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Studies on the electrodynamic theory of the process of readout of holograms recorded in the
interference of an object speckle field and a smooth reference wave are reviewed. These
holograms are classified as thin, thick-layer, and volume holograms, and the process of
reconstitution is examined from a unitary standpoint for all these types of holograms.
Calculations are performed of the diffraction efficiency and noise level with account taken of
various physical factors: saturation of the photoresponse, shift in frequency and angle during
reconstruction, shrinkage of the hologram material, etc. Substantial advantages of volume
holograms are demonstrated with respect to efficiency and quality of reconstruction in the next
five years and in the prospects up to the year 2000.
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1. INTRODUCTION ancj optimize these parameters, one needs a detailed quanti-
The statement that holography is widely applied for sci- tative understanding of the electrodynamic processes that

entific and imaging purposes has long since become a truism. occur in the recording medium in reccording and readout of
Holographic interferometry for remote monitoring of holograms.
strains, stresses, and displacements of solid bodies; the re- As N. Bloembergen76 has noted, "in a certain sense one
cording, storage, and parallel optical processing of large can also include holography among the nonlinear optical
masses of information; holographic Fresnel lenses and other phenomena." Hence it is not fortuitous that the mathemat-
optical elements of low thickness and mass for the visible and ical methods of solving electrodynamic problems of nonlin-
infrared ranges; holographic displays for training apparatus; ear optics, and in particular, the method of truncated equa-
imaging holography and holographic cinema with the com- tions, so fruitfully developed by R. V. Khokhlov",23'77'78

plete illusion of a solid object—this is far from being a com- have substantially aided advances in solving the electrody-
plete list of the fields of application of the methods of holog- namic problems of holography.
raphy.1"6 In almost all applications of holography the In the early studies on holography,7"9 the fundamental
important parameters are: 1) the efficiency of reconstruc- aim was to prove the mere fact of reconstruction of a wave
tion by the hologram of the exact field of the object; 2) the front. Hence the complex electrodynamic process of conver-
quality of reconstruction, as characterized by the ratio of the sion of the reconstructing reference wave into the object field
intensities of the signal and the distortions. To determine was replaced by the following simple considerations, albeit
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FIG. 1. Diagrams of the recording of a hologram with an object field A and
a reference field B (a) and of reconstruction of the field A using the refer-
ence wave B (b).

sufficient to this purpose. Let the field being recorded with
the complex amplitude E ( r ) =A(r) + B(T) consist of two
mutually coherent components: the reference wave B ( r )
and the object wave A ( r ) , and let it record in the medium
perturbations proportional to the local intensity
\E(r)\2=(A + B)(A*+B*) (Fig. 1). Further, one as-
sumes that in the reconstruction with the same reference
field B (r) =B the hologram operates as a transparency hav-
ing a coefficient of amplitude transmission /(r) connected
linearly with the intensity in recording: t(r) —10

= ?, \E(r) |2. If we consider in t(r) only the reference terms
A(r)B *(r) + A *(r)J3(r), we obtain the following expres-
sion for the reconstructed field:

(r) = M (r) | B I2 + (r) B*. (1.1)

Thus the complex field of the object wave A ( r ) <*A(r) is
reconstructed at the output of the hologram.

In view of the well-known Huygens principle, this wave
in the space beyond the hologram is indistinguishable from
the field in recording, which bears a volume image of the
object. In a direction approximately symmetric with respect
to the reference wave, the hologram reconstructs the so-
called pseudoscopic, or real image, which corresponds to the
complex conjugate wave^f(r) &.A *(r).

In a simple treatment by Eq. (1.1), the possible distor-
tions (noise) in the reconstructed wave were omitted from
the very outset. Moreover, the linear dependence
t — ?0 = f, |£(r) |2 is known to break down in the very inter-
esting case in which we wish to obtain a hologram with a
high diffraction efficiency of reconstruction of the object
field. Finally, for photolayers of appreciable thickness L
(under typical conditions with L > 10 ~3 cm), the diffraction
of the field is substantial already inside the hologram,10 and
its action on the incident field cannot be described in terms of
a transparency with a given transmission. Therefore, to de-
termine the diffraction efficiency of the hologram and the
magnitude of the distortions in the general case requires
solving the electrodynamic problem in its full scope.

In the model situation in which both the reference (B)
and object (A) waves are considered plane waves with con-
stant amplitude, this problem was already solved at the
dawn of laser holography"'12 by methods previously devel-
oped in the theory of diffraction of light by ultrasonic waves
and in the theory of x-ray diffraction in crystals. The possi-
bility of transferring these methods into holography in-
volved the assumption of exact regularity of the sinusoidal
holographic grating.

However, in the overwhelming number of cases the lo-
cal behavior of the field of the object wave .4 (r) is extremely
irregular and does not at all resemble the object itself. In fact,
the field^ (r) at a given point r of the hologram is the result
of coherent superposition of the contributions from different
illuminated points of the object. For objects of arbitrarily
complex shape, these contributions have random phases that
differ at different points of the hologram. Owing to interfer-
ence the field A (r) in the plane of the hologram has the so-
called speckle structure (Fig. 2), i.e., marked random spa-
tial inhomogeneities of intensity and phase (see Refs. 13-15
on speckle fields). In contrast to this, the mean statistical
characteristics of the field A (r) in the plane of the hologram,
and in particular, the mean intensity {\A (r) |2> proves to be
practically homogeneous throughout the cross-section, even
for an object with an evidently inhomogeneous brightness,
e.g., for a bright object on a black background far from the
hologram.

Only in recent years has a sufficiently complete theory
of holograms of speckle fields been created, combining the
electrodynamics of diffraction and the statistics of speckle
inhomogeneities, and the first experimental confirmations of
this theory have appeared. This review is devoted, in accord
with its title, to precisely these problems.

In the literature one sometimes meets the term "holo-
gram of a diffuse object," which presupposes the presence of
speckle structure in the field directly at the object. The con-
cept of the "hologram of a speckle field" is broader, since the
speckle structure of the object field in the plane of the photo-
film is formed even for objects not diffuse in nature, such as
an information transparency, a slide with text, and even a
specular object of complex shape.

2. CLASSIFICATION OF HOLOGRAMS OF SPECKLE FIELDS

2.1. Speckle fields

We are convinced that every reader of this review has
seen a speckle field. Speckle structure arises when a diffusely
reflecting surface, e.g., the walls of a room or the pages of a
book, is illuminated with coherent laser light. This term
arises from the English "speckle"—a speck or spot on the
skin. The region of the surface illuminated by the laser seems

FIG. 2. Enlarged photograph of a region of the transverse section of a
speckle field.
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to sparkle. That is, it consists of very tiny spots (of dimen-
sion usually determined by the limit of resolution of the eye)
that make a fanciful display as the observer, the scatterer, or
the laser source moves. Actually, the coherent light wave
reflected by the object creates an intensity distribution in
space with a very large number of fine-structure inhomo-
geneities. In this section we shall discuss the statistical char-
acteristics of this distribution, as well as its characteristic
spatial scales.

As we have already noted in the Introduction, the com-
plex amplitude of the field at every given point is composed
of a large number of small independent contributions, name-
ly the waves reflected by different points of the object. In this
situation the central limit theorem of probability theory can
be applied to the resulting field. According to it the ampli-
tude of the total field will have a random nature in space and
will be described by Gaussian statistics.

While referring to the textbooks on probability theory,
statistical radiophysics, and optics I5-20~22 for the details of
derivation of this theorem, we shall formulate a set of conse-
quences for the properties of the random complex amplitude
A(R) of the speckle field, where R is the space-coordinate
vector.

The probability distribution for the complex amplitude
of the speckle field at a given point has a Gaussian form:

(2.1)

Hence the amplitude of the field at the given point has the
Rayleigh distribution

matic field A (R)e "io" is connected15-18-20-22 to the angular
spectrum j(0) by the Van Cittert-Zernike theorem:

(2.2)

while the phase q> = tan~'(Im,4 /Re A) is uniformly dis-
tributed in the interval from 0 to 2. Finally, the probability
distribution for the local intensity /(R) = |^(R) |2 has the
exponential form

d/> = a1exp(-- jL) &1. (2.3)

In Eqs. (2.1)-(2.3) IA denotes the mean intensity:
/ „ = < / > .

The Gaussian character of the statistics of the speckle
field has important consequences. Thus Eqs. (2.1)-(2.3)
imply that

2/1 (2.4)

The angle brackets denote averaging over the probability
distribution of (2.3); for statistically homogeneous fields we
have IA (R) = const, and this is equivalent to averaging over
space. According to (2.4) the relative depth of modulation
of the intensity, i.e., the contrast of the speckle structure,
amounts to a quantity of the order of unity. The transverse
and longitudinal dimensions of the inhomogeneities are de-
termined by the angle of convergence of the elementary in-
terfering waves of which the speckle field consists. Math-
ematically this is expresseed in the fact that the spatial
correlation function ^(R, — R2) of the random monochro-

(2.5)

In Eq. (2.5) we have distinguished the central direction of
propagation of the speckle field (the z axis) so that
R = r + zez; r is the coordinate in the transverse plane,
r = KX x + ey y, the angles 0 = ex 0X + ey 6y are assumed
to be not too large, \6 \ 5 1, and k = a>n/c, where n is the
refractive index.

The transverse dimension of the inhomogeneity of a
speckle field can be estimated from the uncertainty relation-
ship: | Ar| ~A /| A0 |, where A0 is the width of the angular
spectrum. A field with the transverse inhomogeneity |Ar
and the divergence | A# | appreciably alters the intensity pro-
file at a mixing distance of the rays of Azs | Ar|/|A# | ~/l /
| A0 |2. These same estimates can be easily derived also from
Eq. (2.5). Thus, for radiation having a spectrum of the form
j(0) <xexp( — 0V02,) the correlation function 7(R) has
the form:

* ' * T.O-*n« \ t.O2

^r2-. (2.6)

We shall define the characteristic scales of the inhomogene-
ities in r and in z by the condition that the quantity |y|2

should decrease to a certain definite value:

Ar(HWe-1M) = —-A.

Here A and d are the wavelength and the angle, both being
defined in the medium; HWe~ 'M denotes the half-width at
the level o f e ~ l of the value at the maximum (Half-Width
e~1 Maximum).

A remarkable property of random fields having Gaus-
sian statistics is that a knowledge of the correlation function
for the field A [i.e., y(R)] enables one to find any of the
higher correlators. In particular, the intensity /(R) obeys
the equation

</ (Ri) / (Hi + R) > = </>» [1 + | v (R) I1], (2.8)

We see from this that the longitudinal and transverse scales
of the intensity correlations are the same as for the correla-
tion of the field itself.

2.2. Types of holograms

Let the exposure of the hologram to the overall field of
the reference wave Be**'R, and the object wa ve A (R) e1""'R,
and the subsequent processing result in acquisition by the
hologram of a dielectric permittivity that depends on the
spatial coordinates R = (r,z) = (x, y, z) according to the law

e(R)=i + |

(2.9)-M*(R) flexp[-i(kA-kB)R]}.

Here we shall employ an expression of the following type to
represent the real monochromatic waves:
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A modulation of the type of (2.9) leads to a change in the
local refractive index:

AnABcos[(k

(2.10)

Here kA and kfl are the wave vectors for the central direc-
tions of the waves A and B during recording, A (R) is the
slowly varying amplitude of the object wave, B = const is the
amplitude of the plane reference wave, &nAB is the ampli-
tude (span to one side) of the lattice. The coefficient /ff, char-
acterizes the response of the medium to illumination with a
smooth spatial distribution, i.e., to illumination with intensi-
ties of both waves A and B without allowance for their mutu-
al interference. Since these inhomogeneities are caused by
the coherent superposition of the components inside the an-
gular spectrum of the object wave, they are called intramod-
ulational.2}

The holographic grating proper arises from the interfer-
ence between the fields A and B during recording, and the
contribution to £(R), which is proportional to P2

 m Eq.
( 2.9 ) , is called cross-modulational. The cross grating has the
rather small spatial period A = 2ir/\kA — ka | =/l/
2sm(0AB/2).

In most cases the finite spatial resolution of the photo-
material causes the response \/32 of the medium at high spa-
tial frequencies to be weaker than at low frequencies:
|/32| < \Pi\.3} Moreover, the incomplete coherence of the ref-
erence and object waves also diminishes the coefficient /92.
The positive imaginary component of the coefficients /?, and
/32 corresponds to absorption of the waves in the process of
reconstruction caused by the exposure during recording.
Negative Im 0, and Im /?2 correspond to media in which the
former, initially homogeneous absorption is saturated by the
exposure, and also to media with light-induced amplifica-
tion.

The methods of solution of the electrodynamic problem
of reconstruction of the object field by the hologram prove to
differ for the so-called thin, thick-layer, and volume (or
three-dimensional) holograms. The classification of holo-
grams according to the types cited above is determined by
the relationship between the thickness of the photolayer and
the spatial scales characterizing the diffraction of the light
fields. In this connection we shall discuss the scales of the
inhomogeneities recorded in the medium (Fig. 3).

