully chosen—for
the working region, a in Fig. 2, and starting from the criteria
(34)-(38). For this reason the paraboloids were made to be
quite steep. It is not difficult to see that for the actually ob-
served lifetime of vortices (about 20s) the parameters of the
experimental arrangements being studied satisfy the indicat-
ed criteria. We note that as a special theoretical investigation
showed,!?’ the effect of capillarity on Rossby waves in these
(and, by the way, in all other realistically imaginable) ex-
periments can be completely ignored. A vortex was excited
in these experiments by two methods. In one method a
“pumping disk,” placed on some “latitude” of the parabo-
loid in the plane of the bottom and switched on for several
seconds, was used; the diameter of the disk could be varied
from one experiment to another. In the other method, a jet of
water was injected in a pulsed manner into the working lig-
uid (water) from a short tube near the bottom of the parabo-

TABLE 1. Parameters of experimental arrangements,”*-85.6

loid; the action of the Coriolis force on this jet formed a
vortex (anticyclone). Both methods gave the same results.
Inorder to photograph the vortices (which was usually done
with a camera rotating together with the vessel, and some-
times together with the vortex) the working liquid (water)
was colored with a dye, and white test particles were floated
on its surface. When the vortices were photographed in red
light, passing through a green solution and reflected from
the white bottom of the vessel, the rise in the liquid (anticy-
clone) appeared to be darker than the depression (cyclone).
Photometric measurements of the photographs obtained
made it possible to determine the profile of the height of the
vortex and, in particular, to find the diameter of the vortex.
By measuring the length of the tracks of the test particles,
traced over the exposure time of the camera, it was easy to
determine the entire velocity profile in the vortex. From this
profile, with the help of the equation of geostrophic equilib-
rium (2)

g*AH

m

2Qu cosa =

it was possible to determine independently the amplitude of
the vortex AH = hH,, and its size a,, (the corresponding
maximum of the linear velocity on the profile).!” The ex-
perimental results obtained with both paraboloids by the in-
dicated independent methods agree satisfactorily with one
another. It is important to note that for methodological rea-
sons, associated with the sensitivity of the experimental pro-
cedures used, in the experiments described the amplitude of
the Rossby vertices was not too low:

h > 0.15.

3.1.4. Observation of a Rossby soliton: Its dimensions,
profile, amplitude, drift and range

The main results of the experiments performed with the
small paraboloid, in which a Rossby soliton was first ob-

Small paraboloid Large paraboloid
z=§.10"2r2 r=2,86-10"2r2
2R, =28 cm 2Ry=170 cm
ro=10 cm ro=25 cm
Ry=32 cm Ry=9 cm
Hpin=90,3 cm Hmm_.O 5 cm
max=1,2 cm max=95 cm
For Ho=0'5 cm For Hy=1 cm
27 _2n
T, _F 0.58s To Qo =084s
rR=2,1¢ For H=3cm =const rg=7.6cm
R= 2 2 /s VR~ 9cm/s
~ 8 oo~ 7.6 =8B ~ 665
VR
z(r) is the equation for the surface of the liquid rotating with a definite frequency (£,); T, is the
period of rotation of the vessel, correspondmg to the layer of liquid with constant depth Hy; 2R, is ‘
the maximum diameter of the paraboloid; To is the radius of the working point; R, is the radius of
the meridional curvature of the vessel; 7; is the minimum dispersion spreadmg time of a linear
packet of Rossby waves.
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FIG. 6. Example of an anticyclonic Rossby soliton, made visible by white
particles floating on the surface of a green liquid, and also by the contrast
of the image in red light, passing through the solution and reflected from
the white bottom of the vessel.”” The view from above on the rotating
paraboloid is shown. D is the pumping disk, 3 cm in diameter; the white
parts are the drive for the disk (above the liquid). The photograph was
made with a camera rotating together with the vessel 2 to 3 s after the disk
was switched off. The vortex drifts clockwise. H, = 5 mm.

served (generated), are illustrated in Figs. 6~11 and consist
of the following. Figure 6 shows a typical anticyclonic vor-
tex, recorded ~ 3 sec after being generated by the pumping
disk D and drifting, for H = const, opposite to the direction
of rotation of the vessel.'® The profile of its vortex (see Fig.
8) is that of a soliton’ (approximately Gaussian, dropping
off much more steeply than in a classical vortex, wherev~ 1/
r). The diameter of the vortex (the transverse dimension at
the center of the profile) is about 2.5 r, the relative ampli-
tude A = 0.5, and the characteristic frequency of the intrinsic
rotation of the vortex (opposite to the direction of the global
rotation of the paraboloid) at the center of the dropoff of the
profile is about 1/4 of the rotational frequency of the system.
According to the parameters indicated, the object under
study is a geostrophic vortex in the Rossby state (3), ap-
proximately corresponding to the region of maximum dis-
persion on the curve in Fig. 2 [the region a, to the left of the
maximum of w (k) ]. This vortex drifts relative to the vessel,
and for H = const this drift is directed westward, i.e., in the
direction of drift of Rossby waves. Figure 7a shows a vortex
generated with H = const by a pumping disk in position 1,
colored from above in position 2, drifting clockwise and pho-
tographed ~20 s after it appeared; the parameters of the
vortex are approximately the same as those in the case of Fig.
6. The vortex drifts for 20 s (practically uniformly in time’®)
with a velocity V,, =2 cm/s=0.8V, where Vi = (1/
2)H Q, sin  is the Rossby velocity for H = const. This
drift velocity is approximately one third of the typical, linear
velocity of the vortex rotation which is maximum along its
profile (see Fig. 8). The drift velocity of the vortex increases
as the depth of the liquid and the amplitude of the vortex
increase®>—in qualitative agreement with Sec. 2.1. The drift
velocity of the vortex increases substantially when the rota-
tion of the paraboloid is speeded up and decreases when the
rotation is slowed down. At some rotational frequency of the
vessel (£ < ),) the vortex stops (relative to the vessel), and
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FIG. 7. a) Drift of an anticyclonic vortex opposite to the direction of
rotation of the vessel.” The vortex is formed in pure water (near the
pumping disk 1), it is colored with particles of potassium permanganate
(introduced from above with the help of a catapult) in the position 2 and
drifts clockwise. The photograph was taken 18 s after the vortex appeared;
the lifetime of the vortex equals about 20 s. H; = 5 mm. b) Drift of Rossby
anticyclone in the direction of rotation of the vessel in the presence of a
gradient of the depth of the liquid, directed toward the center of the ves-
sel.”® Large paraboloid. 7 = 880 ms, # = 1 cm, the diameter of the pump-
ing disk D = 10 cm.

at an even lower frequency it drifts in the opposite direction
(*“eastward”) (see Fig.7b). These facts (in particular, the
magnitude of the frequency shift corresponding to stopping

FIG. 8. Comparison of experimental profiles of the rise in the liquid in a
Rossby anticyclone (circles) with theoretical profiles.” The solid curves
correspond to the theory (numerical calculation ), demonstrating the ex-
istence of a “memory” of the initial conditions in the entire central region
of the vortex, where particles of liquid are trapped (the constant potential
vorticity is given initially in the region of the central “core” with radius
ro); the broken lines show the particular (“smooth”) analytic solution,”
successfully distinguished from the particular solution*'**> in practice
only by the fact that the restriction s = AH /H, < 1 on the amplitude of the
vortex is removed.
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of the drifting motion of the vortex), observed on both the
small and the large paraboloid, are in good agreement with
the relation (33). The dynamics of the Rossby vortex, creat-
ed by a different method (injection of a jet from a tube), is
illustrated in Fig. 9. The characteristic profile of the vortex
under study is shown in Fig. 8.

It is interesting to compare the observed lifetime of the
vortex under study () and its range / (over which the shape
of the vortex remains unchanged) with the analogous char-
acteristics of a linear wave packet. According to (24) for
rp =2.1cmand Vy =22 cm/s, 7y S8 s, while 7220 s
(over a time of 20 s there are no indications of spreading of
the vortex (see Fig. 7a). Therefore 7~ 2.57 . The velocity of
propagation of the vortex studied is also substantially (by a
factor of ~4) higher than the velocity of a linear packet of
Rossby waves with the same dimensions. Correspondingly,
as Fig. 7a shows, the observed range of the vortex under
study over its lifetime ( ~20's) equals 10 times the diameter
of the vortex, i.e., it is approximately an order of magnitude
longer than the range (25) of a linear wave packet. It is in

FIG. 9. Drift of the anticyclone created by injecting a jet of liquid. The
time intervals between the frames a—c equal 10 and 5 s. Small paraboloid
(see TableI). Inposition 5 the vortex made a complete revolution around
the vessel.
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this feature that the soliton nature of the vortex under study
is manifested.

It is not difficult to see that this vortex also satisfies the
condition (27). Indeed, since in these experiments the rota-
tional velocity of the vortex (time-averaged) is several times
greater than its drift velocity, the number of revolutions &
completed by the vortex around its axis over its lifetime ap-
proximately equals the number of characteristic diameters
over which the vortex is displaced in the course of its drift
motion. From here it follows that in these experiments
N =10 in accordance with the condition (27). Thus, sum-
marizing the properties of the anticyclonic vortex under
study, we arrive at the conclusion that it is a Rossby vortex
soliton. The parameters of the soliton, with definite quanti-
tative differences, are close to those suggested by Sec. 2.1.

Experiments with different solutions showed that the
above-described dynamics of Rossby vortices is not affected
by variations in the viscosity of the medium over an approxi-
mately three-fold range; therefore, the viscosity affects only
the lifetime of the vortex.

3.1.5. Cyclone-anticyclone asymmeltry

All vortices shown in Figs. 6-11 are anticyclones. As
regards cyclones, experiments have shown that it is quite
difficult to create a Rossby cyclone by rotating the pumping
disk in the cyclonic direction. Thus under the conditions of
the small paraboloid the following effect is usually obtained:
a disturbance of the fluid still generates an anticyclone. A
cyclone can sometimes be generated in experiments with the
large paraboloid. These experiments (see Sec. 8) show that
in successful realizations of the desired vortex its lifetime,
drift velocity (it drifts in the same direction as does the anti-
cyclone), and range are practically equal to those of a linear
packet of Rossby waves with the same dimensions, namely,
for a vortex with the diameter 2a~ (2 — 2.5)ry the drift
velocity is V4, =~0.3V g (much lower than for an anticy-
clone), 7=y, I=I; =2a. A vortex with these characteris-
tics obviously cannot be regarded as a Rossby soliton.

The observed cyclone-anticyclone asymmetry (further
sharp manifestations of which are described below) is a very
fundamental dispersion-nonlinear property of Rossby vorti-
ces. It is a direct consequence of the scalar nonlinearity and
corresponds well to the qualitative analysis carried out in
Sec. 2.1 and the theory in Refs. 41, 42, 55, 70, and 73. The
main effect consists in the fact that in a cyclone, unlike an
anticyclone, the nonlinearity and dispersion are not mutual-
ly balanced.

So, the facts observed in the experiments examined
above are qualitatively predictable based on the existing the-
ory. In the next section we shall examine phenomena which
are not described by this theory.

3.2. Experimental “surprises”

3.2.1. Rossby soliton as an attractor

The experiments under study showed’° that an arbi-
trary (sufficiently extended) initial perturbation of the lig-
uid rapidly evolves into well-formed Rossby vortices (soli-
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FIG. 10. Formation of an anticyclonic Rossby soliton from an irregular
disturbance.®? H, = 0.3 cm. The time interval between frames equals 1.2 s
(two revolutions of the vessel).

tons). This, in particular, is evident in Fig. 10, which shows
the successive positions of the same vortex after definite time
intervals. Thus the Rossby soliton is not simply one of the
possible particular (amongst many ) solutions of the nonlin-
ear equations (the existing theory does not assert any more
than this), but rather it is the preferred, or the “attracting,”
solution. In other words one can say that the (anticyclonic)
Rossby soliton manifests the property of an attractor. A
Rossby cyclone, as shown above, does not have this proper-
ty. (Attractors and coherent structures are discussed, for
example, in Refs. 76, 77, 11, and 97.)

3.2.2. Stabiiity, lifetime

The experimental data under study definitely shed light
on the question of the stability of Rossby solitons, which is
not fully studied in the analytic theory. The following facts
indicate that these solitons are relatively stable. The first fact
is the attractor property of Rossby anticyclones, already
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demonstrated in the preceding Sec. 3.1. Second, their life-
time is long. As shown above, it is substantially longer than
the lifetime of a linear wave packet, and under the conditions
of the experiments described it is close to the characteristic
viscous decay time

T @ \ (39)
where v~10~2 cm?/s. For a typical depth H,=0.5 cm,
from (39) we obtain 7 %25 s, which is in good agreement
with the experimental data (see, for example, Figs. 7and 8).
Third, as shown by experiments with Rossby vortices of dif-
ferent sizes, excited by pumping disks with different diame-
ters, it is particularly the vortices with the parameters con-
sidered here that have the longest lifetimes.*® Smaller
vortices (2a < 2rg ) decay relatively rapidly. Vortices which
are too large (2a > 5rg ) also decay rapidly, but here the re-
quired condition that the size of the vortex be smaller than
the radius of curvature of the system, is not satisfied. Rossby
cyclones under conditions of a shallow liquid can serve as a
“standard” for rapidly decaying (dispersing) vortices.
Compared with them the anticyclonic Rossby solitons are
long-lived stable structures.

