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When a charge is moving in free space or in an inhomogeneous and nonstationary medium, it
generates electromagnetic radiation. The spectrum of this radiation depends on the expression
specifying the motion of the charge, and also on the laws according to which properties of the
medium are changing in time and space. The asymptotic behavior of the radiation spectrum,
i.e., the high-frequency behavior of spectral intensity, is studied. It is shown that if a charge
moves along a smooth trajectory, or if the variation of the medium properties is described by a
smooth function, the radiation spectrum at high frequencies decreases exponentially.
Therefore, the radiation spectrum of a charge, moving along a smooth trajectory in a medium
with a smooth inhomogeneity and (or) nonstationarity, drops abruptly to zero, starting from a
certain value of the frequency. By a smooth trajectory we mean a trajectory of a charge moving
according to the law r = r ( t ) , where the vector-function r ( t ) is continuous together with all its
derivatives. Similarly, a medium with smooth inhomogeneities (or smooth nonstationarity) is
described by functions, which are continuous together with all their derivatives of arbitrary
order. A method is described that allows one to determine the upper limit of the radiation
spectrum, i.e., the value of the frequency beginning with which an exponential decay of the
spectrum takes place.
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INTRODUCTION

It is well known that a moving particle is a source of
electromagnetic radiation. An exception from this rule is the
case of a particle moving uniformly in vacuum, when it does
not radiate. For accelerated motion of a charge in vacuum
radiation is always present. A charge moving uniformly in a
homogeneous refracting medium emits radiation only in the
case when the velocity of the charge exceeds the phase veloc-
ity of electromagnetic waves in that medium. This is the
well-known Vavilov-Cherenkov radiation.' When a charge
moves in an inhomogeneous and (or) nonstationary medi-
um, radiation arises both in the case of accelerated motion
and in the case of uniform motion of a charge with any veloc-
ity. In the particular case when a uniformly moving charge

crosses a plane boundary between two media, "transition"
radiation occurs.2

The radiation from a charge in vacuum is sufficiently
well-studied for a number of cases, for which the law of the
particle motion is known. Some of these cases are of practical
interest. For example, the problem of radiation from a
charge moving along the circumference of a circle has a di-
rect relation to the radiation from accelerated particles mov-
ing along an orbit in a synchrotron chamber. This radiation
has received the name of synchrotron radiation. It is used
widely in physics, biology and engineering.3"5 Synchrotron
radiation must be taken into account in studying a number of
astrophysical phenomena.6 The interest in undulator radi-
ation has increased over the last several years. This radiation
arises for a special class of trajectories, namely, for such
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equations of motion r = r(?) which satisfy the relation
r(t+ T) = r ( t ) + L, where L is the distance over which the
charge moves during the time T. The undulator radiation of
relativistic particles has a number of unique properties, and
is increasingly often used in the research on and processing
of various materials, biological objects, and for other pur-
poses.9'10

Here we restrict our consideration by giving only a list
of the types of motion for which the radiation of a charge has
been studied in sufficient detail. By the present time, radi-
ation corresponding to other types of motion has also been
studied, but here we shall not discuss the corresponding pa-
pers and refer the reader to the literature.2^*-6-7

Radiation produced during the motion of a charge has
different characteristics—spectrum, angular distribution,
intensity, polarization—for different types of motion of a
particle. However, for a rather large class of trajectories it is
possible to make some general statements about the behavior
of intensity and radiation spectrum at high frequencies.
These statements made in Refs. 8, 14, 17 can be reduced to
the statement that for smooth trajectories the intensity of
radiation at sufficiently high frequencies decreases with an
increase of the frequency ty faster than any finite power of a>.
Such a conclusion follows from the properties of the Fourier
transformation. In fact, let us assume that the expression
describing the motion of a charge is given in the form
r = r(0, where r ( t ) is the radius-vector determining the
position of the particle at the moment t. The current pro-
duced by the motion of the charge is proportional to its ve-
locity v(0 = dr(t)/dt. Let r ( f ) be a smooth function, i.e., it
and all its derivatives are continuous. It is easy to demon-
strate (see below) that the amplitude of the wave radiated by
a moving charge is proportional to the Fourier component of
the current produced by the motion of the particle, i.e., for
the case of a smooth trajectory it is expressed in terms of the
Fourier component of a smooth function (by a smooth func-
tion we shall understand in the future a function continuous
together with all its derivtives). In that case a theorem holds,
according to which the Fourier component of a smooth
function at sufficiently high values of the frequency de-
creases with an increase of frequency faster than any integer
power of <a.13 This means that the intensity of radiation falls
off rapidly with an increase of frequency, beginning with a
certain value of the frequency.