Let us denote the transverse scale of the inhomogeneity
of the field as a. Then by the uncertainty relationship it cor-
responds to the angular divergence A#~A /a, where A. is the
wavelength of the light. The light rays at the distance
/Fr ~a/b.6~A /(A0)2, which is called the Fresnel length,
extend beyond the limits of the original inhomogeneity. At
distances z S /Fr the simple laws of geometric optics are ap-
plicable, while when z>/Fr, diffraction processes become
substantial.

For the cross-grating that is recorded by the interfer-

FIG. 3. Scales of the interference inhomogeneities in holograms of differ-
ent types: thin, thick-layer, and volume.

ence of the fields A and B converging at the angle 0AB to one
another (Fig. 3), the dimension a corresponds to the period
A zzA /6AB. If the thickness L of the photofilm is smaller
than the Fresnel length of the cross-grating (i.e., if
L<A/0AB), then the diffraction inside the layer is inessen-
tial, and the hologram behaves like a transparency:

W = (r) t (r). (2.11)

Here t ( T ) is determined by the local value off ( r ) at the given
point of the hologram. Under these same conditions £(R)
does not depend on the coordinate z normal to the photo-
layer. Such holograms are called thin. Only for thin holo-
grams does the qualitative description in the form (1.1)
hold. Precisely for them do two images simultaneously
arise — an imaginary one (the object field A ( r ) ) and a real
pseudoscopic one (A *(r)), and with about the same effi-
ciency (see Fig. Ib). If the nonlinear terms in the depend-
ence of /(r) on the intensity of the interference recording
pattern are also substantial, then higher orders of diffraction
also arise in thin holograms.

For a fields (R) having a complex spatial structure, the
amplitude and phase of the holographic grating^ (R)B * de-
pend smoothly on the coordinates (on the scale of its peri-
od). The characteristic transverse scale a, ~A /&0A of the
inhomogeneity of the field A(K.) is determined by the angu-
lar width b6A of the object wave, i.e., the angle &0A over
which the illuminated part of the object is visible from the
surface of the hologram. This transverse dimension of the
speckle element corresponds to the longitudinal dimension

If the thickness/, of the photofilm obeys the condition
A /Q\B 4L 5/1 /&0A, the hologram is termed a thick-layer
one.

The condition A. /6 AB <%L ensures the excitation of
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only one object field during reconstruction. The remaining
orders of diffraction do not satisfy the Bragg condition and
are not excited; in particular this pertains to the conjugate
image. On the other hand, the condition L </l /A0 \ enables
one to consider the amplitude and phase of the cross-grating
to be constant throughout the depth of the hologram and
within the limits of an area having the transverse dimension
of a speckle spot ~/l /A0X. In such a region we can consider
both the reference and the object wave to be plane. Thus, in
order to solve the electrodynamic problem of field recon-
struction by a thick-layer hologram, it suffices to apply lo-
cally the theory of interaction of two (only two!) plane
waves, despite the fact that the object speckle field itself con-
tains waves in different directions.

Finally, in the case L >/l /A0 \ £ A /6 \B, many speckle
elements of the object wave are contained within the thick-
ness L of the photolayer (see Fig. 3). Such holograms are
called volume (or three-dimensional) holograms. The for-
mulation of the electrodynamic problem here proves most
complex, since the amplitude and phase of the cross-grating
are changed many times in irregular fashion along the path
of the ray in the hologram. The study of volume holograms is
of pragmatic, as well as purely intellectual, interest; it will be
evident below that precisely these holograms possess high
diffraction efficiency with a small noise level, which distin-
guishes them from thin and thick-layer holograms of speckle
fields. Strictly speaking, a number of intermediate cases falls
outside our classification, such as L ~A /O \B, the case of a
spreading reference wave, etc. However, these cases are
rather rarely employed in optical holography of speckle
fields.

Up to now we have been describing the so-called trans-
mission holograms, in which the reference and object waves
are incident on the photolayer from the same side. The re-
flection holograms recorded by the system of Yu. N.
Denisyuk are widely applied and are of great interest. In
them the reference and object waves are incident on the pho-
tolayer from different sides, approximately in opposition. In
this case the layers of the cross-grating are approximately
parallel to the boundaries of the photolayer, while the period
of the grating isA/2; here A is the wavelength of the light in
the medium. Usually the thickness of the photolayer
amounts to no less than several micrometers. Hence reflec-
tion holograms are either thick-layer or volume holograms.
Formally we can assume in all the previous estimates that
QAB ~ 2 radians for reflecting holograms.

3. AMPLITUDE OF THE RECONSTRUCTED FIELD AND THE
DIFFRACTION EFFICIENCY

Before discussing the specific properties introduced by
the speckle structure of the object field in the reconstruction
process, in Sees. 3 and 4 we shall discuss the diffraction effi-
ciency and the selective properties of holograms recorded by
the interference of two plane waves. We shall do this in the
first Born approximation of scattering theory, i.e., in the first
order of perturbation theory in the amplitude of the cross-
grating P2B *A. In this approximation the stated properties
of holograms do not depend on the type of hologram nor on

the kind of object wave—plane or having speckle struc-
ture—since the amplitude of the reconstructed field A is lin-
early related to the amplitude ,4 of the field during recording,
and the superposition principle holds. Thus the results of
Sees. 3 and 4 are equally applicable to holograms with any
kind of object field.

We shall adopt the wave equation describing the propa-
gation of the complex amplitude E(R)e ~'"" in the form of
the Helmholtz equation

Here co is the frequency of the monochromatic field,
co — 2irc/A0, and c and A0 are the speed of light and the wave-
length in vacua. In honesty we must warn the reader that Eq.
(3.1) in the most general case of arbitrarily polarized fields
in a medium with arbitrary inhomogeneities is not valid. The
correct vector equation has the form:

rot rot E- (-^-)2 [e0 + 6e (R)] E = 0.

However, Eq. (3.1) proves valid for the case, especially im-
portant in holography, in which the polarizations of all the
interacting waves are the same and we can restrict the treat-
ment to the scalar case.

Let us represent the total field E(R) in the form of an
incident reference wave Be^"'* plus the result of scattering
£,(R). That is, we have £(R) = BeaiB'* + £,(R). If we
assume that El (R) is a quantity of the first order of small-
ness in SE, we obtain the following from (3.1):

, + k\Ei (R) = - kl (3.2)

Here and below, the symbol ~ will refer to fields in the
process of reconstruction. This approximation, which in the
quantum-mechanical theory of scattering is commonly
called the "Born approximation," is valid if \Et | < \B |, i.e.,
when the efficiency of scattering is small. Remarkably, very
many important properties of holograms can be studied even
in this approximation.

One can easily write an explicit solution of Eq. (3.2)
that satisfies the Sommerfeld radiation principle. However,
it is more convenient to discuss the results obtained for each
angular component of the scattered field El separately.
Therefore we shall assume initially that the object wave dur-
ing recording is plane, e*^'R/4(R) =/4el/kyI'R1 with
A — const. Owing to the linearity of the cross-modulation
terms in8e from (2.9) with respect to^4(R) and the linearity
of Eq. (3.1), the result for an object wave having a complex
angular spectrum is obtained by simple superposition of the
results for the individual angular components.

The aim of the electrodynamic problem that we are
solving is to find the reconstructed object wave/4 at the out-
put of the hologram, i.e., in the cross-section z = L. To do
this, we must leave the cross-modulation term
8E=P2B*Aexk/l~"*>'*, which describes the scattering in
the direction of the object, on the right-hand side of Eq.
(3.2) inside the photolayer, i.e., for 0<z <L. The term com-
plex conjugate to it is responsible for the formation of the
accompanying reference wave of the pseudoscopic image, in
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which we shall not be interested. In the same first Born ap-
proximation, the reconstructing wave does not vary as it
propagates through the hologram, or B = const.

Then the solution for the field £](R) can be naturally
sought in the form £,(R) = A(z)elkjl'*, where A ( z ) is the
amplitude, which varies slowly on the scale of the wave-
length. Then one obtains from (3.2) a truncated equation23

for A (z) that yields the following with the boundary condi-
tion A(z = Q) =0:

2ik cos 9A -|i = £^l_ £*B.4,

\ ~ >~~ 2e0 cos SA *

(3.3)

The quantity L /cos &A is the path length over which the
object wave being reconstructed coherently gains its ampli-
tude inside the photolayer. The second relationship of ( 3.3 )
enables one to find the diffraction efficiency of the hologram,
which is equal to the fraction of the energy of the reference
wave scattered into the image (into the field A ) . In the dif-
fraction of the beam B into the beam A in a region of the
hologram of area S, the cross section of the reconstructed
beam has an area SA = 5 cos 0A , while the cross section of
the reference beam/? hastheareaSB = S |cos 9B |. Hence the
energy ratio of these beams, which yields the diffraction effi-
ciency rj, is

(3.4)

Here we have introduced the dimensionless characteristic of
the strength of the cross-grating/^^? * within the thickness
L of the hologram:

| AB*
2e0(cos64- | cos 63

<D . L

"~27 AB (cos 6.4-| cos 6B I)1/" *
(3.5)

Henceforth we shall call the quantity M the strength of the
hologram.

Let us make some very simple estimates. For the radi-
ation of a red-light laser we have A. = 0.63 //m, co/c = 2tr/
A= 105 cm"1. For a typical thickness of a photolayer L •s, ~l
fim, the strength of the hologram is \M \ = 35 AnXB. This
estimate shows that the hologram can have a relatively large
strength, \M \ ~ 1, i.e., an appreciable diffraction efficiency,
with a rather modest value Anx/) = 0.03. The reason for this
consists in the coherent addition of the diffracted waves
from a large number of elementary layers of thickness of the
order A /2ir and is mathematically manifested in the form of
a large dimensionless coefficient 2-rrL /A.

4. SPECTRAL-ANGULAR SELECTIVITY

Thus far we have assumed that the mean refractive in-
dex and the thickness of the photolayer were not altered by
the processing of the hologram, and that in the reconstruc-
tion the hologram is illuminated with a reference wave of
exactly the same frequency and direction as in recording.
Actually this is not always so. During the chemical process-

ing an effect of shrinkage of the photolayer occurs, its mean
refractive index is altered, and the readout wave is often
formed by a non-point source of white light, which therefore
has an extended angular and frequency spectrum. Owing to
the linearity of the wave equation, it suffices at first to solve
the problem of reconstruction for a plane monochromatic
readout wave B exp( — Got + /kg • R), in which, however,
the frequency and direction of incidence differ from those
during recording. Thereupon the result of reconstruction by
a reference wave with extended angular and frequency spec-
tra is given by the superposition of the results for each of the
components.

4.1. Form of the selectivity curve

Let Q be the cross-grating vector in the processed pho-
tolayer, i.e.,

e (R) = e (4.1)

Then the Helmholtz Equation (3.1) in the first Born ap-
proximation is reduced to

(4.2)

The right-hand side in Eq. (4.2) will efficiently excite the
reconstructed image A if the Bragg condition is satisfied for
the diffraction of the reconstructing reference wave by the
grating from (4. 1 ) :

(•f)' e. (4.3)

From the mathematical standpoint (4.3) is the condition
that the right-hand side of (4.2) is a solution of the homo-
geneous equation from the left-hand side of (4.2). Geome-
trically the Bragg condition (4.3), which is well known from
the theory of diffraction of x-rays in crystals, corresponds to
the idea that the angle of incidence of the wave kg on the
layers of the grating is equal to the angle of reflection, while
the phase shift in the reflection of the waves from adjacent
layers is 277.

By traditional methods one can derive from (4.2) the
following truncated equation for the slow amplitude A (z) of
the object wave being reconstructed ^4(z) exp( — Got
+ ikA -R) :

(4.4)

(4.5)

Its solution with A (z = 0) = 0 is

A(z = L) = sinX
iKk

Hence we obtain the following expression for the diffraction
efficiency:

t, = | sin^A-
(4.6)

Here M is the strength of the hologram as defined by Eq.
(3.4).
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4.2. Comparison of the selective properties for different
cases

It is easy to verify (see below) that for thin holograms
(L^A/0AB), the dimensionless mismatch X is small,
\X | < 1. This means that for them the effects of shrinkage of
the photolayer, and also the spectral or angular shift of the
reconstructing wave affect the diffraction efficiency very
weakly: the thin hologram acts on any incident wave as a
transparency. In this regard one commonly says that thin
holograms do not possess selectivity. For this reason they are
widely employed in problems of optical information process-
ing and holographic interferometry, where one must vary
the parameters of the readout radiation over a wide range.

Now let us proceed to thick-layer holograms. For them
the parameter X varies over a broad range, and the diffrac-
tion efficiency can depend strongly on the frequency and the
direction of the readout wave. The quantity 77 is not small
only when the Bragg condition X~0 is satisfied: this proper-
ty of thick-layer holograms is called spectral-angular selec-
tivity.