3.2.3. Transport of iiquid: the vortex property of a Rossby
sollton

The properties of the “monopolar” Rossby vortices un-
der study can be predicted well and interpreted on the basis
of wave concepts (Sec. 2.1). For this reason, it appeared at
first that a monopolar Rossby soliton will propagate in a
medium like a wave, without entraining particles of the lig-
uid. Such a concept, in particular, is consistent with Ref. 55,
where, as indicated above, it is assumed that # € 1 and noth-
ing is said about the existence of a region of captured parti-
cles in the soliton. However, experiments'® (in which, as
already indicated, 4 =0.5 cannot be regarded as a small pa-
rameter) show that the monopolar Rossby soliton of charac-
teristic size @ under study contains a region of trapped parti-
cles. Correspondingly, the soliton very effectively transports
(without releasing) particles of liquid (contained in it at the
moment of generation or injected from above) and does not
allow particles which it encounters during its drift motion
around the axis of the system to enter it.”” An example of
efficient transport of particles of liquid by a Rossby soliton is
shown in Fig. 7a, demonstrating the following experiment.
A Rossby soliton is generated in a colorless liquid by a
pumping disk in position 1 and drifts clockwise. In position 2
particles of dye are injected into it from above. It is evident
that the particles confined in some interior region of the vor-
tex are effectively trapped by it and are transported over
large distances, while the outer particles (outside the separa-
trix) remain outside the vortex. Experiments also show that
a region of trapping of the particles inside the Rossby vor-

tex2? exists only if
Vrot > Vdr ’ (40)

under which condition the particles escaping from the vor-
tex (or flowing into it from outside along the x and y axes)
would have to cross the streamlines, and this does not hap-
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pen. This condition, as can be easily seen from the equation
of geostrophic equilibrium (2'), is obviously satisfied in
these experiments under the above-indicated condition
h20.15 and it therefore holds in all experiments described
above. The fact that a monopolar Rossby soliton contains a
region of trapped particles, first discovered experimentally,
is now taken into account in the theory (see Sec. 2.2).

3.2.4. Inelastic collisions

The question of the nature of the collisions of solitary
waves is fundamental in the theory: there even exists a defini-
tion?%2%3! (although it is not generally accepted and we do
not analyze it), according to which a solitary wave is a soli-
ton if its collision with another solitary wave is purely
elastic.

The experiments under discussion (to the surprise of
the theory,**%°7 which ignores the trapping of particles by
the soliton) showed that the Rossby solitons under study
collide inelastically®!®?: they either coalesce into one soliton
(if they approach one another with a sufficiently high veloc-
ity) or they mutually destroy each other, transforming into a
flow (when the approach velocity is low). An analogous
disagreement between the indicated theory and observations
is observed in the Jovian atmosphere.*® An example of the
coalescence of monopolar Rossby solitons, following one an-
other (a large-amplitude vortex, approaching from behind,
catches up with the vortex in front of it), is shown in Fig. 11,
which shows a series of photographs made at successive
times. In connection with the experimental data under
study, it should be pointed out that the initial “requirement”
of the theory?®?° that soliton collisions be elastic was asso-
ciated with the property of one-dimensional solitons, de-
scribed by the Kortweig—de Vries equation.?®*2 Qther soli-
tons exhibit a more complicated behavior. Thus two- and
three-dimensional ion-acoustic solitary waves in a plasma,
as experiments show,>* undergo inelastic collisions and they
are nevertheless called solitons. The collisional properties of
solitons can depend qualitatively on their amplitude. Thus
Langmuir solitons whose amplitudes are sufficiently small
collide elastically, and if their amplitudes are sufficiently
large, they coalesce (with the emission of ion sound).?*

Here it is important to note that in the theoretical stud-
ies of Refs. 42, 98 it is shown (by means of a numerical
calculation) that when Rossby vortices, carrying trapped
particles, collide they must coalesce—in accordance with
the experimental data examined above.

3.2.5. Rossby vortices with h> 1

Experiments in which a Rossby vortex was generated
by a jet of water, injected in a pulsed manner (over a time
interval of ~ 1 s) into a liquid with a shallow depth H,, gave
the following result (see also Fig. 9). If the volume of the
liquid injected from the tube is sufficiently large (for exam-
ple, 100 cm?), then the height of the hump in the vortex
formed, AH, is much greater than the starting depth of the
liquid H, (if the latter is not too large). In addition, formal-
ly, h=AH /H,> 1. Experiments have shown that the life-
time of such “exotic” vortices is approximately the same as
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FIG. 11. Different stages of the convergence and coalescence of Rossby
anticyclones, created by one pumping disk D.*? The time intervals
between the frames equal 1.2 and 4.2 5.

thelifetime when 4 < 1. In addition, this behavior is observed
even for very shallow depths—right up to H,~ | mm. These
facts once again indicate the “‘roughness” of the soliton
structures studied.

3.3. Relationship between theory and experiment

The experimental data presented above show that the
theoretical expectations (see Sec. 2.1 and 2.2) are on the
whole qualitatively cofirmed by experiments: the Rossby
soliton exists in the form of a solitary (monopolar) anticy-
clone, it drifts in the “correct” direction with approximately
the ““correct” velocity, and its dimensions a > ry_are close to
the predicted values. Thus the examined experiments sup-
port the theoretical picture that the scalar nonlinearity plays
a fundamentally important role (under the indicated experi-
mental conditions) in the formation of monopolar Rossby
solitons with dimensions exceeding the Rossby-Obukhov ra-
dius [see (15a)]. A more detailed comparison of experi-
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ments with different variants of the theory shows the follow-
ing. a) The characteristic size of the observed solitons,
unlike the variant in Ref. 55, is approximately half of (19)
and is insensitive to the amplitude; the absence of an appar-
ent relationship between the size of the vortex and its ampli-
tude agrees with the variant in Ref. 73. b) The measured
profiles of the Rossby soliton (see Fig. 8) are, on the one
hand, in good agreement with the calculations based on the
theory of Ref. 73, which reveals the effect of the soliton
“memory” of the conditions of generation, owing to the
presence of trapped particles, while on the other they dis-
agree significantly with the variant in Ref. 55, which is dis-
tinguished by its analytic nature (continuity of the deriva-
tives of the vorticity ), but is a particular case (see Sec. 2.2).
¢) The observed scenarios of inelastic collisions of these vor-
tices agree with the results of computational investiga-
tions,*>® in which, in accordance with the experiments dis-
cussed, the presence of a region of trapped particles of liquid
in the soliton is taken into account. d) The velocity of propa-
gation (drift) of the vortices is 1.2 times lower than Vy,
determined by the formula (32), i.e., a factor of ~ 1.5 less
than the theoretical value of the velocity of the soliton. This
disagreement could be caused, in particular, by two factors:
1) the presence of some shift in the vertical component of the
velocity owing to friction against the bottom and 2) the
boundedness of the region of existence of the vortex in the
meridional direction, owing to which k, #0 and the true
theoretical value of ¥y isless than thatusedin (12), where it
is assumed in transforming from (7) that k, = 0.

Thus the experimental data are in good agreement with
the variant of the theory given in Refs. 73 and 98, and dis-
agree substantially with the variant of Ref. 55. This should
not be surprising, since, as indicated in Sec. 2.2, the probabil-
ity of the experimental realization of such a particular solu-
tion, which has the form of a soliton of the type described in
Ref. 55 (under the condition that particles of liquid are
trapped), is apparently vanishingly small.

The experimental “surprises” described above are of a
fundamental nature and stimulate the development of the
theory.”%® It should be noted that the quantitative theory
must also take into account the viscosity of the medium.

In connection with the comparison of experiment with
theory, we also call attention to the result of a control experi-
ment, performed in order to check the relations (11) and
(13) for the drift velocity of vortices. In this (the only) ex-
periment, unlike the experiments described thus far, the ves-
sel was exactly paraboloidal, so that with a definite (“‘nomi-
nal”) rotational velocity of the vessel all points on the
equilibrium surface of the liquid are located at the same dis-
tance from the bottom Az along the rotational axis. In addi-
tion, the thickness of the layer of liquid H (measured along
the normal to the surface of the liquid) was a function of the
point on the surface H = Az-cos a, and the Rossby velocity

(11) equaled zero?":

Vi ~ d Azcosa __
R™ %3y Qycosa  °*

Accordingly, the experiment showed that the Rossby

823 Sov. Phys. Usp. 29 (9), September 1986

st

vortex (observed by the procedure described above) with
the vessel rotating with the nominal velocity stays in one
place, when the vessel rotates with a higher velocity the vor-
tex drifts westward, and when the vessel rotates with a lower
velocity the vortex drifts eastward, in agreement with the
theoretical relation, which is easily obtained from (33):
Ve =r,AQ), where A} is the difference between the rota-
tional frequency of the vessel and the nominal frequency,
ro = Ry/V2 is the radius of the parallel along which the vor-
tex drifts, and R, is the radius of the vessel.

Now that successful experiments on the generation and
study of Rossby solitons have been performed, it would be
interesting to try to realize an experimental steady-state soli-
ton model of the Jovian Great Red Spot and other large-scale
planetary vortices, self-maintained in a system of unstable
oppositely moving zonal flows and existing for an arbitrarily
long time, not limited by viscous and other losses of momen-
tum. Experiments performed along these lines and the re-
sults of the theory are described in Sec. 4.

3.4. “Wave or vortex?” The vortex Rossby soliton—a wave
solitary vortex

So, the Rossby soliton studied above is a ‘“‘real” vortex,
which efficiently transports particles trapped in it. On the
other hand, the properties of this vortex—its character (cy-
clone-anticyclone asymmetry), dimensions, direction of
drift, and drift velocity??)—are predicted well and described
well based on wave representations, according to which this
vortex is a result of the mutual balancing of dispersion and
nonlinearity (see Secs. 1.2 and 2.1). Thus the Rossby soliton
is an explicitly dualistic object, and for this reason the fol-
lowing question often arises: “Is it a vortex or a wave?” This
question is obviously not completely correctly posed. Such
an object can be equally well called either a wave solitary
(i.e., nondecaying) vortex or a vortex soliton—depending'
on which of its properties are being studied. The wave ap-
proach nevertheless appears to us to be more informative. In
particular, fundamental phenomena such as the cyclone-an-
ticyclone asymmetry can be explained simply only with its
help, and in addition, by taking into account the wave mo-
tion in the vertical direction the two-dimensional soliton
theory of the Jovian Great Red Spot can be markedly im-
proved and the theory can be made to agree well with the
observational data (see Sec. 5.1).

In this connection the English term “‘solitary vortex
is apt, since it combines the concepts of a vortex and a soli-
tary wave (soliton). As already indicated, in numerical
studies*’ both the vortex properties of the structure under
study (particle entrainment) and its wave or dispersive
properties are taken into account—the existence of the
structure itselfis regarded as a consequence of the balance of
dispersion and nonlinearity. (The fundamental effect of dis-
persion on the properties of dipolar (paired) Rossby vorti-
ces is also discussed in Sec. 8.)

9y 42
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4.GENERATION OF ROSSBY VORTICES (AND SOLITONS) BY
OPPOSITELY DIRECTED ZONAL FLOWS (EXPERIMENT)

4.1. Formulation of the problem

The experiments described in the preceding section
show that the experimentally observed Rossby soliton (anti-
cyclone, whose dimensions are of the order of and greater
than the Rossby-Obukhov radius, drifting along a parallel of
the paraboloid opposite to the direction of global rotation) is
very reminiscent of the vortex in the Jovian Great Red Spot
(JGRS). This soliton, however, has a limited lifetime ( ~20
sec), determined by the viscosity of the medium. In order to
realize the steady-state soliton model of the JGRS the
Rossby soliton (generated, for example, by some source)
must be placed into external flows, which would compensate
the viscous (and, possibly, other) losses. In so doing, how-
ever, it is necessary to take into account the fact that the
flows can play both a passive role (which is limited only to
the “pumping” of the vortex) and an active role: they can
manifest instability and generate their “own” vortices.?
For this reason, at the first stage of the construction of a
steady-state model of the JGRS it is necessary to study the
question of the stability of the flows and, in particular, the
possible relation between this question and the observed cy-
clone-anticyclone asymmetry of Rossby vortices.

