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The main stages in the construction of the theory of gravitation and prospects for its further
development are discussed. The main attention is devoted to comparing the properties of the
relativistic gravitational field and other physical fields. Two equivalent formulations of the
general theory of relativity—the “geometrical” and the “field”— are considered in detail. It is
explained why some of the field theories of gravitation developed in flat space-time are not
different theories of the relativistic gravitational field but merely other formulations of general

relativity.

Mgller: ... Is this theory really Einstein’s theory of gravita-
tion in the sense that if you would have here many
gravitons the equations would go over into the usual
field equations of Einstein?

Feynman: Absolutely.

Méller: You are quite sure about it?

Feynman: ... There’s no question that the thing is the Ein-
steinian theory. The classical limit of this theory ... is
anonlinear theory exactly the same as the Einsteinian
equations ... . It can’t take care of the cosmological
problem, in which you have matter out to infinity, or
that the space is curved at infinity. It could be done
I’'m sure, but I haven’t investigated it. I used as a
background a flat one way out at infinity.

(Acta Phys. Pol. 24, 711 (1963)).

The present note differs somewhat in its intention from
the material usually included under the heading of Method-
ological Notes.

We wish to characterize general tendencies in the devel-
opment of physical theory over several centuries and even
make a small extrapolation into the future. At the center of
our attention will be a comparison of the gravitational field
with other physical fields and a clarification of the extent to
which gravitation can be treated on an equal footing with
other fields as a field defined in flat space-time. We shall see
that the general theory of relativity admits a formulation as
an exact and rigorous field theory on a flat-space back-
ground, and, moreover, as a theory possessing all the neces-
sary attributes—action and equations of motion, energy-
momentum tensor, and conservation laws, coordinate and
gauge invariance. But we also analyze the question of mea-
surements and observations in the presence of a gravitation-
al field. This question is usually put on one side, but it is this
question that forces us to the concept of a curved space-time.
The universality of the gravitational interaction (which dis-
tinguishes it from other interactions) renders the flat space-
time in the presence of a gravitational field unobservable,
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ghostlike, one can say, fictitious. One can compare it only
with the grin that remains from the disappearing cat in the
well-known story tale. We shall show that the attempt to
interpret the metric relationships of the flat world as obser-
vables and concrete observational predictions based on this
interpretation lead only to contradiction with experiment.
We mention also possible ways of further development of
gravitational theory, especially in connection with the con-
struction of quantum gravity and its unification with other
interactions. The present development of this science has
stimulated a renewal of interest in alternative formulations
of general relativity and has led to a much fuller understand-
ing of their formal structure and connection with observa-
tions. We also distinguish alternative formulations and al-
ternative theories. We show that some field theories of the
gravitational field developed systematically in flat space-
time may be, despite the wish of their authors, not alterna-
tive theories but, in essence, merely alternative formulations
of general relativity, i.e., they lead to the same observational
conclusions.

Thus, in the first stage Newton formulated clearly the
law of mechanics, and the law of gravitation. The decrease of
the force in inverse proportion to the square of the distance,
i.e., to the surface area of a sphere, appeared very natural to
his contemporaries. Newton’s main achievement was the
rigorous mathematical proof that for such a law the trajec-
tories of the planets are closed curves—ellipses with the Sun
at a focus.

The theory of gravitation was an example of a theory of
long-range interaction. It seems to us that in Newton’s lips
the famous “Hypotheses non fingo”—*I frame no hypoth-
eses” was tinged with regret rather than pride. We do not
hear in these words pride over the fact that, having banished
unreliable hypotheses, the author will construct his theory
on a strong and eternal foundation. No, Newton uses the law
of gravity and the theory of long-range interaction but at the
same time recognizes that such a theory cannot be the last
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word. He recognizes that the long-range interaction itself
requires a physical explanation but does not find (cannot
find—this is not the same as does not wish toseek) the theory
or at least a hypothesis that explains gravity."

There then followed the detailed development of analy-
tical mechanics and, in particular, celestial mechanics, on
the basis of Newton’s laws. The work of Laplace and Poin-
caré is well known. This work, the concrete content of which
changes, continues into out time—it is sufficient to mention
the work of Kolmogorov, Arnol’d, and Moser. The conquest
of space has also led to a further refinement of the observa-
tions. Apart from small corrections—to be discussed be-
low—Newton's mechanics is confirmed magnificently by
the observations.

One usually speaks of the scientific triumph of Lever-
rier and Adams, who predicted the existence of a previously
unknown planet—Neptune. In reality, Leverrier predicted
two planets—Neptune, beyond the orbit of Uranus, and Vul-
can, situated between Mercury and the Sun.

We know today that the perturbations of the orbit of
Mercury, which cannot be explained by Newtonian mechan-
ics, are due to the effects of the general theory of relativity
and not a hypothetical (and nonexistent) planet Vulcan.'