For the types of radiation given above (i.e., for synchro-
tron, magnetic brehmstrahlung and undulator radiation)
there is, in fact, a rapid intensity decrease (exponential) of
the radiation at high frequencies and, therefore, these results
are in agreement with the above-mentioned theorem dealing
with the asymptotic properties of the Fourier transform.
However, the question arises whether the intensity of radi-
ation falls off exponentially for all smooth types of motion.
In this note we shall demonstrate that, for smooth trajector-
ies, the intensity of high-frequency radiation in almost all
cases (exceptions will be indicated) falls off exponentially.

It will be shown also that, if a charge moves in a homo-
geneous and non-stationary medium with slowly varying pa-
rameters, the radiation spectrum arising during this kind of
motion also falls off exponentially at high frequencies.

1. RADIATION OF ELECTROMAGNETIC WAVES BY A
CHARGE MOVING ACCORDING TO A SPECIFIED LAW

Let us consider the case when the source of the field is a
point charge moving according to a specified law. We denote
the magnitude of the charge by q.

Assume that at the moment t the charge is at the point

r = r (t), (1)

where r ( t ) is a given function of time.
The expression (1 ) specifying the motion determines

not only the position, but also the velocity v(t) of the charge
at any moment of time t

»C> = -TT-. (2)

The motion of a charge described by the law (1) and
(2) corresponds to the charge density

P = ?6 (r - r (/))

and current density

j = <?v (t) 6 (r - r (0),

(3)

(4)

where 8(a) is a delta function.
Determination of the electromagnetic field produced by

a point charge moving according to the expressions (1) and
(2) is, thus, reduced to the solution of the system of Maxwell
equations for the electromagnetic field, with the charge den-
sity and current density having the form (3) and (4).

Since we are interested in the spectral decomposition of
the field, we shall describe the radiation field by the Fourier
component of the vector potential A^ (r):

A B ( r ) = - "'dt. (5)

For the case when the motion of the charge is deter-
mined by expressions (1) and (2), the expression for the
vector potential Aw (r) is given in the book of Landau and
Lifshitz3:

v(0exp[i((o*-kr(0)]dt. (6)

This expression is valid for large distances r from the area
where the charge is moving.

Let us consider the structure of the expression (6) for
the vector potential. The factor

,ikr

describes a spherical wave diverging from the area in which
the charge is moving. The quantity k entering the exponent
is the wave vector corresponding to this spherical wave:

(0

* = T- (7>

The amplitude of the spherical wave (6) is proportional to
the quantity

(8)1= v'(«)exp(i(of — ikt(t))At.
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Here r ( t ) and v(r) are, respectively, the position and veloc-
ity of a charge at the moment t, the vector k is equal in abso-
lute value to co/c and is directed from the area where the
charge is moving towards the observation point:

(9)

The amplitude 1, which is determined by formula (8), is
equal, up to a constant factor, to the Fourier component of
the density of the current produced by the motion of a charge
described by expressions ( 1 ), (2). To prove that, let us ex-
pand the current density j (r,t) which is determined by for-
mula (4), into the Fourier integral in terms of all the vari-
ables:

J j(r , t)exp(Kot-ikr)cUdr. (10)

If we substitute expression (4) for j ( r , f ) into this formula,
and integrate over entire space, we shall obtain

l ,
Jk- M "~ (2n)4 (11)

where 1 is the amplitude (8) of the radiated spherical wave
(6).

Knowing the quantity 1, it is possible to determine the
intensity of radiation at the frequency a> into an element of
the solid angle dH12

den |[kl]|2dcodQ, (12)

where n is a unit vector in the direction of radiation.
From expression (12) one can see that the intensity of

radiation is determined by the value of 1 (8). For this reason,
asymptotic behavior of the spectral intensity dfn,« is deter-
mined by the behavior of the amplitude 1 at high frequencies.