It is clear that if the velocity profile of the flow is quite
sharp, i.e., of the nature of a “‘tangential discontinuity” in
the velocity, then the flow will be unstable (this, in particu-
lar, is the well-known Kelvin-Helmholtz instability ), a con-
sequence of which is vortex generation. In the presence of a
cyclonic curl of the flow velocity (when the periphery of the
liquid rotates faster than the vessel, while the center rotates
more slowly) cyclones will be generated, while in the pres-
ence of an anticyclonic curl of the flows, anticyclones will be
correspondingly generated. Under the indicated conditions
the distinct cyclone-anticyclone asymmetry will be observed
only in the case when the decrement of the experimentally
observed decay of the cyclones is not less than the increment
of their generation by the flows (otherwise the “pumping” of
the cyclone by the flows could compensate its decay ). But, as
is well known,'°®'% the increment y of the instability of
oppositely directed flows depends on the steepness of their
transverse gradient, more precisely, on the ratio between the
characteristic size of the transverse gradient of the velocity
of the flows 6 and the size a of the generated vortex. Thus,
under the conditions of the instability of the “tangential dis-
continuity,” 2% i.e., when & €a, we have

T kux —;i ; (41)
on the other hand, under conditions of a smooth flow profile,
when 8 ~a, we have

1< 5. (42)
As shown above (see Sec. 3.1.5) under the conditions stud-
ied, Rossby solitons decay over a time of the order of the
transit time over one diameter of the cyclone, 2a/¥ 4. . There-
fore, if the velocity of the flows (exciting the vortices) is
much higher than the drift velocity of the vortices,?® then for
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& <atheincrement (41) will be much greater than the decay
decrement of the cyclones, and the cyclone-anticyclone
asymmetry will not appear, while when § S q, i.e., under the
conditions (42), the growth increment of the vortex is insuf-
ficient to compensate the decay decrement of the cyclone
and the cyclone-anticyclone asymmetry should be expected.
(We note that this asymmetry was first observed experimen-
tally’®82:83.858 (see below ), after which it was interpreted in
the manner described here.)

4.2. Flows on Incompressible shallow water with a free
surface as a model of two-dimensional flows in a
compressible medium. Landau’s criterion of stabillity of a
two-dimensional supersonic tangential velocity shear

In Ref. 107 L. D. Landau showed that a tangential ve-
locity shear in a compressible medium becomes stable with
respect to two-dimensional disturbances (in planes perpen-
dicular to the plane of the shear) if the jump in the velocity
Au at the shear satisfies the condition

Au>2 V§cgv (43)
where c, is the velocity of sound. An analogous result was
obtained by S. V. Bazdenkov and O. P. Pogutse'°® for a tan-
gential shear in incompressible shallow water with a free
surface:

Au > 2 (2gH )2, (44)

where g is the acceleration of gravity, H, is the thickness of
the layer of “shallow water” (according to the definition of
this term the quantity H, is much smaller than the wave-
length A of the two-dimensional perturbations under study).
The equivalence of the results (43) and (44) is an illustra-
tion of the analogy'®! between two-dimensional gas dynam-
ics and the theory of shallow water. In shallow water with a
free surface the characteristic velocity of gravitational waves
(gH,)'/? plays the role of the velocity of sound, while rises
and depressions in the surface of the incompressible liquid
correspond to real compression and rarefaction in the com-
pressible medium being modeled.

4.3. Experimental arrangement with oppositely directed
zonal flows In a rotating paraboloid

The following method, illustrated in Fig. 12a, was used
in experiments®?-% to generate oppositely directed geostro-
phic flows in rotating “shallow water.” Two wide ring-
shaped slots, oriented along the parallels and separated from
one another by some distance (/) along the meridian, are
made in the thick bottom of a paraboloid. Zonal rings, which
can freely rotate relative to the paraboloid in the plane of its
bottom so that the angular velocities of this relative rotation
of the rings are equal in magnitude and are mutually opposi-
tely oriented, are inserted into these slots. An experiment in
which the rings rotate independently of one another (Fig.
12b) will be described in Sec. 4.6. As they rotate, the rings
entrain the layers of liquid lying above them, thereby creat-
ing oppositely directed zonal flows. By changing the dis-
tance / between the rings from one experiment to another it is
possible to affect the real characteristic size § of the trans-
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FIG. 12. a) Layout of the experimental arrangements®*-*® for generating
Rossby vortices (solitons) with zonal flows. 1) Vessel with a parabolic
bottom profile; 2 surface of the water, spreading out under rotation along
the parabolic bottom; 3) camera rotating together with the vessel; 4)
section of the (thick) bottom of a paraboloid, whose width was regulated
from 1 mm (in experiments with a tangential shear in the flow velocity) to
3 cm (in experiments with a smooth flow profile); 5, 6) rotating rings,
creating zonal flows with a velocity shear; the paraboloid rotates around
the vertical axis counterclockwise with an angular velocity of Q2. In the
view from above the solid arrows mark the anticyclonic direction of flow.
b) Layout of experiment®”*® in which a Rossby autosoliton was genera-
ted. 1, 2) Same as in a); 3) camera rotating together with the vortex; 5)
section of the bottom of the paraboloid rotating faster than the vessel; 6)
section of the bottom of the paraboloid rotating more slowly than the
vessel; the distance between 5 and 6 along the meridian (width of the
section 4 of the bottom of the paraboloid) equals 11 cm; 7) semitranspar-
ent mirror; 8) rotoscope: reflecting prism, rotating with an angular veloc-
ity of ~ /2 and enabling the observer to transform into a reference frame
rotating with frequency ~ £ and, in particular, making photographs in
the reference frame of the vortex.

verse gradient of the velocity of the flows. We shall describe
below the experiments on the excitation of vortices by flows
with large and small (relative to g ) / (and correspondingly
8). In the limit /-0, § = H; for | = (2-3)H, § ~/; in addi-
tion, as H increases, 6 increases and can exceed rg; these
conditions for generation of vortices by flows correspond to
the relation (42); see Refs. 85 and 86.

4.4. Generation of chains of cyclones and anticyclones by
oppositely directed zonal flows. Rossby solitons and the
cyclone-anticyclone asymmetry

We shall first describe the results of experiments with a
relatively large distance between the oppositely directed
flows: /=3 cm; in this case, § =I>rg .5**#5% These experi-
ments gave qualitatively different results depending on the
sign of the curl of the oppositely directed flows. They showed
that vortices (cyclones) of large size (@ > rg ) are not gener-
ated when the curl of the flows is cyclonic (Fig. 13), while in
the case of an anticyclonic curl large-scale vortices (anticy-
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FIG. 13. Pattern of fluid flows with a smooth velocity profile and with a
cyclonic vorticity of the oppositely directed flows.5#* Section 4 (see Fig.
12a) is 3 cm wide. The trajectories of white particles, floating on the
surface of the water against the background of a black bottom, are shown.

clones) are easily generated (Fig. 14). Thus with a relatively
smooth transverse gradient of the velocity of the flows a dis-
tinct cyclone-anticyclone asymmetry is observed. It is easy
to see that the circumstances under which it is observed cor-
respond to the condition (42) (see Refs. 85 and 86 for amore
detailed discussion).

The observed large vortices are steady-state in behav-
ior, their diameter equals several Rossby-Obukhov radii,
and they drift with a velocity approximately equal to the
Rossby velocity relative to the paraboloid opposite to its di-
rection of global rotation; their amplitude equais 2 ~0.5 and
higher; they effectively transport particles of liquid. Based
on all their properties as a whole these vortices can be re-
garded as Rossby solitons, which were described in Secs.
3.1.4-3.2.5. The number of vortices (m) on the perimeter of
the chain is determined by the velocity of the flows: when the
velocity is relatively low eight to ten anticyclones are ob-
served, while for a relatively high velocity two to three anti-
cyclones are observed (as in Fig. 14). We note that the inter-
pretation of the chains described here of steady-state
anticyclones as Rossby solitons corresponds to the theory of
Ref. 109.

The decrease in the mode number m as the velocity of
the flows increases is a fundamental characteristic, owing to
which under other experimental conditions it is possible to
form one Rossby autosoliton®”*# on the perimeter of the sys-
tem: m = 1 (see Sec. 4.6).

We shall now examine the results of experiments with a
small distance between the flows (/=~1 mm<ry ) 88688
These experiments showed that practically the same effec-
tive generation of large-scale stationary vortices—both anti-
cyclones (Fig. 15a) and cyclones (Fig. 15b)—occurs for
both signs of the curl of the oppositely directed flows. Thus
in this geometry of the experiment there is no cyclone-anti-
cyclone asymmetry. This behavior also corresponds to the
content of Sec. 4.2 [see the relation (41)].

The drift, geometric, and other properties of the ob-
served anticyclones turn out to be the same as those of the
anticyclones described in Sec. 3.1.4. As regards cyclones, in
the presence of cyclonic flows they drift in the direction of
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rotation of the paraboloid owing to the “bearing effect”
pointed out in Ref. 110 which is unrelated to the 3 effect.
There is a basis for assuming that the cyclonic Rossby vorti-
ces under study are not solitons: they are in a steady state,
apparently, simply because they do not have time to decay as
aresult of the excessively effective “pumping” by the opposi-
tely directed flows. Additional arguments in support of this
conclusion will be presented in Secs. 4.6 and 8.2. (However,
in the interpretation of the experiments under study with
cyclones in flows and in the interpretation of the nature of
the Jovian Brown Ovals (Sec. 5.2), it should be kept in mind
that the theory admits the possibility of cyclonic Rossby soli-
tons of a certain size in flows with a definite horizontal pro-
file*>” or in the presence of vertical stratification.’?)

4.5. Disruption of the instability of a two-dimensional
tangential discontinuity (Kelvin-Helmholtz) in the presence
of a “supersonic” jump in the velocity of oppositely directed
flows; agreement with Landau’s criterion. Experimental
illustration of the analogy between two-dimensional gas
dynamics and shallow-water dynamics

The validity of the theoretical prediction, described by
the relation (43) and (44), was studied experimentally us-
ing an apparatus of the type shown in Fig. 12a, in which the
flows had a cyclonic curl (the periphery of the shallow water
rotated more rapidly than the center) and were situated as
close as possible to one another: the gap between them (the
width of the Section 4) was only 1 mm wide—the “discon-
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FIG. 14. Same as Fig. 13, under close experimental conditions,
but with an anticyclonic vorticity of the oppositely directed
flows.?283

tinuity” of the velocity. Experiments gave the following re-
sults. 1) If the relative velocity of the flows exceeds some
threshold, then a Kelvin-Helmholtz (KH) instability, lead-
ing to the formation of a chain of vortices whose size A along
the surface of the water is always significantly greater than
the depth of the liquid H,, and the width of the discontinuity
A, appears in the system. An example of such a chain—in the
presence of a cyclonic curl of the oppositely directed flows—
is shown in Fig. 15a. 2) If the relative velocity of the flows is
greater than some higher threshold, then this instability does
not occur. The magnitude of this second threshold corre-
sponds well to the formula (44). This result is shown in Fig.
16. It is evident from Fig. 16a that when the velocity of the
flows exceeds the second threshold, the vortices in Fig, 15a
vanish (the broken line corresponds to increasing velocity,
and the solid line corresponds to decreasing velocity). The
right side of the figure shows that when the depth of the
liquid H, changes the second threshold velocity changes
~(g*Hy)"? in accordance with the theoretical re-
Sult. 107,108,26)

Thus in this section we have given a graphic illustration
of the remarkable analogy between two-dimensional gas dy-
namics and the dynamics of shallow water with a free sur-
face. This analogy enables laboratory simulation not only of
planetary atmospheric vortices (described in this review),
but.also—under different experimental conditions—of the
hydrodynamic mechanism of generation of the spiral struc-
ture of galaxies, which have a jump in the velocity on the
rotational profile (see Sec. 6).%”

FIG. 15. Pattern of the fluid flows with a sharp velocity pro-
file of oppositely directed flows. Section 4 (see Fig. 12a) is 1
mm wide. a) Cyclonic vorticity; b) anticyclonic vorti-
city.®%¢ The white circle is the line of “discontinuity” of the
velocity of the flows.
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FIG. 16. a) The azimuthal size of the vortices A as a function
of the velocity of the flows, measured at the location of the
discontinuity on the surface of the water under the conditions
of Fig. 15. b) The threshold u, at which the instability of the.
tangential shear vanishes as a function of the depth of the
liquid. 1) Velocity of the rings moving the water lying above
them; 2) velocity of flows on the surface of the liquid; 3)

4.6. Rossby autosoliton—self-organization in zonal flows

Searches for a Rossby autosoliton—a single, on the en-
tire parallel of the paraboloid, and nondecaying anticyclonic
vortex, “fed” by the oppositely directed flows—were initiat-
ed immediately after the successful experiments’®®' de-
scribed in Secs. 3.1 and 3.2. The problem was formulated as
follows: after a soliton is generated by some source (for ex-
ample, a “pumping disk”) try to compensate its viscous mo-
mentum losses, by utilizing for this oppositely directed
flows. In this case, the fundamental condition was that the
experiment had to be confined to a flow regime in which the
velocity of the flows is quite low and the flows are stable.
Such a regime was necessary in order for the flows to play a
purely “‘energetic” role, feeding the soliton, but without gen-
erating their “own” vortices. The first experiments were per-
formed on the experimental arrangement described in Secs.
4.3 and 4.4 with the distance between the flows / = 3 cm (see
Fig. 12a). They gave a negative result: it turned out that the
inclusion of the flows destroys the soliton. This meant that
under the conditions of this geometry the profile of the flows
cannot be matched with the profile of the soliton.

