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The review describes the present status of the physics of optical pulse self-action phenomenon.
A brief analysis of linear propagation of ultrashort laser pulses in dispersive media and optical
elements is given. Results on self-phase-modulation and on profile shock waves in media with
various group velocity dispersion are presented. The problems of optical pulse compression
and the possibilities to control their shape are discussed in detail. Particular attention is paid to
the physical aspects of formation and interaction of optical solitons. Stochastic problems of
temporal self-action are also discussed. In conclusion the promising directions in nonlinear
optics of femtosecond laser pulses are discussed.
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INTRODUCTION consequences of the transition in optics to such femtosecond
time scales are justly compared to the revolutionary changes

One of the most outstanding achievements of laser in the spatial resolution of optical devices that followed the
physics in recent years is, undoubtedly, the development of invention of the microscope.
methods for generation and formation of optical pulses with Penetration into the area of the femtosecond time scale
pulse lengths ~ 10~14 sec, i.e., pulses that contain only a few is the result of intense work of physicist and engineers that
periods of optical oscillations under their envelopes. The has been carried out during the last fifteen years. An impor-
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tant component of this progress has become the wide use of
methods of nonlinear optics. The possibility of using fast
nonresonance nonlinear response of condensed media for
strong compression ("time focusing") of laser pulses was
mentioned already in the papers published at the end of the
1960s. These ideas could be completely realized, however,
only recently after the development of fiber-optic wave-
guides with very low losses.

Effective methods of optical pulse compression in fiber-
optic waveguides are based on the self-action effects of light
that are caused by dependence of the refractive coefficient of
a medium on the intensity of a light wave. An obvious result
of self-action of a laser pulse propagating in a nonlinear me-
dium is the temporal phase self modulation (its velocity can
be made very large). With the help of dispersive optical ele-
ments, the fast phase modulation can be transformed into
amplitude modulation—this is the main idea of "time focus-
ing," which is completely analogous in essence to the idea
which is the basis of the usual spatial focusing of a light beam
(a usual lens creates "fast" spatial phase modulation that
changes into amplitude modulation during the propagation
of a wave in free space). This compression technique is now
successfully used in femtosecond pulse generators in the visi-
ble, infrared and near ultraviolet regions. A key aspect that,
to a large extent, determines the effectiveness and reliability
of such devices, is the stability of the transverse structure of
the field in single-mode fiber optic waveguides up to intensi-
ties reaching 1010-10n W/cm2. In other words, in fiber-op-
tic waveguides the effects of spatial self-focusing and self-
defocusing are practically absent even for high fields, and
temporal self-action can be observed in pure form, without
competition with other nonlinear effects. This fact gave new
impetus to the theoretical and, particularly, to experimental
investigations; last years have brought many exciting
achievements in that direction. Undoubtedly, one of the
most prominent places among them should be given to the
work on the formation, propagation, interaction and ampli-
fication of optical solitons. Many new physical results were
obtained in this area; at the same time there are more and
more indications that optical solitons can be of direct inter-
est for the methods of information processing and for optical
communication systems.

The problems related to the propagation of high-power
femtosecond pulses (with pulse lengths down to ~10~14

sec, and intensities up to 1012-1014 W/cm2) have also led to
new fundamental questions in the area of nonlinear optics;
there are real situations when the already familiar quasiopti-
cal approximation is not valid any more, but the local non-
linear response of a medium can no longer be considered
weak.

The goal of this review is to describe the present status
of the physics of the self-action phenomena of optical pulses
and to discuss new physical problems and possible future
applications; in some sense this review can be considered as a
continuation of the review published in Uspekhi in 1967.'

Section 1 "Linear Fourier-optics of wave packets" pre-
cedes the presentation of the main body of the material. It
contains a summary of results on linear propagation of opti-

cal pulses in dispersive media and elements of optical sys-
tems. The analogy with Fourier-optics of wave beams has
been found to be rather useful in linear Fourier-optics of
wave packets; the spatial-temporal analogy has an obvious
heuristic value also in nonlinear optics. How is it possible to
get rid of the diffraction effects that are unavoidably present
in optical experiments? The radical solution of the problem
is provided by the use of weakly directing optical wave-
guides;2 for this reason Sec. 1 is concluded with information
on the dispersive properties of single-mode optical wave-
guides.

Section 2 gives a summary of theoretical and experi-
mental results on the main effects of self-action for plane
wave packets in media with a nonlinearity cubic in the field
that leads to a broadening of the spectrum.

For strong fields it is possible to observe, together with
the effect of self-phase-modulation (SPM) of a packet of
constant shape, a dependence of group velocity on intensity.
The broadening mechanism of a pulse spectrum in a medium
with cubic nonlinearity is rather complicated, and only in
the last few years it has become possible to separate the con-
tribution of different effects.

Section 3 discusses mainly applied problems-the com-
pression of ultrashort pulses and control over their shape.3

At present many research groups perform experiments with
fiber-optical methods of compression. For this reason we
present the results of a detailed numerical experiment which
allows one to optimize the compression, to determine the
limits of its possibilities and the prospects for producing the
shortest pulses possible. The same section also gives a rather
detailed summary of experimental data.

The problems of physics and technology of optical soli-
tons4"5 are dealt with in Sec. 4; the emphasis is on problems
directly related to experiments. The section discusses not
only the formation of single solitons in a passive medium,
but also the interaction of solitons, their amplification and
soliton effects in generators (soliton lasers).

Finally, Sec. 5 puts an emphasis on new problems of the
physics of temporal self-action phenomena. Special atten-
tion is paid to statistical problems in soliton theory, i.e., to
problems directly related to the self-action of noise pulses.6

1. LINEAR FOURIER-OPTICS OF WAVE PACKETS

A group of problems related to the propagation of wave
packets in linear dispersive media exists already in classical
linear optics.7"9 The greatest interest has been evoked by the
dispersive spreading of a packet10 and the formation of "pre-
cursors" during the interaction of a short pulse with a dis-
persive medium.'' Until the late 1960s, however, experimen-
tal optics could not provide any contribution to the
investigation of the aforementioned problems. Pulsed opti-
cal sources (including the first pulsed lasers) were in essence
generators of relatively long bursts of optical noise. It is nat-
ural that under these conditions there could not be any possi-
bility of studying the transformation of the envelope and
phase during the propagation process and, even less, of any
control over these parameters in time.
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In contrast, the experimental technique for the forma-
tion and modification of optical beams has been progressing
even before the development of lasers. The detailed develop-
ment of Fourier-optics of wave beams became the theoretical
basis of these methods.12 Only in recent years have the tech-
niques of optical pulse formation been augmented by the
addition of effective methods of control over the envelope
and phase of optical oscillations in the picosecond and fem-
tosecond time scale. The principle of these methods is based
on using a "non-resonant," nonlinear, "low-inertia" re-
sponse of condensed media (see Refs. 13, 14). Progress was
also made in the technique of measuring the profile and
phase of short laser pulses.

Dispersive effects, similar to wave beam diffraction, can
be used as a basis of various methods of compression and
shape modification of such pulses. For this reason the Four-
ier-optics of wave packets propagating in a dispersive medi-
um has recently undergone rapid development.15*16 In this
section we give a summary of results from the linear Fourier-
optics of light pulses which are related primarily to the com-
pression and formation of optical pulses of a specified shape.

1.1. Models of optical pulses

We write the electrical field intensity in the form

E (t, z) = e1--! A (t, z) exp [i (<s>0t—ktz)] + c.c., (1.1)

where e is a polarization unit vector, the direction of the z-
axis coincides with the direction of the wave vector,
A:0 = (^o/cJnotiUo), ca0 is the average spectral frequency of
an initial wave, «0(«0) is the linear refractive coefficient of a
medium. The complex amplitude A(t^) is a slowly varying
function of its arguments on a scale of the period of optical
oscillations and the wavelength. The amplitude A(t^) is as-
sumed to be given at the input z = 0 of a linear or nonlinear
medium, i.e., A (t^z = 0) = AQ(t) is a known function.

We shall consider here the models of optical pulses that
are most often used in laser physics.

1.1.1. Transform-limited pulses

A pulse the length r0 of which is completely determined
by the inverse value of the width A<y() of its spectrum is usual-
ly called a transform-limited pulse. In this case there is no
phase or frequency modulation of the pulse, i.e., the ampli-
tude A0(t) can be assumed to be real; we denote it b y p ( i ( t ) .
The phase is q>Q(t) = a r g A a ( t ) = 0, A0(t)=p0(t)

For transform-limited pulses the relationship

T0Aco0 = K, (1.2)

holds, where K is a constant (K~ 1) that depends of the
shape of the pulse envelope and the level at which r0 and A«0

are measured. Two types of pulses are considered most
often:

(1.3)

(1.4)

In the latter case the half-width of the pulse length r0 at the
e~l level from the maximum intensity is related to the pulse
length at the half-width r,/2 by the relationship
T0 = (4 In 2) ~ 1/2T1/2. Having in mind this relation, we will
in the future call the quantity TO simply the pulse length.

For a Gaussian pulse (1.4)

T0Aco0 = 2, = 4 In 2, (1.5)

where A<y0 and A01/2 are the spectral widths at the levels
corresponding to the measurements of the pulse length.

/. 1.2. Phase-modulated (PM) pulses

The phase <p0(t) of a pulse can be a complicated deter-
ministic or a random function. In the following description a
special role will be played by pulses for which
<p0(t) = — (l/2)cc0t

2, where a0 is the frequency change
rate. In this case, for a pulse with a Gaussian profile (1.4),
the spectral width is

(1.6)

Therefore, for PM pulses r0A<y0«£ > 1 when a0To > 1.

/. 1.3. Pulses containing noise

Nonlaser sources of light and, in some cases, multimode
lasers generate pulses with a complex amplitude of the form

A0 (t) = F (*) E (t), (1.7)

where F(t) is a regular function, and £ ( t ) is a random pro-
cess; in general, g ( t ) is a complex function. An example of
the process (1.7) can be the "flashes" of optical noise.

In the following subsections of this section we discuss
the propagation characteristics of optical pulses, described
above, in linear dispersive media.

1.2. Propagation of short optical pulses in homogeneous
dispersive media. Methods of description

The propagation of a plane wave packet in a linear iso-
tropic dispersive medium is described by the wave equation

where

is a linear electric displacement. The temporal dependence
E0(t) = HO (0 is related to the frequency dependence of the
linear dielectric permittivity.

When solving specific problems, it is common to use,
instead of the system of integro-differential equations (1.8),
the differential equations for complex amplitudes, using the
slow change of the system during the period Tof oscillations;
practically this assumption is valid up to pulse lengths TQ/
r=; 10-100.

Substituting (1.1) in (1.8b) and taking into considera-
tion the slow change of the complex amplitude A (t — t ',z)
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with time, we expand .4 in a series in t'. As a result we obtain

m* \ f / \D(t, 2) = [e0(co0)

+c.c. (1.9)

Neglecting the derivatives dm£0(co')/de0m in (1.9) is
equivalent to ignoring the dispersion of a medium (zero-
order approximation). In first-order approximation of dis-
persion theory we retain only the derivative de0 ( a ) /da, neg-
lecting the derivatives of higher orders. The derivatives
d 2E0(6))/do)2 are taken into account in the second-order ap-
proximation, etc. In other words, in this classification the
order of derivatives of the dielectric permittivity EO(CO) de-
termines the order of the approximation.

Substituting (1.1) and (1.9) into (1.8), we obtain the
following equation for the amplit

, l a . l , a* . . l

ml

92

dmA
dtm = 0, (1.10)

where « is the group velocity, and the parameter k2 charac-
terizes the dispersion of the group velocity

»**

Equation ( 1.10) is exact in the sense that it takes into
account the dispersive properties of a linear medium. At the
same time, for many cases of propagation of ultrashort pico-
second and femtosecond pulses the second-order approxi-
mation of dispersion theory is adequate. In that approxima-
tion the equation that is derived from (1.10) by neglecting
the terms under the sum can be simplified further. By using a
moving coordinate system (z = z,rj = t — z/u ) , it is easy to
show,6-17'22 that the operator in parentheses gives values of a
higher order of smallness than other derivatives.

As a result we obtain the equation

dA

that has the solution

(1.11)

Equation (1.11) is analogous to the parabolic equation
used to describe the propagation of light beams in a quasiop-
tical approximation. We note that for the first time the para-
bolic equation has been derived by M. A. Leontovich in 1944
during the investigation of propagation of radiowaves.

Within the framework of the described approximations,
one can see a rather detailed spatial-temporal analogy
between the behavior of wave packets and wave
beams.17'18'22 For this reason one often talks about the qua-
sioptical approximation in the description of wave packets.

The value k2 > 0 corresponds to the normal dispersion

of group velocity, and k2 < 0 corresponds to anomalous dis-
persion.