2. HIGH-FREQUENCY ASYMPTOTIC BEHAVIOR OF THE
AMPLITUDE I

We shall consider now the asymptotic behavior of the
amplitude 1 at high frequencies, assuming that the motion of
the charge (1) is determined by a smooth function, i.e., that
the function r ( t ) and all its derivatives are continuous.

Expression (8) for 1 can be considered as the frequency
Fourier component of the function v(?)exp[ — /kr( f ) ]• If
r(t) is a smooth function, then v(f)exp[ — ikr(t) ] is also a
smooth function. Therefore, based on general properties of
the Fourier transformation, it is possible to make a state-
ment that with an increase of the frequency co the quantity 1
tends to zero faster than any integer power of en. The analysis
of expression (8) for 1 allows one to obtain more specific
conclusions about type of dependence of 1 on the frequency co
for high frequencies.

Let us estimate the amplitude 1 for large values of fre-
quency (a) — oo). Later we describe in more detail the condi-
tions under which the frequency can be assumed to be suffi-
ciently large.

The amplitude 1, as can be seen from expression (8), is
determined by an integral with the integrand containing the
function

exp (iat — ikr (t)).

790 Sov. Phys. Usp. 29 (8), August 1986

(13)

For high values of the frequency this function oscillates rap-
idly in the range of variation of the variable t where the phase

of expression (13)

(t) = a>t - kr (t) (14)

varies with time. For this reason, the integral over the corre-
sponding range is small. If the integration path contains a
point, where the phase (14) does not change, the integral
over the segment adjacent to that point is different from zero
and determines the value of 1 (8). The point t0, in the vicinity
of which the phase (14) does not change, can be found from
the equation

(15)

This equation does not have real roots. In fact, since the
value of the wave vector k is determined by expression (7),
we can rewrite equation (15) in the form

(16)

where 0 is the angle between the wave vector and the charge
velocity v. Since the charge velocity v cannot exceed the
speed of light in vacuum c, and the magnitude of cos 6 is not
larger than one, the second term in (16) is always smaller
than the first, and for this reason equation (16) does not
have any real roots t0. However, if v ( f ) is a smooth function,
equation (16) can have a complex root. Let us write this
complex root in the following way:

where t, is the real part of the root, and t2 is the imaginary
part.

We note here that for the case of a charge moving uni-
formly in the vacuum, equation (16) does not have any
roots. If a particle moves uniformly in a homogeneous re-
fracting medium, equation (16) coincides with the condi-
tion for the existence of Vavilov-Cherenkov radiation.

We expand the phase (14) in expression (8) for 1 in a
power series in the vicinity of the point t0, keeping only the
first three terms

= cot— kr(t)

(18)

Since equation (15) is satisfied at the point t0, the second
term in expansion (18) must be zero. Further, substituting
expression (18) in (8) and taking \(t), evaluated at the
point t0, out of the integral, we obtain

1 = v (t.) wtp[i (a*. -kr (*.))]

X j exp[—i-a(<0)k(t-t0)*]dt, (19)

where a (10) is the particle acceleration at t = t0. The integral
in expression (19) can be easily calculated, and we obtain

1 = ( ,a Ski )"2 v Co) exp (icof0-ikr (f0)) exp (#m) (20)
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where /?m is the angle determining the direction of the inte-
gration path in the method of steepest descent.15 We shall
not give values of /3m, since the absolute value of the phase
factor exp(//9m ) which enters (20) is equal to unity, and in
future we will be interested in the radiation spectrum deter-
mined by expression (12) and containing only the absolute
value 1.

The described procedure coincides with the calculation
of 1 for large values of <u by the method of steepest descent.15

Expression (20) determines the value of the amplitude 1
of the radiated wave (6) at high frequencies.