The factor sin X/X'm (4.5) is the Fourier image of the
coefficient Bh.nAB, which is constant inside the photolayer
and equal to zero outside it; actually A (z = L) is given, ac-
cording to (4.4), by the integral of exp (/A/cz) with respect to
dz over the interval from 0 to L. If the coefficient B&nAB is
not constant, e.g., owing to absorption during recording
and/or during reconstruction, owing to inhomogeneity of
the photosensitivity over the depth, etc., then the form of the
selectivity curve can be somewhat altered. However, it is
important that the width of the central maximum of this
curve is determined by the condition \ X ] < i r . Concretely Eq.
(4.6) implies for the width41 (according to the criterion of
the first vanishing point) that

AX (FWOM) = 2n. (4.7)

Now let us discuss the dependence of the mismatch
X = Lt±k /2 on the parameters of the medium and the read-
out beam. 15'26 For the reconstruction of holograms in which
a complex object wave is recorded with an extended angular
spectrum, the case is of greatest interest in which the fre-
quency and angle shifts are small, since precisely then are the
image distortions small. In this case one can write a rather
compact formula that takes simultaneous account of the ac-
tion of all possible effects by expanding the quantity X in a
series to the accuracy of first-order terms in small param-
eters:

,
^

X (cos9A — cosOB)

•" COS 9n s
CO L " COSOA )

(4.8)

Here we have introduced the quantity v, which characterizes
the variation of z—the scale in the photolayer arising from
shrinkage: L = L0/( 1 + v), so that v > 0 corresponds to de-
creased thickness of the photolayer. The parameter

<& = (& — o))/(t) is the relative frequency shift,
e = (e — £)/£• is the same for the mean dielectric permittivi-
ty. In Eq. (4.8) we use the symbols m^ and mB for the pro-
jection of the unit vectors n"r and nj'r on the plane of the
hologram. The vectors n"r and a.™ characterize the direc-
tions of propagation of the waves A and B during recording
(in air):

< = mA + e, (1 - ml)1/1 , < = mB ± ez (1 - mS)1*
(4.9)

In the second formula of ( 4. 9 ) the plus sign corresponds to a
transmission, and the minus sign to a reflection hologram.
The quantity Am characterizes the change in direction of the
readout wave as compared with the direction of the reference
wave in recording (both in air):

The quantities \mA \ = sin 6™, \mB\— sin &"/, and \mB |
= sin Q |r are determined by the angles of incidence of the

corresponding waves. The directions of the vectors mA,mB,
and mB, which lie in the plane of the hologram, are fixed by
the planes of incidence of the corresponding beams; in the
general case these directions do not coincide with one an-
other. The cosines of the angles of refraction also appear in
Eq. (4.8) (i.e., inside the photoemulsion): cos 6A = [1
- (m2

A/e) ] in, and cos 6B = [ 1 - (m2 /e) ] I/2.
For a given hologram one can consider the quantities v

and A£ to be fixed constants. Then three variables remain at
our disposal: the frequency of the readout wave and the two
angles characterizing its direction of propagation. If the di-
rection of readout na is fixed, then the condition X = 0 de-
termines the frequency a of optimal reconstruction. Yet if
the frequency a) is fixed, then this condition singles out a
cone of directions nB (inside the photoemulsion) for which
the readout wave is efficiently diffracted by the grating exp
X O'Q • R); the axis of this cone coincides with the direction
Q. Finally, if we change the direction of readout in the plane
(Q. kfl ), the optimal readout frequency is changed.

Thus holograms recorded in layers of great thickness,
L^,A/6AB, possess spectral-angular selectivity: the holo-
gram extracts from an incident beam having a broad angular
and frequency spectrum its own narrow spectral band for
every direction.

Let us discuss in greater detail the very interesting limit-
ing cases. Let us turn first to reflection holograms and as-
sume that cos 6^ ssl, cos6B = — 1, and \mA |,
Then (4.8) transforms into

aLe1/1 (2v—^--2-^.-\ e a>
(mx+mg) Amg\

; )•
(4.10)

Reflection holograms are highly sensitive to shrinkage,
which alters £ and the frequency of the readout wave; con-
versely, their angular selectivity is not so large. The high
spectral and small angular selectivity enable one to obtain
holograms in the scheme of Denisyuk with high image quali-
ty upon reconstruction with white-light sources (of the dia-
projector type). The color of the reconstructed image
for Am = 0 is determined by the optimal frequency
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5~<o[(l -f 2v— (Ae/e)], while the spectral width is
AS(FWOM) = <y/lmed/Z,, where/imcd is the wavelength of
the light in the medium. ForZ,~ 10/zmand/lmed =A0/n, we
have the rather narrow reflection band A&)/«s:5%. Owing
to shrinkage (v> 0), a hologram recorded with a red neon-
helium laser usually yields a yellow-green image upon recon-
struction. For reflection holograms with mA — — mB, an-
gular selectivity in the first order in AmB is absent and is
described only upon taking account of second-order terms in
AmB, which amount to |AmB ] ~ ( A /L)112.

Another important case is transmission holograms,
with cos &AfB 1 — m2,B/2e, and \mAiB{<\. For these we
have

v Bie1/2

2c 2e

Ato (mA —
o) 2e

(4.11)

We see that the sensitivity to shrinkage and to changes in the
permittivity e and the frequency co here are weaker than in a
reflection hologram of the same thickness by a large factor—
of the order of */6\B. Thus, when \mAiB |~0o6£1/2~0.3
radian s; 15° (in air), this factor is 40. With equal absolute
values of the angle of incidence, | mA = mB |, the planes of
the holographic grating are normal to the plane of the holo-
gram. In this case the reflection hologram is sensitive neither
to shrinkage nor to changes of e in all orders in v and Ae. The
spectral selectivity is determined primarily by the period
A=/tai r/ |mx — ing | of the interference fringes:
Aw(FWOM) = 6}4A2/LAmed. The angular selectivity of a
transmission hologram is the same as in a reflection holo-
gram. In fact, the term proportional to Ama has the form:
Xrefl = (coL /2ce112) (mB + mA ) AmB and ^ftrans = (oiL /
2cell2)(mA —mg) Ain^ for transmission holograms. We
should note the anisotropy of this selectivity. We have al-
ready pointed out that under such changes in the direction of
the readout wave, for which the vector na inside the photo-
layer remains on a cone with its axis along the grating vector
Q, the Bragg mismatch A'is not altered. In Eqs. (4.10) and
(4.11) this corresponds to AmBl(m^, +mB) and
AmB ±(mA — mg), respectively. Conversely, when the read-
justment of the angle AmB of the readout wave is in the
direction toward or away from the object wave, the width of
the angular selectivity curve in air for a transmission holo-
gram amounts to A/wB (FWOM) = 2e}l2\/L = \mA

-mB|2A2//lmedL.
For a reflection hologram the angular selectivity is also

anisotropic (if the beams are not exactly opposed, i.e., if
n^ ^ — nB). Specifically, the diffraction efficiency varies
only upon returning ng in the plane (n^,, nB), and
AwB (FWOM) = 2£I/2A,/L, where for a reflection holo-
gram A, is the period of the intersection of the interference
fringes with the boundary of the photolayer.

4.3. Experimental illustration

The spectral and angular selectivity of volume holo-
graphic gratings have been studied in numerous experi-

ments. We shall present the results of a recent study,24

which, on the one hand, illustrates the theoretical material
presented above, and on the other hand, shows the close
connections of contemporary holography with nonlinear op-
tics.

First we shall make a small lyrical aside on the obtain-
ing of beams having a reversed wave front by the methods of
holography. As is well known, when one illuminates a holo-
gram with a reconstructing beam B opposite in direction to
the recording reference beam B, i.e., when kB = — kg, the
hologram reconstitutes a field A that is reversed with respect
to the object field during recording: A(R)=A*(R),
kA = — ]s.A. That is, it is the complex conjugate in ampli-
tude-phase structure and at the same time opposite in direc-
tion. In the description of this process the term 8e^A *B
Xexp[ — i(\iA — k.B ) • R] figures instead of the cross-term
Se^AB * expt/Xk^ - kB ) • R]. Here all the results of the
previous treatment for the efficiency and selectivity of the
hologram stay fully in force with the replacement
\iA -» — k^, kg -» — kfl and of all amplitudes with their
complex conjugates.

In the experiment of Ref. 24 a reflection hologram was
recorded with the waves B s and A L incident from opposite
sides of an extremely thick (L = 1 cm) layer of a photosensi-
tive medium (Fig. 4a). The readout wave BL was applied in
a direction making a small angle Am with the direction ex-
actly opposite to the reference wave B s during recording.

Figure 4b presents the experimental points for the expo-
sure dependence of the diffraction efficiency. The depend-
ence of 77 on ( | /4L

 2|5S|2)1/2 proved to be quadratic to a
good accuracy, in line with Eqs. (3.4) and (3.5); the differ-
ent curves correspond to series of experiments with different
values of the light-sensitivity coefficient/?;,. Figure 4c shows
the experimental points for the dependence of 77 on the angle
of antiparallelism defect | Am| = |" as it varied in the plane of
incidence of the beams A L and B s (1, 2) and perpendicular
to it (3). The solid and dashed lines are drawn according to
the corresponding theoretical dependences (4.6) and
(4.10). These graphs convincingly demonstrate the agree-
ment of theory and experiment, as well as the anisotropy of
the angular selectivity of the hologram.

The experiment of Ref. 24 is a brilliant example of how
nonlinear optics and dynamic holography differ only in the
language of description. The radiation of a high-power
pulsed neodymium laser was used24 for recording and read-
out. The waves A L and B s had a frequency difference (V
277- = (WL — o>s )/277~ 3 X 109 Hz, whereby the interference
pattern^ f /?s exp( — 2ikz + ifit) running at the velocity of
sound in the medium (in acetone) effected resonance pump-
ing of a sound wave, which served as the holographic grat-
ing. Variation of the frequency difference enabled varying
the light-sensitivity coefficient /?2 owing to detuning from
the resonance condition of excitation of the sound wave.
Readout was performed with the wave B L simultaneously
with recording, since the hologram existed only in the pres-
ence of recording pulses of duration 3 X 10 ~8 s. The wave B L

was coherent with the wave ,4 L, so that in terms of nonlinear
optics the process amounted to stimulated MandePshtam-
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FIG. 4. An experiment24 to measure angular selectivity, a—Geometry
of the interacting beams and orientation of the holographic gratings:
ultrasonic grating (solid lines) and effective amplifying grating
(dashed line), b—Dependence of the diffraction efficiency on the ex-
posure of the reference wave for different values of the coefficient /?2>
solid lines—quadratic parabolas, c—Angular selectivity curves trans-
verse to (dots) and along (triangles) the fringes of the grating for
6AB = 4.23X 10~2 (7) and2.45X 1Q-2 (2).

fe, mW/cm2

b

Brillouin scattering of the pump field, which consisted of the
two waves (A L and 5L) of frequency <aL, into the Stokes
wave of frequency cas = 6>L — ft. As is known, in stimulated
scattering for radiation at a Stokes frequency, the medium
proves to be amplifying, with an amplification coefficient
proportional to the local pump intensity. Thus the process
can be described also as follows. The interference of the co-
herent parallel pump waves A L and B L records a transmis-
sion hologram A J5L of the amplification coefficient. The
antiparallel Stokes wave Bs, in reading out this hologram,
gives rise to the reversed beam As <xA *•

Hence one can view the graphs of Fig. 4c as the angular-
selectivity curves of a transmission hologram. This fact con-
firms the important conclusion of the theory that the angu-
lar-selectivity curves of reflection and transmission
holograms recorded in the same geometry in a layer of fixed
thickness coincide.

5. INTRAMODULATIONAL NOISE OF SPECKLE-FIELD
HOLOGRAMS*

Along with the problem of the diffraction efficiency,
one of the central problems in holography is that of the noise
in the reconstructed image—the duality of efficiency and
quality important now also in other fields. Noise arises from
light scattering by the grains of the light-sensitive compo-
nent of the emulsion, from inhomogeneity of the thickness of
the photolayer, and other imperfections of the photomater-
ial. Specific distortions can arise in imaging holography in-
volving a shift of the reconstructing reference wave in angle
and/or frequency as compared with the conditions during
recording. In this case, e.g., even in the ideal reconstruction
of the object field directly at the output of the hologram,
kA (z = L,r) = const • A (z — L,r), a frequency shift for the
central beams results in a change in the distance to the ob-
ject. For inclined beams, it leads to distortions like curvature
of field and astigmatism. The magnitudes of the shifts prove

to differ in different regions of the hologram, and the visible
shape of the object is distorted.

An arbitrary object illuminated with a coherent laser
beam appears to be covered with small bright spots. That is,
the visual image possesses the so-called subjective speckle
structure. Since holograms are recorded with coherent radi-
ation, an ideal reconstruction of the object wave conserves
this structure, the presence of which is sometimes also re-
garded as noise in the hologram.