We emphasize once again that the parabolic equation
(1.11) corresponds to the approximation of the dispersive
properties of a medium by the following expression

(1.13)

leads to defor-Dispersion of the group velocity
mation of the wave packet.

1.2. 1. Gaussian pulses

According to (1.12), for a transform-limited Gaussian
pulse (1.4) we obtain

A(T\,Z)= 70"
 1/2 ( Po exp [ - ̂  ̂  + tq, (T), z)] , (1.14)

where

\k2

(z/LA)2

(1.15)

The length L d is called the dispersive spreading length of a
wave packet, it is completely analogous to the diffraction
length Ldif = (l/2)£0ao of a wave beam (a0 is the beam
radius).

The length of a Gaussian pulse increases in a dispersive
medium:

(1.16)

At the same time, the spectral width of a wave packet re-
mains constant in a linear medium, and it is for this reason
that a temporal phase (frequency) modulation arises, with
the modulation frequency variation rate ft = d<p /
drj = a (z) rj equal, according to (1.15), to

a(z)=-
2z

(1.17)

In a dispersive medium a transform-limited pulse, thus,
transforms into a pulse with linear frequency modulation;
the sign of the modulation is determined by the sign of k2.

By analogy with diffraction of optical beams, it is com-
mon, in the treatment of dispersive spreading of an optical
pulse, to introduce the near (z^L d , rp sr0) and the far, or
Fraunhofer, pulse zones (z>JLd, rp~(\k2\/T0)z). For a
Gaussian pulse the profile shape remains constant during
pulse propagation. For a pulse of any other shape the profile
shape will change during pulse propagation.

1.2.2. Phase-modulate pulse

We consider now the evolution of a PM pulse

A0 (t) = p0 exp [ -1 (TJ» + to,) i2 (1.18)

in a dispersive medium. In that case, in accordance with
(1.12),
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FIG. 1. Relative rate of variation of the frequency a = a(z)/aa of an
optical pulse as a function of the distance traversed f = 2/L d in a linear
dispersive medium. 1—pulse without PM (a0 = 0), here 3 = O(Z)T|; 2—
PM pulse, aak2 < 0, aarl = 2.0; 3—PM pulse, a0A:2 > 0, a0rl = 2.0.

[ - ( 1 • 19 )A (T), z) = /-1/2 (z) po exp

where

/ (z) = 1 — a0k2z 4- ikzT,~*z.

According to (1.19), a pulse spreads in a medium if a^c2 < 0-
In the case when a0k2 > 0, a PM pulse first gets compressed,
and then broadens. The minimal duration of a pulse

(1.20)

is reached at the distance

LK = (1.21)

At this distance the frequency modulation (FM) rate is
a(Lk) = 0, and the pulse length rmin is determined by the
total width of the spectrum (1.6). In other words, during
optical compression a pulse becomes transform-limited.
Pulse transition through the region of optimal compression
is accompanied by a sign change of the FM rate (see Fig. 1,
curve 3).

We note that experimental observation of the described
effects became possible only after the development of tun-
able lasers able to generate well-formed short pulses. In Fig.
2 are shown oscillograms that illustrate profile deformation
for short pulses propagating near narrow resonances in
atomic vapors.19 Here the dispersive effects (not only of the
second order, but also of higher orders) are clearly notice-
able already for pulse lengths of 10~8 sec. In Figs. 2b,c am-
plitudes of the largest peaks of emerging pulses are, respec-
tively, 1.3 and 1.5 times larger than the amplitude of the
input pulse.19

1.2.3. Propagation of a noise pulse. Temporal analogue of the
Van-Zlttert-Zernlke theorem

In order to illustrate propagation characteristics of the
noise pulses (1.7) in a dispersive medium, we assume that a
pulse is described by a Gaussian regular function
F(t) =p0 exp [ -12/2rj ]. The correlation function Bg (6)
of a steady-state random process £( t) is also assumed to have
Gaussian form:

BI (6) - <g (t) |* (t + 6)> = exp [ - (JL)2] , (1.22)

where rk>0 is the correlation time.
Using (1.12), is not difficult to calculate the noise pulse

correlation function for z > 0. The pulse length and correla-
tion time are equal, respectively, to20'21:

(1.23)

where L ^ is the dispersive spreading length of a noise pulse

Input pulse Output pulse

FIG. 2. Profile modification of short optical pulses propagating in a
strongly dispersive medium." The scale is 10 ns per division for input
pulses, and 5 ns per division for output pulses. The pulses generated by a
tunable laser had the mean frequency <o0 close to the resonance frequency
CI)P for the 2P1/2 line in Rb vapor. The pulse phase was modulated in
accordance with a harmonic law. Detuning from resonance is decreasing
in going over from case a to case d; Fig. 2a—input pulse without PM.

Expressions (1.23) completely coincide with the ex-
pressions for the beam radius a (z ) and the correlation radius
rk (z) of random optical beams if r0,rk0 and k2 are substitut-
ed by a0, rk0, and A; 0~ ', respectively.6 In particular, a pulse
with background noise spreads faster than a transform-lim-
ited pulse of the same length.

In the limiting case when T0>rk0, the pulse correlation
time in a medium is rk (z) s |fc2|zr<T '• This result can be
regarded as a consequence of the temporal analogue of the
Van-Zittert-Zernike theorem.6
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1.2.4. Effects of cubic dispersion

In cases when the parameter k2 = 0 (see Sec. 1.6), it is
necessary, in order to take into account the dispersive
spreading of pulses, to start with higher-order approxima-
tions of the dispersion theory, i.e., to take into consideration
the parameter (see (1.10))

L/i!*l\ _/_fM life.
*~ 2ft0 \ d<a» l<a.~\ dco» /«. ' uk, ' (1.25)

In the third-order approximation of the dispersion the-
ory pulse propagation is described in the general case by the
equation (in a moving coordinate system) :

Parameter k3 can be related to a characteristic spreading
length of a pulse

(3)_ OTS 1 1 . 1-1
- — ^1 I ̂  I ' (1.27)

The shape change of a regular pulse which follows from
(1.26) for k2 = 0 was analyzed in Ref. 16. It was shown that
for the lengthsz>£ £3) the amplitude^ (77,7) of a pulse oscil-
lates for 77 < 0, and decreases exponentially for ij > 0.

Propagation of regular, phase-modulated and random
pulses was studied within the framework of the third-order
approximation in Refs. 23-25.

1.3. Deformation of optical pulses during reflection, the
origins of phase modulation. Ultrashort optical pulses In a
resonator

According to the results of Sec. 1.2, propagation of opti-
cal pulses in a homogeneous dispersive medium is described
in the time-domain by (1.12), and in the spectral domain—
by the expression

A (Q = co — a>0, z) = K (Q, z) A0 (Q), (1.28)

where A0(ft) is the Fourier-spectrum of an initial pulse,
K(ft^) is the frequency transfer-function, or simply the
transmission coefficient. In the second approximation of dis-
persion theory we have

K(Q, z) = exp — i . . (1.29)

Consider the features of an ultrashort pulse reflection
from an interferrometric mirror. A mirror reflection coeffi-
cient for the amplitude has the form:

K (Q = co - co0) = r (Q) = | r (Q) (1.30)

Assuming that the phase <p( ft) is a slowly varying function,
we will describe the resonance properties of the mirror in the
form (compare with (1.13))

1
cp (Q) = cp0 (co0) + <Po& + T- <PoQ2. (1.31)

q> o and <p o are, respectively, the first and second derivatives
of the phase with respect to frequency at ca = eo0.

Comparing (1.30) and (1.31) with the transmission
coefficient of a dispersive medium (1.29) (see also (1.13)),
it is easy to see that reflection of a short pulse from a mirror

with a frequency-dependent, complex reflection coefficient
leads to a phase shift, group delay and phase modulation of
the pulse. For femtosecond pulses the onset of PM becomes
quite significant.26"29

Reflection from a multilayer mirror is one of the exam-
ples of new non-steady-state linear problems,'8' that became
important after the creation of femtosecond lasers. Ref. 30
mentions an interesting effect related to the total internal
reflection of ultrashort pulses. Some features of the passage
of ultrashort optical pulses through a Fabry-Perot interfer-
ometer are studied in Refs. 31-33.

1.4. Compression of phase-modulated optical pulses and
focusing of optical beams

Compression of PM pulses briefly discussed earlier (see
formulas (1.20) and (1.21)) is an important practical appli-
cation of the deformation of a short optical pulse in a disper-
sive medium. The compression of PM pulses has become
now, probably one of the most universal methods of obtain-
ing femtosecond pulses in the visible, UV and IR regions.
For this reason, we are going to discuss, without limiting the
discussion to the solutions of the parabolic equation only,
the physics of compression, paying special attention to the
analogy and differences of this process from the spatial fo-
cusing of optical beams.

Basic ideas of the compression of optical pulses in optics
were borrowed from the radar field.34'35 In the first experi-
ments on compression,36 the relatively long He-Ne laser
pulses (r0=;0.5 ns) were phase modulated with the help of
an electrooptical modulator. The PM pulses were com-
pressed by a dispersive device.37

We discuss now the major compression stages using
both the time and the spectral terminology. Let a PM pulse
have the form (1.18). The total phase of the pulse is
4>(r) = co0t — (l/2)a0f

2, and its instantaneous frequency

is a linear function of time."
The Fourier-transformation of the PM pulse has the

form:

(1.33a)

The Fourier-spectrum of a pulse on emerging from a disper-
sive medium is

AK (Q = co - co0) = A9 (Q) eicp«(Q), «pB (Q) = —L k2z&.

(1.33b)
A simple qualitative picture of the compression physics

of a FM optical pulse (1.18) can be given in the time do-
main.38 The results required for this were obtained above
(see expressions (1.12), (1.20), and (1.21)). In order to
give their physical interpretation, a real FM pulse must be
represented in the form of a train of pulses of constant fre-

where the phase is

<Pf l (Q)=-7
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quency which monotonically varies from pulse to pulse (this
is equivalent to a substitution of the linear dependence <o(t)
(1.32) by a step-wise dependence). It is easy to see that if, for
example, or0 > 0, then the condition of compression is k2 > 0;
in a medium with normal dispersion of group velocity the
"higher" frequencies located on the falling edge of a pulse
"catch up" with the low frequencies at the front edge of a
pulse.

It is easy to find also the length of the "time focusing"
(the compression length L k ) . Over this distance the group
delay time for highest and lowest pulse frequencies is
Afd~2r0, i.e.,

(1.34)

Since in the considered case a0r£> > !A#g.x2a0r0 (see (1.6)),
thenLk = (ao/^)"1-The minimal duration of a compressed
pulse is (see (1.20)) rmin = l/A«g=;(a0T0)-1.

Let us formulate now the requirements analogous to
expression (1.34) in the spectral domain. The answer is ob-
vious for our model of a Gaussian PM pulse having the form
(1.18). A PM pulse emerging from a dispersive medium will
have the maximum amplitude and, therefore, the minimum
duration under the condition that all its spectral components
are precisely phase matched: < p 0 ( f l ) + < p k ( f i ) = 0 (see
(1.33a), (1.33b)2)). It is easy to see that from this relation-
ship follow expressions for Lk (1.21) andrmjn (1.20).From
the phasing condition for the pulse spectral components, us-
ing an approximation of geometrical optics (a0

ro > 1), we
obtain for Lk expression (1.34).

For optimum compression conditions, the pulse com-

pression coefficient is

(1.35)

i.e., a pulse can be compressed by the same factor, by which
its spectrum is broadened by frequency modulation.

Compression of FM pulses has a lot in common with the
focusing of optical beams. Figure 3a shows the shapes of a
beam and a wave front for typical cross sections of a medi-
um. The profile shapes and results of FM for typical stages of
pulse compression are shown in Fig. 3b. From comparison of
both processes, it follows that one can talk about pulse com-
pression as "time focusing," with the frequency modulator
playing the role of a "time" lens. The region of optimum
pulse compression is equivalent to the region of beam con-
striction. The focal distance of a "time" lens is the parameter

F = K/Cj)-1. (1.36)

1,4.1. "Spectron";pulse shape In the far-zone

Let us analyze the propagation of PM pulses in a disper-
sive medium for arbitrary initial shape of the profile p0(t).

At the output of a frequency-modulating device a pulse
has the form

Evolution of this pulse in a dispersive medium in the second-
order approximation of dispersion theory is described by
the expression (1.12). In this case, at a distance z = F

I ~' we obtain

A (T),

Pol

(!. 2nk2z)~ 1/2p~0 (a0T0T))

+ 00

(1.38)

(1.39)

FIG. 3. Optical wave phase control in space (a-b)
and in time (c-d). a—beam focusing by a lens; b—
(for r): the solid lines — beam shape in front of the
lens (1), immediately after the lens (2), in the area
of beam constriction (3) and in the focal plane/of
the lens (4); the dashed lines - wave front of a
beam, c—Compression of FM pulse in a medium
with normal dispersion, b—(for t): solid lines —
pulse profile shape in front of the frequency modu-
lator (1), at the compressor input (2), in the area
of optimal compression (3) and at the "focal"
plane (4). d—<p(t) (dashed lines) and the frequen-
cy ca(t) (solid lines) in the same cross sections of
the medium as in Fig. 3c.
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FIG. 4. Profile modification of an optical pulse in a dispersive linear medi-
um, a—original pulse, b—"Spectron" (pulse at the focal plane of the
"time" lens). c—Pulse reversed in time (pulse at the optically conjugated
plane of the "time" lens).