Since the quantity f0 in expression (20) is complex,
lo = t\ + ''2 tsee expression (17) ], r(f0) , too, is a complex
function. Assume that

r Co) = TI + ir2, (21)

here r, and r2 are real vectors. Taking into account (17) and
(21), we find that 1, determined by expression (20), decays
exponentially as the frequency increases, with the damping
factor being of the form:

exp [—((of, — krs)]. (22)

In future we shall assume that t2, i.e., the imaginary part
of t0 in expression (17), is small. Then we can assume that

(23)

From here we obtain that the imaginary part of the vector
r(/0) is equal to

ra = ttv (t,). (24)

Then the damping factor (22) takes the form

exp [—f2 (o> — kv (*,))]. (25)

This factor can be presented in the form

e-'1/Jr, (26)

where

is the quantity that determines the order of magnitude of the
time interval, during which a charge moving with the veloc-
ity v(?,) radiates waves with almost equal phases. The quan-
tity Tf is called the radiation formation time.

Let us now find the physical meaning of the quantity t2

in the exponent in expression (26).
According to the definition (17), the quantity J2 is the

imaginary part of the quantity t0, where t0 is a point of sta-
tionary phase, satisfying equation (16). We recall that here
we assume that the quantity t2 is small. In this case, as it can
be seen from (19), the quantity 12 is equal, in order of magni-
tude, to the time interval, during which a charge radiates
waves reaching the observation point. The quantity tlt i.e.,
the real part of t0, determines the order of magnitude of the
instant of time, near which radiation takes place.

We shall illustrate the above description by the follow-
ing examples.

FIG. 1.

2.1. Synchrotron radiation

Assume that a charge is moving along the circumfer-
ence of a circle of radius R with angular velocity ca0. We
choose the coordinate axes as shown in Fig. 1. The position
of the particle on the circumference is determined by the
angle <p = &>0f. We assume that the particle is moving along
the circumference counter-clockwise. The position of a par-
ticle at the moment t is determined by expressions

x = R sin o>0*>

y = R cos G>0<.
(28)

From here it is easy to determine the velocity components of
the particle

vx — va cos co0<,

v, = —vn sin <£>at,
(29)

where

(30)

Radiation by the particle is determined by the integral
(8), where, in the case under consideration, one must substi-
tute the values of the coordinates r ( t ) and velocity v(0 from
(28) and (29).

Let us consider the amplitude (8) for the case of high
frequencies. Assume that the wave vector is directed parallel
to the x axis. In that case equation (16) for the saddle point
has the form

1—22LM=0, (31)

or
i;BC08(D0t0 _Q (32)

We expand cos a>0t0 in powers oft, keeping only the terms of
not higher than second order:

cos <o0f o = 1 — Y (<o0t0)
2 + ....

Substituting this expansion into (32), we obtain

2(1—&•)=-(«„*„)». (33)

We assume that the velocity of the charge is close to the
velocity of light. Then

= 4 f , 04)

where
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(35)

is the so-called Lorentz factor. In future we shall assume that
the Lorentz factor is large compared with 1 (^> 1).

Taking into account (34), we obtain from expression
(35)

ta=- (36)

The value of the saddle point t0 is, therefore, purely imagi-
nary in our example. If we assume, as we have done above,
that t0 = ti + it2, we obtain tl = 0, t2 = \/co0y.

This result admits a simple physical interpretation. As
is known, a charge moving with relativistic velocity radiates
waves in the direction of motion in the narrow interval of
angles A0~ \/y. If we consider the radiation with the wave
vector directed in the positive direction of the x axis, such
radiation is collected from the portion of the circumference
having an angular extent l/y and located near the point
cp =• 0. The time that it takes for the charge to traverse this
portion of the circumference is approximately equal to I/
co0y, i.e., to the imaginary part of the expression (36) for t0.
The real part of t0, equal in this case to zero, gives the posi-
tion of that portion of the trajectory, from which the radi-
ation is collected (t = 0, cp = cat = 0).

We estimate now the behavior of the amplitude of the
radiated wave at high frequencies. For this we use expression
(22). Substituting the values t{ and t2 from (36), we obtain
the relationship

-_ <B/3(0«Y* (1T\e ' l J ' )

where we assume that <y > tog^3. The amplitude of the radiat-
ed wave decreases, therefore, as the frequency co increases, in
accordance with (37). Formula (37) shows also the fre-
quencies for which the asymptotic behavior (37) is valid.
The frequency co must be sufficiently large, so that the expo-
nent would be large compared with one.