All these forms of real and apparent noise have been
repeatedly discussed in the holographic literature, and we
shall not deal with them. We shall be interested in the distor-
tion of the object field in the proper sense [i.e., the disagree-
ment of amplitudes of the object waves A(T) and A ( r ) ] ,
which is specifically caused by the speckle structure of the
object wave in the hologram. They primarily include the in-
tramodulational noise well known in holography.79 Owing
to the inhomogeneities of the intensity of the object speckle
wave, intramodulational perturbations of the dielectric per-
mittivity of the form/?, \A (r) |2 from (2.9) arise in the holo-
gram. In a thin transmission hologram, cos 6A sscos OBK\,
these perturbations give rise to an additional spatial phase
modulation of the reconstructed field:

A(r, (5.1)

Here we have*, = cofi+L /2cein. The inhomogeneity of the
phase factor in (5.1) gives just those distortions that are
usually called intramodulational.

The question arises of how to characterize quantitative-
ly the quality of reconstruction of the object field? One can
naturally try to decompose the entire reconstructed field
into a component that exactly reproduces the initial field
A(r) and noise. To do this, one should use the projection
operation:
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Here «(r) is the noise, which by definition is assumed or-
thogonal to the exact object field.

We shall explain the meaning of this operation with the
example of the isolation of the component having a fixed
polarization vector f from depolarized radiation character-
ized by the dependence of the complex field vector E(?) on
the time t. As is known,19 here we should take the scalar
product (f* • E ( t ) ) and find the time-average value of the
corresponding intensity f* • E |2/1 f • f * |. The fraction of the
energy in the field E(0 belonging to the polarization f is
H = |P • E|2/(f* • f|E* • E|2); the value of H varies in the.
range from 1 (for radiation fully polarized parallel to f) to 0
(for radiation orthogonal to f).

Analogously the fraction of the energy H belonging in
the field A (r) to the exactly reproducing component A (r) is
equal to the normalized scalar product defined in the sense
of the overlap integral of the fields over the cross section of
the hologram:

M ( r ) | ? d » r | | J M(r)|>d'r|
(5.2)

This definition of the reproduction fraction H was intro-
duced in Ref. 25 in connection with the problem of the quali-
ty of reversal of a wave front. Correspondingly the quantity
1 — H is the fraction of the energy belonging to distortions.

The concept that we used above of the scalar product,
i.e., the complex overlap integral {A *(r, z0)A(r, z0) d

2r of
the two slow amplitudes A and A of the fields

A (r, z) exp (— iwf + ikAR)

and A (r, z) exp (— toot + ik~R)

has the following important property. If a> = a> and
kx = k^, i.e., the frequencies and central directions of prop-
agation coincide, then the slow amplitudes satisfy the same
equation. Then, in the absence of absorption, their scalar
product does not vary in the process of propagation. This
enables us to calculate the distortions of the field in the im-
age plane of interest to us from the overlap integral of the
fields A and A directly at the output of the hologram.

The noise or distortions bearing the fraction of the ener-
gy l-H of the reconstructed object beam are manifested in
different ways in different systems of recording holograms.
First let us study the example of using a hologram for record-
ing information, which is represented as a block of dark and
light sites in a transparency illuminated with a plane, coher-
ent wave. Then during reconstruction a coherent noise in-
crement will arise in the image of the transparency having
the mean intensity (1 — H)IA, where IA is the average over
the cross section of the intensity of the reconstructed wave.
At the dark spots of the original image, the noise yields a
background speckle-inhomogeneous illumination, 7noisc

= (1 — H) IA . In contrast, the interference of the noise
with the main field at the bright spots of the image leads to an
additional modulation of the intensity with a range of A/ /
7~4(1 — H ) l / 2 . Thus, with a noise fraction of only
1 — H~ 0.04, the range of the interference modulation be-
comes of the order of A///-0.8, i.e., of the order of 100%,

and the quality of the reconstructed image is completely un-
satisfactory.

Another example is imaging holography. Here the field
itself of the object illuminated with coherent laser light has a
speckle structure. However, the information subjectively
perceived by the observer is contained not in the details of
realization of the speckle structure, but in the general shape
of the object and the intensity of illumination of the different
parts of it. In the illuminated region of the object, the inter-
ference of the noise with the signal will change only the real-
ization of the speckle pattern. Therefore the role of the noise
is reduced only to a background illumination having the en-
ergy (1 — H) IA, which is approximately uniformly distrib-
uted over the field of the image. That is, contrast is reduced.
Thus, in imaging holography this noise is manifested far
more weakly, as (1 — H), than in coherent-optical systems,
where its role is estimated by the parameter 4(1 — H)in.

In the presence of noise in the reconstructed wave, one
should define more accurately what is called the diffraction
efficiency. Let us denote by 77 the ratio of all the energy re-
constructed by the hologram in the direction of the image of
the object to the incident energy of the reference wave.
Moreover, we shall denote by T?O the energy of the compo-
nent of the reconstructed field that exactly reproduces the
original object wave,4 (R), also referred to the input energy.
We can easily understand that the overall diffraction effi-
ciency ij, the efficiency of diffraction into the exact image rj0,
and the reproduction fraction H are connected by the rela-
tionship i)0 = Hrj.

Evidently a rigorous definition of these quantities for
holograms of speckle fields must contain an averaging over
the cross section of the hologram. By analogy with (3.4),
and with (5.2) in mind, we shall write

tl= (Ml1) (5.3)

For a field A(R) distorted according to the law (5.1),
the overlap integral from (5.2) can be calculated when the
field A ( r ) is statistically uniform by replacing the spatial
integration with an equivalent averaging over the ensemble
of realizations of speckle fields. This yields

(5.4)

The approximate equality in (5.4) corresponds to the
case of low noise, while the last of the equalities of (5.4) has
been written by using the Born expression (3.4) for the dif-
fraction efficiency 77 of the ratio of mean intensities of the
waves IA /IB in recording and the ratio |/?i//?2| of the trans-
fer coefficients for the intra- and cross-perturbations. The
coefficient "2" (Gaussian doubling) in (5.4) arises from the
fact that the noise phase shifts are large precisely wherever
the amplitude of the object field is large. We see that the
relative noise level in the image increases linearly with in-
creasing 77 (so that the absolute intensity of the noise in-
creases as rj2). Equation (5.4) implies that the intramodula-
tion noise decreases as (IA/IB) approaches zero, i.e., if we
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take a reference wave with an intensity appreciably greater
than the object wave during recording.

A rather widespread method for decreasing the noise in
the image is spatial filtration using cutoff diaphragms. This
method allows one to eliminate only those angular compo-
nents of the noise that lie outside the angular spectrum of the
object wave. In this connection we should stress that the
intramodulational distortions for x^\A |2S1 lie approxi-
mately within the angular spectrum of the object field itself,
and this noise cannot be removed by stopping down.

Now let us discuss the features of the intradistortions in
thick-layer holograms. Intraperturbations of the dielectric
permittivity <5£(R)=/?,|^(R)|2 lead to two effects in them.
They are, first, a modulation of the phase of the reconstruct-
ed wave. As an accurate treatment performed with Eqs.
(4.5) and (4.8) shows, the phase modulation in thick-layer
holograms (both transmission and reflection) has the form
(5.1) with the replacement L - (L /2) [ (cos 0A ) ~'
+ cos 6B | ~' ]. Second, the change in the refractive index

leads to a departure from the Bragg condition

(5.5)

and to a local change in the amplitude of the reconstructed
field according to a sin X/X law.

Actually the second effect proves substantial only for
reflection holograms, where we have (cos0A)~1

— (cos &B )
-1^j2. Moreover, when X0 = 0, the function

(SX)~l sin5Jrbehaveslike 1 - [(SX)2/6] + O((6X)4),so
that the contribution of the amplitude effect will be appre-
ciable only in the case of strong modulation, ?c|y4(r) |2~l.

Finally, let us turn to the intranoise in volume holo-
grams. Here several lengths of the speckle element of the
object field fit into the thickness L of the hologram, L /
&ZA > 1. Let us make a crude estimate of the intradistor-
tions, assuming: 1) that they consist only in phase distortion
of the field, and 2) that we can take this phase in the form of
an integral of the perturbations along the ray:

(5.6)-̂ . ^ dz6n(r, z)] .

The quantity 8n(r,z) = 0i\A (r,z)\2/2el
0

/2 that ap-
pears in the integrand in (5.5) contains both the space-aver-
age component Sn oc (\A |2} and the component fluctuating
in time with the local fluctuations \A (T, z) |2 — {\A \2) of the
intensity of the speckle field. The former component gives a
phase factor constant over the cross section, and does not
lead to distortions. The fraction of distortions 1 — H arises
from the fluctuating component of the phase and is equal to

i-H. - -
2 Az.

(5.7)

The small factor kzA /L characterizes the partial compensa-
tion of the sign-varying fluctuations of the phase shift from
the speckle elements through which the ray passes. An exact
calculation of the intramodulational noise (see Sec. 11) does
not alter the structure of the answer (5.7) and only concre-
tizes the value of the parameter &ZA /L.

Thus, other conditions being the same, the magnitude

of the intramodulational noise for volume holograms of
speckle fields is smaller than for thin and thick-layer holo-
grams of speckle fields by a factor L /Az,,, which equals the
number of speckle elements per thickness of the photoemul-
sion.

6. EFFECT OF SATURATION OF THE PHOTORESPONSE

Owing to the limited dynamic range of real recording
media, the approximation (2.9) of a linear relationship
between the photoresponse Se and the local intensity 7 of the
recording radiation Se = /87 has a rather narrow range of
applicability. We shall study the saturation of the photore-
sponse of real media in the model of a two-parameter expo-
sure curve of the form34

8e(n=0IM(l-e~'"•"). (6.1)

This expression describes well the actually used photomater-
ials PE-2, LOI-2, VRL, and IAE30; here 7sat is the intensity
corresponding to a saturating exposure of the medium for
the given exposure time. The coefficient /? characterizes the
light-sensitivity of the medium when 7<7sat; in this limit the
previously introduced coefficients P^ and 02 [Eq. (2.9)]
coincide in this model: Bl=J32= 0^ see also Refs. 80 and
81.

An important characteristic of a photolayer that deter-
mines its potentialities is a quantity that we can call the sa-
turability parameter of the photolayer. Following the nota-
tion of Eq. 30, we shall write it in the form <p ̂ ' = (xl^) ~'.
Numerically it is equal to the reciprocal of the maximum
phase advance ;c7sat induced in the medium by a large expo-

In comparison with linear materials (for which
<p 0~' -»0) having the same light sensitivity P, the efficiency
of recording of cross- and intrainhomogeneities is reduced in
a saturating photolayer. Moreover, the fringe profile of the
holographic grating becomes nonsinusoidal. This further re-
duces its efficiency of readout, while in thin holograms it can
lead to the appearance of higher orders of diffraction. In
order to discuss these effects quantitatively, we shall repre-
sent (6.1) as a sum of harmonics of the holographic grating:

fie (R) = &in (R) + 2&cr (R) cos (QR + q>)

2
n-2

(6.2)

The local amplitudes of the intramodulational component
(5ejn (R) and the first harmonic of the grating 8eCI (R) are
determined here by the local amplitude of the speckle field
\A(R)\:

(6.3)

In the relationships of (6.3) 70 and /, are modified Bessel
functions.

In this section we shall restrict the treatment to thin-
and thick-layer holograms with L 5 A /A0 2

A , so that the am-
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plitudes 5f i n (r) and Secr(r) can be considered constant
throughout the depth of the photolayer. Figure 5 shows the
relationships of the local strengths of the hologram M = (x/
/?)<fecr and the intramodulational phase advance *P = (x/
0)8£in on the parameter M0 = x\AB \ proportional to the
exposure; M0 is numerically equal to the strength of the ho-
logram in a layer of the same photosensitivity J3, but with a
linear response. The parameters are given for differential
local values of the ratio of intensities of the recording waves
\A (R) }2/IB and are expressed in units of <p0.

As we see from Fig. 5, the phase advance * in the large-
exposure limit approaches the maximum possible value <p0.
In contrast, the strength of the hologram M for large expo-
sures approaches zero asymptotically, but passes through a
maximum when M0~q>0. The maximum value of the
strength of the hologram is determined by the saturability
parameter of the photolayer <p $ l and the ratio \A \2/\B \2.
The requirement for high diffraction efficiency of the holo-
gram is restricted by the attainable values of the parameters
<p o '. Thus, for example, one can attain M~ tr/l, and record
a transmission phase hologram with maximal diffraction ef-
ficiency only in weakly saturable layers, <p 0~~' S 0.14. We
note also that the optimal recording from the standpoint of
efficiency of reconstruction is obtained with waves of equal
intensity, since under these conditions the relative level of
the background illumination x(\A \2 + \B\2) saturating the
photolayer is minimal.

FIG. 5. a—Dependence of the phase advance ^ in a hologram of plane
waves on M0 for the different values of IA /IB — \; 0.2. b—Dependence of
the strength M of the hologram on Ma in a hologram of plane waves
(dashed lines) and in a volume speckle hologram (solid lines) for the
different values 1. /!„ = 1 and 0.2.