For a long time, celestial mechanics remained the para-
digm of physical theory. The mathematical theory of poten-
tials, the problems of the equilibrium of stars—at rest, rotat-
ing, binaries—these are the descendants of Newton’s theory.
In fact, the theoretical description of our contemporary
“Friedmann,” or “‘Hubble” expansion of the universe and
the evolution of its structure could perfectly well have been
obtained in the 18th or 19th century; there was only an ab-
sence of daring and of observational material—all the phys-
ical foundations were present. For more detail about this, see
Ref. 2.

Electrostatics initially developed in the same direction.
The universality of gravity and the differences of sign of the
electrostatic interaction did not appear such serious details
as to preclude similarity of these two theories.

An essentially new stage in physics began when the ex-
periments of Faraday and the theory of Maxwell combined
electricity and magnetism into the unified theory of the elec-
tromagnetic field. This theory also included free (far from
the sources) electromagnetic waves.” The electromagnetic
theory of light was created. Long electromagnetic waves
were deliberately generated and used for communication by
Hertz, Popov, and Marconi. There soon developed the well-
known contradiction between the Galileo transformation to
a moving coordinate system (in Newtonian mechanics) on
the one hand and the group properties of Maxwell’s equa-
tions and Michelson’s experiments on the other.

The special theory of relativity was created! It then be-
came obvious that the theory of gravitation must also be
relativistic.

Here, like Sheherazade in the Arabian Nights, we inter-
rupt the story of the development of physics and consider
how the related science of mathematics, or, more precisely,
geometry, developed.

Lobachevskii, Bolyai, and Gauss showed that a nontri-
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vial non-Euclidean geometry is in principle possible, i.e., is
not self-contradictory. The idea of the possibility of exis-
tence (and rotation and displacement) of an infinitely rigid
body made these men limit themselves to spaces with homo-
geneous and isotropic curvature. The next step was taken by
Riemann, who considered spaces of any number of dimen-
sions with curvature that depends at a given point on the
orientation of the considered infinitesimal surface and varies
from point to point. He introduced the concept of the metric
tensor (with two indices, g,,) and the curvature tensor
(with four indices, Roguv )

Entirely naturally, there soon appeared general sugges-
tions to the effect that the geometry of space must depend on
the physical properties of the bodies (or fields) that fill a
given space. The special theory of relativity developed at the
beginning of the century required the unification of three-
dimensional space with time into a single complex. In the
simplest case, Minkowski’s concept of a pseudo-Euclidean
flat world was developed.

The culmination of this development was the creation
by Einstein of the general theory of relativity. The idea of an
influence of particles and fields on the curvature of space-
time and also of the motion of particles and fields in this
curved space-time proved to describe all properties of gravi-
tation magnificently. From the historical point of view, a
remark of Einstein’s is very interesting. He pointed out that
the greater part of his work (on the theory of Brownian mo-
tion and photons and the special theory of relativity ) flowed
in the stream of topical problems of his time. Within two or
three years, this work would have been done by others if he
has not done it himself. However, for the general theory of
relativity he made an exception. In Einstein’s opinion, gen-
eral relativity is to such a degree nontrivial that its creation
could have been delayed for another 50 years. It is
noteworthy that it was precisely in the sixties that there ap-
peared studies that led to general relativity in a regular man-
ner without the illuminating and genial idea of the connec-
tion between the geometry of space-time, gravitation, and
the equivalence principle that Einstein advanced at the be-
ginning of the century. Thus, the estimate of 50 years was
confirmed with satisfying accuracy.

The use of the adjective “magnificent” for the descrip-
tion of gravitation by means of general relativity can be ex-
panded upon in various ways:

1. General relativity predicts astronomical effects such
as the corrections to the trajectories of the planets, the
change in the frequency of light, the bending of light rays,
and the time delay in the propagation of radio signals. Direct
observations confirm these predictions with ever increasing
accuracy.

2. General relativity explains the most general proper-
ties of the universe as a whole; on this topic, see any modern
review of cosmology. Black holes were predicted and are
used today to explain phenomena in x-ray binary systems
and in the nuclei of galaxies and quasars.

3. Gravitational waves were predicted and their emis-
sion is revealed by the motion of binary stars, including the
binary pulsar.
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4. The geometrical formulation of the theory of gravita-
tion automatically includes the possibility of introducing lo-
cally inertial coordinates at any point of the space-time
manifold and along the world line of any freely moving ob-
server. In such a coordinate system, there is weightlessness,
and the nonvanishing gravitational influence of the sur-
rounding medium has the nature of a tidal deformation. In
the theory, there is a local principle of equivalence between
the gravitational field and accelerated motion of the coordi-
nate system. Experiment confirms the equivalence principle.

5. The equations of gravitation impose certain restric-
tions on the motion of matter and the propagation of fields
that fill space. In particular, for a point particle the equa-
tions of motion are themselves a consequence of the space-
time geometry. In the general case, the constraints take the
form of balance equations for the energy, momentum, and
angular momentum with allowance for the effect of the grav-
itational forces.