After a considerable time, during which the above-de-
scribed characteristics of cyclogenesis by flows moving in
opposite directions with a high velocity were studied, the
search for the autosoliton was continued on an experimental
arrangement with a larger distance between the flows: / = 11
cm (see Fig. 12b). The experiments showed that it is possible
to establish a rotational regime of the zonal rings and the
paraboloid in which the Rossby soliton, generated by the
“pumping disk,” is not destroyed by the oppositely directed
flows and is slightly fed by them; the lifetime of the soliton,
however, increases insignificantly. After this, the experi-
ment was modified: the pumping disk was removed com-
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é- 7 theoretical'® velocity of the flows u = (2g*H,)"/? (the rela-
tive velocity of the flows equals 2u).

pletely, and the zonal rings were made to be independent of
one another. The experiment®”3® showed that there exists a
regime in which quite fast oppositely directed flows which
have an anticyclonic curl of the velocity generate a nonde-
caying large-scale Rossby soliton, the only one on the perim-
eter of the paraboloid and self-organized in the system of
flows. (In the presence of a cyclonic curl of the flows the
large-scale vortex is not generated—in accordance with the
result of Sec. 4.4 regarding the cyclone-anticyclone
asymmetry.)

Figure 17 shows photographs of the autosoliton (they
were made using a camera rotating together with the vortex,
unlike the previously presented photographs, which were
made with a camera rotating together with the paraboloid).
The parameters of the vortex demonstrated in Fig. 17 (size,
amplitude, direction and velocity of drift and intrinsic rota-
tion) are characteristic of the Rossby soliton described in
Secs. 3.1 and 3.2. In particular, the diameter of the vortex is
2a=(3-4)rg, its amplitude is A = AH /H,~ 1, the stream-
lines in the core are closed, and it effectively transports
trapped particles (see Fig. 17).2® This vortex is a result of
self-organization of the soliton structure in a system of oppo-
sitely directed flows: when the vortex appears, the profile of
the flows radically changes, adjusting itself so as to be
matched with the vortex (Fig. 18). Another important
property of the autosoliton described is that its vorticity (the
curl of the velocity) is several times larger than in the sur-
rounding flow,%”-®8 analogous to what happens in large vorti-
ces in the atmospheres of large planets.®® The observed auto-
soliton can be regarded as a steady-state one: its lifetime is
infinite, though in time it goes through a deformation of an
oscillatory character, transforming, for example, from a re-
alization of the type shown in Fig. 17a to the one shown in
Fig. 17b.

FIG. 17. Rossby autosoliton with several different flow ve-
locities (anticyclonic vorticity).®”*® The camera rotates to-
gether with the vortex (and not together with the vessel, as in
the preceding photographs).
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FIG. 18. a) Depth profiles of the liquid in the meridional
section of the rotating paraboloid: the depth of the liquid as a
function of the distance to the axis of rotation®”#%; 1) in the
region diametrically opposite to the vortex; 2) in the region
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The Rossby autosoliton studied here is a result of the
development of an instability of oppositely directed flows in
the mode m = 1. Other modes of this instability are also
observed, and their number is the higher the lower is the
velocity of the flows—in agreement with the data in Secs. 4.4
and 4.5. Examples of modes with 72> 1 and the manner of
their alternation as the velocity of the oppositely directed
flows increases are illustrated in Figs. 19 and 20. It is impor-
tant to note that, as experiments show, the fewer are the
vortices in the chain, with other conditions being equal, the
larger is their amplitude and the stronger is their localiza-
tion. Comparison of Figs. 17, 19, and 20 with the results of
Sec. 4.4 shows that the previously described anticyclonic
vortex structures (see Fig. 14) consist of a chain of Rossby
autosolitons, generated in the mode m = 3 by the hydrody-
namic instability of the oppositely directed flows.

The spatial localization of the structures studied, natu-
rally, is a result of their strong nonlinearity. One indicator of
this nonlinearity is the ratio of the rotational velocity of the
particles in the vortices to the drift velocity of the vortices.
This ratio, as shown above, is much greater than one, which
gives rise to the effective transport of liquid by the vortex.

The planetary aspect of the results described here is
studied in Sec. 5.

In order to identify the instability that generates the
Rossby autosoliton in the most interesting state of the m = 1
mode (see Fig. 17), we shall turn our attention to one more
important fact. In this state, the outer ring rotates (opposite
to the direction of rotation of the paraboloid) with an angu-

FIG. 19. Chain of autosolitons in the mode m = 3. It is evident that the
vortices are very distinctly localized.®®
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of the vortex; curve 3 shows the profile of the velocity in the
vortex; the velocity is measured relative to the flow, as indi-
cated by the arrows in Fig. 18b. b) Profiles of the linear azi-
muthal velocity of particles on the surface of the liquid in the
system of the rotating vessel: 1) in the absence of a vortex; 2)
in the vortex generation regime in a region diametrically op-
posite to the vortex; 3) inside the vortex.

lar velocity approximately equal to 2€),. At the same time,
the velocity of the interior flow is ¥ = 20,7, =~ 300 cm/s and
the Mach number is Ma = u/( g*H,)"/2~7.5> 2v2, even
for H,=1 cm. Therefore the jump in the velocity at the
discontinuity of the external flow satisfies the criterion (44)
for the disruption of the Kelvin-Helmholtz instability. To-
gether with the fact that under the conditions of a cyclonic
curl of the vortices (when the periphery of the vessel rotates
with a higher angular velocity than its center) large vortices
are not excited, this indicates that an autosoliton is genera-
ted in the experiment under study apparently because of the
centrifugal instability (CI). This is the instability which un-
der certain conditions remains in a differentially rotating
liquid even when Ma3 1, if its center rotates more rapidly
than the periphery. Under the experimental conditions of
Refs. 89-91 and 123a this instability simulates in the labora-
tory the probable hydrodynamic mechanism of the forma-
tion of the spiral structure of galaxies, whose rotation profile
exhibits a jump in the velocity (see Sec. 6).>® Here it should
be emphasized that the “supersonic” values of the Mach
number Ma obtained in this experiment with the Rossby au-
tosoliton should by no means be regarded as necessary: they
are a consequence of the geometry chosen for the experi-
ment. This is indicated by data from experiments performed
on three variants of the experimental arrangements de-
scribed here with different distances (/) between the opposi-
tely moving flows. These experiments showed that the rela-
tive velocity of the oppositely directed flows u, required for
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FIG. 20. The mode number m as a function of the velocity of the ring
generating the outer flow in the geometry of Figs. 12b and 17.
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exciting a chain of vortices in a given mode m, increases as
Q,, H,, and ! increase, so that this corresponds to the follow-
ing behavior. The differential in the velocity of the flows over
the size of the vortex (ua/I) must ensure a velocity of rota-
tion of the flow which substantially exceeds the drift velocity
~ Vg it is precisely in this case that we see a vortex with a
distinct region in which particles are trapped (see Fig. 17).
This rule has the form
cVrl ngle;’z
R (@NE
where the coefficient ¢ is of order of unity and depends on the
details of the experiment. It is evident from here, in particu-
lar, that for the large value of / chosen in the experiments on
the generation of an autosoliton, Mach’s number Ma = u/
( g*H,)''?is comparatively large.

This, however, does not give rise to any fundamental
difficulties in the modeling of real atmospheric vortices, for
which Ma <1 always holds. The point is that, as will be
shown in Sec. 5.3, in studying vortices occurring in nature
the three-dimensionality (baroclinicity) of the wave motion
must be taken into account; in this case the Mach number
Ma, proportional to ¥y, decreases by several factors of ten
and equals the “true” value of Ma.

(45)

u s

4.7. Why are the observed structures nevertheless Rossby
vortices?

The question posed stems from the fact that chains of
vortices, which superficially are similar to those shown
above (see Figs. 14 and 15), are also observed in completely
different experimental situations, unrelated either to the
Rossby regime [see (3)] or, to a lesser extent, to the condi-
tions of generation of Rossby vortices. We shall present
some examples. One example is the experimental study''° of
the Kelvin-Helmholtz instability in oppositely directed con-
centric jets of gas. According to the intention of the authors,
it is conducted under conditions when the oppositely direct-
ed flows are almost symmetric relative to the laboratory sys-
tem of coordinates, which is thus practically inertial; hence
the centrifugal and Coriolis forces can be neglected and,
therefore, the conditions of the experiments of Ref. 110 are
not those of the Rossby regime (see Sec. 1.1). In addition, in
Ref. 110 Ma - 0. Very effective generation of vortex chains is
demonstrated in Refs. 111 and 112, which simulate polar
cyclones on earth. In them, the oppositely directed flows are
generated by the action of the Coriolis force on the forced
pumping of liquid in the rotating ring layer. The most effec-
tive generation of steady-state vortices occurs under condi-
tions when the liquid is pumped along the edges of the ring-
shaped gap and coalesces at its center (where eddies thus
form); it is easy to see that cyclones are generated for this
direction of motion of the liquid. In this system the B effect is
virtually absent (the vortices have almost no dispersion).

It is now not difficult to verify that the conditions of the
experiments on the generation of Rossby vortices (solitons),
studied in Sec. 4.4, differ radically from the conditions of the
experiments cited in this section. The differences are attrib-
utable to two circumstances. 1) In this review, structures
which are larger than the Rossby radius (a>rg ora>vr;)
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are studied, unlike Refs. 111 and 112 where a < 7 . In other
words, the approximation adopted in the review is equiva-
lent to the approximation of a magnetized plasma, where the
scale of the structures is larger than the Larmor radius of the
ions (analogous to the Rossby radius). 2) The properties of
the vortices (solitons) studied here are fundamentally deter-
mined by the dispersion of the Rossby waves (i.e., the £
effect). A consequence of this is the distinct dispersion-non-
linear effect, such as the cyclone-anticyclone asymmetry in
the Rossby regime. This asymmetry is observed both in the
state of “free transit” of the vortices and under conditions
when they are generated in a steady-state manner by unsta-
ble flows with a smooth (compared with 7 ) velocity pro-
file. It is expressed, in particular, in the fact that the anticy-
clonic autosoliton exists (Sec. 4.6), while the cyclonic one
does not exist. If, on the other hand, the flows have a sharp
velocity profile, then the cyclone-anticyclone asymmetry
vanishes, and the differences in the conditions of generation
of the vortices studied in this review and of the vortices stud-
ied in Refs. 110-112 are no longer fundamental: the vortices
are effectively generated irrespectively of whether or not
they are (like here) or are not (like in Refs. 110-112)
Rossby vortices. The conditions under which vortices are
generated by flows with a smooth profile are characteristic
for large atmospheric vortices on large planets (Jupiter and
Saturn), while the regime with the sharp profile is character-
istic for planetary vortices in the earth’s atmosphere; in the
last case, the cyclone-anticyclone asymmetry does not oc-
cur, which is in good agreement with what was said above
(the effect of the rotation of the system and the B effect on
the instability of shear flows is discussed in Ref. 113).

5. ROSSBY SOLITONS AND PLANETARY VORTICES

As already noted,”'>'®** Rossby waves can substan-
tially determine the large-scale cyclogenesis processes oc-
curring in the oceans and in planetary atmospheres. Here we
shall study this question in greater detail, primarily in appli-
cation to the large planets Jupiter and Saturn, since on these
planets the prerequisites for the soliton concept under study
are realized, namely, 1) the dimensions of the vortices are
greater than the Rossby radius (a>rg or a># )—the
“magnetized plasma” approximation; 2) the ratio of the ra-
dius g to the radius of the planet R is a small parameter. On
the indicated planets 7, = 6000 km (at the latitude of the
JGRS), R =70000 km, rr /RS 107", In this sense the
earth is less convenient for analysis, since in its atmosphere
rg =~ 3000 km (at middle latitudes) and rg /R =~ 1/2—this
parameter is no longer small. For this reason, we shall not
study terrestrial vortices here—we refer the reader to Refs.
11, 111-113. With regard to the atmospheric vortex struc-
tures studied, we adopt the “shallow water” concepts. A
detailed discussion of the justification for this approach is
given in Ref. 117.