In the Born approximation when the Bragg condition
X = 0 is satisfied throughout the area of the hologram, the
local amplitude of the reconstructed wave now has the form:

AB*
AB |

(6.4)

Here SECT and Sein are defined in (6.3). Equation (6.4) is
valid at low diffraction efficiency, i.e., when \M \ < 1. How-
ever, applying it to the case of reflection holograms requires
the additional condition of small fluctuations of the Bragg
mismatch \SX \ = \8V\ 5 1 owing to the intramodulational
inhomogeneitiesSein ( A \ 2 ) . This condition ensures that the
Bragg condition will be satisfied at all points. Moreover, for
thin holograms (6.4) is applicable only if the fraction of the
energy of the readout wave scattered into the higher diffrac-
tion orders is small.

First we shall estimate the effect of the intramodula-
tional factor e1*. We shall do this by expanding the expres-
sion (6.3) for Sein up to first-order terms in the parameter

(6.5)

At low exposures IB </sat the relative level of intramodula-
tional distortions is the same as in unsaturated recording:
{\8^\z)~\xIA

 2. Saturation strongly lowers the efficiency
of recording of the intramodulational inhomogeneities.
Consequently the relative level of distortions, as we can easi-
ly obtain from (6.5), reaches the maximum

<l«T|»W~2.5.10-*q>; • * when /, « °-4/" •

It even declines with further increase in exposure. Thus, in
the real situation with <p0 5 10 and IA 5 0.3 IB , the intramo-
dulational distortions are small. Therefore we shall calculate
the quantities 77 and 770 from ( 5 . 3 ), neglecting the intramod-
ulation factor, and applying averaging over the ensemble of
speckle fields:

1

„110 -

/sa, </« + 2'A) 6XP L /J(/« + 2/i J

( 2/R \
r-~Tr •
7sat + /A /

(6.6)
(6.7)

In the presence of an appreciable amplitude component in
the photoresponse Im /? ^0, one should multiply the right-
hand sides of (6.6) and (6.7) by the factor exp( — Im<*>),
which describes the mean light-induced absorption.

Figure 6 shows the relationships of rj and T/O to Af0 for
different fixed values of IA /IB. We note first of all the uni-
versal character of the dependences of the diffraction effi-
ciencies on the exposure. Photomaterials of differing chemi-
cal composition, layer thickness, and processing regime
have completely different parameters. However, in the Born
approximation, i.e., for small 77 and rj0, for all of them the
dependences of the diffraction efficiency divided by cp \ on

689 Sov. Phys. Usp. 29 (7), July 1986 Zel'doviche/a/. 689



FIG. 6. Universal dependences of?; (dashed lines) and r/0 (solid
lines) on M0 for the different values IA/IB = 0.2, 1, and 5 in a
photolayer having the saturability f a ' -

Mtt

the exposure (or more exactly, on Mo/<p0 = (IA IB/I2^)1/z

are the same.
The quantities tj and rf0 differ appreciably when

IA >IB. The cause of the noise in this case is not the phase
modulation of the field by the intrainhomogeneities, but the
nonlinearity of the dependence of the local modulus of the
amplitude of the reconstructed wave \A(r)\ ocM(r) on the
modulus of the recorded |^4(r)|. Noise of this type, which
corresponds to reproduction of the phase profile, but distor-
tion of the amplitude profile of the field in the cross-section
of the hologram, will be called cross-modulational. In the
opposite case in which the mean intensity of the object wave
is appreciably smaller than the intensity of the reference
wave, the cross-modulational noise is just as small as the
intramodulational noise, and the i)(M0) and r)0(M0) rela-
tionships practically coincide. Numerical calculations by
the exact formulas for phase photolayers with <pQ = 1 have
shown that the relationships of Fig. 6 found neglecting the
factor e1* yield deviations from the exact values by no more
than a few percent.

Now we shall discuss the maximum values of the dif-
fraction efficiencies. The maximum of i)0 is reached at
(/,,/, )1/2//8at = {[1 + 4(7^/7, )2]1/2 - \}/2(IA/IB )3/2.
For IA /IB 50.3, this corresponds to the condition IB s/sat

found in Ref. 30. The maximum value itself of the diffraction
efficiency in this limit IA 50.3/£ is determined by the
expression

T I T t Or \

(6.8)

We shall assume that the Born approximation is valid when
i) < 10%. As we see from Fig. 6, for photolayers with
<p <f ' £ 0.5 this is true only for any IA /IB relationships and
exposures. For photolayers of lower saturability this approx-
imation is valid throughout the entire range of exposures for
/ , / /*so.7<r2 .

7. DIFFRACTION OF LIGHT BY SINUSOIDAL GRATINGS

Thus far we have been treating holograms of low dif-
fraction efficiency, restricting the treatment to the first Born
approximation of the theory of scattering by cross perturba-
tions. It is convenient to start the discussion of holograms of
high diffraction efficiency (of the order of unity) with the
example of strictly periodic holographic gratings, i.e., holo-
grams recorded by the interference of two plane waves.

7.1. Thin hologram

We shall take the transmission coefficient of a thin holo-
graphic grating in the form

t (r) = exp [iY + 2iM cos (Qr + «p)J. (7. 1 )

Here q = (kA — kB ) is the wave vector of the grating in the
plane of the hologram, <p = a.r%(AB *),A and B are the am-
plitudes of the plane waves during recording, M is the
strength of the hologram [see (3.5)], and

- * * - A (7'2)

That is, it is unambiguously expressed in terms of the magni-
tude of the saturability parameter <p 0~' and the ratio of in-
tensities of the recording beams. For each specific layer
characterized by the saturability parameter q> 0~', the maxi-
mum efficiencies of holograms of speckle fields correspond
to the condition IA zzIB: 77max ;=3.2X I0~2q> 2

0) 77?"s= 2.55
XlO-Vo-

We must stress that, although the obtained results are
approximate in nature, their limits of applicability are very
broad and correspond to typical experimental conditions.

Let us use the well-known formula

where /„ (z) is a Bessel function. Then we can easily obtain
the energy distribution over the different diffraction orders.
In particular, in first-order diffraction, which corresponds
as if to an reconstructed object wave, we have
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FIG. 7. Dependences of the diffraction efficiencies of thin (/), thick-layer
transmission (2), and reflection (3) phase holograms of plane waves on
the strength M of the grating.

A=-
AB*

] A B ) (7.3)

For pure phase holograms we have Im * = Im M = 0 and
i] = /2 (2M) (Fig. 7). For small values of the argument 2M
in (7.3) for a phase hologram, we obtain the result of the first
Born approximation, 77 =M2. The value of the function
J2 (2M) reaches its absolute maximum at IM = 1.8 and is
^max ~ 34%. With further increase in the strength of the ho-
logram M the diffraction efficiency gradually declines while
oscillating toward zero. The reason for this decline involves
the outflow of energy into other diffraction orders.

7.2. Theory of two coupled waves

Now let us examine a hologram recorded by two plane
waves in a photolayer of rather large thickness, L>/t /&\B.
In this case the higher orders of diffraction do not satisfy the
Bragg condition and hence are not excited. Thus, even for a
minimal wave mismatch X_ l in diffraction into the minus-
first order, we have X^1~L02

4B/A^>\. Consequently only
two waves are present in the volume of the hologram
in the process of reconstruction: the reference wave
B(z) exp(/kg - R ) and the object wave 2(z)exp[/(kg

+ Q) • R]. When the diffraction efficiency is high, we must
take account of the change of amplitude of the reference
wave .5 due to outflow of energy into the object beam .3, i.e.,
treat the self-consistent process including both scattering
processes, B -*~A and A —B, in the holographic grating. Thus
we arrive at the problem of determining the z-dependent
slow amplitudes a (z) and b(z) of the two coupled waves:

Pm=
 bJ±. B exp (ik~R)

(7.4)

We can obtain the truncated equations for the amplitudes
a(z) and b(z) from the wave equation (3.1) with Se(R)
from (2.9). To do this, just as in deriving Eq. (3.3),wemust
neglect the terms ~d2a/dz2,d26 /dz2, and the higher orders
of diffraction. Then we obtain

" (z) = i—b(z) ±— = i — a(z) (15)

Here in the second equation the ( + ) sign corresponds to a
transmission hologram, and ( — ) to a reflection hologram.

The parameter X characterizes the mismatch from the
Bragg condition; see (4.8). The seeming asymmetry of the
equations (7.5) with respect to the a^b substitution in-
volves the fact that we have written the exponential factors
in (7.4) in different ways (asymmetrically). The boundary
conditions have the form <z(z = 0)=0, b(z = 0) = \
for transmission holograms or a(z = 0)=0, b(z = L)
= exp[ — /(kg • ez )L ] for reflection holograms. In both
cases we are interested in the complex amplitude of the re-
constructed object wave at the output of the hologram,
a(z = L), in terms of which the diffraction efficiency is ex-
pressed, 77 = \a(z = L)\2.

The solution of the system (7.5) gives

(7.6)
X*—M*ca&(X*—

For the sake of definiteness, here we have restricted the
treatment to the case of pure phase holograms. For reflec-
tion holograms we must take account of the fact
that sin2(JT2-M2)1/2= - sinh2(M2-*2)1'2 and
cos2(X2 - M2)1'2 = cosh2(M2-X2)1'2. The notation in
terms of hyperbolic functions is more convenient when
M>\X . For arbitrary amplitude-phase holograms the an-
swer can be found in Refs. 12 and 26.

Under optimal readout conditions, X = 0, the diffrac-
tion efficiency is maximal and depends as follows on the
strength M of the hologram: T7trans = sin2 M, ijTef(

= tanh2 M (see Fig. 7). In a phase transmission hologram
with M = 7T/2, one obtains 100% pumping of the energy
from the reference wave into the object wave. With further
increase in M the efficiency diminishes owing to pumping of
energy back into the reference wave. The amplitudes of the
interacting waves vary inside the photolayer according to
the law

b (2) = 6'(0) cos ~, a (z) = — ib (0)sin~. (7.7)

In a reflection hologram one also attains practically com-
plete pumping of the energy, and 77rcfl monotonically ap-
proaches unity with increasing M. The corresponding ampli-
tudes a(z) and b(z) vary through the depth of the
photolayer according to the law

, , , b(L)ch(Mz/L)
chM

_
a(z>~ (7.8)

Below in Sec. 8 we shall need expressions for the com-
plex amplitude of the reconstructed field A (z = L) for cal-
culating the distortions in thick-layer holograms of speckle
fields. While keeping only the A (A) relationship of interests
to us, we obtain the following from the system (7.5) with
account taken of (7.4) and the boundary conditions:

A (z = L) trans = const •

-- const •

(7.9)

A

I A

M

(7.10)
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For transmission holograms we have introduced here the
parameter *, = (<a£,L /4c£1/2) (cos"1 6A + cos"1 6B ). It
differs slightly from K ^ from Eq. (5.1).

8. THIN AND THICK-LAYER HIGH-EFFICIENCY HOLOGRAMS

Thin and thick-layer holograms of speckle fields can be
mentally divided into regions whose transverse dimensions
are smaller than the dimension of a speckle element. Within
the limits of such a region we can treat the object field as a
piece of a plane wave with a certain amplitude and phase,
while considering the holographic grating to be regular.
Within each region the reconstruction process is described
by the model of a hologram of plane waves presented in the
preceding section 7.2, and we should take the local value of
the slow amplitude A ( r ) of the speckle field at the given
point as the amplitude of the "plane" wave A in making the
recording.

8.1. Recording without saturation of the photoresponse

The dependence of the amplitude of the reconstructed
wave on the coordinates r = (xy) in the exit plane z = L of
the hologram is given by Eqs. (7.3) for thin holograms,
(7.9) for thick-layer transmission holograms, and (7.10) for
thick-layer reflection holograms. Here \A ( r ) | 2, M ( \A ( r ) \ ) ,
and X( \A (r) | ) prove to be functions of the transverse co-
ordinates, which depend on the concrete realization of the
speckle structure of the field A (r). These formulas enable
one to calculate the overall diffraction efficiency 77, the dif-
fraction efficiency rj0 into the exact image, and thus the re-
production fraction H = rjo/ij. The averages over the cross-
section that figure in the definitions of 77, t]0, and H can be
replaced for a statistically uniform speckle field A (r) by the
averages over the ensemble of speckle fields, i.e., over the
probability distribution of ( 2.2 ) .

The final answer has the following form27:
1 ) Thin transmission holograms:

(8.1)

_ I Ml'
\l-tFA\i

exp( — exp

(8.2)

Here we have FA = xJA,FB = xlIB,I^(z) is the modified
Bessel function, and M = x2(IA IB)1/2 is the strength of the
hologram; for media having a general amplitude-phase re-
sponse, the quantities FA,FB, and M are generally complex.

In the important special case of pure phase holograms,
these formulas acquire a simpler form:

(8.3)
'A' x *~T' A '

Here the quantity IA = (\A |2> is the mean intensity of the
object speckle field during recording.