Since the radiated field decreases as the frequency in-
creases in accordance with (3 7), the energy of radiation also
decreases as the frequency increases proportionally to the
square of the factor (37), i.e., in accordance with

e-2co/3(0,V'. (38)

Rigorous theory3 gives for the case of high frequencies
the same exponentially decaying frequency dependence.

Until now we had assumed that the wave vector of a
radiated wave lies in the plane of the circular orbit of an
electron. Assume now that the wave vector k forms an angle
9 with the plane of the orbit, and that the orbit lies in the x,y
plane, and the wave vector k is parallel to the xj plane (Fig.
2). The motion of the charge is described as before by expres-
sion (28). We denote by 0 the angle between the wave vector
k and the plane of the orbit (or, what is the same, the angle
between k and the x axis). In that case equation (16), which
determines the point of the stationary phase, has the form

1 —— cos (0(,t0 • cos 9 = 0.
C

(39)

the previous case (kz =0) purely imaginary:

t, = -L[
•BO L

2(1 — p cos 6) "[1/2
P cos 9 J (40)

At 8 = 0 this value becomes equal to expression (36), if we
take into the account the assumption that the charge velocity
is close to the speed of light, P?z 1. If we determine now the
position of the charge r(/0) at the instant t0, determined by
expression (40), and substitute values of t0 and r(?0) into
(20), we obtain that in this case the dependence of the ampli-
tude of the radiated wave on the frequency for large values of
the frequency has the form

8(1 — 6)3 -]l/2l
J }• (40')

Intensity of radiation is proportional to the square of this
quantity.

2.2. Radiation from a charge with smoothly varying velocity

Assume that a point charge is moving along an axis,
with the velocity of motion changing according to the fol-
lowing law

(41)

For negative values of time, large in absolute value, the equa-
tion describing the motion (41) gives

V ( t ) l^-oo = V,.

For large positive values of time we obtain from (41)

V (/) It.oo = V,.

Therefore, expression (41) describes the motion, in which
the initial velocity is equal to v1( and the final velocity is
equal to v2. The transition from v, to v2 occurs smoothly
during a time interval, equal in order of magnitude to T.
Knowing the velocity of the charge (41), it is easy to find its
position as a function of time

t + - T In ch (42)

The motion of the charge according to (41), (42) is accom-
panied by radiation. Let us estimate the behavior of the radi-
ated field at high frequencies. Equation (16) for the saddle
point has the form

The value t = t0, for which equation (39) is satisfied, is, as in cos 6 (43)
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Solving this equation, we obtain for t0 the value

Thus,

_
*~~

l-(i;i/c)cose
1 — (D,/e)cos6

(44)

(45)

The imaginary part of the saddle ponit t0 is equal in order of
magnitude to the time T, during which the acceleration of
the charge takes place. Since the variation of the speed is
accompanied by radiation, the quantity ?2 gives the effective
time, during which radiation takes place.

Using the asymptotic expression (20) for the ampli-
tudes of radiated waves at high frequencies, and also expres-
sions (41), (42), (44), and (45), we obtain that the depend-
ence on the frequency is determined by the relation.

(46)
'exp [ — juor(l — -^-cose)] for vt>vt,

exp [ — Jicor (l — -J-COS0J1 for t>2<J>i .

In expressions for the intensity of radiation, the exponents in
( 46 ) are doubled. Obviously the decay law ( 46 ) is valid also
when the following inequalities hold

(nf ) ' (l—j-cose)

-l ( i_ZL c o s e )

-i
for

for I;,>I
(47)

These asymptotic properties of radiation can also be ob-
tained from rigorous theory.12

2.3. Radiation from a charge moving uniformly along a given
bounded segment taking into account smooth acceleration
at the beginning of the path and smooth deceleration at the
end of the path

Consider now the case when a charge is initially at rest,
and then starts accelerating smoothly, and within the time
interval T reaches the velocity v. During the time interval
2 T{> the charge moves with the constant velocity v, then
decelerates, and during the time interval T the charge veloc-
ity again decreases to zero. We shall consider the following
law of velocity variation:

= 4-(th t+Ta — t h - (48)

Here 7"is the time during which acceleration takes place and
time of the subsequent deceleration, and 2 T0 is the time
during which the charge moves with the constant velocity v.
It is assumed that T0$>T.