From the obtained result it is possible to draw the following
conclusions about the pulse in the "focal" plane of the
"time" lens. The pulse shape is exactly the same as the Four-
ier-spectrum of the initial pulse.34-39 Such pulses are called
"spectrons."20-40 The profile of pulses turns out to be sym-
metric independently of the shape of the actual initial profile
p a ( t ) (see Fig. 4b). Also it turns out that a pulse has linear
FM that has the same rate as the input FM, but with the
opposite sign.34-39 If a0Tg > 1, the pulse is narrower than the
initial pulse, and for a^ < 1 it is wider. The described pulse
properties are analogous to the properties of a light beam in
the focal plane of a lens.12

In the absence of FM («„ = 0), the pulses have the de-
scribed properties in a dispersive medium in the far-field
zone (z>L d ) . In this case, it is possible to neglect the term
12/2k2z in (1.38), and expression (1.38) takes the form simi-
lar to (1.39).

1.4.2. Modification of FM pulses of arbitrary shape; time-
reversal of a pulse

The use of a frequency modulator makes it possible to
build a number of interesting schemes for modification of
optical pulses analogous in many respects to schemes for the
formation of light beams and images.l2-4'

As an example we shall consider modification of an op-
tical pulse by the system dispersive medium-frequency mod-
ulator-dispersive medium.20 If the condition

-£•+17=4-• (i-40)
which is equivalent to the lens formula in the geometrical
optics approximation, holds, then

_fl
%

PO —r' - - T f , (1.41)

where z, and z, are the distances traversed by a pulse before
and after the modulator.

We emphasize that the pulse shape does not change,20

but the pulse is reversed in time relative to the initial pulse42

(of the sign in the argument ofpQ and in Fig. 4c).
Transformation of optical pulses into pulses reversed in

time provides the possibility to realize the convolution of

optical pulses. A variation of convolution can be used, for
example, for the reconstruction of a profile shape.42

1.5. Wave beams undergoing fast temporal modulation

In many practical situations the approximation of a
plane wave packet cannot be used because of the mutual
influence of spatial and temporal modulations. The high-
frequency components of a pulse diffract slower than low-
frequency components; for this reason even in a nondisper-
sive medium at not too small values of the ratio A&>0/«0 one
can expect, as was noted in Ref. 22, a deformation of an
optical pulse.

The picture of mutual influence of spatial and temporal
modulations is rather complicated in the general case. For
this reason we consider only the particular case when
&2 = O.43"46 For a Gaussian beam (with a transverse intensi-
ty distribution U 2 ( r ) = exp( — 2rVa2,)) and a Gaussian
pulse (1.4) in the far-field zone of a beam z > L dif = A^c2, /2
the pulse length varies according to the formula45:

1/2
(1.42)

where a0 is the beam radius, and v0 is the phase velocity.
According to (1.42), the pulse length increases towards

the periphery of a beam, remaining constant along the axis.
In Ref. 45, taking diffraction into account, it was discovered
that the profile of an initially smooth pulse becomes modula-
ted.

Changes in pulses can occur, certainly, also during the
passage of light beams through different optical elements. In
Ref. 46 it was found that in focusing of an ultrashort optical
pulse by a zone plate its shape and length near the focal point
are altered. In Ref. 47 in an approach, based on the spatial
decomposition of a spectrum, possibilities are discussed of
obtaining similar shortened or broadened pulses, and also
pulses reversed in time.

1.6. Waves in single-mode fiber-optics waveguides.
Realization of conditions for propagation of quasiplane wave
packets

Conditions when the transverse structure of a wave
packet remains practically unchanged at distances about 106

cm both in the linear and nonlinear propagation regimes are
realized in single-mode optical waveguides. A typical fiber-
optic waveguide is a cylinder made from fused quartz, ap-
proximately lOOjum in diameter, placed in a protecting clad-
ding. In the area next to the cylinder axis there is an area, the
core, where the refractive index is increased by addition of
dopants. The typical diameter of the core of a single-mode
waveguide is 5-10 microns. In the process of propagation of
a wave beam along a waveguide, the core plays the role of a
distributed lens that compensates the diffractive spreading
of the beam.

The progress achieved in the manufacturing of fiber-
optic waveguides, and their numerous applications are de-
scribed in details in the review article of Ref. 2. For this
reason we present here only a few results that are required
for the following presentation.

Simultaneous effects of diffraction, linear refraction
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and dispersion are described by the equation

9 , •- - h /
dz

tz (ns) ps/nm-km

A - I , d2

A, — / • — k-, -i 2 2 drf

+ ikcl "c ~ "* /(/•) 1 A (i}sj) = 0,
«cl J

(1.43)

where the last term, responsible for refraction, includes the
index of refraction of the cladding ncl , the maximum value of
the index of refraction of the core «c , and the dimensionless
function /(r), describing the distribution of the index of re-
fraction over the cross section of the waveguide; kc} is the
wave number in the cladding material. We note that Eq.
(1.43) adequately describes the situation in the case of
weakly directing optical waveguides48 ( (nc — ncl )< 1 ) with
smooth, on the scale of A, variations of the index of refrac-
tion. A more general case is considered, for example, in Ref.
2. In practice the magnitude of (nc — ncl ) is of the order of
io-2-ur3.

Diffractive spreading of a light beam is compensated by
linear refraction on the longitudinal spatial scale of the order
of the diffraction length Ldif = (l/2)&oao~10~'-10"2cm,
while the dispersive phenomena in the case of picosecond
pulses become apparent at distances Ld = T^/\k2\~l02-l03

m. This circumstance allows one to separate spatial and tem-
poral effects and seek a solution of ( 1.43 ) in the form

A(i\, r, z) = a) «-' (1.44)

where the function U(r) describes the field distribution over
the cross section of an optical waveguide, y(r)j) is a com-
plex temporal amplitude, k is the correction to the wave
number kc] ( 0 < k < ( kc — kcl ) ) . Substitution of ( 1 .44 ) into
(1.43) leads to two independent equations

kU(r) =

dz

2/cc,
, U(r) + kc] * /(/•) U(r),

with the boundary conditions

U (r)'-* 0

ty (T|, 0) = i)?0 (
for r-

(1.45)

(1.46)

The first of the equations (1.45), together with the boundary
conditions, leads to the problem of finding the eigenvalues
kj<m and eigenfunctions Uj-m (r), i.e., modes of an optical
waveguide. The eigenfunctions of the weakly guiding optical
waveguides, usually denoted in the literature48 by LPjm,
constitute modes polarized in the direction perpendicular to
the axis. For a number of practically important cases these
distributions can be approximated by a Gaussian function.

Dispersive characteristics of fiber-optic waveguides are
determined mainly by properties of the materials used (ma-
terial dispersion). In experimental studies, as a rule, the dis-
persive parameter D, is used, defined by expression

, i i»rf ate ,
' — ~f~ ~3T" — Ta~ "Zi (1.47)

ff-

FIG. 5. Typical dependences of the temporal delay of an optical pulse
(dashed line-experiment) and of a dispersion parameter (the solid line-
calculations) in the vicinity of the wavelength corresponding to zero dis-
persion of the group velocity in a fiber-optics waveguide.49

D is usually expressed in ps/nm-km. Figure 5 shows the
experimental dependence ? d (A) 4 9 and calculated values
D(A). It can be seen that for optical waveguides for Acr

=: 1.3 n the parameter D and, therefore, k-,_ become zero. In
the spectral region A > Acr the anomalous group velocity dis-
persion (fc2 <0) is realized and for A <Acr the normal dis-
persion. We note that in the vicinity of the point Acr the
contribution of the waveguide dispersion can become signifi-
cant.

2. PHYSICS OF SELF-ACTION OF OPTICAL PULSES IN MEDIA
WITH CUBIC NONLINEARITY. SELF-PHASE-MODULATION,
PROFILE SHOCK WAVES (SELF-STEEPENING), DISPERSION
EFFECTS

2.1. Light self-action In a medium with cubic nonlinearity

Physical causes giving rise to the dependence of the in-
dex of refraction on intensity can be quite diverse. This de-
pendence can be due, for example, to the anharmonicity of
electronic and vibrational responses, electrostriction, orien-
tation of molecules in the field of light wave (Kerr effect),
heating of the medium, etc. Phenomenologically, all these
factors can be regarded as the manifestation of the nonlinear
response of a medium, which includes only odd-power terms
in the series expansion in terms of the electric field

where td is the group delay at the distance!,. The parameter

(2.1)
The nonlinear corrections to the index of refraction n

arise from the relationship D = E + 4tr^ in accordance
with (2.1).

In the harmonic or quasiharmonic electric field (1.1),
we have for the component describing the self-action caused
by the cubic nonlinearity

l

The fourth-rank tensor %$, has nonzero components
not only in anisotropic, but also in isotropic media, and this
explains the universality of self-action effects. The nonlinear
corrections to the refractive index 8n=n2\A \ 2/2 can be reli-
ably registered by interferometric methods even in laser
fields of moderate power (data on the values of n2 for differ-
ent materials can now be found in reference handbooks50).
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FIG. 6. Self-action of a collimated optical beam and a transform-
limited wave packet in a medium with cubic nonlinearity
(«2 > 0). With the beam self-focusing: a—side view, beams (sol-
id lines) and phase fronts for differentz/idif (dashed lines) ;b—
beam profile for different z/L dir, angular beam spectrum. Same
pictures are valid for the self-action of a wave packet (k2 <0):
a—lines of equal intensity in the plane •qf (solid lines), "time"
beams and self-modulation phase for different values of f = z/
La (dashed lines); b—pulse profile for different values off; c—
spectrum of a pulse after SPM.

0 1 Z frza0.!>7t
0 1 2 5 *xaa.ar<,

One of the most remarkable demonstrations of light
self-action phenomena is the spatial self-focusing of a light
beam,51 discovered experimentally for the first time in
1965.52

The physics of self-focusing of a beam of the form

E = e -5- A (r) exp [i (o)0i — kaz)] + c.c. (2.3)

is illustrated in Fig. 6, which shows qualitatively the modifi-
cations of a wave front (spatial self-phase-modulation oc-
curs), the cross-sectional intensity distribution, and the an-
gular spectrum S (kx) of a beam as it propagates in a
nonlinear medium with n 2 >0 in the absence of nonlinear
absorption.

Fig. 6 shows the situation, when nonlinear refraction
can suppress the diffractive divergence of a beam. As is well
known (see, for example, Ref. 1), this imposes limitation on
the total beam power P, which must exceed the critical value

(2.4)

for a Gaussian beam. When P>Pcrit, the nonlinear refrac-
tion caused by self-phase-modulation in the first layers of a
nonlinear medium, sharpens the transverse amplitude pro-
file, and this, in turn, increases the steepness of the phase
change, etc. As a result, a collapse of the beam takes place
within a distance called the self-focusing length.'

A qualitative picture of the initial stages of self-focusing
was traced out already in the first papers published in 1965-
1966; a detailed discussion of the problem was given in the
review of Ref. 1.

A similar graphic interpretation can be given to the
main stages of self-action of a plane wave packet. Here there
are many analogies with the picture of spatial self-focusing;
there are, however, some significant differences. In a medi-
um with the refractive index n = n0 + h2I the total phase of a

wave is

kz = - z = (t) z,

i.e., there arises a nonlinear correction to the phase depend-
ing on time

<p(i, z)=-k0nzl(t)z. (2.5)

The temporal self-phase-modulation leads, obviously,
to broadening of the frequency spectrum (see Sec. 2.2). It is
natural that, as is the case in spatial self-focusing, this must
cause a change in the intensity profile.

The relevant simple considerations can be given by us-
ing results from Sec. 1.2. According to (2.5), the rate of
frequency change, caused by self-action, is equal to

a tt -\ — d'<P j. ~ d"I (26)

The behavior of a wave packet is determined, as is
shown in Sec. 1.4, by the dispersion law of the medium. The
case of ak2 < 0 is of special interest, since it demonstrates
stages of optical pulse self-compression. SPM causes com-
pression, and this, in turn, increases the tempo of self-modu-
lation.