2) Thick-layer transmission holograms. For this case it
was shown in Sec. 4 that the magnitude of the Bragg mis-
match X is practically independent of the intensity of the
object field \A \2. Therefore we can assume to a very good

accuracy here that X does not depend on the transverse co-
ordinates. For the very interesting case X = 0 we have

z y
exp(-2ImFB) lVa_xt f .,1,,, J.V.YI f e-'sdt) , (8.4)

l-2z' ,, ,
J e fll '. (8.5)

Here we have X= Re3f(l + 2lmFA )~1 / 2 , 7=ImAf(l
+ 2lmFA)-1'2, Z=\/2M(\-iFA)~V2, and FAjB
= IAiB/cos 9. For the sake of definiteness we assume that

cos 6A xcos 6B sscos 9.
3) Thick-layer reflection holograms. Here one can per-

form an explicit analytic calculation27 of the quantities 77 and
T/o only in the case in which one can assume X = 0 through-
out the hologram. Since for reflection holograms the Bragg
mismatch X is far more sensitive to intraperturbations, the
approximation X = 0 would be valid only when
P \/2 A |2</ff 1

2
/2\B |2. For this reason we shall present only

the results of an exact numerical calculation. All the expres-
sions derived in Ref. 27 and given above are valid for arbi-
trary amplitude-phase recording media. Figure 8 shows the
dependences of the quantities 77 and r}0 on the strength of the
phase hologram M0. Here the averaging of Eqs. (7.3), (7.9),
and (7.10) over the probability distribution of (2.2) was
performed numerically on a computer. The difference of the
graphs of Fig. 8 from the corresponding curves of Fig. 7 is
entirely due to the presence of the speckle structure in the
intensity of the object field. Let us discuss this problem in
greater detail.

First we note that the maximum attainable values of the
overall efficiency 17 in both transmission cases—thin and
thick-layer—proves to be appreciably lower in holograms of
speckle fields: respectively 22% and 64% instead of 34%
and 100% for holograms of waves of constant intensity. The
decrease in the value of 77 arises from the strong speckle fluc-
tuations of the local strength of the hologram SM(r) ~M;
consequently one can attain values of M (r) close to the opti-
mal only in parts of the area of the hologram.

The value of the pure diffraction efficiency 770 for small

FIG. 8. Dependences of?; (dashed lines) and rj0 (solid lines) on M0 for
the different values of IA /IB indicated in the diagrams for thin (a), thick-
layer transmission (b) and reflection (c) phase holograms having a linear
photoresponse.
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values of M differs from the overall efficiency 77 only because
of intramodulational distortions (see Sec. 5). When M> 1
the relative fraction of the distortions begins to increase
sharply. Here also the nonmonotonic dependence of the lo-
cal efficiency on the strength of the cross-grating comes into
play. In regions with M> Mopt a larger amplitude \A (r) | in
recording corresponds to a smaller reconstructed amplitude
\A (r) |, i.e., the object field is transmitted with distortions of
the amplitude profile. We call these distortions cross-modu-
lational.

For reflection holograms one can remove the intramo-
dulational distortions only when IA -4,1 B. Then when the
Bragg condition is exactly fulfilled, i.e., when X = 0 and
when the strength of the hologram is large enough, M S 1,
the modulus of its local reflection coefficient tanh2 M is very
close to unity practically throughout the cross section. Here
we have rj^ 1, while the reconstructed field reproduces only
the phase but not the amplitude profile of the object field:

A(r): A(r)
B.

Remarkably, the reproduction fraction of the exact object
field remains amazingly high: averaging over the speckle sta-
tistics yields H = rjo/rj = ir/4 ~ 79 %. We can say provision-
ally that the fundamental information on a speckle field is
80% contained in its phase structure.

Yet if the magnitude of the intraperturbations/?,/, is of
the same order as for the cross-perturbations p^IAIB )1/2,
then we have \8X \ ~ \M \, and even for large values of the
strength of the hologram, the diffraction efficiency rj is less
than 100%, owing to the impossibility of satisfying the
Bragg condition throughout the cross-section of the holo-
gram; simultaneously the reproduction fraction 7/0/77 also
declines.

8.2. Recording with saturation of the photoresponse

Up to now in Sec. 8 we have been treating the situation
in which there is no saturation of the local photoresponse:
the saturability is <p $ ' < 1. The results obtained show that,
for thin and thick-layer holograms of speckle fields, an in-
crease in the diffraction efficiency unavoidably leads to
strong distortions of the reconstructed object field. Remark-
ably, there exist conditions on the saturability <p 0~' (which
is a numerical characteristic of the photolayer itself) whose
fulfillment may cause the saturation of the photoresponse
not only to impair, but conversely, to make the situation for
transmission holograms substantially more favorable from
the standpoint of diffraction efficiency.30 Let us discuss this
problem in greater detail.

Figure 9 shows the graphs of the dependences of 77 and
rj0 on the parameter proportional to the exposure
M0 = K (IA IByt2 for different IA /IB for a value <p 0"' =;0.2
for thin (Fig. 9a) and <p 0~' ;=0.1 for thick-layer phase holo-
grams (Fig. 9b). We can point out the following differences
in the behavior of the graphs of Fig. 9a, b as compared with
the corresponding graphs of Fig. 8a, b for the case without
saturation. First, the values of 77 and r)0 are somewhat in-
creased for the chosen values of <p 0~'. Second, the dynamic
range of exposure values that enable reconstruction with
high efficiency and quality proves to be several times larger
than when <p 0~' = 0.

The graphs of Fig. 9a,b were based on the results of
numerical calculation. Let us explain the reasons for these
qualitative differences. In the presence of saturation the ac-
tual strength M(r) of the hologram approaches zero at those
sites where the local intensity of the object field \A(r) 2 is
small. When |/4(r)|2-> oo, M(t) also approaches zero, al-
though not too rapidly owing to the effect of saturation. In a

f.O

FIG. 9. Dependences of 77 (dashed lines) and r/0
(solid lines) on MQ for the different values IA /
IB =0.2, 1, and 5 for thin (<p^'^0.2) (a),
thick-layer transmission (<f>o'~Q.\) (b) and
reflection (^0~ ' = 0.1) (c) phase holograms re-
corded with saturation of the photoresponse.

S M,
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rather broad range of values of the local intensity \A(r) \2

near the maximum of the function M(\A |), the actual
strength of the hologram remains almost constant. If this
value of M is close to the optimal, Mopl ~0.9 for a thin holo-
gram and jVfop, si.6 for a thick-layer transmission holo-
gram, while the exposure corresponds to values MQ~ (0.6
-1 )£>,„ then the local value of 77 throughout this entire range
is close to maximal—34% for thin and 100% for thick lay-
ers. Thus an appreciably larger fraction of the area of the
hologram operates in an optimal regime under these condi-
tions. As we see from Fig. 5, the maximum value of the actu-
al strength of the hologram corresponds to the optimal value
when ^? 0~' ~0.2 for thin layers and <p 0~' sO.1 for thick lay-
ers. For larger values of the saturability <p0~' f the local
strength of the hologram does not reach its optimal value
over the entire surface. For lower values of <p 0~', in line with
the situation in case of linear recording, the fraction of the
area in the hologram of a speckle field corresponding to opti-
mal strength of the hologram decreases.

For reflection holograms large values of Mare optimal,
M>2. Since saturation can only decrease the strength of a
hologram, in the reflection case it only decreases the diffrac-
tion efficiency. Thus, for <p 0~' =s0.2, even when IA xIB, the
maximum value of the strength of the hologram M does not
exceed unity, and the quantity 77 proves to be ~ 50% even
with an optimal exposure. Figure 9c shows the curves for 77
and 7/0 for a somewhat lower saturability <p 0~~' ~0.1 as func-
tions of M0 for different ratios IA /IB of the intensities of the
speckle field of the object A and the plane reference wave B
during recording.

They show us that also for reflection holograms the
presence of speckle structure of the object field appreciably
lowers the maximum diffraction efficiency, but now owing
to effects of saturation, which are always actually present in
a hologram.

For all three forms of holograms in a regime of maxi-
mum efficiency, the relative level of distortions of recon-
struction 1 — (77/7/0) proves to be about the same as for <p 0~'
= 0. In the linear case (<p 0~' = 0) with the exposure in-

creasing above the optimal, the fraction of distortions
1 — (77/770) sharply increases. In the case with saturation
the situation is the opposite: the rather slow decline in dif-
fraction efficiency when the exposure is increased above the
optimal is accompanied by a decrease in the relative noise
level.

As we see from Fig. 5, in an overexposed hologram
(M0Z<p0), the given speckle variations S\A \2/\A \2 lead to
appreciably smaller intramodulational phase variations that
distort the object field.

The most distinct results of experiments designed in
goal-directed fashion to study the diffraction efficiency of
holograms of speckle fields (holograms of diffuse objects)
have been obtained in Ref. 30. The value of the overall effi-
ciency, which we shall denote by the symbol 77, is given in
Fig. 10 for transmission thick-layer phase holograms as a
function of the exposure Er for different values of IA /IB and
for two different photomaterials: LOI-2 and dichromated
gelatin (DG). The curves correspond to theory and the sym-

f.
o.e\

B.S

OA

0,2

10''
£••• J/cm2

10'

FIG. 10. Dependences'" of the diffraction efficiency r) of holograms of
diffuse objects on the exposure Er for specific layers of LOI-2 (curves 7,
1') and DG (2,2') for the different ratios/,, //B = 0.2 (1'), 0,3 (2'), and
0.02 (1,2). Symbols—experimental results.30

bols to experiment. In the layer of DG having rather low
saturability, <p 0~' ;zO. 125, the maximum values of ij exceed-
ed 70%. That is, they were appreciably larger than the theo-
retical limit of 64% pertaining to the case of linear record-
ing.

9. CONCEPT OF THE SPECKLON

Before solving the problem of reconstructing volume
holograms of speckle fields, let us study the following model
situation. Let a photolayer be exposed solely by the speckle
field of the object ^(R)exp(/k/)'R), so that the dielectric
permittivity of the processed medium has the form:

e(R) = (R)| (9.1)

and the thickness L of the layer is much greater than the
length A /A<9 \ of a speckle element of the field A (R).

The propagation of the light wave E(R) through a me-
dium having an inhomogeneous £(R) given by (9.1) is ac-
companied by the following two effects.

First, the initial structure of the incident wave is distort-
ed by being scattered by inhomogeneities (i.e., essentially by
the intraperturbations f (R) —e0). As we shall see below,
for weak inhomogeneities these distortions, even when accu-
mulated throughout the thickness of the photolayer, are
usually not large. Hence the spatial structure of the field in
the photolayer corresponds to propagation as if through a
homogeneous medium.

Second, the dielectric permittivity of this effective me-
dium varies as compared with the quantity e0. The effective
homogeneous permittivity for the field E(R) is determined
by the expression15

eeff = [ J e (R) | E (R)| »d»H] [ j | E (R) |2 d3 R]''.

(9.2)

That is, it equals the local permittivity £(R) averaged over
space with a weight determined by the field intensity

For almost all fields E(R), including the plane readout
wave, the inhomogeneities SE (R) = /?, \A (R) |2 are uncorre-
lated with the structure of the field, and then we have

Ul*>. (9.3)

694 Sov. Phys. Usp. 29 (7), July 1986 Zel'dovichefs/. 694



FIG. 11. The speckle field is indicated by dashed contours, the inhomo-
geneities of the medium by solid contours. Mismatching inhomogeneities
(a) yieldno spatial resonance, such as is obtained in the case of matched
speckle spots (b).

Only for the exceptional case (but precisely a very important
one in holography) in which the field E(K) is the object
wave itself, E(R) <xA(R), is spatial resonance realized
between the inhomogeneities of the field and the inhomo-
geneities of the medium (Fig. 11), and the maxima of the
perturbations <fe(R) =/?1|,4(R)|2 coincide with the maxi-
ma of the local intensity of the field E(R), so that we have

^ I 2 ) - (9.4)

The second expression of (9.4) is written for the speckle
field.

Thus we arrive at an unexpected conclusion: a medium
of the form (9.1) has the different effective permittivities
(9.3) and (9.4) for the reference wave B and for the speckle
field ^(R). The approximate solution £(R)=;a(z)yi(R)/
(\A |2) l /2 of the wave equation (3.1 ), which describes the
propagation of the speckle field in the presence of spatial
resonance with the inhomogeneities of the medium has been
given a special name — the specklon.15'2*'29

Below we shall have to know the rate of noise buildup in
the specklon owing to scattering by the residual fraction of
the perturbations of the dielectric permittivity 8e(R) that
was not taken into account in defining the effective dielectric
permittivity. To do this we must find the extinction coeffi-
cient ^? (cm"1) characterizing the increase in intensity of
the components of n(r) that distort the structure of the
original specklon:

dz (9.5)

Let us estimate the value of 3%. At the correlation length
Azcorr ~X /A02, of the optical inhomogeneities from (9.1),
the relative perturbations of the amplitude of the propagat-
ing wave E will amount to SE/E~(a)/c)^zcarT^l\A |2.
Therefore the relative intensity of the noise buildup over this
length is (SE/E)2~ [0{\A IVA02, ]2. Since the distortions
from different layers separated by the distance Azcorr are
uncorrelated, they add in intensity. Consequently, at a dis-
tance L containing several lengths of speckle elements, the

relative noise level amounts to [L /Azcorr ] {0^ \A |2/A^ ]2.
Upon writing this level in the form &L, we obtain the fol-
lowing estimate for &:

'"•""^l. (9.6)

A more accurate calculation is based on the fact that the
term in the induction 8DA (R) responsible for the noise
buildup of the specklon has the form:

6DA (R) = p [ | .4 (R) |2 — 2 { | A

This calculation yields15'29

(9.7)

(9.8a)

where A is the wavelength of light in the medium,

= d'9, (6.) )A (62) /A (6

x ((88-e1)(e1-8,))f (9.8b)
jA ( 6 ) is the angular spectrum of the speckle field A ( R ) nor-
malized to unity, and ( A0 2

A )
eff is a quantity of the order of

the solid angle occupied by the object field. Figure 12 pre-
sents the results of experimental measurements of the rela-
tive magnitude of the distortions of the specklon 7noise // in a
LiNbO3:Fe crystal in a regime of reference-free recording
with a local photoresponse. For a fixed exposure the extinc-
tion coefficient, as defined by the relationship /n0ise/
/ = £%L, proves to be inversely proportional to the square of
the angular divergence of the speckle field, in full agreement
with theory.