Each of these results is an ornament of general relativi-
ty. Thus, general relativity is an entirely satisfactory theory
of gravitation. In reality, there are no internal reasons and no
discrepancies with experiment and observations that require
changes in the theory.

Why then is the question of alternative theories of gravi-
tation posed?! One may here distingush two tendencies, two
formulations of the question.

The first tendency declares that general relativity is in-
correct and unsatisfactory in the very field of classical (non-
quantum) gravitation for which it was created. Within this
direction, there are nuances. It has been claimed that there
are definite numerical discrepancies between some particu-
lar observed quantity calculated by means of general relativ-
ity and experimental data. Such suggestions have usually
been very short lived.

There are other objections, these relating essentially,
not to the content, but to the form of general relativity. In
ordinary field theories developed in flat space-time, for ex-
ample, in electrodynamics, the energy-momentum tensor of
the field is a locally well-defined quantity with appropriate
transformation and conservation laws. In the standard “‘geo-

metrical” formulation of general relativity, the localization -

of gravitational energy (like the other components of the
energy-momentum pseudotensor) remains indefinite. The
prefix pseudo means that the corresponding quantity does
not behave like a tensor under arbitrary coordinate transfor-
mations. This unusual circumstance is sometimes regarded
as an original sin of general relativity. However, as is shown,
for example, in Ref. 4 and, in more detail, in Ref. 5, the
properties of the pseudotensor do not prevent determination
of the total energy and other quantities, albeit with certain
reasonable restrictions. The appearance of the pseudotensor
in the formalism of the theory cannot be taken as a reason for
demanding the replacement of general relativity by a differ-
ent theory. All the observational conclusions can, in princi-
ple, be obtained directly from the field equations without
recourse to the pseudotensor.

Another answer to these objections (possibly, more
convincing) is the fact that general relativity admits a com-
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pletely equivalent “field” formulation in which there is a
tensor (and not pseudotensor!) ¢,, for the energy and mo-
mentum of the gravitational field, this tensor satisfying ordi-
nary conservation laws. Such a theory, an alternative to gen-
eral relativity in form but not in content, can be formulated
on the “background” of a flat Minkowski space with all rigor
and the necessary attributes (for more details about the
properties of the theory and the tensor ¢,,, see Ref. 6 and
later in this paper, particularly in Appendix 1).

There is however a quite different source that feeds the
attempts to find alternative formulations and alternative
theories; this is a tendency of a different kind. As already
noted, general relativity is a nonquantum theory of gravita-
tion. It is obvious that at the microscopic level it is necessary
to construct a quantum theory of gravitation.

The quantum theory of weak gravitational fields can be
constructed trivially with the small perturbations of the
space-time metric being regarded as field variables on the
background of the unperturbed Minkowski metric. Funda-
mental problems do not arise here, at least not in the linear
approximation. The first calculations were already made by
the Leningrad physicist M. P. Bronshtein as early as 1936. It
is well known that gravitons are massless particles. The pro-
jection of the spin of the particle onto the direction of motion
is 42, in contrast to the quanta of the electromagnetic
waves, photons, with spin + 1.

Difficulties arise on the transition to microscopic scales
of the order of the Planck scales (10~3? cm, 10~*? sec) and
energies of order 10'° GeV. At this level, the ordinary quan-
tization scheme breaks down, since the fluctuations of the
space-time metric are too large.

One possible approach to quantum gravity is to use the
Feynman method of quantization. One considers all possible
scenarios of four-dimensional geometry.* For each scenario
(*‘path”) the action integral §'is calculated, and then, final-
ly, to determine the probability of transition from one state
to another one adds the amplitudes, which are calculated as
the exponentials exp(iS). This is the path, logically irre-
proachable but technically rather difficult, followed by
Wheeler, DeWitt, Regge, and others. It is being applied most
directly to cosmology by Hawking (see, for example,
Ref. 7).

There is however a different approach to the construc-
tion of a quantum theory of gravitation. In this, one first
introduces a fictitious” Minkowski space-time (which we
shall abbreviate to FM). In this FM, we construct equations
for the field variables that characterize the gravitational
field. Besides the free gravitational field, we consider other
fields (electromagnetic, fermionic e * , u* , for example,
etc.) and their interaction with the gravitational field.”

Without any calculations, one can establish two ex-
tremely important properties of such a gravitational field:

1) it is a tensor field of second rank corresponding to the
fact that it effectively describes a change of the metric, i.e.,
8.p(x), the second-rank tensor in the expression
ds? = g, pdx” dx? of the “old,” or “geometrical,” general
relativity;

2) the field equations are nonlinear; the gravitational
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field interacts with the energy and momentum of the other
fields; hence, it must also interact with its own energy and
momentum.

The task is to construct in the FM a theory that exactly,
identically, gives all the observational conclusions given by
the standard general relativity. The importance of this seem-
ingly formal problem has increased sharply in the last de-
cade or two in connection with the problem of supersym-
metry and the construction of unified field theories.