In the majority of experimental works carried out in the
late 1960s-early 1970s with high-power pulsed lasers, the
effects caused by spatial and temporal self-actions were
closely inter-related, giving rise to their strong mutual influ-
ence. It is natural, that under these conditions the self-action
process becomes significantly more complicated.53""57'60

In the mid-1970s, there appeared an opportunity to ob-
serve experimentally the spatial self-focusing and temporal
self-actions separately from each other. Ref. 58 describes an
elegant experiment on self-focusing of radiation from a tun-
able CW laser in atomic vapors. The opportunities to ob-
serve purely temporal self-actions became available in non-
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linear optics only after creation of the single-mode
optical-fiber waveguides with low losses.

2.2. Self-phase-modulation in a medium with "inertialess"
nonlinearity

We shall start by considering the simplest problem of
the propagation of a plane wave packet in a nonlinear iso-
tropic medium with cubic nonlinearity

(2.7)
02" C2 dt* C2

where the nonlinear polarization is given by the expression

\ 3 (3 ) ,
- Ml- (2.8)

As in the case of a linear medium, we seek a wave-pack-
et solution of (2.7) in the form (1.1). Then the variation of
the complex amplitude in a nonlinear medium is described in
the second-order approximation of the dispersion theory by
the equation (in the moving coordinates rj, z; compare with
(1.11))

where

(2.9)

(2.10)

Equation (2.9) is approximate also from the point of
view of taking into consideration the nonlinearity of the me-
dium; we assume that the terms containing time derivatives
of the slow part of the nonlinear polarization are of a higher
order of smallness. We must emphasize, however, that below
we shall consider two examples, when it is essential to take
these terms into account. These terms are related to the ap-
pearance of profile shock waves (see Sec. 2.4), and the spe-
cifics of compression of high-power femtosecond optical
pulses in optical-fiber waveguides (see Sec. 3.5).

In the first-order approximation of dispersion theory
(k2 = 0) the solution of Eq. (2.9) takes the form

A(1\, Z) = 40 (TJ) «-iWA.I'«, (2.11)

or, for the real amplitude p ( r j ^ ) and phase <p(i)^)

P (n, 2) = Po (11), <P (1. z) - -PVo (n) z, (2.12)

where we assume that <p0(f)) = 0, /?, = &0n2/n0, /„ = (c«o/
|^0|-

2

From (2. 12) it can be seen that the pulse profile propa-

gates with the group velocity u ( p ( r \ f ) = p0(t — (z/u)) and
does not change. Conversely, the pulse phase varies in pro-
portion to the distance traversed—self-phase-modulation
occurs. The pulse frequency change due to self-action is

di\ (2.13)

Let us consider the change in a Gaussian pulse caused
by SPM. We introduce the maximum phase shift

(2.14)
i

and the nonlinear SPM length—the distance at which

A, = (pVo)-'. (2-15)

The range of the frequency change 8a>(t) (2.13) increases
with the increase of £>max.

Graphs in Fig. 7 show the temporal behavior of the fre-
quency 8ca(t) and the rate of its variation.

The maximum shift of the frequency 8co(t) for a Gaus-
sian pulse is equal to

(2.16)

where Aw0 is determined from (1.5).
Fig. 8a shows the shapes of the broadened spectrum of a

Gaussian pulse for different values of the phase 0>max. It can
be seen that with an increase in the value of<pmax modulation
appears in the pulse spectrum. Characteristics of nonlinear
broadening of the spectrum for £>max > 1 were for the first
time determined by Shimizu.61 The main energy of the pulse
is concentrated in the frequency band

= 0.86(pmaxAo)0 (2.17)

A review of works performed at an early stage of re-
search on the broadening of the spectrum in the case of self-
action of optical picosecond pulses can be found in Ref. 55.
We note that the correct interpretation of experimental data
has always been complicated by competing nonlinear pro-
cesses, first of all by self-focusing.

For the first time SPM of ultrashort pulses in the ab-
sence of self-focusing was realized by the authors of Ref. 62
in a capillary fiber-optic waveguide filled with CS2. The
"cleanest" experimental data on the pulse self-action from
the point of view of comparison with the theory of SPM
presented above were obtained in Ref. 59. The authors have

FIG. 7. Shape of a Gaussian pulse (a), the reduced
phase tp = <p /pm.x (b), reduced frequency deviation
Soi(t) = Sto(t)/Sta(Q) (c) and reduced frequency
change rate 5 ( t f ) = a(tj)/a(0j) (d) as a function
of time T = J?/TO. &a(0) =2^max/r0, a(0,z)
= 2^m« /TO; TO is the pulse length.
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FIG. 9. Broadened spectrum of a Gaussian pulse with r() = 2.7 ps and the
nonlinearity relaxation time 9 ps for <pm,x = 265."

'Frequency spectrum
b

FIG. 8. Spectrum of a Gaussian pulse for different maximum values of
?"m»x -59 a—theory, b—experiment.

studied the dependence of the spectrum shape at the output
of a fiber-optical waveguide on the input pulse energy (Fig.
8b), and obtained good agreement with the theoretical
expression (2.16).

If one neglects the fine structure of the broadened spec-
trum, then for its integral characteristic—a RMS width—we
obtain the following expression63 (compare with (2.17)).

<(Ao))2> = [1 + (0.88(pmax)
2]V2Ao)0. (2.18)

We note that the above results refer to SPM of symmet-
ric pulses. It is easy to see that asymmetry of a pulse profile
also leads to the asymmetry of the spectrum.

2.3. Self-phase-modulation in a medium with relaxation
nonlinearity

The approximation of "inertialess" nonlinearity, on
which the material of the previous section is based, is also
valid, obviously, if the pulse length at the input to a nonlin-
ear medium r0 is much larger than the relaxation time of the
nonlinearity rr, i.e., £0>rr. Such a situation in fiber-optic
waveguides holds up to r0s;10~13 sec (rr<10~14 sec).
Conversely, if the high-frequency Kerr effect in liquids is
used (rr ~ 10 ~ '2 sec), then it is essential to take into account

the finite speed of the nonlinear response already in the pico-
second region of pulse duration.

When a nonzero value of the relaxation time is taken
into account, it is necessary to start from the non-steady-
state equation for the nonlinear correction 8n to the refrac-
tive index of the medium (see, for example, Ref. 1):

In accordance with (2.19), the change in the frequency
Sa> = d<p /di), where tp / r j ^ ) = — k^zSn, is determined by
the expression (r0<<rr)

1). (2.20)' 5ii — 2cTp r»\'\>-

It can be seen that the frequency shift is negative over
the entire pulse («2 > 0) • And this means, that in the limiting
case of "very slow nonlinearity" the pulse spectrum broad-
ens towards the low-frequency Stokes region.

For a Gaussian pulse the maximum variation of the fre-
quency is given by the relation

(2.21)

and it is inversely proportional to the relaxation time TT .
The broadened spectrum of a Gaussian pulse with a

finite value of rr is shown in Fig. 9; as can be seen, the spec-
tral distribution is essentially asymmetric relative the initial
pulse frequency.

The temporal SPM picture of a constant shape pulse, on
which the concepts presented above are based, corresponds
to the real situation, naturally, only at the first stages of the
self-action process. The shape of the pulse, undergoing SPM,
was assumed to be unchanged.

What is the behavior of the broadened spectrum, pro-
file, and phase in the case of the simultaneous presence of
SPM and group-velocity dispersion? This problem is dis-
cussed in Sec. 2.5 and Sees. 3 and 4.

2.4. Profile shock waves (self-steepening)

In this section we consider the situation when signifi-
cant nonlinear distortion of the profile is possible even in the
absence of dispersion. We are dealing with the so-called pro-
file shock waves, (self-steepening) arising during propaga-
tion of sufficiently powerful short pulses in a nonlinear medi-
um.

For a theoretical description of the effect we must in-
clude higher-order approximations in the expression for a
nonlinear source in the wave equation (2.7). Until now (see
(2.9)) we were assuming
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(2.22)

If the speed of a profile change and a nonlinearity are suffi-
ciently large, then instead of (2.22) we must write the series

X exp [i (co0t — (2.23)

The smallness parameter in the expansion (2.23) is the ratio
of the optical period to the pulse duration^ = TYr0.Then, in
the first-order approximation infi and the dispersion theory,
instead of (2.9) we obtain

-=o, (2.24)

where f32 = «2/c.
What is the consequence of the presence of an addi-

tional term in (2.24)? It leads, in particular, to the depen-
dence of the group velocity on the intensity of the propagat-
ing pulse. This fact was noticed for the first time by
Ostrovskii.65

The nonlinear correction to the group velocity for a me-
dium with M2 > 0 («2 <0) leads to the steepening of the trail-
ing (forward) edge of a pulse in the course of its propaga-
tion. This phenomenon was studied in the absence of
group-velocity dispersion in Refs. 66-68, and in the presence
of group-velocity dispersion and nonlinearity relaxation in
Refs. 69-71.

Let us turn to a specific analysis. By going over to the
profile and phase, from (2.24) we obtain the system

(2.25)

(2.26)

Equation (2.25) is the equation for a simple wave (see, for
example, Ref. 72).

In the theory of waves in weakly dispersive nonlinear
media (nonlinear transmission lines, nonlinear acoustics),
which is based on the method of a slowly varying profile,
developed by R. V. Khokhlov (see Ref. 73), an equation of
the type (2.25) is obtained for the field itself. This analogy
allows one to transfer a number of results obtained for simple
waves, for example, in the area of nonlinear acoustics, to
simple profile waves.

2.4. 1. Deformation of a profile

The solution of (2.25) has the implicit form

P (n, «) = Po fo - 3p,*P* fa, a)). (2.27)

Let us analyze (2.27) for a Gaussian pulse, for which

P2 (n, 2J = P? exp [ - (T| - 3p2zp2) i^}. (2.28)

The pulse profile change in the course of propagation is
illustrated by Fig. 10. It can be seen that the pulse deforms:
the leading edge becomes flatter, and the trailing edge, on the

2 V

FIG. 10. Shape of a Gaussian pulse (curve 1) in a nonlinear medium
(curve2) for 3/32p

2
0ra- '* = 1."

contrary, steeper. "Self-steepening" of a front is taking
place.

The steepening of the trailing edge of a pulse leads in the
end to the formation of a discontinuity, for which dp/
dr) = oo—a shock wave of the profile is formed. This occurs
at the distance71

1/2 Tn _ - _ /6nm,

which is called the distance of the formation of discontinuity
(v0 = c/n0,Snma]l = (l/2)/i2po). We note that Lr approxi-
mately corresponds to the distance at which the pulse maxi-
mum is shifted by a distance equal to its half-width. The
presence of attenuation S0 characterized by the length
Ls = (250)~~' "delays" the formation of a shock wave; for
Ls < Lr a shock wave is not formed.

The first attempts to observe experimentally the profile
shock waves in optics were made in the late 1960s (see Ref.
55); unfortunately, an unambiguous interpretation of the
experimental results was complicated by a significant contri-
bution of spatial self-focusing.

Grishkovskii et a/.75 observed directly the shape distor-
tion of a 10-ns dye laser pulse in Rb vapor, caused by the
formation of a profile shock wave.

For picosecond and subpicosecond pulses, direct obser-
vations of the shape are not yet possible; information about
self-action can be obtained from the form of the spectrum. It
is easy to see that the form of the spectral broadening under
the conditions of manifestation of the nonlinear correction
to the group velocity described by Eqs. (2.25), (2.26),
differs from the broadening under the conditions of "inertia-
less" SPM, corresponding to/?2 = 0. We shall illustrate this
by the approximate calculations performed for a pulse of a
constant shape (z<Lr, see also Ref. 76).

2.4.2. Spectrum broadening

We write a profile in the formp2(r]^) =posech (rj/T0);
then, according to (2.26), the relative change in frequency
is41:

«2L=4- «* + (C2- 2C sh T) ch-Hf1'2 -1}, (2.30)
{00 a

where Q = («2/cr0)poZ, T = V/ro- The maximum shifts of
frequency towards the Stokes So)s

max and anti-Stokes 5o>^a,
regions are determined by relation (Q> 0)

._.».[> (2.31)
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For Q4 1 from (2.31 ) follows the result Sco^ = qp CK/4>
coinciding with the result from the theory of self-phase-
modulation described in the previous section, i.e., the broad-
ening of the spectrum relative to the frequency o)0 is symmet-
rical.

In the case when Q> 1, the maximum broadening
towards the Stokes region is <5<y^ax s; (Q ~ ' — 1 )w,/2, and

towards the anti-Stokes region-Sea^ ^ Q-^2- . Therefore,

for Q^> 1, the spectral pulse distribution becomes strongly
asymmetrical; this asymmetry is connected with the pres-

ence of the term#,p2^2L in Eq. (2.26). The authors of Ref.
drj

76, using the theory presented here, interpreted the results of
experiments obtained by Fork et a/.77 Fork et a/.77, using 80-
fsec pulses at a wavelength of 627 nm and with the intensity
of 70~ 1014W/cm2, observed the spectrum broadening
towards the Stokes <5<y^ax /<y0 = — 0.6 and anti-Stokes
£ a

— '^- = 2.3 regions; practically, a spectral continuum was
ca0

generated. We remark, that the broadening of a spectrum
analogous to the broadening considered here, was obtained
in Ref. 79 on the basis of an analysis of Eq. (2.7). In Ref. 78,
a picture of profile shock waves formation is used for an
interpretation of broadening of the pulse spectrum in capil-
lary fiber-optic waveguides.