If the time T of acceleration or deceleration tends to
zero, the equation describing the motion of the charge
changes, and in the limit when T = 0 the velocity of the
charge changes by a jump. At the beginning of the motion
t = — T0, the velocity of the charge changes abruptly from 0
to v, and at the end of the motion (/ = Ta) changes just as
abruptly, from v to zero after the charge has travelled the
distance 2vT0 with constant velocity. Radiation of the
charge during the abrupt change in velocity was studied for
the first time by I. E. Tamm.'' It was shown that in this case,

the radiation spectrum at high frequencies oscillates with the
frequency, but does not tend to zero. It is obvious that if the
velocity varies smoothly the radiation spectrum at high fre-
quencies, as has been already shown, must decay according
to the exponential law.

Let us find the high-frequency asymptotic behavior of
the spectrum arising in the case of motion according to
expression (48). The saddle point t0 is determined by equa-
tion (16), which in the case under consideration takes the
form

(49)cos e

Solving this equation, we obtain

tt=tt + itt = £-{in + lji[b^(b2 -I)]1/2}, (50)

where
•IT .. IT1

y- (51)
27\,

and it is assumed that T0 > T.
If the velocity of the particle varies according to expres-

sion (48), the dependence of the position on time is deter-
mined by the expression

- y In- — ln
ch[(t-T,)/T] • (52)

Taking into account expressions (20), (48), and (51),
we obtain the asymptotic dependence of the radiation ampli-
tude 1 on the frequency <y

, (53)

where Tis the time during which the velocity of the particle
changes slowly (the acceleration time at the beginning or the
deceleration time at the end), and Tf is the time of the for-
mation of radiation at the frequency « [see expression
(27)] .

If the acceleration (or deceleration) time Tis equal to
zero, exponential decay (53) does not occur. Therefore, the
assumption of instantaneous acceleration or deceleration
leads to the loss of short-wave asymptotic behavior.

Expression (53) is valid if

co> nr[l-(p/e)cos0] (54)

or

Radiation taking place when the charge moves accord-
ing to (48), can be calculated in closed form. Substituting
the equation of motion into expression ( 8 ) for the amplitude
of the radiation field and taking into account that the posi-
tion of the charge depends on the time according to ( 52 ) , we
obtain the following expression for the amplitude of the radi-
ation field24

- 4T0/r _ _
sb(na>r/2)

(55)

where F(a,/?,y;z) is the hypergeometric function.23 One
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might try to determine the asymptotic behavior of the radi-
ation spectrum directly with the aid of the exact formula
(55), but we found it simpler to use the method of steepest
descent right away.

2.4. Harmonic oscillator of a finite amplitude

Consider a point charge oscillating along the z-axis ac-
cording to

t = A sin co0(. (56)

Obviously, the velocity of the motion depends on the time in
the following way:

V = -rr = j4<B0 COS G>0 t. (57)

Let us determine the asymptotic behavior of the radiation
spectrum in the case of motion described by equations (56),
(57). Equation (16) for the saddle point in that case has the
form

Au>0 cos co0t0 = (58)

This equation coincides, in essence, with the already consid-
ered equation (32), which determines the stationary phase
point for synchrotron radiation. Performing similar calcula-
tions, we obtain for the asymptotic behavior of the amplitude
of the radiation from a harmonic oscillator, the expression

1 ~ g-o/So.V'; (59)

the same formula also follows from the rigorous theory.4

3. HIGH-FREQUENCY ASYMPTOTIC BEHAVIOR OF THE
RADIATION SPECTRUM OF CHARGES MOVING UNIFORMLY
IN NONSTATIONARY AND INHOMOGENEOUS MEDIA

We shall now study the high-frequency asymptotic be-
havior of the radiation spectrum of a charge moving uni-
formly in a medium with a dielectric permittivity £ which
varies smoothly in time or in space. We consider first the
case of a nonstationary medium with the refractive index
n = e [ / 2 varying smoothly with time. We assume that the
change of the dielectric permittivity of the medium is occur-
ring sufficiently slow, so that the characteristic time of the
change of n is much greater than the period of the radiated
wave and the medium relaxation time. This will allow us to
use the approximation of geometrical optics, and also a
quasistationary value of the dielectric permittivity.