Theories that unite bosonic and fermionic fields, fields
with integer and half-integer spin, have been discovered. In
particular, a field with spin 2 (tensor field) is connected by a
definite supertransformation to a field with spin 3/2. Thus,
the graviton field, whose existence one cannot doubt, is asso-
ciated with a field of particles with spin 3/2—the so-called
(hypothetical) gravitinos.

Thus, for the real existence of such a connection it is
very desirable that gravitation (spin 2) be described in field
form and not by the geometrical general relativity. The con-
nection between the field form of the theory of gravitation
and supersymmetry becomes even more intimate in the con-
crete study of the quantum theory. The point is that in the
“pure” quantum theory of gravitation the nature of the field
and its interaction with the energy-momentum density lead
to the appearance of uneliminable infinities when the quan-
tum corrections are calculated. It has been found that the
introduction of the supersymmetric partner, the gravitino,
eases the infinity problem.

One can say briefly that the field formulation of the
theory of gravitation makes supersymmetry possible but at
the same time supersymmetry is in a certain sense necessary
for the quantum theory of gravitation.

Overall, the problem of quantum theory and phenome-
na at the scale of the Planck parameters is at the present time
still far from a final and experimentally confirmed solution.
There also exists a further direction of search in which one
considers spaces with a larger number of dimensions
(D =10, 11, or 26). It is assumed that the ‘“‘redundant”
D — 4 dimensions are in some manner compactified. A long
thin tube gives a good picture of this. The coordinate along
the tube axis is a ‘“‘real” coordinate. The tube radius (which
depends on the coordinate) plays the part of a field variable.
Thus, a multidimensional space makes it possible to describe
several fields in a space of a smaller number of dimensions.
The complete theory of “our,” four-dimensional, space is
the low-energy limit of a theory with a larger (D > 4) num-
ber of dimensions.

In this low-energy region a diversity of colors and fla-
vors (not only the colors of the quarks!) does indeed reign.
This picture cannot be reduced to the geometry of a four-
dimensional continuum. In the first half of the century, at-
tempts to construct a unified field theory did not succeed.
But the theoreticians may now be on the correct path.

Currently of greatest promise is the theory of super-
strings, which aims at a unified and complete description of
all interactions. It begins roughly with the following propo-
sitions: “In a flat 10-dimensional space-time, with one time
and nine spatial dimensions, there propagates a one-dimen-
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sional object, a string ...,”” etc. One may suppose that in this
theory the classical gravitational field is “‘made up” of ele-
mentary excitations of a set of superstrings and is then com-
bined with the flat metric of the ““background” manifold into
the metric of the curved observed world.

But let us return to a field theory of gravitation in a four-
dimensional fictitious Minkowski space in the classical re-
gion, at large wavelengths, without quantum effects. What
properties does such a theory possess if it is exactly equiva-
lent to geometrical general relativity?

The most important point is that now the influence of
gravitation on particles and on the electromagnetic field is
described by interaction with the tensor gravitational field
that we introduce. Thus, Einstein’s equivalence principle is
now not so obvious—it must still be discovered.

The frequencies of the oscillations of an oscillator or the
frequency of light emitted by a hydrogen atom depend on the
strength of the gravitational fields. The local velocity of light
also depends on the strengths of the gravitational fields,
which, in addition, bend the ray. The usual process of mea-
suring the time between two events consists of measuring the
number of repeated periodic events (swings of a pendulum,
oscillations of an oscillator). In the field theory, such a
method gives a value that depends not only on the elapsed
time as measured in the FM but also on the gravitational
field. The same applies to the measurement of distance
between particles.

All material fields and particles interact with the tensor
gravitational field in the same universal manner. There are
no particles neutral with respect to the gravitational field
whose world lines could “‘trace” for us the geometry of the
Minkowski world. The object of pride—flat space-time—
turns out to be unobservable. It is for this reason that we say
that the flat Minkowski world on whose background the
gravitational theory is developed is unphysical and ficti-
tious.

In the presence of a gravitational field, the attempt to
give the coordinate intervals Ax and At in the Minkowski
world a direct observational meaning leads to a contradic-
tion with experiment. (For more details about measure-
ments in the field theory, see Appendix 2.)

Thus, analysis of the process of measurement in the
field theory of gravitation necessarily leads to the concepts
of “true,” or “physical,”” durations and lengths, in contrast
to the time and coordinates of the FM. The theory is geome-
trized.

In general relativity, the question of the topology of the
manifold arises naturally together with the question of the
Riemannian curvature. Usually, one constructs solutions
with a single valued (and without identifications) time but
with nontrivial topology of the spatial sections. An example
is the closed Friedmann universe, which has a finite volume.
One can say'” that the field theory on the background of the
FM gives a solution of this kind too. The Minkowski world
obviously has an infinite volume in the section ¢ = const,
since each coordinate, for example, x, varies in the range
— a« <x< + «. However, the coordinates in the FM by
themselves do not yet have any significance—they are life-
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less. The transition to the physical volume is such that the
physical observed volume of the universe is in the given case
finite.