In addition to the profile shock waves, the additional
broadening of the spectrum of picosecond pulses (genera-
tion of light continuum89'90-94) can be caused by avalanche
ionization of a medium,91 four-photon parametric pro-
cesses,
ing54'55'57

92'93 the motion of foci in the case of spatial self-focus-
etc.

2.5. Combined effect of nonlinearity and dispersion of a
medium

Self-action of optical pulses in a nonlinear medium, ac-
companied by a broadening of the spectrum, can lead, as has
been mentioned before, to the necessity to take into account
the dispersion of the medium in the second- and higher-or-
der approximations of dispersion theory. At the present
time, this is the situation, which is most real and most often
encountered in practice in connection with generation of op-
tical pulses with pulse lengths ~ 10~ I3-10~14 sec.

Let us consider self-action of a pulse in a dispersive me-
dium, basing the analysis on Eq. (2.9).5) In a medium with
«2>0(/7, >0), the pulse frequency shift, determined by
(2.13), varies, as shown in Fig. 7. On the other hand, a rela-
tive delay of various spectral components of a PM pulse is
related to the dispersion parameter k2^=0. If k2 > 0, the ini-
tial transform-limited pulse spreads faster than in a linear
medium. If k2 < 0, then self-compression of a pulse takes
place51 (see Fig. 4b). These processes are analogous to self-
defocusing (£2>0) and self-focusing (&2<0) of a two-di-
mensional beam.

The typical nonlinearity length

is a temporal analogue of the beam self-defocusing or self-
focusing lengths, respectively.

The regime of self-compression is of special interest.
Under the condition L d = Ln,, the dispersive spreading of a
pulse is exactly compensated by compression. As a result,
the pulse retains its shape—a soliton is formed.83'84 The
steady-state shape of a pulse can be found by setting A in
(2.9) in the form A = AS (r))eir*. Then for the amplitude
^,(77) we obtain

This equation is transformed to the form

- 2 s - - - = .

When £, > 0 and k2 < 0 ( 2.33 ) , we have the solution

(2.33)

(2.34)

where the duration of the soliton rs and its amplitude /4s0

satisfy the relation

,M2o. (2.35)

(2.36)

The soliton energy density (J/cm2)

Wcri.=-

is inversely proportional to its duration.

FIG. 11. Variation of pulse shape with distance for
power densities W < Wcri

ton regime and W>
(a), W

(c).
>Fcrit (b) — soli-
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At the first stage, the pulse with the energy density
cnt compresses, and with W< WCTit spreads (see Fig.

11). At the same time it is necessary to emphasize, that the
soliton is a stable formation with respect to small perturba-
tions (see Sec. 4). In this lies the radical difference between
pulse self-focusing and self-focusing of three-dimensional
beams, the instability of which was noticed for the first time
by R. V. Khokhlov (see Ref. 85, p. 520). The stability prob-
lem of a plane wave in a medium with cubic nonlinear!ty was
considered in detail in Ref. 86, and of a plane wave modula-
ted in space and time—in Refs. 18,87. The evolution of tem-
poral perturbations of a plane wave was analyzed in Ref. 88.

The one-soliton regime of propagation of a pulse of the
form (2.34), considered here, is a particular solution of Eq.
(2.9). Other soliton regimes are discussed in Sec. 4.

3. FAST PHASE CONTROL, COMPRESSION AND FORMATION
OF OPTICAL PULSES

In this section we shall concentrate on one of the most
important applications of the temporal self-action effects,
i.e., the physics and methods of generation of femtosecond
pulses. As was shown in Sec. 1, for an efficient compression
of a transform-limited pulse it is necessary to modulate its
frequency according to a linear law. It is clear that if we talk
about producing pulses with lengths comparable to a period
of optical vibrations, the frequency scanning range must be
comparable to the carrier frequency. The only practically
available method of creating the required frequency modula-
tion is, at the present time, self-phase-modulation in a medi-
um with practically "inertialess" nonlinearity (electronic
Kerr effect).

"Inertialessness" of a nonlinear response is related
usually to the smallness of the nonlinear correction to the
refractive index («2sslO~13 CGSE units); for this reason it
is essential to have large interaction lengths. The optimum
media for producing self-phase-modulation turned out to be
optical-fiber waveguides (Fig. 12). This section starts with a
brief discussion of their nonlinear characteristics. Further
we will talk about the theory of optical compression, with
special attention paid to the most urgent problems: an in-
crease of energy efficiency, improvement of compressed
pulse quality, generalization of optimum compression the-
ory to randomly-modulated pulses, discussion of possibili-
ties for adaptive control of the profile and spectrum of femto-
second pulses.

The section concludes with a review of experimental
achievements on the compression of optical pulses and a dis-

cussion of prospects for generation of ultrashort pulses in the
IR and UV regions.

3.1. Materials for nonlinear optical phase modulators.
Nonlinear properties of fiber-optics waveguides

The idea of using optical nonlinearity for creation of a
phase modulator, i.e., a "temporal lens", was expressed and
realized at the end of the 1960s.95 It is natural that as the
nonlinear materials used at that time were liquids composed
of molecules with anisotropic polarization, which have a rel-
atively large nonlinearity of the index of refraction
(n2xlO~11) and a relaxation time of the order of several
picoseconds.

Self-phase-modulation in liquids with «2 > 0 gives rise
to positive frequency sweeping of a pulse in those of its parts
where the profile curvature is positive. In order to compress
such pulses, it follows from Sec. 1.4 that one must have me-
dia with anomalous group-velocity dispersion. Cells with al-
kali metal vapors,96 devices made of a pair of diffraction
gratings97 and some types of interferometers36 were used as
such media. Compression coefficients ~ 10 (from 20 ps to 2
ns98 and from 100 ps to 7 ps99) were achieved in experiments.
The drawbacks of compression schemes that use unbounded
media, are related to the inhomogeneity of frequency sweep-
ing in a transverse cross section of the beam and to the close
relationship between spatial and temporal self-action effects,
leading to instabilities of compressed pulse parameters.

A radical change in the situation has become possible
due to the use of single-mode optical-fiber waveguides as
nonlinear phase modulators. The magnitude of nonlinear
correction to the index of refraction in quartz glasses is small
(«2~10~13 CGSE units), however, the smallness of «2 is
more than compensated by the possibility of sustaining a
stable transverse profile of the light beam (diameter 5-10 /j.)
over distances of the order of a characteristic absorption
length <50~' (in the optical range 50~' ~ 104-105 cm). In addi-
tion, one must emphasize the practically "inertialess" na-
ture of the nonlinear response, the high beam "strength" and
the stability of the geometry.

The magnitude of the nonlinear correction to the index
of refraction Sn = n^f, «23.2-10~16 cmVJP, becomes com-
parable in quartz fiber-optics waveguides with the difference
of the refractive indices («c-ncl) only for an intensity of
/=; 1012 W/cm2. If one works in an intensity interval 106-109

W/cm2, the self-action model based on the assumption of
constancy of the radiation mode structure in a waveguide is
quite adequate7'. From the conservation of the radiation

FIG. 12. Working schematic for compression of optical
pulses using self-phase-modulation in a fiber-optics wave-
guide.
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mode structure in the waveguide one more important advan-
tage follows immediately—a high degree of homogeneity of
frequency modulation in a transverse cross section of the
beam. Real limitations on the frequency scanning range in a
fiber-optics phase modulator are associated, above all, with
competing nonlinear processes.103'146

3.2. Nondispersive and dispersive self-phase-modulatlon in
fiber-optics waveguides

Self-phase-modulation of a real laser pulse leads to a
complex phase time-variation law (see Fig. 7) even for a
medium with inertialess nonlinearity (see Sec. 2.2). In other
words, the "temporal lens", based on SPM, has, generally
speaking, strong aberrations. It is easy to see, however, that
the second-order dispersion can, to a large extent, correct
the situation.104 In this subsection we shall analyze the ef-
fects of dispersion on SPM, restricting the analysis to the
area of normal dispersion (A </lcr ,k2 > 0).

The second-order equation for the temporal complex
amplitude (1.44) has, in accordance with (2.9), the form

t -3- = - sign Av-1- -H- + tf|* |»t- rt*; (3.1)

here r = 77/r0 is the normalized "running" time, the dis-
tance f is expressed in units of the dispersive length g = z/
L d , the parameter S = LdS0 characterizes the absorption
over a dispersion length.

The nonlinearity is characterized by the parameter
R = Ld /Lp, where Lp is the length of self-phase-modulation
Lp = (/Ji/eff)"1 (see (2.15)). Unlike the case of an un-
bounded medium, this length is determined by the effective
value of radiation intensity in the waveguide

/-r=/«;B» (3-2)

where
2n oo

<!/"> = j d < p JE7"(r)rdr,
o o

and 70 is the maximum value of the intensity. In practical

calculations it is more convenient to use the expression

I«=JL- (3'3)

where P0 is the peak value of pulse power, S^ = (U2)2/
(U4) is the effective area of a mode, which differs only insig-
nificantly from the area of the waveguide core81.

Typical modifications of a profile, spectrum and fre-
quency modulation of a Gaussian pulse, obtained as a result
of numerical solution of (3.1), are shown in Fig. 13.

The dynamics of the self-action process of a temporal
profile is determined by relationships between characteristic
lengths of self-phase-modulation Lp, the dispersion Ld and
self-action Ln,. For experiments on the compression of
transform-limited pulses with an initial length of several
picoseconds105 the situation is typical when the length L of a
fiber-optics waveguide satisfies the inequality Lp ~Ln

< Ld . In this case at the initial stage of pulse propagation the
dominant process is the self-phase-modulation, leading to
the broadening of the spectrum and the formation of linear
frequency modulation within the pulse peak. Lowering of
the frequency at the leading edge and its increase at the trail-
ing edge under the conditions of normal group- velocity dis-
persion causes an additional, nonlinear spreading of the
pulse and a flattening of its top. A result of the combined
effect of dispersion and nonlinearity is the formation at the
distance z~2Ln, of a practically rectangular pulse with lin-
ear frequency modulation.

Thus, the combined effect of nonlinearity and disper-
sion leads to a significant shape change of frequency modula-
tion within a pulse: the region occupied by linear FM is sig-
nificantly broadened (see Figs. 7 and 13). A decrease of the
peak value of the intensity reduces the role of nonlinear ef-
fects, and the further evolution of the temporal profile is
determined mainly by linear dispersive spreading.

3.3. Optical compressors

Since in fiber-optics waveguides n2>Q, an optical
compressor must have anomalous dispersion91. The simplest

fea

FIG. 13. Evolution of the profile and spectrum of
an ultrashort pulse in the case of self-action in a
medium with normal dispersion (T = TJ/TO, £ — z/
La).

-2 0 2
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FIG. 14. Schematics of compressors with anomalous disper-
sion, a—grating type compressor, b—two-pass scheme (pos-
sibilities of controlling the amplitudes and phases of Fourier-
components with the help of a phase transparency are
shown). ,

optical compressor is shown in Fig. 14a. It consists of a pair
of diffraction gratings placed parallel to each other. As can
be seen from the diagram, the diffraction angle and, there-
fore, the length of the optical path of different spectral com-
ponents of the pulse depends on the frequency. For
6>0<1 the phase shift is

(3.4)

where the coefficients <p , and <p2 depend on the parameters of
a grating pair97 in the following way:

(3'5)l-[(X0/d)-sin7.)Js-

In these expressions b is the distance between the centers of
the gratings, y0 is the angle between the incident beam and
the normal to the surface of the first grating, 6d is the angle
between the incident and diffracted beams.

Comparing expansions (3.4) with an expansion of the
wave number k in series in powers of (co — <y0), it is clear
that a pair of gratings, placed at the distance b, is equivalent
to an anomalously dispersive medium of the length b, with

*iK) = -y-. (3.6)

For typical values of the parameters y0 = 60°, d
= 0.56-10"4 cm, A0 = 0.5 (im, the value of k £*> is of the

order of 10~26 s2 cm, and the effective dispersion length for
r0~ 1 ps is Ld = T*0/k

 (
2
K) ~ 1 m.

Significantly larger values of dispersion can be achieved
for glancing incidence of the light beam on the grating.I06

However, in that case the higher-order terms become impor-
tant in the expansion, and the compressor ceases being a
quadratic compressor.

We note that in the grating pair, shown in Fig. 14a, an
undesirable effect develops—the spatial shift of high-fre-
quency and low-frequency components. The indicated
drawback can be removed by using a mirror that sends the
radiation back to the grating pair. The spatial shift of the
frequency components is compensated after a double pas-
sage of the beam108 (see Fig. 14b).