For reference let us give the values of A0 2
f for two con-

crete forms of angular spectrum of the object field.15 If
y'(0)ocexp( -02/0o), then A02

f = 20%; for an angular
spectrum of the type of a truncated parabola,
j(0) <x 1 - (62/8l), we have A02

f = lvOl/%.
Since we are interested in applying the specklon theory

to holography, we can conveniently express the quantity ̂ ?
in terms of the strength M and other parameters of the holo-
gram:

f r (/noise /0-103

FIG. 12. Dependence of the relative level of extinction distortions of the
specklon /noise// on the inverse square of its angular divergence from an
experiment of A. V. Mamaev in the material LiNbO3:Fe.
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(9.9)

Thus the extinction coefficient (% is proportional to the
square of the exposure, ^?ocM2. In a hologram there is
usually no reason for making the strength M too large,
M £ 1.5, since here the diffraction efficiency is not increased,
but the noise level increases.

For the values (Se) ~ 10~4, (A0, )2~ 1CT2 steradian,
and/tvac = 0.5//m typical of volume holograms, the extinc-
tion coefficient is approximately 1.5X10"' cm"1, so that
for a typical thickness of the photolayer L S 0.1 cm, the rela-
tive level of noise buildup of the specklon is !%L~\%, and
the specklon theory proves adequate to problems of volume
holography.

The small dimensionless parameter that determines the
applicability of the specklon theory15 is the ratio 8eA /A0 ̂ ,
or in another form, the phase advance due to intraperturba-
tions over the length of a speckle element (8eAco/c)&zA.
The three conditions, IA /IB 5 1, hzA ^L, and M 5 1 that are
characteristic of volume holograms ensure the fulfillment of
the condition 8eA /A0 ̂  < 1 with a good margin of safety.

10. RECONSTRUCTION OF SPECKLE FIELDS WITH VOLUME
HOLOGRAMS AND THE EFFECT OF SHIFT OF THE
SELECTIVITY CURVE

At first glance the electrodynamic problem of recon-
structing the speckle field of an object with a volume holo-
gram is extremely complicated. From the mathematical
standpoint the problem is to solve the wave equation (3.1),
i.e., an equation in partial derivatives, in which the coeffi-
cient £(R) has a large number of irregular inhomogeneities
(intra- and cross-perturbations) that depend substantially
on all three spatial coordinates. However, as often happens,
in the presence of a small parameter simple physical consid-
erations help in guessing the correct form for seeking the
solution.

The scattering of the plane reference wave Be
each layer z, z + dz by the cross-grating
Xexp[i(kA — kB )-R] yields a field with the spatial struc-
tured (R)exp(/k/( -R) that exactly corresponds to the object
field in the given cross section. As we showed in Section 9,
this reconstructed field propagates in the medium with the
intramodulational perturbations /3t\A(R)\2, while practi-
cally maintaining its structure.

This implies that the field in the volume of the hologram
in the reconstruction process consists of two waves: a plane
reference wave and an object specklon coupled by mutual
rescattering by the cross-grating:

»-*'" in

&(*)
|cos6B |V»

L a(2)
(cos0.)"2 (10.1)

All of the further treatment repeats almost verbatim the
solution of the problem in Sec. 7.2 of two plane coupled
waves. However, in substituting (10.1) into the wave equa-
tion (3.1) and deriving the coupled-wave equations for the
slow amplitudes a(z) and b(z) we must take account of Eq.

(9.2). Consequently the form of the equations for the cou-
pled amplitudes (7.5) is fully conserved. Only the value of
the coefficients M and X that enter into them is changed—
the strength of the hologram and the Bragg mismatch. The
quantity Mis now determined by a formula like (3.5), but
not in terms of the modulus of the local amplitude, but in
terms of the mean value of the intensity,
\A (R) | -»< \A |2} !/2=/y2. The quantity X acquires an extra
term of the form SX = (\/2)xtIA /cos 9A .

The shift of the Bragg condition X = 0 as compared
with that for a hologram of plane waves is caused by the
asymmetry that arises between the plane reference wave and
the object specklon. In fact, the effective dielectric permittiv-
ity for the reference wave, according to (9.3) is
e^ = £0 + /3{ (IA + IB). In contrast, from (9.4) we have for
the object specklon £A = 0t(2IA +IB), i.e., doubling of the
intramodulational contribution to £C

A owing to spatial reso-
nance. One can say that the Ewald spheres k2 = <u2fcf/c

2 for
the reference and object waves acquire a small difference of
radii, kA\-\kB\ = («/2o--1/2 )£,/,,.

The condition for efficient reconstruction X = 0 in the
hologram of a speckle field is attained at a somewhat differ-
ent frequency and/or direction of readout as compared to a
hologram of plane waves recorded in the same geometry and
with the same exposure. This property of a volume hologram
has been called the effect of shift of the spectral-angular se-
lectivity curve.29"31 We note that the shift in static phase
holograms is not accompanied by a change in the shape of
this curve.

The selectivity curves can strongly differ in width for
holograms recorded in different media with different geome-
tries; the width in angle and the width in frequency have
different dimensionalities. The fact proves to be all the more
pleasant that the magnitude of the shift of the selectivity
curve owing to the speckle structure of the object field is
expressed invariantly in units of the half-width of the curve.
In a notation employing the parameter of the Bragg mis-
match, the half-width of the curve X (from the zeros in the
Born approximation) is AA'(HWOM) = -IT. Then the shift
of the curve 8XspecMe is

SX.speckle 1
1ST

//^JCOSeB | \ l / 2'M. (10.2)

In the Born approximation we have M~rjin, and when
IA |cos 6B | zzIB cos BA, fit zz/32, the relative shift is 8Xspeckie /
jr^O.16171'2. That is, it amounts to a small fraction of the
half-width. When IA </fi the shift proves to be even smaller.

Figure 13 shows the results of an experiment32 on trans-
mission phase volume holograms of speckle fields recorded
in the material "Reoksan" (see Ref. 33 concerning this ma-
terial). Angular selective curves were taken32 for different
exposure values. The ratio IA /IB was chosen to be large, IA /
IB = 15, in order, first, to increase the relative contribution
of the intramodulational perturbations, and second, to avoid
the dynamic effects in recording that are inherent in the ma-
terial "Reoksan." In the experiment the beams A(R)
and B were incident symmetrically on the medium,
QA~GB =0.14 rad (in the medium). Effects of shrinkage
and of variation in E without exposure are absent in "Reok-
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FIG. 13. An experimental study of the selectivity curve of phase holo-
grams in "Reoksan."32 a—The efficiency 17 as a function of the angle of
deflection £ from the direction of the reference wave during recording, b—
Dependence of the shift kg normalized to the half-width £0 of the curve

san." Therefore, in recording the hologram with plane waves
with a small exposure at which dynamic effects are absent,
the maximum of the angular-selectivity curve corresponds
to the direction of the reference wave during recording. We
see from Fig. 13a that the direction of optimal readout with
an object speckle field differs from the direction of the refer-
ence wave during recording. An essential point is that, at the
studied values rj 5 12%, the width of the angular-selectivity
curve and its shape practically did not vary, in accord with
the theory.

Figure 1 3b shows the dependence of the magnitude of
the shift of the selectivity curve on the parameter rj 5 ' 2, which
is proportional to the exposure. The straight line corre-
sponding to the theoretical relationship of ( 10.2 ) agrees well
with the experimental points.

Let us draw the conclusions. Volume holograms of
speckle fields are described in terms of diffraction efficiency
by practically the same equations as for regular volume holo-
graphic gratings. Thus it proves possible to obtain for them a
diffraction efficiency close to 100%, in contrast to thin and
thick-layer holograms.

Finally let us discuss how this conclusion is affected by
the possible saturation of the photomaterial.30'34 To do this,
we should write the induction SD = <5e(R) XB exp(/ka-R)
that arises upon scattering of the object wave by the pertur-
bations <5f(R) from (6.1) and to project within the frame-
work of the specklon theory A ( R) on the field of the speck-
Ion, replacing the spatial integration with averaging over the
ensemble:
M_ kL (6D.4*(R)exP[i(kB-VQ)«l) exp [_JB/

2e (/A/s)1/2 ° [l + (/

(10.3)

Here M0 = x(IAIB ) I / 2 is the value of the strength of the
hologram that would exist in the absence of saturation. We
stress that the specklon theory enables us here also to employ
the expressions of (7.6) for the diffraction efficiency, pro-
vided that we take M from (10.3). We can conveniently
compare this dependence of M on the parameters IA,IB, and
tp0 with the analogous expression (6.3) for saturable holo-
grams of plane waves by turning to Fig. 5. The presence of
the speckle structure, other conditions remaining the same,

somewhat lowers the strength of the hologram, owing to the
greater level of saturation in the excursions of the speckle
field. Therefore the saturability of the photolayer for volume
holograms of speckle fields should be very small. For exam-
ple, one can record a hologram with 77 ~ 100% at IA = IB /5
only in a photolayer with a saturability tp 0~' S 0.09.

It is convenient to operate at exposure such that M0/
<p0 = (IAIBy'2/I.M 50.25, i.e., at not too great a level of
local saturation. The reason for this is that the diffraction
efficiency increases more slowly than the noise with further
increase in the exposure. As we see from the graphs of Fig. 5,
in this range of parameters with IA 5/g, the values of M
differ from the strength of the hologram for plane waves by
no more than 10%. Moreover, owing to saturation, the in-
tramodulational terms in <5e(R) are recorded more weakly
than in a linear medium of the same photosensitivety; conse-
quently per se the small shift of the spectral-angular selectiv-
ity curve becomes even smaller.

Thus we arrive at an important conclusion: for the val-
ues of the parameters of the saturability, exposure, etc., at
which a volume hologram gives a high diffraction efficiency,
one can reliably calculate the latter by using the results of the
theory for holograms of plane waves, both in a linear and in a
saturating medium.

11. INTRAMODULATIONAL NOISE OF VOLUME
HOLOGRAMS

Another potential advantage of volume holograms in
which the length of a speckle element bzA is appreciably
smaller than the thickness L is the high quality of recon-
struction, i.e., the low noise level.

Let us discuss first the cross-modulational noise sources
involving the spatial inhomogeneity of the holographic grat-
ing. In the Born approximation with a linear response, cross-
noise is generally absent (3.3). As the object wave
a0(z)A(R) increases, its inverse scattering by the grating
A *(R)5exp[i(kB — kA )-R] becomes substantial during
the reconstruction process. The spatial structure of the po-
larization of the medium a(z)\A(R)\2B exp(/kfl-R) con-
tains the homogeneous component a ( z ) ( \ A \2)B exp
X(/k/('R), which attenuates the incident plane reference
wave owing to efflux of energy into the object field. In addi-
tion, in this polarization an inhomogeneous component ex-
ists, (|^(R)|2 - (\A |2)a(z)5exp(/kB'R), which gradually
builds up noise in the reference wave. If we assume that
| a (z) |2 ss 77 (z/L)2, then in the transmission case we can esti-
mate the level of distortions of the reference wave as

The reverse scattering of this noise by the grating AB* in the
direction of the object wave leads to relative distortions in it
of

\a(L)\> « ! 2 l -

For reflection holograms the coefficient 1/12 on the right-
hand side of ( 1 1. 1 ) is replaced by the coefficient 1/4. If we
compare (11.1) with the estimate (5.6) we see that the level
of cross-noise in volume holograms amounts to a small frac-
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tion t)(02IB/l2/3iIA)(&zA/L) of the intramodulational
noise. This implies that in a real situation the speckle struc-
ture builds up noise in the reconstructed field mainly via the
intranoise. Hence, in the present Sec. 11 we shall calculate
their level quantitatively to supplement the estimate (5.6).