Let us summarize. We do not depart from the firm con-
viction that as a theory of the classical gravitational field
general relativity is correct. At the least, there are neither
theoretical nor experimental reasons for doubting this.
However, this conviction does not rule out the possibility of
constructing a completely adequate field theory of gravita-
tion on the background of a fictitious Minkowski metric.
Such a theory exists, is helpful in the classical region, and
may, especially, be suitable for considering quantum pro-
cesses and supersymmetry.®

The lucidity of the equivalence principle is lost, but the
possibility of describing a closed world and black holes re-
mains.

Only time—the coming years or decades—will show
whether all fundamental physics is to be transformed into
geometry. Then, naturally, the theory of gravitation will re-
main geometrical. But even then the field approach will keep
its value as a low-energy limit of the fundamental theory,
and the field theory of gravitation with the concepts of the
Newtonian potential, gravimagnetic field, etc., will be help-
ful for astronomy and other applications.

In working on this paper, we had in mind the shining
example of E. M. Lifshitz, who was totally dedicated to
science. To his memory we dedicate this paper.

APPENDIX 1.

Field formulation of general relativity and the energy-
momentum tensor of the gravitational field

In the geometrical formulation of general relativity, the
energy characteristic of the gravitational field is the energy-
momentum pseudotensor.

This means that in a given process, i.e., in an unambigu-
ously specified 4-geometry determined by the metric tensor
8.z (x), it is not possible to define in a sensible manner an
energy-momentum tensor of this geometry. The quantity
that arises naturally is not a tensor but a pseudotensor. It is
changed if we describe a given process, i.e., a given 4-geome-
try, by means of a different set of coordinates. The most
popular pseudotensor—the Landau-Lifshitz pseudoten-
sor*—contains the metric g, and its first derivatives. All
components of the pseudotensor vanish in a locally inertial
coordinate system, along the world line of a freely falling
observer. As Landau and Lifshitz themselves note,* even in
flat space-time it is possible to obtain nonvanishing compo-
nents of the pseudotensor by appropriate choice of curvilin-
ear coordinates. In other words, the components of the pseu-
dotensor do not possess a tensor transformation law with
respect to arbitrary coordinate transformations, but do be-
have as the components of a tensor with respect to a smaller
class of transformations, to which the Lorentz transforma-
tions belong.

This property is a fundamental difference of the gravita-
tional field, identified with the space-time metric g5, from,
for example, the electromagnetic field. In the latter case, the
density of electromagnetic energy is the component of a ten-
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sor. Under Lorentz transformations, and indeed under arbi-
trary coordinate transformations, it transforms in accor-
dance with a linear law, being mixed with the other
components of the energy-momentum tensor—the Poynting
vector and the tension tensor. But no coordinate transforma-
tion can make the entire electromagnetic energy-momentum
tensor vanish, in contrast to the gravitational pseudotensor.
The true uneliminable tensor in general relativity is the cur-
vature R g,, . This corresponds to the fact that even in the
state of weightlessness tidal forces cannot be eliminated.

As already noted above, in the main text of the paper,
there are physicists who regard this situation as unsatisfac-
tory. They include the authors of the studies of Ref. 15. In
the opinion of the authors of the present paper, the appear-
ance of the pseudotensor in general relativity does not by
itself spoil the theory. Indeed, this is not the first case of the
use in a theory of quantities that cannot be defined without
arbitrariness. In the Newtonian theory of gravitation, we use
a potential, to which a constant or a function of the time can
be added. In the theory of electromagnetism, we use not only
the measured fields E and H but also the vector potential 4, ,
although we know that we may add to 4, the gradient V¢
of an arbitrary scalar function ¢ (x,p,2,7). The appearance of
the pseudotensor does not give rise to ambiguity in the obser-
vational predictions of general relativity, and therefore we
can readily accept it.

Nevertheless, as a psychological phenomenon, a nega-
tive attitude to the pseudotensor exists and is one of the rea-
sons for the search for an alternative field theory of gravita-
tion in flat space-time. And, indeed, in such a theory the
energy-momentum tensor of the tensor gravitational field,
calculated in accordance with the field formulas, is a true
tensor 2, ; the prefix pseudo is deleted. It would seem that
the aim has been achieved and that this by itself justifies the
field theory of gravitation. Moreover, one can also get the
impression of a fundamental departure from general relativi-
ty, leading to new observational consequences. However,
*“...chase nature out through the door and it will go in
through the window... .” The tensor z,, is noninvariant with
respect to gauge transformations, and in this sense the nu-
merical value of #,, remains nonunique. However, none of
the experimentally verified conclusions depend on this, and
they are the same as in standard general relativity. To ana-
lyze the situation further, we require some details (for still
further details, we refer the reader to Ref. 6).