For compression of frequency-modulated pulses with
an initial pulse length in tens and hundreds of femtoseconds

prism compressors were developed.109 The advantages of
prism compressors are related to low energy losses and the
absence of a spatial frequency shift. The main applications
area of prism compressors are intraresonator compression
schemes.110-111

3.4. Modeling of compression systems—an optimum
compressor

Practical realization of fiber-optics compression
schemes requires the solution of a number of important
questions, related to establishing optimum relations between
the parameters of an initial pulse, optical waveguide and a
compressor (see Refs. 112-114).

In a dispersion-free regime of SPM the calculation of
compression can be carried out easily if one assumes certain
values of r0 and /eff and the waveguide length L for the pa-
rameters of an initial pulse. Indeed, using formula (2.18) for
the nonlinear broadening of a Gaussian pulse, we obtain for

Ao> fa 0.88 (pmaxAo)0. (3.7)

An approximate expression for the compression degrees has
the form (see (1.35))

sjsO.SS/^/effX. (3.8)

The optimum distance between the gratings (see (1.21)) is
expressed in the following way:

The given expressions illustrate the physical principles
of compression, but do not allow calculations of such impor-
tant characteristics as the compressed pulse shape, its maxi-
mal power, etc. Real quantitative laws of the dispersive re-
gime of compression were established in the papers of Refs.
112,113 by methods of mathematical modeling. The models
were based on Equation (3.1).

The results of numerical studies of compression for the
system optical waveguide-quadratic compressor are pre-
sented in Fig. 15c in the form of the dependence of compres-
sion on the length of the fiber-optics waveguide for different
values of the nonlinearity parameter R (see Equation
(3.1)). It can be seen that for each value of the nonlinearity

658 Sov. Phys. Usp. 29 (7), July 1986 Akhmanove/s/. 658



12-

FIG. 15. Optimal conditions of compression. Calcu-
lated results: a—relative intensity of a compressed
pulse as a function of f = z/La • b—length of a com-
pressed pulse as a function of the reduced waveguide
length f; c—optimal distance between the compressor
gratings b /La as a function of f. Parameter of the
curves is the ratio P/Pcrit: 100 (1), 200 (2), 300 (3)
and 500 (4)."4

0.05 0.10 0,15 0.20 <T
c

parameter there is an optimal length Lopt of a waveguide, at
which the maximum compression degree smax is reached.
The existence of an optimum is due to the fact that for
z < Lopt the process of nonlinear broadening of the spectrum
is not yet completed. At distances z > JLop, the peak intensity
of a pulse is significantly reduced, and this leads to the sup-
pression of self-phase-modulation, while the continuing dis-
persive spreading of the pulse fronts reduces the possibility
of its compression.

The analysis of the dependence of s on f and R given in
Ref. 112 has made it possible to establish simple empirical
formulas for the optimum length of a waveguide and the
intensity gain

(3.10)

The constant C entering these expressions varies insignifi-
cantly with variation of the profile. For Gaussian pulses
if>0 = exp( — rV2) the value of C is about 1.79; for pulses
with a profile in the form of a hyperbolic secant ^0 = sech T,
C~ 1.84. Figure 15c illustrates the dependence of the opti-
mal distance between the gratings, expressed in units of L d,
on the waveguide length L and the nonlinearity parameter
R. The case of larger nonlinearities is discussed in Ref. 128.

Expression (3.9) for the degree of compression has
been obtained without taking into consideration competing
nonlinear processes. In real experimental situations the
maximum degree of compression is limited, as a rule, by the
process of stimulated Raman scattering.

The process of stimulated Raman scattering, develop-
ing from the level of random noise, leads to a significant
degradation of pumping under the condition146 that

gc e(rZ=: (3.11)

where gc is the signal gain coefficient at the Stokes frequen-
cy, having in the optical frequency region the order gc

~2-10~n cm/W. Forz<Lnl formula (3.8) leads to the
limitation s<,l4k0n2/gc- This limitation has a fundamental
character, since the quantity s is determined, finally, by the
ratio of the real and imaginary parts of the cubic susceptibil-
ity.

Of course, the real picture of the Raman frequency shift
is much more complicated, since the pulses at the main and
Stokes frequencies "run apart" because of the differences in
group velocities.

3.5. Special features of self-action of high-power
femtosecond pulses

With a decrease of the length of initial pulses and an
increase of input intensity to the level 1012 W/cm2, '"•'I6 the
character of nonlinear processes becomes significantly more
complicated. The transition to new temporal scales leads to
the necessity to reconsider initial assumptions, which were
absolutely natural in the picosecond range of pulse lengths.
Among these are the assumptions about slow variation of the
complex amplitude, quasi-steady-state nature of the nonlin-
ear response, negect of higher-order dispersion (1.10), etc.
Recently, all these questions began attracting the attention
of researchers.71'117-118 However, the analysis, carried out in
relation to the problems of fiber-optics compression for typi-
cal values of the parameters r0 ~ 50-100 fs, /eff ~ 1010-1012

W/cm2, and distances 1-15 cm, has shown that the main
role here is played by the effects related to the rate of change
of the nonlinear polarization (see Sec. 2.4 and Eq. (2.24)).
The initial equation, written in dimensionless units, has the
form
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FIG. 16. Pulse shape (a) and the dependence of the instanta-
neous frequency Sea = Star0 on the time (b) for different dis-
tances from the input to the waveguide z = z/Laf: 0.4 (1), 1.2
(2) and 2 (3).""

where the parameter of "non-stationarity" fj, = T^/irr0 is
proportional to the ratio of the optical period of oscillations
T0 ~ 2 fs to the initial length of the pulse and is of the order of
10~2. The necessity of taking into account the last term in
Eq. (3.12) is due to the fact that//.R ~ 1.

Special physical characteristics of self-action under
these conditions were determined with the help of computer
simulation.118 At distances r<Z,nl (Fig. 16) an increase of
the group delay for the pulse peak leads to the steepening of
the pulse trailing edge.

Further propagation of the pulse is accompanied by a
flattening of its top and an increase of the rate of frequency
modulation. At this stage, the frequency sweeping rate is
decreasing at the leading edge of the pulse and is increasing
at the trailing edge. The influence of this process on the pulse
spectrum is shown in Fig. 17a. The spectrum becomes asym-
metric, and develops a "wing" in the region of high frequen-
cies, and the intensities of the spectral components in the
Stokes region are slightly increasing.

The influence of all these processes on the compression
degree that can be achieved is shown in Fig. 17b, which
shows the dependence of s on the waveguide length z = z/
Lnl for a fixed value of the nonlinearity parameter and var-
ious values of the nonstationarity parameter f i . It can be seen
that with an increase of/z a decrease of compression degree

and a shift of the optimum compression point towards the
area of larger waveguide lengths is taking place.

Thus, taking into account the rate of change of the non-
linear polarization makes it possible to interpret a number of
special features of the compression of femtosecond pulses
mentioned in the experimental studies (Ref. 115, 116).

3.6. Compression of random pulses

Typically, real systems have amplitude and phase fluc-
tuations that influence the self-action of pulses and their
compression. Some principles regulating these processes
have been analyzed in Ref. 1 19 by methods of computer sim-
ulation. The Monte-Carlo method was taken as the basis of
the numerical investigation.120

We shall now discuss some results of computer model-
ing of pulses with random phase-amplitude modulation of
the form

0) = (T)], (3.13)

where *0(r) = exp( — rV2) is the deterministic profile,
and g(r) = |"R + /£i is a random process, the quadrature
components of which are distributed according to the nor-
mal law with a zero average value and variance equal to 1;
the parameter a characterizes the noise level. The autocorre-
lation function was assumed to be Gaussian (1.22). Figure
18 shows the transformation of temporal intensity distribu-

FIG. 17. Spectrum modification of a femtosecond pulse with
distance (a) and the dependence of the degree of compression s
on the correct length z = z//np of the waveguide (b) for different
values of parameter fi.'18
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FIG. 18. Modification of the shape of a realization of a random
pulse (a) and of the distribution of the instantaneous frequency
55 = SO>TO (b) with the distance z = z/Lnp.

U ' ' « ' *— U *• ^- ,y — I* ,

-Z -f 0 1 2 r -Z -7 2

tions and the instant value of the frequency with an increase
in the distance traversed by one of the random pulses along
fiber-optics waveguide. It can be seen how the smoothing of
intensity fluctuations and linearization of frequency modu-
lation in the central part of the pulse take place during the
self-action process. Fluctuations of intensity and frequency
modulation are localized mainly at the leading and trailing
pulse edges that correspond to low- and high-frequency
components of the spectrum.

Figure 19 shows the dependence of the compression de-
gree s averaged over the ensemble of realizations on the
length of the fiber-optics waveguide, expressed in units of
£,„,. For comparison, the corresponding dependence calcu-
lated for a transform-limited pulse (a — 0) is shown by a
dashed line. An increase of the noise fluctuation variance a2

leads to a decrease of the average value of the maximum
degree of compression, which can be observed, as before, at
2 ~ 2Z,n,. A decrease of the correlation time rK,0 also leads to
a decrease of the value of 5.

The special features of self-action of partially coherent
pulses noted in numerical experiments—the "pushing out"
of fluctuations toward high- and low-frequency wings of the
spectrum—permits the stabilization of parameters of com-
pressed pulses by spatial filtration of their spectral compo-

0.6 1.Z

FIG. 19. Dependence of the mean compression of random pulses on the
length z = z/Lnp of the waveguide.'" The dashed line corresponds to a
transform-limited pulse (R — 300, a — 0.14, rc = 0.64 r0). The standard
deviation is indicated.

nents in a grating compressor. The simplest spectral filtra-
tion is achieved by placing a diaphragm in the beam at the
plane of beam-returning mirror (see Fig. 14b).

Computer modeling shows that the addition of a fre-
quency filter with a rectangular transmission function K((o)
= 1 for &>, <a> <a>2, where the transmission band A<ytr was

chosen to be equal to the value of the spectral broadening of a
deterministic pulse, lowers the fluctuation level of the degree
of compression approximately by a factor of two. The estab-
lished regularities have been confirmed by experimental re-
sults.119-121

3.7. Adaptive optics of ultrashort pulse generators

Spatial separation of the pulse spectrum (Fig. 14b) in a
compressor allows constructing schemes for profile control
on a femtosecond time scale.119-121 The greatest opportuni-
ties here are opened up by the action on the phase of the pulse
Fourier-components.122 Let us briefly discuss the problems
of spectrum control as applied to the problem of an "ideal"
compressor. Essentially, we are discussing a device perform-
ing complete phase matching of all the spectral components
of the pulse and, therefore, forming a pulse of shortest possi-
ble length. The expression for transfer coefficient has the
form:

(3.14)

where, for a passive linear compressor, |K(co) | < |.
The spectrum of a pulse which has undergone self-

phase-modulation, can be written in the following form

A (o) =, A (o>) | «««*>».

At the output of a compressor we have

AK(u)=\K(<»)\\A(<s>)\e«'f+*«'>.

For an ideal compressor (see also Sec. 1.4) we have

<Pn («>) = —«P («>). \K(®)\ — i.

As was shown in Sec. 3.3, real grating and prism com-
pressors perform phase matching of spectral harmonics in a
parabolic approximation. The dependences $>(&), arising in

661 Sov. Phys. Usp. 29 (7), July 1986 AkhmanoveAa/. 661



-fff -8 \J \J\J V/ 8
a

0,1 ff.Z
b

FIG. 20. a—Spectral power density and phases of Fourier com-
ponents (dashed line) of a pulse after non-dispersive SPM (a)
for R£ — 18. b—Shape of the compressed pulse after an "ideal"
(continuous curve) and a quadratic compressor (dashed line).

the process of self-phase-modulation, are more complicated.
As an illustration, Fig. 20a shows the dependences of
\A (a) |2 and <p (ca) for the case of a pulse which had experi-
enced dispersion-free self-phase-modulation.

Figure 20b shows the shape of a compressed pulse for
the case of ideal and quadratic compressions. It can be seen
that the use of an ideal compressor gives significant advan-
tage in the degree of compression and guarantees higher ra-
diation contrast.

In practice, an ideal compressor can be realized with the
aid of a usual grating pair and a phase transparency, placed
in the plane of the "returning" mirror (see Fig. 14b). The
function of the transparency is to remove phase aberra-
tions—deviations of the real dependence <p(ca) from para-
bolic dependence. The controlled phase transparencies
based on liquid crystals are successfully used at the present
time for schemes for phase correction of coherent optical
beams.

Combination of amplitude and phase methods of con-
trol of a spectrum broadened by SPM, allows one not only to
achieve "ideal" compression, but also to solve a number of
other profile control problems, in particular, to form from
one pulse of a signal generator a train of several pulses.