5.1. Experimental soliton model of the Jovian Great Red Spot

As shown above (see Sec. 3), the Rossby soliton, ob-
served in experiments of Refs. 79, 82, 88 can in principle be
regarded as a laboratory model of the vortex (JGRS), which

M. V. Nezlin 829



qualitatively supports the existing soliton theory of this nat-
ural phenomenon. This concept is further supported by the
above-described (see Secs. 3.1.5 and 4.4, 4.6) experimental
results, demonstrating the cyclone-anticyclone asymmetry
of Rossby vortices, which is observed in two distinct phe-
nomena: 1) anticyclones are stable and are distinguished by
their comparatively long lifetime; cyclones decay compara-
tively rapidly (disperse); 2) the oppositely moving zonal
flows with a smooth transverse gradient of the velocity (for
example, such as those in the region of the JGRS, where the
characteristic transverse size of the flow profile exceeds 7 )
generate only anticyclones®%*%-%8; in other words, opposi-
tely directed flows with a smooth gradient of the velocity
generate a large-scale (greater than rg ) planetary vortex
only when they have an anticyclonic curl of the velocity.
This experimental behavior has an analogy in the Jovian at-
mosphere. Indeed, as observations show,%! the vortex in the
JGRSisan anticyclone and exists in the region of zonal flows
(see Fig. 3, point 4), where their velocity curl is anticy-
clonic. In addition, in the neighboring region (see Fig. 3,
point B), where the amplitude of the flows is even higher but
their curl is cyclonic, there is no large vortex (!). Thus there
is a clear parallel between the phenomena observed in nature
and in the laboratory.

Two experimentally observable modifications of the
Rossby soliton were described above (Secs. 3.1 and 4.6): in
one the soliton lifetime is limited by the viscosity of the medi-
um (and equals ~20s), while in the other—the autosoliton
state—the lifetime is not limited at all. These modifications
can be regarded as two soliton models of the vortex in the
JGRS: the first as a nonsteady-state and the second (Rossby
autosoliton) as a steady-state model of the Jovian Great Red
Spot. The second model, of course, conforms more closely to
natural conditions (see the next section).

5.2. Why is there only one vortex “Jovian Great Red Spot”
along the entire perimeter of the planet?

A simple and natural explanation of the intriguing
question of why this natural vortex is the only vortex along
the entire perimeter of its parallel (or, in other words, what
prevents the existence of another such vortex at another lo-
cation on the perimeter?) can apparently be found on the
basis of the experimental steady-state soliton model of the
JGRS examined in the preceding section. The answer to this
question lies in the fact that the JGRS is simply the first (and
quite localized ) mode of the hydrodynamic instability of op-
positely directed zonal flows. It is characterized by the num-
ber of vortices along the perimeter 7 = 1 and develops in the
presence of a jump in the velocity of the flows and for a flow
profile for which the existence of second and higher order
modes (m >2) i.e., a chain of vortices, corresponding to a
shorter wavelength of the instability, is excluded.

In order to imagine the probable mechanism of the phe-
nomenon, let us assume that as the oppositely moving direct-
ed flows are formed their velocity gradually increases. Then,
as is evident from Figs. 17, 19, and 20, the modes of instabil-
ity of the flows will change successively: every subsequent
(larger scale) mode, as it appears, will suppress the preced-
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ing (smaller scale) mode. For this reason, in particular,
when an autosoliton appears at the largest mode m = 1, cor-
responding to the longest wavelength of the instability (a
single vortex along the perimeter of the system), the shal-
lower water m = 2, corresponding to a shorter wavelength
of the instability (two vortices along the perimeter), will
vanish. This change in modes is linked with such a restruc-
turing of the flows (accompanied by a widening of their pro-
file) which occurs, in particular, when the mode m =1 ap-
pears and which corresponds to the steady state of the mode
m = 1, but excludes the existence of the mode 7, =2 and
shorter wavelength modes.

Thus, in the final analysis, the uniqueness of the JGRS
vortex over the entire perimeter of its parallel is explained by
the fact that in the region of this parallel the zonal flows have
a quite wide velocity profile along the meridian. For narrow-
er profiles chains of vortices are possible (as happens, for
example, on the latitudes of the White and Brown Ovals; see
below). It is entirely probable that the observed profile of
zonal flows at the latitude of the JGRS was established not
without the influence of this vortex itself. In addition, the
circumstance that the mode m = 1 occupies a small part of
the entire perimeter of the planet (the region of trapping of
the particles in the JGRS extends over about 25 000 kilo-
meters, which is appreciably shorter than one-tenth the pe-
rimeter of the planet) is explained by the strong nonlinearity
of the vortex; the index of this nonlinearity—the ratio of the
characteristic rotational velocity of the vortex to its drift
velocity—equals about 20 in the JGRS.

We note that the experimentally observed fundamental
phenomenon of the successive change of modes of the shear
instability, leading to the evolution of oppositely directed
flows into a system with one autosoliton, has still not been
explained theoretically. (The mechanism of the change in
modes of the instability is discussed in greater detail in
Sec. 7.1.)

The steady-state behavior of the vortex of the JGRS,
which has already been observed for 300 years, is explained
by the equilibrium established between the increment of the
hydrodynamic instability that ‘“‘untwists” the vortex and its
damping decrement. The physical quasi-two-dimensionality
of the vortex under study and analogous vortices in the at-
mospheres of Jupiter and Saturn is indicated, in particular,
by the fact that all large long-lived vortices on these parallels
are observed at the center between the oppositely directed
flows (at the points 4 and C in Fig. 3), where the horizontal
gradient of the velocity of the flows is maximum. In this
respect, an important result of astronomical observations is
described in Ref. 61: the condition of instability of zonal
flows is satisfied on the latitude of the JGRS vortex (as well
as on the latitudes of localization of other large vortices on
Jupiter and Saturn; see below). This condition, according to
which its vorticity must have a maximum value on the flow

profile!®>-1% (generalized Rayleigh criterion'®'%?), has
the form*483.105
o Th—(Va+u) =0, (46)

where u is the velocity of the flow (positive toward the east),
y is the coordinate along the meridian (positive toward the

M. V. Nezlin 830



north), and V' is the absolute magnitude of the Rossby ve-
locity.

The pumping of the JGRS vortex by zonal flows $
apparently responsible for its prolonged existence; in the ab-
sence of pumping the vortex would probably decay within a
few years, as a result of either of two independent processes:
viscous damping with the decrement (47) and nonviscous
damping with the decrement (22). Using the classical value
of the coefficient of viscosity,''¢ setting the effective height
of Jupiter’s atmosphere in the region of the JGRS equal to
H,~25 km (see Sec. 5.3), Q,~107% s, and setting the
viscous damping time (7) of the JGRS equal to the corre-
sponding estimate for the Rossby vortex on a solid underly-
ing surface,** we obtain

ll4,115i

T & Hy (vVQ20) Y2 ~ 10 years. (47)

An estimate based on the decrement (22) gives a significant-
ly shorter lifetime of the vortex. Therefore the assumption
that the steady state of the JGRS can exist only under the
condition of quite intense pumping of the vortex by zonal
flows appears to be realistic.

Thus the Rossby autosoliton described in Sec. 4.6, for
the first time models simultaneously all three intriguing
properties of the natural vortex in the Jovian Great Red
Spot, namely, 1) steady-state behavior, 2) self-organization
in zonal flows, and 3) being the only vortex along the entire
perimeter of the planet.

The experimental Rossby autosoliton has another prop-
erty, analogous to one observed in the Jovian vortices: the
vorticity in it is much higher than the vorticity in the sur-
rounding flow.*”*¥ Thus an experimental soliton model has
been created for the first time which apparently no longer
leaves any doubts about the fact that it qualitatively models
the nature of this planetary vortex (and other similar vorti-
ces). In order to compare the external view of the natural
vortex of the JGRS with its laboratory model, Figure 21
shows a photograph of the JGRS (southern hemisphere on
Jupiter, 22 °S.L.), taken from the jacket of Ref. 1a. The size
of the vortex along the parallel is about 25 000 km (along the
region of trapped particles) and oppositely directed turbu-

lent (zonal) flows with an anticyclonic curl of the velocity
flow around it from the north and the south. The similarity
between Fig. 21 and Fig. 17 is evident.

The fact that the experimental model studied is two-
dimensional and therefore cannot give an exact quantitative
correspondence with the astronomical observations must,
however, be taken into account. For this reason, we shall
briefly describe the three-dimensional approach to the soli-
ton model of the JGRS.

5.3. Three-dimensional soliton model of the Jovian Great Red
Spot

It turns out that good agreement (not only qualitative
but also quantitative) between the soliton model under
study and the data from astronomical observations can be
obtained simply by taking into account***° the wave motion
in the Rossby soliton along the vertical coordinate.

According to Voyager data®"*° the JGRS vortex in the
upper atmosphere of Jupiter is an anticyclone with a relative
amplitude of A= 10!, “floating” along the parallel at a lati-
tude of — 22° in an approximately isothermal cloud layer
with an effective thickness of H,~20 km (this quantity
characterizes the decay of the atmospheric density along the
vertical by a factor of 1/e; the total thickness of the layer can
be several times greater than H,). This layer is physically
distinguished by the fact that the temperature reaches its
lowest value— — 130 K—as a function of altitude in it (the
average pressure in the layer equals about 1/3 of the pressure
on earth). Beneath this cloud layer, beginning at a level
where the gas pressure is only one-half the pressure in the
earth’s atmosphere, a gaseous substratum, in which the pres-
sure varies with altitude according to the adiabatic law, ex-
tends deep into the interior of the planet: in this medium the
Brunt-Vaisila frequency equals zero [see the discussion for
(17) 1, so that some authors® think that the top boundary of
this substratum in corresponding models may be regarded to
be a solid surface.

Jupiter’s rotational period is about ten hours, the accel-
eration of gravity is g ~2.5-10° cm/s? and the planet’s radi-

FIG. 21. Vortex in the JGRS in the Jovian atmo-
sphere (southern hemisphere)—see photograph
12.4 and jacket of Ref. la. The dark oval at the
center of the right side of Fig. 21a is the JGRS, the
white ovals lie to the south and to the west. Figure
21b shows the JGRS in an enlarged scale.
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us is 70 000 km. The vortex drifts westward along the paral-
lel at a latitude of — 22° with a velocity of about 3 m/s and
rotates around its axis opposite to the direction of rotation of
the planet with a characteristic period of about one week.
The Rossby-Obukhov radius for the JGRS equals ri =~ 6000
km, and the Rossby velocity (11,12) Fg =160 m/s
(Table II).

According to the two-dimensional soliton model of the
JGRS the drift velocity of this natural vortex must exceed
Vr =160 m/s, while in reality it equals about 3 m/s, i.e.,
approximately 50 times lower than ¥y . Therefore the two-
dimensional (barotropic) soliton model of the JGRS, being
in quite good qualitative agreement with the observational
data, is not in quantitative agreement.

For this reason, we shall now consider the baroclinic
model,**5° for which we shall taken into account the possi-
bility of wave motion in the vortex along the vertical, asso-
ciated with the variability of the density of the medium as a
function of height in the atmosphere—analogous to the
manner in which this is done in the analysis of synoptic vorti-
ces (see Sec. 1.4). Then, as already pointed out, the disper-
sion equation for Rossby waves will admit the existence of
not only a two-dimensional (barotropic) mode, but also
three-dimensional modes, more accurately, quasi-two-di-
mensional (baroclinic) modes, in which the wave number
along the vertical k, #0. We shall now assume** that the
soliton solution, analogous to the two-dimensional model,
also exists in the baroclinic mode indicated here. Then, ac-
cording to Sec. 1.4, the “baroclinic” (or internal) Rossby
radius r; will appear in all expressions for the parameters of
the soliton instead of the “barotropic” radius g, which is

much larger than r,. Such a baroclinic soliton solution was
studied, in particular, in Ref. 70 and also in Ref. 42 [in the
latter, the complete necessary procedure is not carried out,
and the transition from the barotropic mode to the baro-
clinic mode is made simply by replacing the actual accelera-
tion of gravity g by some equivalent value g’ ~ (1/15)g*”; in
addition, the scale 7y is replaced by 7, =rg /4]. The baro-
clinic radius 7; can be estimated with the help of the relations
(16) and (17). In so doing, for the case of an approximately
isothermal atmosphere and the vertical mode with an effec-
tive wave number k, =~ 7/H,*" we obtain the relation***

™R 7 172
e= T Nﬂ('—?_i) N

(48)

where y =~ 1.4 is the adiabatic index. Now, with the help of
(8) and (12), itis not difficult to see that when 7y _is replaced
by r; the size of the soliton decreases by a factor of £~6,
while the drift velocity of the soliton decreases by a factor of
£? = 36. This means that the characteristic radius of the
JGRS must equal several 7;, i.e., several thousands of kilo-
meters, as is in fact the case in reality. This means also that
the drift velocity of the JGRS must equal approximately 4.5
m/s, which is close to the observed velocity. It is evident that
both approaches*?*** (and they admit obvious quantitative
variations within the limits of the indicated order of magni-
tude of the quantities) give qualitatively close results.

Thus the baroclinic model (to which it is better to refer
not as a three-dimensional model, but rather as a quasi-two-
dimensional model), unlike the barotropic (two-dimension-
al) model, is in good quantitative agreement with the astro-
nomical observations; this supports the viewpoint that the

TABLE II. Large long-lived vortices in the atmospheres of Jupiter and Saturn (the last lines are combined).