The point of departure of the field theory of gravitation
is that in the flat world there is a tensor gravitational field
h*" and other (nongravitational ) fields. The coordinate sys-
tem in the flat space can be taken to be Lorentzian, and then
the line element takes the form

do?2=n,, dz* dz¥ =c? dt2 —da2—dy?— dz2. (N

In arbitrary curvilinear coordinates, the components of
the metric are not so simple as in the expression (1) (in the
general case, we shall write ,,, instead of 7,,, ), but the cur-
vature tensor constructed from y,,, is, of course, identically
equal to zero. The Lagrangian of the theory consists of a
gravitational part L# and a material part L™. The universal-
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ity of the coupling of the material fields to gravity appears in
the fact that the field A" occurs in L™ only in the form of the
sum

(—V)V2 (v + puv) = (—g)¥2gmv, (2)

Even without penetrating into the details of the varied
formulations of the equivalence principle, one can guess that
it is contained in the theory here (cf. Ref. 16).

The variational principle, applied to L® 4 L™, leads to
the gravitational field equations

X

2

:Sn_G(tuv‘i‘Tuv)v 3)

ct

Pvy o™+ YWl o= e =R )

where the covariant differentiation and raising and lowering
of the indices are done by means of y,.,.. On the right-hand
side of Egs. (3) we have,,., the energy-momentum tensor of
the gravitational field calculated by varying L® with respect
to ¥,... We can calculate 7, from L™ similarly. The field

equations (3) contain the differential conservation laws
(tuv + Twof ¥ =0

with the integral conservation laws to which they lead; these
reflect the fact that the flat world admits a 10-parameter
group of motions (the Poincaré group).

We point out immediately that this theory is completely
equivalent to the ordinary “‘geometrical”” general relativity.
Using the connection (2) and regarding g,,,. (x) as the com-
ponents of the metric of a curved space-time, we return to the
geometrical formulation of general relativity, i.e., to the Hil-
bert action and Einstein’s equations. Equations (3) are
transformed exactly into the Einstein equations

8nG T

ct nv*

1
Ruv“‘TguvH':

The tensor ¢,,,. itself contains y,,,, in an essential manner and
does not reduce to a function of only the g,,...

The field formulation is given in covariant form; it ad-
mits arbitrary coordinate transformations. But there is one
further symmetry, which may be called a gauge, or internal,
symmetry. In the same coordinate system, one can change

A" in accordance with a definite law,
R BMY = B A (B, Y, 8, (4)

where the additional terms A (not necessarily infinitesimal-
ly small—in the general case they are finite) depend on the
arbitrary functions £” and their derivatives. The nongravita-
tional dynamical fields change in accordance with an analo-
gous law. The equations of the dynamical fields are invariant
with respect to such a substitution, i.e., if ##¥ is a solution,
then so is #**. The transformation (4) recalls the gauge
transformation in electrodynamics. Combining in accor-
dance with the rule (2) the same »** with 2** or ", we
obtain “different” g#*, which, however, can be exactly trans-
formed into each other by a coordinate transformation and,
therefore, describe the same 4-geometry. The actual form of
this coordinate transformation is determined by the func-
tions £ (x) and all their derivatives, but we shall not use it
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here. Thus, the gauge symmetry of the field theory is inti-
mately related to the coordinate symmetry of the geometri-
cal theory.

The tensor ¢, is not gauge invariant. The field theory in
the FM saves the covariance of z,, with respect to coordi-
nate transformations but comes up against noninvariance
with respect to the gauge transformations. The construction
of an absolutely irreproachable energy-momentum tensor of
the gravitational field is illusory.

One could advance the idea of making ¢, unambiguous
by “fixing” the gauge. One of the convenient choices of
&% (x) is the one that achieves the conditions

R, , =0, (5)

For the functions g (x), these conditions take by vir-
tue of (2) the form”

[(—g)2 gvvl, =0, (6)

and if the functions g (x) are considered against the back-
ground of the flat world in the Lorentz coordinates (1), then
Egs. (6) reduce to the harmonic conditions

[(—g)® gnv], =0, (6")
which were so fruitfully used by Fock.'’

It should be emphasized that Eqs. (5) still leave an arbi-
trariness in ¢, . There are transformations (4) that do not
violate (5) but nevertheless change ¢, . In the same way, the
harmonic coordinates (6') and transitions between them do
not yet transform the gravitational pseudotensor into a ten-
sor. But this is not really the point.

It is clear from what was said above that the prescrip-
tion for fixing the gauge in the description of ##* (x) has the
same value as the prescription for using certain coordinates
rather than others for the description of g“¥ (x). The addi-
tion of the conditions (5) (or other such conditions) to Egs.
(3) does not change the physical content of the theory, does
not preclude any solutions of Einstein’s equations for
g*" (x), and does not make any solutions preferable to any
others. Any solution of Einstein’s equations (not necessarily
expressed in harmonic coordinates) satisfies the conditions
(6) if the functions y,,, (x) are written down appropriately,
namely, we must have

Wuv = T]aﬂfa iufﬂ, vy

where f“ (x) are found as solutions of the equations
A — ) %82, v =0.