We shall rewrite the equation for the rate of noise build-
up of the object specklon of (9.5) with account taken of a
possible slope 6A ^0 in the form

cos9 (11.2)

According to (7.7), for transmission phase holograms we
have |o(z) |2 = sin2(Mz/L), and the relative level of distor-
tions of the reconstructed image at the output is

_ &L 2M~sin2M
rans COS 6 A 4Afsin2A!f

(11.3)

For reflection phase holograms, according to (7.8), we have
\a(z)\2 = sinh2(Mz/L)/cosh2M, and

sh2M—2M
4JW sh" M

(11.4)

In the Born limit, both for transmission and reflection
holograms, we have 77 = \M |2, \a(z) \2 = ijz2/L 2, and when
cos 6A = cos 0B, upon using (9.9) we obtain

(11.5)

These calculations enabled quantitative expression of the pa-
rameter bzA from (5.6) in terms of the form of the angular
spectrum of the object wave. It is convenient to rewrite Eqs.
(11.3) and (11.4) in terms of the noise level in the Born
approximation (11.5) with the correction coefficient
<|«|2)/|«|2= (<H2>/|a|2)Born/(M), with/(0) = 1. Fig-
ure 14 presents the variation of the factor/(Af ) for transmis-
sion and reflection holograms. When M < ir/1 the correction
does not exceed 50%, so that, even for holograms of high
diffraction efficiency, one can calculate the intranoise by the
formulas of the Born limit.

Up to now we have been treating the noise in this limit
for nonsaturable recording. When we take account of satura-
tion the displacement in the medium that produces the dis-
tortion of the object field has the form

(R) = {[ Sein (R) - <&in A

(11.6)

a/2 M

FIG. 14. Dependence of the correction factor /on the strength M of the
hologram for transmission (1) and reflection (2) holograms.

Here the quantities Sein (R) and 8ecr (R) are determined by
the equations of (6.3). The first term describes the action of
the intrainhomogeneities on the propagating field of the ob-
ject wave, and the second term describes the excitation of
noise waves by the cross-grating distorted by saturation. In
constructing (11.6) we subtracted the terms that describe
spatial resonance of the specklon with the intraperturba-
tions and the coherent rescattering of the reference wave into
the specklon by the cross-grating. These terms were already
taken into account by Eqs. (9.4) and (10.3). In the absence
of saturation (/? = const, /sat-»«>), the cross-distortions
vanish, and the first term in (11.6) goes over into (9.7). One
cannot calculate the noise level using the exact equation
(11.6) for an arbitrary level of saturation. However, this is
not required, since for volume holograms the only case of
any appreciable interest whatever is that in which the cross-
grating weakly saturates the photoresponse, M&p0 = \AB }/
Tsat S 1/4. If we consider precisely this parameter to be small
(but not saturation in general) and assume that IA S/B, we
obtain the following from (11.6):

(/ACOS6A)1'2

(11.7)

Remarkably, in this approximation the spatial structure of
the noise from both processes has the same form, namely, the
one that occurs in the case of a linear photoresponse. Ac-
cordingly one can perform all the calculations by using the
extinction coefficient previously derived, i.e., replace in Eq.
(11.2) \a(z)\2^\£a(z) +£b(z)\2. For exact fulfillment of
the Bragg condition X = 0, the slow amplitudes a(z) and
b(z) are phase-shifted by ir/2, so that the intensity of the
noise is determined by the sum of the intensities of the two
contributions. Actually the cross-contribution is always
small in comparison with the intra-contribution. That is, we
can neglect the term <x££(z). Without taking up the details
of integrating (11.2) for transmission and reflection holo-

/nois* //noise (<Po ' = 0)

1,0

0.04 0,06 y>~

FIG. IS. Level of intramodulational noise of volume holograms normal-
ized to their level in linear recording as a function of the saturability
parameter <p „ ' for fixed Mzztr/2, but various IA /!„.
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grams, we shall illustrate the results in the graphs of Fig. 15.
The intensity of the noise referred to its value in a nonsatur-
ating photolayer is shown for holograms having M^l.5
(i.e., with rj~ 1) as a function of the saturability parameter
of the photolayer <p 0~~l. These dependences prove to be prac-
tically identical for the two types of holograms.

Just as in the cases of thin and thick-layer holograms,
there is a remarkable point here. It is psychologically natural
to expect that every nonlinearity in transmission leads to
additional distortions. However, it turns out that for volume
holograms with IA 5/B/2, a nonlinearity of the local pho-
toresponse in the form of saturation decreases the noise for a
given value of tj. The reason is that, when IA s/B /2, satura-
tion suppresses the intramodulational inhomogeneities
more strongly than the inhomogeneities of the cross-grating.

Let us make another essential remark. The media of
large thickness most promising for volume holography, such
as "Reoksan" and photorefractive crystals give a dynamic
photoresponse &r(R) directly in the exposure process. As is
known,35'36 the dynamic effects can lead to changes in the
relative amplitudes and phases of the recording beams.
Moreover, the dynamic processes can cause the weak com-
ponents obtained by scattering of the reference wave by the
initial inhomogeneities of the photolayer to be picked up by
the amplification process.3738 This pumping implies en-
hancement of the initial noise during recording.

However, by selecting the angles of inclination and the
relationship of intensities of the recording waves A and B,
one can reduce to a minimum the variation of their relative
amplitudes and phases.29'32 If the dynamic processes never-
theless persist during recording, then they will mainly result
in two effects. The first is a small change in the mean inclina-
tion of the fringes of the cross-grating, and the second, a
change in the relationship of intensities of the waves
throughout the depth of the photolayer. The latter leads to a
z-dependence of the amplitudes of the cross-grating and of
the intrainhomogeneities. The influence of the first of the
effects can be easily compensated by a change in the inclina-
tion of the readout wave; then the second effect can be taken
into account with good accuracy by substituting into the
definition of the strength of the hologram the amplitude of
the cross-grating averaged over the depth. Holograms of
speckle fields offer appreciable advantages from the stand-
point of eliminating the harmful effect of self-amplification
of the noise in dynamic recording. Actually the noise adds
coherently with the input object speckle field, somewhat al-
tering its concrete realization. However, it is important that
this new speckle field is amplified by the reference wave as a
unitary whole. That is, the noise level does not increase rela-
tive to the object signal.

12. ANTHEM TO VOLUME HOLOGRAMS

It is time to summarize. We have examined in detail the
different types of holograms of speckle fields: thin, thick-
layer, and volume; transmission and reflection. It is clear at
present what their fundamental characteristics and limiting
possibilities are. This enables us to compare the different
types of holograms with respect to diffraction efficiency and

-4

-«• -2 o 2
b

FIG. 16. Dependence of the diffraction efficiency T} (a) and of the relative
level of distortions (b) on!n(i/Az,,) for different strengths M for trans-
mission (solid lines) and reflection (dashed lines) holograms.

relative noise level. The comparison turns out, and with a
great advantage, in favor of volume holograms. The anthem
to volume holograms is the dependences (Fig. 16) of the
diffraction efficiency rj and the relative noise level
(rj _ r70)/?70 on the parameter/, /Az, characterizing the de-
gree of "volumeness" of the hologram of the speckle field
A (R) . Thin holograms correspond to the limit L /&ZA < 1,
thick-layer holograms toL /Az< 5 1, and volume holograms

For the sake of definiteness, the graphs have been
drawn for phase holograms with a linear photoresponse. We
see from Fig. 15 that only volume holograms allow one to
attain maximum diffraction efficiency up to 100%. Their
most evident advantage is the rapid decline (as Az^ /L) in
relative noise level.

The indubitable advantages of volume holograms show
how pressing the problem is of creating new recording media
of large thickness and perfecting the existing ones, and also
of studying them in detail. Apart from this applied conclu-
sion, the authors are no less pleased that it has proved possi-
ble to solve such a complex problem of electrodynamics and
statistical optics completely, with high accuracy and with-
out simplifying assumptions.
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13. BIBLIOGRAPHICAL NOTES

The addition of a large number of monochromatic
waves with independent phases was treated by Rayleigh
(see, e.g., Refs. 21 and 39). Apparently the first observations
of the speckle structure of a light field were made in Ref. 40
and then with especial clarity and with a theoretical analysis
by Max von Laue.41 Professor I. A. Yakovlev has kindly
called our attention to Refs. 40 and 41. After the invention of
lasers speckle fields began to appear everywhere. In addition
to the general monographs of Refs. 13, 14, 42, 43 we note
here a number of studies on the structure of speckle
fields,44'48 their application in interferometry,45'46 and on
dislocations of the wave front of speckle fields.47 Holograms
using coded (i.e., speckle-inhomogeneous) reference waves
and the so-called "reference-free" holograms have been
studied in a number of paper; we note here Refs. 48 and 49.

Thin phase holograms of speckle fields have been treat-
ed in Refs. 50-52. Holograms in which the higher diffraction
orders are not excited have usually been called volume holo-
grams to distinguish them from thin holograms. The classifi-
cation used in this review, which distinguishes: 1) volume
holograms proper, 2) thick-layer holograms, and 3) thin
holograms of speckle fields, was introduced by the auth-
ors.53 The diffraction efficiency of thick-layer phase holo-
grams of speckle fields has been studied theoretically and
experimentally in Refs. 30, 53, and 54.

Calculations have been performed27 of the diffraction
efficiency and noise of holograms of speckle fields of all
types. The effect of saturation of the photoprocess on the
overall diffraction efficiency has been studied experimental-
ly and discussed theoretically in Ref. 30. The theory of satu-
ration effects, including the calculation of the noise, for thin
and thick-layer transmission and reflection holograms pre-
sented in this review is that of the authors. The selective
properties of thick-layer and volume holograms have be-
come the object of intensive studies since the ground-laying
study of Yu. N. Denisyuk.10 We follow our study26 in pre-
senting the problem of selectivity in Sec. 4.

The theory of coupled waves was first applied to holog-
raphy by H. Kogelnik.12 A detailed presentation of the re-
sults of this theory, including gratings of sinusoidal profile
with smooth inhomogeneity, is found in the monograph of
Ref. 74. One of the first attempts to transfer the theory of
coupled waves to the case of volume holograms of speckle
fields was made in Ref. 55. An important stimulating role
was played by the study of V. G. Sidorovich,56 in which the
diffraction efficiency of a paraxial transmission phase vol-
ume hologram was first calculated, with account taken of the
intramodulational contributions to the phase velocity of the
speckle wave.

Here an expansion was used of the speckle field of the
object wave into discrete angular components, together with
the concept of "modes of a hologram." It was followed by a
number of studies26'57"66 that employed the methods of
mode theory of volume holograms initiated by V. G. Sidoro-
vich and devoted to different aspects of the reconstruction
process. A space-frequency variant of the theory of three-
dimensional holograms was developed in Refs. 67-70 that

differs from the mode theory by expansion in a continuous
spectrum of angular components.

In this review for constructing a theory of volume holo-
grams we have employed the concept of a "specklon" intro-
duced in Ref. 28, which characterizes a speckle field with
altered phase velocity and a certain extinction. Thereby one
can obtain the needed results by a most simple and pictorial
method. This approach has been developed in Refs. 15, 26,
29,31, and 71. A language close to it has been used in Ref. 72.
The shift of the selectivity curve of a static volume hologram
was discovered experimentally in Ref. 32. The saturation of
the photoresponse of volume holograms was treated in Refs.
34 and 73 as applied to calculating the diffraction efficiency.
The calculation of the intramodulational noise of volume
holograms of speckle fields is due to the authors of this re-
view; it was published for an unsaturated photoresponse in
Refs. 29 and 58.

Dynamic effects are very important in recording holo-
grams of great thickness in materials such as "Reoksan" and
photorefractive crystals. In this review, which is devoted to
static holography, these problems have hardly been dis-
cussed. These problems for holograms of speckle fields have
been studied in Refs. 29, 67, 70, and 75.

The authors are deeply obliged to Yu. N. Denisyuk and
G. V. Skrotskii for attention and interest in this study, and to
N. G. Vlasov, A. V. Mamaev, Yu. I. Ostrovskii, V. G. Sidor-
ovich, and M. S. Soskin for valuable discussions.

"The senior author of this review (B. Z.) had the good fortune of associat-
ing with R. V. Khokhlov in the heroic period 1962-1966 when Rem
Viktorovich and S. A. Akhmanov were beginning in the Physics Depart-
ment of the M. V. Lomonosov State University in Moscow in the chairs
of Professor V. V. Migulin and Professor S. D. Gvozdover to become
involved in nonlinear optics. The aforementioned author considers him-
self a student of this remarkable school of nonlinear and coherent optics,
"perhaps not the most diligent and not the most obedient." It is difficult
to convey in words the radiation of human kindness and interest and
high scientific demands that stemmed from Rem Viktorovich. It is a
great pity that Rem Viktorovich did not have time to carry out all that
was within his powers, that was intended and destined for him in world
and Soviet science. And at the same time one is glad to see how his
scientific "family" is living and developing, and how his "scientific"
children and grandchildren are growing. To no lesser degree we apply
these words also to Elena Mikhaflovna, to their children and grandchil-
dren, to the remarkable family of Rem Viktorovich in the "ordinary"
sense.

2'Sometimes one uses the word "intermodulational," borrowed from ra-
diotechnology.

''However, there is an example of the so-called photorefractive crys-
tals,16'17 for which the reverse relationship can also exist.

4>We call the reader's attention to the importance of the choice of criterion
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