Diameter
along
Name Sign of Observed the meridian Drift Direction
of vorticity of lifetime, (parallel), velocity, of
Planet Latitude vortex the vortex years thousand km m/s © drift References
Jupiter 22°S.L. Great Red Spot  Anticyclone More than 300 13 X 26***) 3 Westward 38
(GRS)
34°S.L. White Qvals Anticyclones More than 45 5x7 4 Eastward 38
(WQ)
14°N.L.  Brown Ovals Cyclones* More than 2.5 1.5X%7.5 25 Eastward 65, 68
(“‘barges™)
Saturn 75°N.L.  Big Bertha Anticyclone More than 1** 5X7 69
42°N.L.  Brown Spots Anticyclones More than 1** 3.3x5 5 Same 69
(BS)
27°N.L. UV spots; Anticyclones More than 1** ~3; ~3. ;30 Eastward 69
55°S.L. Anne’s Spot
(AS)

*With this single exception all large vortices are anticyclones. The cyclones of Jupiter and Saturn are usually not larger than 1000 km and their lifetime is

not longer than one week.%®
**The observations began only recently.®

***The dimensions of the region of trapping of the particles are indicated.
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JGRS vortex is a Rossby soliton. (We note that unlike Refs.
44, 60, and 88, here we do not examine the variant of the
soliton model of the JGRS given in Ref. 55, in view of the fact
that, as is now clear (see Secs. 2.2 and 3.3), this variant has a
very low probability of being realized.)

Another quantitative difference, associated with the
value of the Mach number, between the autosoliton model of
the natural JGRS vortex studied here and the object being
modeled was already discussed in Sec. 4.6. Just as the differ-
ence associated with the two-dimensionality of the model, it
is not a fundamental one, since it disappears when the wave
motion along the vertical is taken into account.

We note that what has been said here and previously
about the properties and nature of the JGRS vortex is also
true for other large (though smaller) anticyclonic vortices
in the Jovian atmosphere—the so-called White Ovals, which
appeared in 1938 as a result of a strong disturbance of Jupi-
ter’s atmosphere.*538 Other planetary vortices are discussed
in the next section.

5.4. Other large vortices In the atmospheres of large planets

The main properties of all large vortices on Jupiter and
Saturn have the following characteristic features.*'!” 1)
Cyclone-anticyclone asymmetry. With one exception,
which only confirms the rule (the Brown Ovals, or “‘barges,”
of Jupiter at 14 °N.L.), all large long-lived vortices on large
planets are anticyclones. 2) The hierarchy of scales and life-
times of the vortices (the dimensions of the vortices are of
the order of the Rossby radius ; or larger). The largest vor-
tex—the JGRS—has the longest lifetime (7> 300 years).
The lifetimes of smaller vortices are substantially shorter. 3)
The drift of the vortices along the parallels. All large vortices
drift around the axis of the planet. Thus the JGRS vortex
drifts westward, while the Brown Ovals drift eastward. 4)
The characteristic rotational frequency for all large vortices
is lower than the rotational frequency of the planet. 5) The
linear velocities of the particles in the vortices are substan-
tially higher than the drift velocity—the vortices effectively
entrain particles of the medium contained in them. 6) All
anticyclones are observed in regions of zonal flows where the
curl of the velocity is anticyclonic, while the transverse ve-
locity gradient is smooth. 7) The cyclonic “barges” of Ju-
piter are observed in the region of the cyclonic curl of the
velocity of the flows, which have a sharp meridional gradi-
ent.®® The differential of the velocity of the flows in the re-
gion of the ““barges” equals about 125 m/s over a distance of
about only 1.5 thousand kilometers, while in the region of
the JGRS it is several times smaller. 8) All large vortices are
localized in regions of zonal flows where the horizontal gra-
dient of the velocity of the flows is maximum (i.e., the
centers of the vortices lie near the transition of the velocity of
the flows through zero). 9) At latitudes corresponding to all
large vortices on Jupiter and Saturn the criterion of hydro-
dynamic instability of the zonal flows, corresponding to
(46), is satisfied.

Based on everything said above, the set of enumerated
properties of anticyclonic planetary vortices makes it possi-
ble to regard them as Rossby vortices, generated by unstable

833  Sov. Phys. Usp. 29 (9), September 1986

zonal flows. As regards the cyclonic “barges” of Jupiter,
according to Sec. 4.4 they are apparently noncharacteristic
modes and exist only owing to the intensive “pumping” by
flows with an extremely sharp transverse gradient of the ve-
locity—in accordance with (41). Under conditions under
which these vortices are observed, the cyclone-anticyclone
asymmetry should not occur, as shown in Secs. 4.1 and 4.4.
We recall that the Rossby autosoliton, the only one on the
entire perimeter of the system, can be created experimentally
only in the form of an anticyclone (see Sec. 4.6).

The cyclone-anticyclone asymmetry is also observed in
the oceans on earth. According to numerous observations
(see, for example, Refs. 19b, 19a (p. 218), and 118-120) at
depths of several hundreds of meters, very long-lived baro-
clinic vortices, having the forms of “lenses,” occur (excited
by appropriate sources) at the boundary between layers with
different temperatures. They are monopolar vortices, as a
rule anticyclones, and their horizontal dimensions are some-
what greater than the internal Rossby radius 7;. These struc-
tures can be regarded as “‘candidates” for Rossby solitons.”
It is interesting to note that the vertical structure of these
anticyclones—in accordance with the multilayer model of
Ref.19a—can be thought of as a baroclinic mode of the enve-
lope with an effective vertical wave number k, ~7/H,,
where H, is the height of the vortices. The rotational velocity
of the liquid in these vortices is maximum at the median
depth and drops off to zero toward the top and bottom edges
of the vortex. It is natural to assume that the atmospheric
vortex in the Jovian Great Red Spot has approximately the
same vertical structure—this is in fact assumed in the quasi-
two-dimensional (baroclinic) soliton model of this natural
vortex, studied in Sec. 5.1 (see the last footnote). Cyclonic
vortices of this type (and their probable atmospheric ana-
log—the Jovian Brown Ovals) are rarely encountered.

5.5. Alternative model of planetary vortices based on
thermogyroconvection

An interesting model of global atmospheric vortices,
differing radically from the one described above, was recent-
ly proposed by Hide and his coworkers.'*"!?> We shall point
out the basic idea, omitting the details (they would divert us
from the subject of this review). In a liquid confined in the
gap between two cylinders rotating around a vertical axis
and having a horizontal bottom (i.e., in the absence of the A
effect), a controllable radial temperature gradient, giving
rise to a definite (small) density gradient, is created. This
gradient, being noncollinear with the acceleration of gravity,
creates in the liquid a flow (the so-called “thermal
wind”?*24121122) ' directed along the azimuth.?? If the gra-
dient of the density (temperature) of the liquid at some loca-
tion of the gap changes sign, then oppositely directed flows
arise. These flows have either a cyclonic or anticyclonic curl,
depending on the nature of the extremum of the density
(maximum or minimum). Experiments'?'-'?? show that un-
der certain conditions in such an arrangement the flows be-
come unstable and generate chains of vortices with a differ-
ent mode number. Under certain conditions, when the
density of the liquid is minimum at the center of the gap (i.e.,

M. V. Nezlin 833



at a maximum of the temperature), the mode m = 1 appears:
one anticyclone (in front of which, it is true, a weaker cy-
clone can be seen) fits into the perimeter of the system. Such
a vortex structure is proposed in Refs. 121 and 122 as a mod-
el of the Jovian Great Red Spot. An extremum of the density
with the opposite sign (maximum at the center of the gap)
could not be created in the experiments of Refs. 121 and 122,
and this situation was calculated numerically on a computer.
According to the calculation, a cyclonic structure of the Jo-
vian “barge” type should appear.

The model described differs very substantially from the
soliton model presented above. The main differences are as
follows. 1) The horizontal dimensions of the vortices in this
model are significantly smaller than the depth of the liquid
(“deep water” ). Moreover, the effective height of the Jovian
atmosphere (H,=~25 km) is three orders of magnitude
smaller than the horizontal size of the JGRS. 2) The genera-
ted vortices are nondispersive (no S effect) and remain vir-
tually stationary relative to the vessel. Therefore, the drift of
the planetary vortices cannot be explained. 3) The observed
cyclone-anticyclone asymmetry also cannot be explained. 4)
In order to explain, based on this model, the properties of the
JGRS vortex it is necessary to assume that the maximum
temperature (minimum density) occurs at the center of the
vortex, which qualitatively contradicts the observational
data.’®*®” 5) The horizontal dimensions of the vortex are
much smaller than the Rossby-Obukhov radius, and approx-
imately equal the baroclinic (internal) Rossby radius r; (see
Sec. 1.4). This circumstance is similar to the conditions oc-
curring in nature.

Some features of this model are similar to those of the
soliton model studied above. First of all, the self-maintained
vortex structure arises as a result of the instability of opposi-
tely moving zonal flows (although the latter are created by
different methods). Second, the dimensions of the vortices
are physically comparable: they are determined by the
Rossby scale, except that in the soliton model they are deter-
mined by the “two-dimensional” radius r; while in Hide’s
model'? they are determined by the “three-dimensional”
radius 7;. It is possible that a new model of global planetary
vortices, based on the synthesis of Hide’s model and the soli-
ton model, studied in this review, could appear as the devel-
opment of the theoretical and experimental work proceeds.
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6. POSSIBILITY OF THE EXISTENCE OF VORTEX
STRUCTURES IN SPIRAL GALAXIES

Experimental data indicate the possibility in principle
of the existence of vortex structures in the gaseous disks of
spiral galaxies. These data were obtained in experi-
ments®*-919¢123 op the modeling of the hydrodynamic
mechanism®® of generation of the spiral structure of galaxies
using the “Spiral” experimental arrangement with differen-
tially rotating shallow water. (The main elements of the ar-
rangement (Fig. 22) are as follows: a rapidly rotating “‘core”
consisting of a conical cup 8 cm in diameter (black color), a
“tangential discontinuity” of the rotational velocity, and a
less rapidly or relatively slowly rotating, in a particular case
immobile, periphery; in the case a) the periphery is immo-
bile and horizontal, while in the case b) it is a paraboloid
rotating with a frequency (, =0, 2Q, = 3.6 s~', where
Q, = 18 s~ ' is the angular rotational frequency of the core.)
The results of interest to us in this case consist in the fact that
between the spiral surface density waves, generated by the
hydrodynamic (centrifugal) instability, the disturbances of
the liquid are of the nature of vortices shaped like bananas,
strung onto the line of the velocity shear (Fig. 22b). The
characteristic direction of rotation of these vortices is anticy-
clonic (opposite to the direction of rotation of the core), and
in their drift motion around the core they lag behind the
system of coordinates rotating with a velocity intermediate
between the velocity of the core and the velocity of the pe-
riphery; in this coordinate system their radial dimensions
are of the order of (and less than) the Rossby-Obukhov radi-
us. Their amplitude is quite large: they turn out to be impen-
etrable to particles of the surrounding liquid.*® The kinetic
energy of the particles rotating in them approximately corre-
sponds to the gravitational potential of the rise in the liquid
in the spiral arms, as can be seen in Fig. 22b, where the
particles of the vortices “ascend’ onto the crests of the spir-
als and “slide” back down from them; it is possible that in the
nonlinear regime of the centrifugal instability under study
the vortices generate “ship waves” and thereby give rise to
the buildup of the spiral arms.®*°*!?** Thus the vortices and
the spiral waves shown in Fig. 22 are elements of the same
spiral-vortex structure generated by the hydrodynamic
(centrifugal) instability of differentially rotating shallow

FIG. 22. a) Spiral surface density waves, excited in shallow
water when the central “core” rotates more rapidly than the
periphery.®®>®! Large-amplitude (white) vortices, effectively
transporting particles of the liquid, can be seen at the base of
the spirals, near the “discontinuity” in the rotational veloc-
ity. The “‘core” and the spiral waves rotate clockwise. b) Vor-
tices in a system of spiral waves.'?%*
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water (see Ref. 123a). It is important to note that the experi-
ments performed'?** satisfy the criterion of a “‘magnetized
plasma”: the visible length of the spiral arms and the radial
size of the periphery are much larger® than the Rossby-
Obukhov radius rg, corresponding to the rotational fre-
quency of the periphery 2, = 0.2} ; this criterion is fully
compatible with the observed stability (steady-state behav-
ior) of the spiral-vortex structure. [ The vector nonlinearity
apparently plays a significant role in the formation of this
structure; see relation (15b).]

As already mentioned in Sec. 1.3, an important modifi-
cation of the vector nonlinearity, associated with the depen-
dence of the Rossby velocity (¥ ) on the meridional coordi-
nate y, and the “topographic’” Rossby solitons generated by
it, has been studied theoretically.®® In Ref. 39 it is proposed
that the change in V' is caused by the presence of a meri-
dional gradient of H, i.e., the depth of the liquid or the effec-
tive depth of the atmosphere (9). Such a gradient can be
present in the gaseous disk of a galaxy, where the component
of g normal to the plane of the disk drops off toward the
periphery of the disk (edge effect). One can imagine in this
case the formation (in the region of decreasing g) of struc-
tures of the Rossby soliton vortex type, “untwisted” by the
instability of the differential rotation of the matter (gas) in
the galaxy. The dimensions of these structures must, natu-
rally, be of the order of several Rossby-Obukhov radii (8).
In addition, they will be significantly smaller (at least sever-
alfold) than the radial dimensions of the disk itself. Astro-
nomical observations give some indications of the possibility
of the existence of such vortex structures.'**~'?® Their inter-
pretation based on the above-studied particular solution for
the Rossby soliton in the form of Ref. 55 is given in Ref. 57b.