Finally, the presence or absence of the conditions (5) or (6)
does not change any of the experimentally verified conclu-
sions. The question of the gauge transformations and the
observable quantities arises and can be solved already in the
weak-field approximation. In Appendix 2, we consider the
question of measurements in the field theory in more detail.

APPENDIX 2.
Measurements in the field theory

As we have already said, in the field theory all material
fields interact with gravity in a universal manner. The equa-
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tions of motion can be interpreted either as equations in a
curved space-time with metric ¥ (geometrical formula-
tion) or as equations in a flat world in the presence of a
gravitational field A#” (field formulation). We introduce
Lorentzian coordinates x, y, z, ¢ in the FM and consider, for
example, the equations of the electromagnetic field in the
approximation of geometrical optics. Gravitational forces
constructed from 4 #*(x) influence the motion of an ideal-
ized photon. Such is the field interpretation of the equations
of a null geodesic in the metric g**(x). The velocity of light
in the coordinates of the FM, defined as Ax/A¢, will depend
on the gravitational potentials and vary from point to point.
But how does this velocity change at a given place and how
can one show that it really is as the theory predicts? For it is
necessary to bear in mind that every oscillator, as a model of
a clock, and every rod, as a model of a linear scale, are also
subject to the action of the gravitational field. (As will be
explained below, the behavior of scales is determined by the
solution of quantum problems, and it is necessary to take
into account #i.) Thus, suppose that in a weak gravitational
field with Newtonian potential ¢ the velocity of light Ax/A¢
is

But any clock at this position measures A7 = At[1 + (¢ /
¢?)], and any rod will have length Al = Ax[1 — (¢ /c*)].
We thus find that the velocity of light determined by real
standards, i.e., A/ /A7, and not by means of the unobservable
coordinates x, y, z, t, is always equal to ¢ (for more details,
see, for example, Ref. 19). All this confirms the assertion
made above concerning the unobservability of the FM.

Even the self-propagating gravitational field, i.e., gravi-
tational waves, cannot help us to make the geometry of the
flat world observable. Let us consider Egs. (3). The main
element of the left-hand side of these equations is the ordi-
nary d’Alembertian applied to h,,, , i.e., a combination of the
form

1 o 9? 82 92

(o 9m— e — 3 ) M
The characteristics of the d’ Alembertian are isotropic (null)
geodesics of the Minkowski metric. In the linear approxima-
tion, the rays of gravitational waves are thus images of
straight lines of the flat world. But the right-hand side of
Egs. (3) (thetensorz,,) also contains second derivatives in
the form of terms of the type A *°h,,,, 5. Therefore, in a non-
linear situation, for example, in the gravitational field of a
body, the gravitational waves, like the electromagnetic
waves and, in general, material fields described by L ™, are
also deflected and undergo a change of velocity relative to
the FM.

- It should be pointed out that the velocity of light occurs
already in the classical, i.e., nonquantum theory. The situa-
tion with regard to the units of length and duration separate-
ly is more complicated. In order to determine these units, it
is necessary to solve quantum problems in the presence of the
tensor gravitational field; it is necessary to know how the
masses of the elementary particles (electrons and protons)
used in laboratory standards of frequency and length'® are
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transformed in this case. This can be seen formally from the
fact that a quantity with the dimensions of length or time can
be constructed only by using # and m. This difficult task is
usually avoided by showing the equivalence of the field the-
ory and the geometrical theory.

If one gives the coordinates of the FM the significance
of directly observable quantities, this leads to imaginary dif-
ferences in the predictions of the geometrical and field theor-
ies. We consider the Schwarzschild solution in ordinary and
harmonic coordinates. The line element in the first case is

2Gm 26m > ~1
ds?= (1——) dtz-—(1—T) dr2

=
—r2(d62 4+ sin? 0 dg?) (7

and in the second

det= (T ) ar— () o

—(r+ Gm)? (d924sin20dg2). (8)

In the field approach, the solutions (7) and (8) give differ-
ent 4 *¥ connected by a gauge transformation (4), the solu-
tion (8) satisfying the subsidiary conditions (6).% (When
(8) is substituted in (6'), it is necessary to take into account
the connection between r, 8, ¢ and x, y, z.)

Writing down the equations for propagation of light,
one can find the time ¢ for propagation of a signal from one
point to another and back again. This problem gives a model
description of radar location of Mercury from the Earth in
the gravitational field of the Sun. Putting the Earthat r = r,
and Mercury at » = 7, and using (7) or (8), we can obtain
two formulas for the delay time of a radio signal, these differ-
ing both analytically and numerically. It would seem that
the predictions of general relativity are ambiguous, while the
field theory based on (3) and (5) gives a unique prediction
confirmed by experiment (see Ref. 15). In fact, of course,
there is no ambiguity in the predictions of general relativity
and no contradictions with it. The experimentally verifiable
predictions that follow from (7) and (8) are identical.?’ The
difference in the formulas is entirely explained by the fact
that identical numerical values of #in (7) or (8) correspond
to somewhat different physical differences. Specifically, the
connection between the coordinates r in (7) and (8) is such
that

ry =Ty 4+ Gm,

where r; corresponds to (7) and rg to (8). In other words,
the same numerical value of » in the two cases corresponds to
different circular orbits. Planets in these orbits have differ-
ent periods of revolution around the Sun, and these periods
can be directly observed from the Earth and are unambigu-
ously determined. Of course, the transitionin (7) and (8) to
identical, operationally defined quantities gives identical ob-
servational predictions for the delay time, and these have
been confirmed experimentally.”'