Assume now that the charge q is moving with the con-
stant velocity v along the z axis in a medium the refractive
index of which depends on time according to n = n(t). Us-
ing Maxwell equations it is easy to obtain the equation for
the electric displacement D:

- , (60)

where the charge density p and current density j are de-
scribed by the following expressions:

P = 36 (p - vi),
j = gv8 (r - vf).

(61)

ier integral of the form

D (T. t) = j (FkDk (t) (62)

a similar expansion is used also for the right side of equation
(59). Then, taking (61) into account, we obtain for the spa-
tial Fourier component of the displacement Dk the follow-
ing equation:

- (V (kv) — tf (t) c2k) e- (63)

where u> = kc, h = l/n, and the prime means differentiation
with respect to time. As has been shown in Ref. 16, radiation
in a nonstationary medium is determined only by the trans-
verse component of the displacement vector

Dtr = DH — k (kDk) k-\ (64)

For this reason we shall obtain and solve the equation for
Dk

r. It has the form

where

Introducing the new function y(t) such that Dk = By, we
obtain for y the following equation:

Since we are interested in the high-frequency asymptotic be-
havior of the radiation spectrum, we shall use the method of
geometrical optics in the following discussion. Solutions of
equation (66) without the right side obtained in this approx-
imation have the form17

n(t ' )di ' ) . (67)

Solutions (67) represent two waves propagating in opposite
directions (along and against the direction of the vector k).
Further, using (67) and the fact that as t— — oo radiation is
absent, we obtain a solution of the inhomogeneous equation
(66):

We expand the electric displacement D into the space Four-

00

J

00

+ J (V, CO y, (t) - y2 (t) y, (i))e-*W di] .
<

(68)

The last term in ( 68 ) is proportional to the Fourier compo-
nent of the field of a uniformly moving charge; this term is
not related to radiation. The waves radiated by a uniformly
moving charge in a nonstationary medium are determined
by the first two terms in (68); we denote these terms by
K^k) and Y2(}a), respectively. In order to find the angular
and spectral distribution of the radiation energy it is neces-
sary to take into account that in the direction k ( at an angle Q
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to the z axis) not only the wave Y2 (k) is radiated but also the
wave Y2( — k). For this reason, from (67) and (68) it fol-
lows that the high-frequency asymptotic behavior of the ra-
diation spectrum is determined by the square of the absolute
value of the asymptotic expression (fork-» oo ) of the follow-
ing integral:

00 t

f [«(T)]'/2exp [t Ike \ n(t')dt' — kvcosQi\~\ dr. (69)
— oo

Comparison of formulas (69) and (8) shows that the inte-
grands in them are, essentially, analogous. Therefore, the
general conclusions drawn by us regarding the asymptotic
behavior of integral (8) remain valid also for integral (69).
Namely, the point r0, in which the phrase of the exponent in
(69) does not change, is determined by equation

ken (TO) — kv cos 6 = 0

or

(70)

(70')

If the condition for the existence of Vavilov-Cherenkov radi-
ation is not fulfilled (and for sufficiently high frequencies it
is not fulfilled, since in this case n < 1), the solution of equa-
tion (70) necessarily has a nonzero imaginary part:

*0 = *!+'*•* ( 7 1 )

and this in the end determines the exponential decay of radi-
ation energy for large values of k, and, as in the case of (22),
the damping factor can be presented in the form

exp(-ftc[F1(T0)--f-coB8.T,]), (72)

where F2 ( TO ) is the imaginary part of the function

F=

Using (72), it is easy to obtain the asymptotic behavior of
radiation spectra for a number of specific models, describing
the time variation of the index of refraction of a nonstation-
ary medium (for example, for the case of a smooth transition
of the index of refraction from a constant initial to a constant
final value, or for the case when it changes periodically with
time). However, as can be seen from (69) and (72), such
calculations are analogous to calculations carried out above,
and we do not give them here. We remark only that the rigor-
ous solution of the problem of radiation by a uniformly mov-
ing charge in the case of a smooth variation of dielectric
permittivity of a medium from one constant value to another
is obtained in Ref. 18.