7. INSTABILITY OF DIFFERENTIALLY ROTATING SHALLOW
WATER AS A POSSIBLE UNIVERSAL MECHANISM OF
GENERATION OF LARGE VORTICES ON LARGE PLANETS
AND OF THE SPIRAL STRUCTURE OF GALAXIES WITH A
JUMP IN THE VELOCITY ON THE ROTATION PROFILE

7.1. Alternation of the shear-flow instability modes (problem
of the uniqueness of the JGRS vortex along the perimeter of
the planet)

The instability of rotating shear flows is manifested in
the most diverse situations and leads to the generation of
chains of vortices of different nature: the anticyclonic soli-
tons and Rossby cyclones described above, as well as vorti-
ces of a different nature.''®"''? Here a general behavior, ex-
pressed in the following two very distinct phenomena, is
observed. The number of an azimuthal instability mode (m)
(i.e., the number of vortices along the perimeter in a chain
which is stationary in time) is related to the velocity u of
(oppositely directed) shear flows*® in a definite manner: 1)
as u increases the number m decreases (see, for example,
Figs. 17, 19, and 20); 2) alternation of modes is observed as u
varies: for example, as u increases, the highest mode
(m 4+ 1) vanishes and the lowest mode m appears, etc., with
the change in modes occurring in a discontinuous manner
and exhibiting hysteresis—as u decreases, the inverse transi-

835 Sov. Phys. Usp. 29 (9), September 1986

tion between a given pair of modes is observed at a lower
value of u.

There are two instabilities which are characteristic of
shear flows in the experiments under study on rotating shal-
low water®': the Kelvin-Helmholtz (KH) and centrifugal.
We shall study the possible mechanism for the change in
modes using the example of the better-studied KH instabil-
ity.*” This instability arises in the presence of a jump in the
velocity at the boundary between flows irrespectively of
which part of the liquid rotates faster—the center or the
periphery. The increment of this instability can be written in
the form

v (1-%),

where A is the wavelength, u is the jump in the velocity at the
“discontinuity” between the flows, and & is the width of the
“discontinuity.”'%*'% The threshold value of the jump in
the velocity above which an instability appears can be esti-
mated from the condition that the increment y exceed the
decrement d of viscous damping in shallow water: d =v/H 3,
where v is the kinematic viscosity and H, is the thickness of
the layer of shallow water. From here we have

_ VA2 (50)
T nHE (A—58)

(49)

u

This is a well-known result: the instability exists only for
A > 56.100.106 14 js evident that the modes closest to the short-
est mode require a very high threshold and are therefore of
no interest. Modes with A > 106 are more interesting. It is
these modes that we shall have in mind. The increment of
these modes, according to (49), increases as A decreases
(with weak spreading of the profile of the flows), and the
higheris A the less sensitive it is to an increase in §. For this
reason, as u increases, first of all, a “short-wavelength”
mode appears—with a relatively large number of comparati-
vely shallow vortices along the perimeter of the system. As u
increases further, the obvious nonlinear evolution of this
mode will cause § to increase. In addition, a longer wave-
length mode (with a smaller number of larger vortices along
the perimeter) will begin to compete successfully with it—
the increment of this mode, though smaller (with a weak
smearing of the profile of the flows), is nevertheless less sen-
sitive to 8. The development of this new mode will lead to an
even larger increase in &, as a result of which the preceding
mode will vanish, etc. Thus the arising mode m suppresses
the (m 4 1) mode existing before it, and this amounts to a
successive change of modes.

As regards the reasons for the natural vortex of the
JGRS being the only one along the entire perimeter of the
system, the mode-change behavior indicated above indicates
that the mode m = 1 (one Rossby autosoliton along the pe-
rimeter of the system) exists with a zonal-flow profile that
precludes the existence of the mode m = 2 (two autosolitons
on the perimeter). For the mode m = 2 (corresponding to a
shorter wavelength of the instability than in the case of the
mode m = 1) this profile is too smooth: for it the indicated
qualitative condition of the type A > 108 does not hold; in
order for the mode m = 2 to arise, the profile must have a
sharper velocity gradient along the meridian.
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As the jump in the velocity between the oppositely mov-
ing flows decreases, the reverse transition from the given
mode to a shorter wavelength mode will occur at a lower
value of # than for the direct transition, because as the transi-
tion under study is approached from the side of large values
of u the quantity § is determined by the longer wavelength
mode and therefore remains larger than when this transition
is approached from the side of lower values of u, and this
corresponds to the observed hysteresis.®®

The second instability of shear flows is the centrifugal
instability, which arises only when the center of the liquid
rotates more rapidly than the periphery. In the linear theory
of this instability®* the following characteristics are pointed
out: a) as the jump in the velocity of the flows increases, the
increment of this mode increases and b) the longer wave-
length mode is less sensitive to the width & of the velocity
jump. Based on this, one would think that the phenomenon
of alternation of the modes of both instabilities is governed
by a more or less common physical mechanism, associated
with the action of analogous or close factors. (It is interest-
ing to note that mode alternation, reminiscent of the behav-
ior noted here, is also observed in the theory of stability of
Rossby waves.*?)

7.2, Astrophysical applications

In Secs. 4 and 5 it was shown that large vortices in mod-
els of the atmospheres of large planets are generated as a
result of the development of two instabilities: the Kelvin-
Helmholtz (KH) instability and the centrifugal instability
(CI), which are characteristic of zonal (oppositely direct-
ed) flows in a differentially rotating quasi-two-dimensional
medium (liquid, gas). Under experimental conditions these
instabilities can be quite easily distinguished, if the jump in
the velocity u at the boundary between the flows is large
enough compared with the characteristic velocity
¢ = ( gH)"?, which plays the role of an equivalent velocity
of sound in (three-dimensionally) incompressible shallow
water with a free surface.

Namely, if

u>2V 2¢ (51)

( Ma = % > 1) ,
when the effective (two-dimensional) compressibility of the
medium plays the fundamental role, the two-dimensional
KH instability is suppressed, as shown theoretically in Refs.
107 and 108 and experimentally in Ref. 84. In such fast flows
instability (of the tangential shear) is manifested only as the
centrifugal instability and develops only in the case when the
interior parts of the liquid rotate more rapidly than the exte-
rior parts, i.e., if the flows have an anticyclonic vorti-
city®?-%8; in other words, under conditions such that May 1
flows of the tangential shear type with a cyclonic vortex are
stable, while those with an anticyclonic vortex are unstable,
and in the latter case they generate vortex structures under
one set of experimental conditions and spiral-vortex struc-
tures under different conditions.?*>-?"'2** In this example we
encounter the cyclone-anticyclone asymmetry in the genera-
tion of vortex structures with different sign of the vorticity,
when, as in the case Mag 1, the asymmetry of the formation
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of cyclones and anticyclones is associated with the diﬁérent
degree of their steady-state behavior. A striking manifgsta-
tion of the indicated asymmetry of cyclogenesis is the gener-
ation of a steady-state anticyclonic Rossby autosoliton (Sec.
4.6) in the mode m = 1 of the (apparently, centrifugal) in-
stability. In this case the asymmetry is a result of both factors
indicated above and is manifested in the fact that a cyclonic
autosoliton (the only one along the perimeter of the system)
does not exit.

The hydrodynamic instability of differentially rotating
shallow water under study could be responsible for the gen-
eration of the spiral structure in the gaseous disks of galax-
ies, in which a jump in the rotational velocity occurs between
the core and the periphery. This is indicated by model exper-
iments®*9123* (see also Ref. 96). In particular, the same
sequence of azimuthal modes of the spiral structure as in the
case of the generation of Rossby vortices is observed in them:
in both cases, as the velocity jump at the “discontinuity”
between the flows increases, a mode with a decreasing azi-
muthal wave number m, i.e., decreasing number of spiral
arms and correspondingly decreasing number of vortices
along the perimeter of the system (see also Ref. 123b), ap-
pears.

Thus the instability of differentially rotating shallow
water with a free surface could be responsible for the forma-
tion of such different natural vortex structures as the large
vortices in the atmospheres of large planets and the spiral
pattern in galaxies with a velocity jump on the rotation pro-
file.

8. DIPOLAR ROSSBY VORTICES (EXPERIMENT)

8.1. Formulation of the problem and the first experiments
(small parabolold)

A theoretical soliton structure in the form of a dipole or
an isolated pair of cyclone-anticyclone vortices was de-
scribed in Sec. 2.3.5! The experimental search for such a
structure was first initiated in Refs. 79 and 85 on a small
paraboloid (see Table I above). The experiments performed
gave essentially a negative result: they showed that although
it is possible to generate a system of two coupled vortices
with different signs,” the system is not of the dipolar soliton
type.3! This follows from the fact that the lifetime of the
dipole pair, after which the constituent cyclone decays, is
much shorter than that of a solitary (anticyclonic) Rossby
soliton. In other words, under the conditions of the experi-
ments of Refs. 79 and 85, for which a sharp cyclone-anticy-
clone asymmetry was characteristic (see, for example, Fig. 8
in Ref. 82), solitary (““monopolar’’) solitons were predomi-
nantly formed as a manifestation of the (‘‘scalar’’) nonlin-
earity which predominates under the condition (15a), when
the size of the vortex substantially exceeds the Rossby-
Obukhov radius (a>rg). This nonlinearity prevents the
manifestation of the other (‘“‘vector”) nonlinearity, which
must predominate under the condition (15b), i.e., when
a <rg, and, according to the theory of Ref. 51, can form a
paired (dipolar) Rossby soliton.

Based on the physical meaning of these two nonlineari-
ties, of which one (the scalar nonlinearity) strongly depends
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variation in the depth of the liquid while the other
N gctor nonlinearity) is less dependent on it, it was natu-
"hssume that the competition between them could lead
ftlifferent result, if the depth of the liquid is significantly
ingyewded. But since in this case the radius 7y increases and
the.dimensions of the Rossby vortices incrgase correspond-
iné’ly, in order that the radius of the vortex be much smaller
than; ¥he radius of curvature of the vessel as before, the ex-
petiriielgs have to be transferred from the small paraboloid
to a large’paraboloid (see Table I above). These experiments
age described in the next section.

8.2. Experimental data (large paraboloid) and comparison
with the theory

44 The experiments®® on the larger experimental arrange-
Ert (the maximum diameter of the vessel equaled 70 cm;
¢'Teble I) were performed with a significantly larger depth
of the liquid Hy: from 0.5 cm to 5 cm.

We shall first describe the results of experiments with a
layer of liquid of moderate depth: H, % 2.5 cm. These experi-
ments gave the following results. 1) They showed that there
exists a simple and reliable method for generating a dipolar
Rossby vortex, consisting of the following. The pumping
disk (see Fig. 23) generates within ~5 s an extended cy-
clonic disturbance in the rotating paraboloidal layer of lig-
uid, which can be thought of as being in the form of two
oppositely directed flows. Soon after the disk is switched off,
the flows excited by it generate two paired (dipolar) vorti-
ces. The two dipolar pairs formed in this manner move along
the parallels in opposite directions and have at the same time
the “appropriate” polarizations, corresponding to the rela-
tive motion of the vortex and the matter flowing around it.
Namely, in a “westward” drifting pair (lagging behind the
motion of the liquid as a whole), the outer vortex, located
farther away from the center of the paraboloid, is a cyclone,
while in an “eastward” drifting pair the outer vortex is an
anticyclone. This result is shown in Fig. 23.%¢ 2) The size of
the dipolar vortices formed in this manner (the distance
between the centers of the cyclone and anticyclone)
a % (1.5-2)rg . 3) The westward drift velocity of the dipolar
vortices V', is greater than the Rossby velocity: Vy, = 1.5
V& . 4) The eastward drift velocity of the dipolar vortices is
not known as accurately, but is close to the Rossby velocity:
Vg =0.7V g . Theproperties 3) and 4) of these vorticesarein
good agreement with the theoretical relations (21). 5) The
vortices move together with the trapped particles. 6) For the
depth of the liquid under study (not large enough) the cy-
clone-anticyclone asymmetry is clearly observed in the
paired vortices: the cyclone decays rapidly, and from the
dipole only the anticyclone remains and exists for a compar-
atively long time (Figs. 23 and 24). This result can be ex-
plained by the predominance of the scalar nonlinearity. Un-
der the indicated experimental conditions the paired
vortices do not satisfy the condition (23), and they are there-
fore not solitons.