In conclusion we indicate that the use in optical com-
pression schemes of fast controllable elements makes it pos-
sible to develop adaptive systems that control spectral and
temporal characteristics of ultrashort optical pulses, and
systems for controlling "light by light".

3.8. Experimental results. Generation of pulses with pulse
length down to 10~14 sec

Among the experimental investigations of recent years,
there are three characteristic directions oriented towards ap-
plications in the area of fast-process spectroscopy and in op-
tical information systems.

The first of these directions is the high-efficiency com-
pression of quasicontinuous pulses from solid-state lasers
with active mode synchronization with an initial pulse
length in tens of picoseconds to the subpicosecond re-
gion 108,123,124

The second direction is the compression of frequency-
tunable pulses from dye lasers with synchronous pumping,
with initial pulse lengths of several picoseconds to tens of
femtoseconds.105-125

The third direction is generation of the shortest possible

pulses (8-30 fs) by compression of ring dye laser pulses with
an initial pulse length of 40-100 fs.n5.n6.i26,i27

We shall now proceed to analyze the results obtained in
these three directions. The authors of Ref. 108 have achieved
an 80-fold compression of pulses of the second harmonic of
quasicontinuous generation (repetition rate 100 MHz) of a
YAG:Nd3+ laser with active synchronization of modes. The
initial pulse length is ~33 ps, the peak power is ~240 W.
The unusual scheme of a grating compressor used in the
experiment has made it possible to avoid a diffractive shift of
the beams and to obtain at the exit of the system pulses with a
length of 410 fs and a peak power exceeding the input power
by more than a factor of five.

Obvious advantages are opened up by the use of a signal
generator built on the basis of a YAG:Nd3 + laser, operating
in the regime of double modulation—active mode synchro-
nization and g-switching.124 Frequency doubling was pro-
duced in a KDP crystal with an efficiency of 50%, and this
made it possible to produce transform-limited pulses with a
pulse length of 33 ps and a peak power of 130 kW. Efficient
compression of such pulses down to 1 ps has been produced
by using a short section of a single-mode optical waveguide
(with a length of 10 m) and a grating compressor. The maxi-
mum degree of compression in these experiments was limit-
ed by the process of stimulated Raman scattering.

An alternative approach is the compression of
YAGiNd3"1" laser radiation on the main frequency. Using
this approach, the authors of Ref. 123 produced 45-fold
pulse compression of an 80 ps initial pulse down to 1.8 ps.
After frequency doubling in the KDP crystal, an average
power of 500 mW was obtained at a repetition rate of 82
MHz.

An efficient 15-fold compression of radiation from a
YAG:Nd3 + laser with mode synchronization and Q-switch-
ing was achieved in Ref. 129 with the help of a short section
of an optical waveguide of 10 m length. Hybrid schemes are
promising, in which solid-state laser pulses, compressed
with the help of fiber-optics waveguides, are used for syn-
chronous pumping of dye lasers.130

The second of the mentioned directions—compression
of picosecond pulses from dye lasers with synchronous
pumping served as a basis for creation of spectra-analytical
systems with femtosecond temporal resolution.

Typical orders of magnitude for quantities involved in
experiments are as follows. Synchronously pumped dye la-
sers generate transform-limited pulses with pulse lengths of
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FIG. 21. a—Schematic diagram of generation of
frequency-tunable transform-limited subpicose-
cond pulses using a fiber-optics compressor, b—
Compression results for a train of pulses: a pulse
at the optical waveguide exit (dashed lines),
and after compressor (solid lines).' l2

5—6 ps, peak power ~ 1 kW and repetition rate ~4 MHz.
After traveling a distance of 30 m along a fiber-optics wave-
guide, the profile acquires a typical rectangular shape (see
Fig. 13), and the length is increased by approximately a fac-
tor of five. At the output of a grating compressor one obtains
pulses with rmin ~450 fs and peak power ~ 3 kW.

Creation of a source of high-power frequency tunable
pulses is reported in Ref. 112; this source uses a pulsed solid-
state laser with mode synchronization as a signal generator.
The special feature of this scheme is that the compressed
pulse is amplified by a two-cascade amplifier, and the same
signal generator serves as a pumping source for the synch-
ronously excited laser and for the dye amplifiers (see Fig.
21). Such an approach allows one to reduce the noise level
and to avoid a number of technical difficulties, related to
synchronization of the amplifying cascades. The energy of
the compressed pulse after two cascades of amplification was
4.2 fiJ, which corresponds to a peak power of 7 MW.

Significantly higher degress of compression can be ob-
tained with the help of cascade schemes.125 The main idea of
cascade compression is shown in Fig. 22. A further improve-
ment of this scheme by the introduction of an intermediate
dye amplifier pumped by a YAG:Nd3+ laser has made it

5.9 ps
FOW, L = 3 m

10 ps

200 fs

FOW, L = 55 cm

FIG. 22. Schematic diagram of two-cascade compression.125
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possible to achieve the shortest possible output pulse lengths
of 1 6 fs with a peak power of 88 k W and a repetition rate of 1
kHz. The total compression coefficient of the two cascades

Another approach to the formation of maximally short-
est pulses is based on the use of fiber-optics compressors for
compression of pulses from dye ring-lasers. The first experi-
ments in that direction were carried out in 1982. The authors
of Ref. 126 have obtained 30 fs pulses by a three-fold com-
pression of radiation from a dye laser. The dispersive self-
phase-modulation has been carried out in a single-mode op-
tical waveguide with a length of 15 cm. The results of later
experiments on compression of femtosecond pulses are given
in Table I. They clearly illustrate the progress in methods of
generation, amplification, and compression of femtosecond
pulses. We note that the 8 fs pulses obtained recently (Fig.
23) correspond to approximately four periods of optical os-
cillations; therefore, in the spectral region covered by dye
lasers experimental results have approached very closely to
the theoretical limit.

3.9. Generation of femtosecond pulses in the IR and UV
regions

The problem of generation of high-power pulses in the
IR and UV regions is interesting from the point of view of
fundamental applications in laser photochemistry, plasma
physics, semiconductors, etc. Application of traditional fi-
ber-optics compression methods common in the visible and
near IR regions is complicated by technological difficulties
of making single-mode optical waveguides with small losses.
In the infrared region (A = 2-11 //m) significant progress
was achieved over the last several years.132 In the ultraviolet
region (/l~0.25-0.35^) optical losses, caused by Rayleigh
scattering (~A ~4) and by absorption,, reach hundreds of
decibels per kilometer.

Still, the idea itself of using SPM and dispersive com-
pression turned out to be quite productive also in the IR
region. The starting point here were experiments of Cor-
kum.133 In these experiments pulses from a CO2-laser with
an initial length T0zz2 ps entered a high-pressure (p = 10
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TABLE I. Compression of femtosecond pulses.

Initial pulse
length, fs

90
65
110
40

Input
power

kw

6,7
55
260
250

Waveguide
length

cm

15
0,8
1,5
0,7

Output
pulse length

length, fs

30
16
12
8

.Compres-
sion

coefficient

3
4
8
5

Repetition
rate
Hz

10
10

800
5000

Gear
references

1982 18«
1984 "»
1984 »5

1985 »«

atm) regenerative amplifier. In the process of formation of a
train of output pulses it was possible to observe their short-
ening from 2 ps to 600 fs at the characteristic values of peak
intensity ~ 1012 W/cm2. The author of Ref. 133 made the
assumption that the observed shortening of pulses is related
to the formation of an electron density wave. An increase in
the concentration of free charge carriers induced by radi-
ation causes a change in the real and imaginary parts of the
index of refraction and, therefore, leads to frequency modu-
lation. During propagation of a frequency-modulated pulse
in a medium with anomalous dispersion (in the experiment
under discussion these were laser windows made of NaCl
crystal) the pulse compresses.

In subsequent theoretical papers,I34JM an analysis of
mutual influence of high-power pulsed radiation from a CO-,
laser and the electron density waves induced by it has been
carried out. It was shown that if the intensity of the laser
pulse is large enough to cause a variation of free electron
concentration Nc, the resulting change in the index of refrac-
tion causes an increase of the instantaneous value of the fre-
quency with time (positive "chirp") at the leading edge of
the pulse and an increase in absorption at the trailing edge.

Various physical mechanisms, leading to an increase of
Ne -"heating" of electrons by radiation with subsequent ioni-
zation by electron collisions and photoionization of elec-
tronically-excited atoms in the field of intense radiation are
analyzed in Ref. 135. We note that questions of avalanche
ionization during propagation of high-power pulses have
been discussed by Yablonovich and Bloembergen (see, for
example, the review of Ref. 55).

Significant SPM arises during propagation of infrared
picosecond pulses in semiconductors. This was convincingly

demonstrated in recent experiments.IJ6 During the passage
of a pulse with an energy of W0~ 1/nJ (r0~ 8 ps, A0 in the
range 4-9 /im) through an InSb sample of a thickness of 300
fim, a decrease in the index of refraction of A« = 4-10~2 was
observed during the pulse period. Theoretical analysis
showed that the principal mechanism leading to the increase
of transparency and the change in A« is the dynamic shift of
the edge of the absorption band.

In conclusion we shall discuss briefly the possibilities of
generating high-power picosecond pulses in the UV region.
The most obvious prospects here are related to frequency-
doubling of pulses from synchronously-pumped dye lasers
and their subsequent amplification in excimer amplifiers. At
the present time, pulses with pulse lengths of 2 ps and 5
ps I37.I3K and energy ~ 10 mJ have already been produced in
such systems.

Further advances into the range of femtosecond pulses
is associated with a decrease in the length of initial dye laser
pulses. Figure 24 shows the modified scheme of the experi-
mental arrangement developed by the authors.138 As new
elements, it includes a fiber-optics compressor analogous to
the one shown in Fig. 21, and a two-cascade dye amplifier,
pumped by an Xe-Cl laser. We note that the amplifier serves
also as a selector of a single pulse from the train of dye laser
pulses. Therefore, a transform-limited dye laser pulse (r0 ~ 8
ps) was amplified, after 20-fold compression, to an energy of
50//J. After frequency-doubling in a thin KDP crystal, the
resulting pulse (A = 0.308/im) entered an excimer amplifi-
er. The wide XeCl amplification band (Av~ 160 cm~') al-
lowed one to obtain high-power UV pulses with lengths of
~350fs.

Thus, during the last several years there was laid the
foundation for realization of efficient generators of femto-

* t S f s

-60 BO T, fs

FIG. 23. Experimental autocorrelation function for intensity of a femtose-
cond pulse.' '*

FIG. 24. Schematic block—diagram of a subpicosecond pulse generator
for the UV region. 1—dye laser; 2—compressor; 3,4—dye amplifiers; 5—
frequency doubler; 6—excimer pump laser; 7—excimer amplifier; 8—
synchronization scheme.
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second pulses over the wide spectral range from 0.3 to 10

4. OPTICAL SOLITONS

The possibility in principle to realize experimentally9

soliton propagation regime for picosecond pulses in single-
mode fiber-optics waveguides was indicated by the authors
of Ref. 139. The first correct experiments, in which optical
solitons were observed, were performed in 1980.4 Subse-
quent theoretical and experimental investigations brought
out not only a number of subtle peculiarities in the forma-
tion, propagation, and interaction of solitons under real con-
ditions, i.e., in the presence of perturbing factors, but also
indicated the prospects of numerous technical applications
(see the review articles of Refs. 2, 4, 140, 141 ). In this sense,
optical experiments play a leading role in the physics of soli-
tons.

This section contains a summary of the principal results
observed in the course of investigating Schrodinger-type so-
litons. The main attention is paid to the physical problems
directly related to the applications of soliton effects to infor-
mation transmission in fiber-optics waveguides and for pro-
ducing ultrashort pulses. However, for the sake of complete-
ness of presentation, we start with an analysis of some
properties of one-soliton and multi-soliton solutions of the
Schrodinger equation.

4.1. One-soliton and multi-soliton solutions of the nonlinear
Schrodinger equation

We shall neglect optical losses in Eq. (3.1), and by ren-
ormalizingtftr.f) =R i;V(7-.f).wewrite(3.1) (for/t2<0)
in the form convenient for mathematical analysis

(4.1)

One of the soliton solutions q = sech r was obtained in Sec.
2.5. It is easy to see that the solution can be generalized in the

following form:

q (T, £) = v. sech (XT) e-*"'t (4.2)

where x is the form-factor, determining the pulse amplitude
and its length T^/K. The condition of pulse stationarity
R = 1 leads to the expression for the critical power (see Sec.
2.5)

p _ f• Sef(nO (4.3)

Significant stability of soliton pulses towards regular
and noise perturbations is supported by results of theoretical
and numerical analysis.142'143 In particular, if the initial con-
ditions have the form:

q (T, 0) = q0 sech T, (4.4)

where q0 = 1 + $, — 0.5 < £ < 0.5 is the perturbation of the
amplitude, then for £ — oo the solution (4.1) has the form
(4.2) with the form-factor x=\+ 2£.143

The possibility of obtaining solitons from pulses of dif-
ferent shape and their stability towards perturbations are of
fundamental significance for their use as carriers of informa-
tion.