Consider now the asymptotic behavior of the transition
radiation spectrum of a uniformly moving charge in an inho-
mogeneous medium. For simplicity we consider the case
when the dielectric permittivity of the medium depends only
on one coordinate z, and the charge also is moving along the z
axis with the velocity v. Since we are interested in high-fre-
quency radiation, we shall again use the approximation of
geometrical optics. The quasiclassical solution of the formu-

lated problem is given in Ref. 19. Namely, the spectral inten-
sity of the x rays radiated forward is proportional to the
square of the absolute value of the following integral:

(73)

where to is the frequency of the radiated wave, A (z) = [(eo2/
c2)e(z) — x2]1/2, x is the transverse (relative to the z axis)
component of the wave vector. Obviously, expression (73) is
analogous to expressions (8) and (69). For this reason we
can assert also for the case of transition radiation (if A is a
smooth function of z) that the high-frequency asymptotic
behavior of the spectrum will be exponential.

In conclusion we note that in all the problems solved to
date concerning transition radiation in media with dielectric
permittivity smoothly varying in space (for example, radi-
ation from a smeared-out boundary,20 in a plate with
smeared-out boundaries,21 resonance radiation22) specifi-
cally exponential asymptotic behavior is obtained.

CONCLUSIONS

In this note we have considered a general property of
the radiation spectra which arise during the motion of a
charged particle. We can formulate this property in the fol-
lowing way: if the expression describing the motion of the
particle is determined by a smooth function, then the spec-
trum of radiation falls off at high frequencies exponentially.
We have derived the asymptotic formula for the indicated
case (i.e., on the assumption that the specific expression de-
scribing the motion of the charged particle is given by an
analytic function) and studied the examples of some specific
equations of motions that are of physical interest. Some of
the equation of motion that have been considered are, possi-
bly, only models helping to clarify the essential characteris-
tics of the radiation spectrum. This can be said, for example,
concerning equations of motion (41) and (48). However,
the asymptotic behavior of the radiation spectrum discussed
above is general, and does not depend on a specific model.
Spectral measurements in the cases of synchrotron and un-
dulator radiations are in agreement with this conclusion.25'26

In our article we have limited our treatment to studying
radiation from a single particle moving along a given trajec-
tory. If the source of radiation is a system of moving parti-
cles, the intensity of radiation is more complicated (some of
these examples are considered in the article of N. P. Klepi-
kov27). However in the case, when the laws of motion of all
the particles are expressed by smooth functions, the radi-
ation spectrum of the system will decay exponentially, be-
ginning with some frequency characteristic for the given sys-
tem.

The radiation spectrum of a charge moving uniformly
in an inhomogeneous nonstationary medium has a similar
asymptotic behavior, if the temporal and spatial variation of
the properties of the medium is described by a smooth func-
tion.

Therefore, exponential decay of the radiation spectrum
at high frequencies is a general property of radiation for a
rather large class of processes, for which a slow variation of
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parameters either of the medium or of the moving source is
typical.

In conclusion we note that both quantum and classical
theories lead, generally speaking, to various predictions,
concerning the high-frequency behavior of the radiation
spectrum. According to classical theory, spectral intensity
of radiation is different from zero (although it is small) for
arbitrarily high frequencies. According to the quantum the-
ory of radiation, however, the radiation spectrum disappears
abruptly at the frequency cab = E /ft, where E is the energy of
the radiating particle, ft is the Planck constant. Taking this
circumstance into account our results are applicable in the
following case. Assume that the spectral intensity of radi-
ation, calculated by classical theory, decreases exponential-
ly, beginning with the frequency, which we denote by ft.
Then, if ft<£/#, classical theory gives an exponential de-
crease of spectral intensity in the frequency range from ft to
approximately E /ft, and this result does not contradict
quantum theory.
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