We shall now study the experiments with a large depth
of the liquid: H, % 4 cm. Under these conditions the cyclone-
anticyclone asymmetry vanishes: the lifetime of the vortex
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F1G. 23. Hlustration of the method for creating two dipolar Rossby vorti-
ces with one pumping disk, rotating in the cyclonic direction in a time
interval of ~ 5 s. The disk (lower right side of the photograph) generates
an extended cyclonic disturbance, in which a bridge and two cyclones are
formed (in the photograph they appear to be darker); then each cyclone
forms an adjacent anticyclone and thus two dipoles are formed; in one of
them, drifting clockwise (“‘westward”), the outer vortex (farther from
the center of the vessel) is a cyclone, while in the other, drifting counter-
clockwise (eastward), the outer vortex is an anticyclone.

FIG. 24. Example of a dipolar Rossby vortex, created by the method
shown in Fig. 23.°° The pair of westward drifting vortices moves much
more rapidly than its “nearest neighbor”—an eastward drifting pair.
Large paraboloid, H, = 2.5 cm.
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FIG. 25. Long-lived dipolar Rossby vortex drifting eastward. Large para-
boloid, H, = 4 cm. The time intervals between the frames equal 2 and 8.

pair is no longer limited by the decay of the cyclone. This
means that now the vector nonlinearity, forming mainly a
dipolar vortex, predominates. The observed properties of
this vortex (Fig. 25) are as follows: the maximum linear
rotational velocity of the particles around the axis of the
vortex on the profile equals about 10 cm/s, and it is approxi-
mately seven times higher than the drift velocity of the pair
under the conditions of Fig. 25; the size of the vortex
a~=(1.2-1.3)rg; the lifetime of the vortex is about 15-16s,
and this time is still shorter than the dispersion spreading
time (24) of a linear packet of Rossby waves with the same
dimensions: under the indicated conditions the dispersion
time equals about 24 s. (Under the conditions of Fig. 25 the
gradient of the depth of the liquid was oriented toward the
center of the vessel; for this reason, the quantity V' was less
thanand r, was greater than that indicated in Table I for the
case H = const.) When the lifetime of the paired vortex is
not limited by the decay of the cyclone, it can be limited by
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the separation of the partners (Fig. 26). This is apparently
caused by the fact that the drift velocity is not constant over
the size of the vortex and by the fact that the depth of the
liquid in the cyclone is different from that in the anticyclone.

Thus, based on their dispersion properties or, which is
the same thing, their propagation characteristics [the west-
ward and eastward drift velocities satisfy the relations
(21)], their dimensions [satisfying the condition (15b) for
the vector nonlinearity to be the dominant nonlinearity], the
trapping of particles of the medium, and their polarization,
paired vortices, which are observed when the depth of the
liquid is large enough, are very similar to the dipolar Rossby
solitons described in the theory of Ref. 51 and formed by the
vector nonlinearity. In order for these vortices to be confi-
dently called solitons, their lifetime must be increased by a
factor of at least two.

Vortices on rotating shallow water, in particular, paired
vortices, were also observed in the experiments of Ref. 130,
where they were called Rossby solitons. It should be noted,

FIG. 26. Demonstration of the relatively rapid westward motion of the
vortex pair.% In the dipolar westward drifting vortex the partners move
away from one another. Large paraboloid, H, = 2.5 cm. The time inter-
vals between the frames equal 8 and 7 s.
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however, that the paraboloid used in the experiments of Ref.
130 had a very small slope (12 times smaller than that of the
small paraboloid of Table I, and six times smaller than that
of the large paraboloid in the same table), and therefore did
not satisfy the conditions (23), (24), (34), (37), and (38),
required for identifying vortices as Rossby solitons. There-
fore the vortices observed in Ref. 130 cannot be identified as
solitons—contrary to what is stated in Refs. 130 and 131.

Returning to the experiments, whose conditions satisfy
the indicated necessary criteria, we recall that, as shown in
Sec. 3.2.1, the anticyclonic Rossby soliton is an attractor. As
regards paired Rossby vortices, when the depth of the liquid
is relatively small (H, 52 cm) they are not attractors, since
the paired vortex—owing to the decay of the cyclone—
transforms into an anticyclone, which is an attractor. As the
depth of the liquid increases (H,%4 cm), however, the
paired vortex already manifests definite properties of an at-
tractor (they would be even more strongly manifested, if the
partners of the vortex did not move away from one another).

There is another interesting fact that is observed in the
experiments of Ref. 96 and characterizes, on the one hand,
the cyclone-anticyclone asymmetry and, on the other, the
collective properties of vortices (their interaction). The
problem is that cyclogenesis by the method described above
can, under certain conditions, produce not only two pairs,
but an entire ‘““‘chessboard” of vortices (Fig. 27). (In the
theoretical study of Ref. 58 such a vortex ensemble, being
hypothetical at the time, is called a Modon Sea.*®) Thus the
experiment (with a moderate depth of the liquid ) shows that
out of this entire “‘sea” after some time only anticyclones
remain (!) (they are marked by arrows in Fig. 27); the cy-
clones decay.

The paired vortices described here differ substantially
from the paired vortices formed in ““deep water,” as observed
in the experiments of Ref. 132, under whose conditions there
was no appreciable 3 effect.

The paired vortices observed in the experiments studied
here are analogs of plasma vortices predicted theoretically in
Refs. 133, 134, and 140-142.

FIG. 27. Modon sea, from which after 5 s only anticyclones (marked by
the arrows.) remain in the form of vortices, while the cyclones decay; as a
result, of six vortices only two remain (large paraboloid).?
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CONCLUSIONS

So, Rossby solitons, observed experimentally in recent
years (and Rossby vortices in general), are very interesting
coherent nonlinear structures, which are probably directly
related to large-scale planetary vortices and also possibly
even to galactic vortices. The mechanism of their self-orga-
nization in zonal flows occurring in nature is quite general: it
is related to the hydrodynamic instability of differentially
rotating shallow water with a free surface—the instability
which could be the basic mechanism for the formation of an
autosoliton (JGRS) and the hydrodynamic mechanism for
the generation of the spiral structure of galaxies. These are
all examples of how an instability leads not to (small-scale)
turbulence, but rather to the formation of large-scale quasi-
two-dimensional structures.*”

According to the theory, Rossby solitons (whose di-
mensions are greater than the Rossby-Obukhov radius) are
the geophysical analog of drift solitons (whose dimensions
are greater than the Larmor radius of ions) which can form
in a nonuniform magnetized plasma and substantially affect
its confinement time in magnetic traps (see, for example,
Ref. 133 and also Ref. 134, where the concepts of dipolar
solitons are transferred from hydrodynamics to plasma
physics). Now that many of the properties and mechanisms
of generation of Rossby solitons have been clarified in hy-
drodynamic experiments, it would be very interesting to car-
ry out analogous experiments with drift (and related) soli-
tons in a plasma. There are some indications that such
solitons actually do exist. Indeed, looking back and thinking
about the experiments performed approximately 20 years
ago, it is logical to assume that the coherent structures ob-
served under conditions of the drift instability’®® and the
beam-drift instability'**>° are probably close or physically
analogous to the “drift” Rossby solitons studied in this re-
view.

References 137-141 and the review in Ref. 142 can in-
troduce the reader to the latest papers on the theory of drift
nonlinear structures (in particular, solitons) and their pos-
sible effect on the nature of the motion of particles in a mag-
netized plasma. The belief (stated several years ago by B. B.
Kadomtsev) that the existing experimental data on the spec-
tra of low-frequency turbulence in plasma traps of the toka-
mak type can be explained based on the idea of a “‘gas” of
drift solitons is developed theoretically in Ref. 137. The lat-
ter solitons, as indicated above, are analogous to Rossby soli-
tons. Convective cells in plasmas are structurally similar to
plasma vortices.'#>-145

The author thanks F. V. Dolzhanskii and G. G. Sutyrin
for carefully reading the manuscript, fruitful discussions,
and suggestions.

UIn the English transcription—(J)GRS (Jovian Great Red Spot).

PTheoretically these waves were known at the end of the last century® and
were later studied in Ref. 8 (see the review of Ref. 9); modern observa-
tions of Rossby waves in the earth’s atmosphere are described in Ref.
10a (see also Ref. 10b).

¥The term “‘autosoliton,” in application to other specific structures, was
first introduced by V. V. Osipov and B. S. Kerner; see Ref. 75 and the
literature cited there.
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“1In (9) k is the Boltzmann constant.

3'We recall that the propagation velocity of a Rossby soliton differs only
by a nonlinear correction from the phase velocity of the linear wave as
/I - ®.

SThe steep sections correspond to large wave numbers.

"'This argument is completely analogous to the conclusion drawn in Ref.
30 concerning the fact that on the “usual” branch of ion-acoustic waves
(with negative dispersion) in a plasma a compression soliton is possible,
while a rarefaction soliton is impossible. This also corresponds to the
fact that the classical Scott Russell soliton in shallow water (the first
soliton in the history of science)?®® is a positive-elevation soliton (a
solitary wave in the form of a depression is impossible in this case also).
The solitons indicated here are solutions of the well-known Korteweig—
de Vries equation (see Refs. 3a and 32).

#These flows result from the evolution of the two-dimensional turbulence
of the atmosphere*®: small vortices coalesce, and in addition the increase
in their scales along the parallels is not bounded, so that ring flows are
formed; the increase of the scales along the meridian, however, is bound-
ed by the Rhines length''* /=7 (u/B8) /%, where u is the amplitude of the
flow velocity. As a result, zonal flows with a period of ~/ are obtained
(see Fig. 3).

9The variant of Ref. 57a evidently has the same intrinsic feature as that of
the variant of Ref. 55 studied below.

'91n plasma physics the scalar nonlinearity was studied earlier—in Ref.
59a (and later in Ref. 59b also): it was pointed out that a “scalar” drift-
wave soliton can form in a spatially nonuniform magnetized plasma.

'The trapping of particles of liquid by a monopolar Rossby soliton, the
trapping condition (¥, > V4 ) and the resulting new properties of
Rossby solitons, in particular, their property of being attractors and the
inelastic nature of their mutual collisions, were first discovered experi-
mentally (Sec. 3.2), and they were taken into account in the theory
under consideration only later.

!2'The monopolar Rossby solitons studied above also have the property
(21b).

3The “vector” soliton is constructed based on this variability.>®

"“With one exception, described in Sec. 3.3.

5'The formula (33) differs from Ref. 79 by a factor of 1/2 in the first term
on the right side.®®

19The theorems for the existence and stability of Rossby solitons are
proved precisely in this approximation; see, for example, Ref. 74.

"'This profile can be represented in the form & = h, exp( — /242, or
h = hyexp( — r*/a®), where 2a is the distance between diametrically
opposite points on the profile, at which # = hy/e.

!81n all photographs and figures presented the paraboloid rotates coun-
terclockwise.

9'These experiments were performed in 1981 at the request of the partici-
pants of G. 1. Barenblatt’s seminar at the Institute of Oceanology of the
USSR Academy of Sciences, and they are described in Refs. 79 and 82.

20'0r, which is the same thing, the region with closed streamlines.

2UHere there was no 8 effect: 8=d(H /f )/dy = 0.

22The drift of Rossby solitons can be easily explained also on the basis of
vortex representations.®’

238ee, for example, Ref. 11.

29The instability of the tangential velocity shear in a differentially rotat-
ing system has two modifications: the Kelvin-Helmholtz instability
(KH) and the centrifugal instability (CI); see below.®!

25t is precisely this situation that is realized in the experiments and obser-
vations studied in this review.

26'The first threshold with a comparatively low flow velocity is apparently
associated, as usual, with dissipation processes: viscosity and friction
against the bottom.

2"'The velocities of motions in planetary vortices are much lower than the
velocity of sound, so that the medium may be regarded as incompress-
ible; in this case the analogy between the behavior of these structures
and that of shallow water is even more obvious.

29 According to what was said at the end of Sec. 2.2, the autosoliton de-
scribed apparently is not directly related to the variant of the Rossby
soliton in Ref. 55.

291n real galaxies, generally speaking, both the centrifugal and Kelvin-
Helmbholtz instabilities can develop (see Ref. 123b for a more detailed
discussion). .

30The quantity g’ (physically less than g because of the effect of buoyan-
cy) in this case is introduced as an adjustable parameter.

3The details of the vertical structure of the JGRS (as yet not studied)
cannot fundamentally alter the qualitative picture of the phenomenon
presented.

32'This phenomenon is analogous to the drift of plasma particles in crossed
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electric and magnetic fields.

33This mechanism has been investigated theoretically by A. M. Fridman
a?d his coworkers starting in 1972 (see Refs. 89 and 90 for a discussion
of this).

34Unlike Rossby vortices, however, in the vortices described the centrifu-
gal force from the characteristic rotation is no longer small compared to
the Coriolis force (and even exceeds it), and the regime of the vortices is
not the (geostrophic) Rossby regime (3). See Ref. 123a for a more
detailed discussion.

3)For example, by an order of magnitude.

291n the general case u is the jump in the velocity at the boundary between
the flows.

3For simplicity, we ignore the 3 effect.

38The term “modon” is used (usually in the work of foreign authors) to
denote different vortex structures, in particular, paired vortices.

3As is evident from this review, experiment has played a decisive role in
establishing these characteristics.
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