The incorrectness of giving the meaning of observable
quantities to the coordinate intervals Ax and Az in FM can be
seen particularly clearly in the case of the effect of the change
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of the frequency of light in a gravitational field. Let us take
the solution (8). We regard the coordinates ¢, r, 8, @ as iner-
tial coordinates in the Minkowski world. At fixed r, 8, @ we
place a source of radiation (for example, an atom) and at
other r, 8, @ a detector. Suppose the atom emits a wave train
containing N oscillations and lasting for a time A¢. The de-
tector also observes N oscillations. The gravitational field
(8) being static, the theory asserts that at the point of recep-
tion the oscillations occupy exactly the same time interval
At If we were to give an observational significance to the
intervals Az, we should arrive at the conclusion that the fre-
quencies v = N /At of the signal at the point of emission and
the point of reception are the same. As is well known, this
contradicts the experiments in which we observe a change in
the frequency of a signal in a gravitational field. We do not
know of any fields or particles that do not interact with the
gravitational field and we do not assume their existence. In
the field theory the experimental fact of the frequency shift is
explained by the fact that any oscillator that measures the
time is subject to the action of the gravitational field and
oscillates differently at the point of emission and the point of
reception. In other words, the explanation of the effect of the
change in the frequency of the signal in the field theory
amounts to the recognition that At is not observable.

Summarizing, we assert once more that the variants of
the field theory of gravitation on the background of a flat
world considered here are in fact a field formulation of gen-
eral relativity. The attempt to interpret the metrical relation-
ships of the flat world as observables leads to a contradiction
with experiment.

'"We give another example of ambiguous interpretations of sayings of the
classics. Newton’s words “If I have seen further it is by standing on ye
sholders of giants” (Newton's letter to Hooke, 15th Febr., 1676) are
given as an example of modesty and respect for predecessors. In reality,
this phrase was said in the polemic with Hooke and should be seen rather
as a gibe—Newton was tall and large while Hooke was almost a dwarf.
The desire to ascribe all the high moral principles without exception to
the great people of the past is also present in us of this age as the desire to
have a well-defined unambiguous energy density in a theory; about this,
see below.

PIn the article of Ref. 3, a remarkable fact is recorded: In 1832, Faraday
deposited a letter with the inscription **Open after 100 years.” In it, he
advanced the hypothesis of an electromagnetic nature of light. It became
part of science 40 years after the letter was written.

»The 4-geometry contains identically the law of variation of the 3-geome-
try with time; it is also necessary to take into account the nonuniqueness
in the method of identifying *‘time” in a given 4-geometry.

“The reason why we call it fictitious will be given a little later.

*'The idea of constructing a relativistic theory of gravitation on the basis of
aflat world has a rich history. A list of some early studies in this direction
is given in Ref. 8. We mention in particular Ref. 9, which discusses the
formal structure of the theory, and Ref. 10, in which the connection with
physical measurements is established. An analysis of this whole direc-
tion, corresponding to the state at the time of writing, is contained in the
book of Ref. 11. The same idea is used in the studies of Ref. 15. The value
of the field approach for quantum gravity is also correctly noted there.
However, we can in no way agree with some of the assertions of Ref. 15,
especially the criticism of general relativity, about which we shall have
more to say below,

®Although the field formulation is not mandatory, it is entirely meaning-
ful and assists in the analysis in concrete investigations. As an example,
we may mention the problem of radiative deceleration of gravitating
bodies and the derivation of the formula for the loss of energy of a radiat-
ing system'? and also the calculation of the quantum conformal anomaly
for gravitons.'
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"The relativistic theory of gravitation developed in Ref. 15 contains exact-
ly the same Lagrangian L 8and L ™ as are discussed here and in Ref. 6 and
lead to the gravitational field equations (3). However, in Ref. 15 one
necessarily requires not only Egs. {3) but also fulfiliment of the condi-
tions (5) or the equivalent conditions (6), which are raised to the status
of universal gravitational field equations.

¥The functions g** in (7) also satisfy the generally covariant equations
(6) if one makes a “‘rearithmetization” of the spatial coordinates in the
flat background world and writes its metric in the form
do? =c%dt? —dr? — (r — Gm)?(d6? + sin?Adg ?).

“There are also no ambiguities obtained in observable quantities in the
more general case when the coefficient of the angular part of ds is writ-
ten in the form [7 + (4 + 1)Gm]?, where A is an arbitrary parameter.'”
The cases considered above correspondtod = — 1 and A = 0.
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