Another quite important class of solutions of Eq. (4.1)
are the bound states of solitons corresponding to the initial
conditions (4.4) for q0 = N, where JV>2 is an integer. The
principal properties of such pulses are analyzed in Refs. 142,
143. By using the inverse scattering problem method, it was
shown that the pulses with a profile in the form N sech r
constitute a nonlinear superposition of solitons with form-
factors*n = (2n — 1), wheren = 1,2,...,N. Forg0 = N the
shape of the profile qN can be found for arbitrary T, £ from
the solution of a linear system of TV equations. In addition, it
was shown that the solution qN is stable with respect to small
perturbations of the amplitude q0 of the type q0 = N + g.

An important characteristic of JV-soliton pulses is their

FIG. 25. Self-compression of an TV-soliton pulse for
N = 45 and (on the insert) the dependence of the
minimal pulse length on N."s
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FIG. 26. Experimental profiles of autocorrelation functions
for intensity4 (a) and calculated intensity profiles for N = 1,
2, 3 and 4 (b) (from left to right).

-Z 0 2 *

periodicity in £, with the period, when expressed in disper-
sion lengths, equal to ir/1. It is essential that for an arbitrary
qQ> 1, the initial propagation stage of a transform-limited
pulse corresponds to self-compression, which indicates a
possibility of creating fiber-optics compressors for trans-
form-limited pulses in the near IR region. Profile modifica-
tion in the process of propagation is illustrated in Fig. 25 for
N=4. All the described characteristics of soliton pulse self-
action were confirmed experimentally.4 Figure 26a shows
the experimentally obtained temporal profiles of the auto-
correlation function for the intensity at the waveguide out-
put and the calculated intensity profiles for N = 1,2,3 and 4,
and £ = Tr/4 corresponding to them.

Successful experiments with optical solitons, the results
of which agree with the theory not only qualitatively, but
also quantitatively, have stimulated the emergence of three
important directions of research: 1) solitons in real commu-
nication lines, 2) control over the profile and spectrum of
picosecond pulses, including their compression down to the
range of femtosecond lengths, and 3) creation of soliton la-
sers.

We shall now discuss the main results obtained in these
three directions.

4.2. Propagation of solitons over super-large distances—the
problems and prospects

In order to find the limiting capabilities of optical infor-
mation systems, it is necessary to take into account a number
of such factors of perturbation as optical losses, interaction
of solitons in the train of pulses, higher-order dispersion,
competing nonlinear processes, etc.

The effects of low optical losses on the dynamics of soli-
ton pulses can be estimated by the perturbation method de-
veloped in Ref. 140. In the presence of losses, the energy of a

pulse
OO

= j

decreases with distance according to the exponential law:

W (£) = W<,e-*K. (4.5)

If optical losses over a distance of the order of the dispersion
length are small, then the form-factor of a soliton will de-
crease, and its length will increase:

(4.6)
T. \<s) = i0e-"».

For example, for losses ~0.2 db/km the pulse length will
increase approximately by a factor of 2.7 over a distance of
about 20 km for an initial pulse length r0~ 10 ps.

More complicated is the question concerning the influ-
ence of large optical losses (8g > 1) on the dynamics of one-
soliton and JV-soliton pulses.144>l45 In this case the modifica-
tion of the profile is investigated by the methods of computer
simulation. Figure 27 shows the f-dependences obtained by
the authors of Ref. 145 of the mean square of the length of an
Af-soliton pulse (N=2) for different levels of losses. The
dashed lines correspond to the case N = 1. With an increase
of the parameter 8 one can observe the increase of the spatial
period of pulsations {t2^)) and the increase of modulation
depth. In numerical experiments145 a decay of the bound
state of solitons into two pulses moving in opposite direc-
tions was discovered also.

The broadening of pulses caused by optical losses can be
reduced to a minimum and even completely removed by us-
ing the process of stimulated Raman scattering.147 In the
approximation of a given pumping field the power of a
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over relatively small distances f < 1 are discussed in Ref.
149.

We shall now discuss the influence of higher-order dis-
persion on the dynamics of a temporal profile. By including
cubic terms in the expansion (3.2) we obtain the following
equation for the complex amplitude of a temporal profile
(see (1.26)):

ar — 9. AT* I fi 1J*1 flr»dt
(4.8)

FIG. 27. Solitons in an absorbing medium. Dependence of the RMS pulse
length on the distance t, = z/La for different levels of losses 8 = La 50

M!;
solid lines — N = 2, dashed lines — N = 1 .

Stokes wave increases exponentially with distance146:

• (4.7)

where the amplification coefficient gs is of the order of 10~ "
cm/W for a frequency shift rjp — rjs ~440 cm~ '. The effec-
tive area 5eff in formula (4.7) is determined by the overlap

where the parameter fil = 2Ld/L j3> characterizes the rela-
tive contribution of the third-order dispersion. In the area of
maximum transparency of quartz glass A, ~ 1.5 [im this pa-
rameter is small ( /u,~10~2 for r0~l ps), and the third-
order dispersive effects are estimated with the help of pertur-
bation theory. The authors of Ref. 140 have shown that in
this case there appear insignificant distortions of the profile
and a correction to the group velocity of the order of /u,.
Qualitative results of perturbation analysis are confirmed by
results of numerical experiments,150 even for/z, ~ 1. Typical
intensity profiles are given in Fig. 29a for different values of
g (R = 1, ifi0 = sech T, £ is expressed in terms of the disper-
sion length).

However, as the radiation length A approaches the val-
integral (v2

p)(v
2)/(v2

pv
2

s) and in a single-mode optical wave- ue where the group velocity has zero dispersion (A,
guide differs only slightly from Sg = ira0.

The possibility of compensating for optical losses by
Raman amplification has been demonstrated convincingly
in recent experiments.147 Transform-limited pulses from a
color-center laser (/ls = 1.56/urn, r,/2 = 10 ps) were intro-
duced into a single-mode fiber-optics waveguide with a
length L = 10 km. Continuous pumping radiation (Ap

= 1.46//m, P = 125 mW) was introduced from the output
end of the waveguide. In the absence of pumping, the length
of an output pulse increased by approximately a factor of 1.5
(Fig. 28), however, the use of Raman amplification has
made it possible to compensate for the broadening of the
pulse completely (dashed line in Fig. 28).

In Ref. 148 the transmission of soliton trains over su-
per-large distances was studied numerically in the presence
of periodically located amplifying areas of a fiber-optics
waveguide. It is shown that with the optimal choice of sys-
tem parameters it is possible to reach the information trans-
mission rate ~ 10 Gbits/sec for a distance of L~ 103 km.

Questions of nonlinear stabilization of pulse lengths

= 1.3
fj.m; see Fig. 5) and the nonlinearity parameter R increases,
the physical picture of self-action changes significantly. An
irreversible decay of the initial pulse into fragments takes
place, and its total width and additional group delay in-
creases significantly. Characteristic intensity profiles are
shown in Fig. 29b. The orders of magnitude of the quantities
involved here are the following: the length of a picosecond
pulse is doubled due to self-action at a distance of ~ 6 km for
the peak power P0~ 1 W.

For high-power subpicosecond pulses a significant per-
turbing factor is the nonlinear correction to the group veloc-
ity, which is responsible for the formation of a profile shock
wave (self-steepening) (see Sees. 2.4 and 3.5). The presence
of a second-order anomalous dispersion, however, leads to
the stabilization of the steepness of the trailing edge. In Ref.
71 a soliton-type solution of Eq. (3.12) was obtained for
k2 < 0, a special characteristic of which is the presence of
nonlinear frequency modulation. The authors of Ref. 151 in
numerical experiments have studied in detail the influence of
the rate of change of the nonlinear polarization amplitude on

To autocorrelator

•0

A

Auxiliary FOW

Single-mode
FOW

Pulses from a color
center laser
10ps, 1.56//m

-20 -10 0 10 20 f,nc

(HZ
Continuous color center

laser pumping 1.46/urn

"*

Birefringent
beam splitter

FIG. 28. Schematic arrangement for the compensation
of losses during soliton propagation in long optical
waveguides using stimulated Raman scattering.l47 On
the insert are shown profiles of autocorrelation inten-
sity functions: 1—input pulse, 2—output pulse in a
waveguide with losses, 3—after compensation of
losses.
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FIG. 29. Nonlinear propagation of ultrashort pulses for
/l~/lcril (&2;=0).'50 a—Modification of pulse profile with dis-
tance for P = P,Til. b—Same for f = 10 Pcril.

the propagation of JV-soliton pulses and have shown the pos-
sibility of their decay.

Transmission of information along fiber-optics com-
munication lines is planned to be accomplished by a se-
quence of solitons, and therefore the problems of soliton in-
teraction are quite important. The physical picture of a
Schrodinger-type soliton interaction is discussed in Ref. 152
by perturbation theory methods, and in Ref. 153 by the in-
verse problem method of scattering theory. An important
result is that the propagation dynamics of a soliton pair of
the form

q (T, 0) = sech (T -f- Ts) + sech (T — Ts) (4.9)

with an initial pulse sequence period 2TS can be described in
terms of quasiparticles, between which acts an exponentially
decreasing "force". The magnitude and sign of this "force"
strongly depend on the phase difference A^>. When A0>
changes from 0 to w "attraction" changes to "repulsion".
Estimates for the merging point £s of two "attracting" soli-
tons were obtained; in particular, for 2rs~80 ps and r0

~4ps,Ls is ~100km.
An effective approach that allows one to select a soliton

component for an arbitrary sequence of N pulses and to
study its evolution with distance is developed in Ref. 1 54. As
an illustration, Fig. 30 shows the motion trajectories for the
maxima of the function \q\2 for the case A0> = 0, N = 2 for
different T, [initial conditions (4.9)]. The authors of Ref.

145 have analyzed the influence of optical losses on the char-
acter of soliton interaction.

Thus, the detailed analysis of the physical picture of
soliton propagation along real optical waveguides carried
out over the last several years has confirmed the usefulness
of utilizing solitons in optical information systems.

4.3. Self-compression of high-power picosecond pulses In
fiber-optics waveguides

In the previous section we considered the question of
how, using methods of nonlinear optics, one can minimize
the change in width and energy of an optical pulse at greatest
possible distances. Now we consider the problems of using
nonlinear effects for producing pulses of the shortest possi-
ble duration. As has already been mentioned earlier, the self-
action of a transform-limited JV-soliton pulse always starts
with its compression. However, the experimental realization
of fiber-optics compressors requires the solution of the prac-
tically important problems of the optimal length of a fiber-
optics waveguide and the greatest achievable degree of com-
pression.

Simple estimates of these important quantities can be
obtained from considerations similar to those given in Sec. 3.
Starting from the magnitude of the nonlinear spectral broad-
ening Ao> ~ TO lz/Lp and the condition A?3 ~zk2ka = 2r0, it
is easy to show that the trailing edge of a pulse that has
undergone SPM, "catches up" with the leading edge at the
distance z~Lnl [see (2.32) ]. Thus, the length of an optical
waveguide should be of the order of a nonlinear length.

To estimate the degree of compression s we use the fact

that 5 —. If a pulse at the input to a medium is trans-
A<w0

form-limited, the estimate for the degree of compression has
the form

(4.10)

FIG. 30. Interaction of two solitons.l54 Trajectories of motion of intensity
maxima for the initial conditions (4.11) are shown.

The complete information on the dependence of s and
Lopt on the radiation characteristics and waveguide param-
eters can be obtained only by numerical experiments. The
authors of Ref. 155 studied the dependence of the optimal
waveguide length, the degree of compression and the
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cies o)p and u>

amount of energy contained in the central peak (see Fig. 25)
on the pulse amplitude q0 for the case q(r,Q) = q0 sech T.

The experimental results on self-compression are given
in Ref. 155. A transform-limited pulse from a color-center
laser (A ~ 1.5 fj.m, total pulse length at half-height is ~ 7 ps)
with synchronous pumping was introduced into a fiber-op-
tics waveguide of length L zz 320 m. At a peak power of radi-
ation of P0~2QQ W, which corresponds to q0~ 13, the pulse
length at the output of the waveguide decreased to 310 fs. In
a shorter waveguide with L = 100 m, and at higher powers it
was possible to realize a degree of compression s = 27, and to
obtain pulses with a length ~ 260 fs.

Recently, among the methods for the formation of ul-
trashort pulses in the near IR range there appeared another
promising approach—compression using Raman frequency
shift. The approach is based on the transformation of an N-
soliton pumping pulse into a high-power one-soliton pulse at
the Stokes frequency. In the theoretical papers of Refs. 156,
157 the physics of nonlinear transformation of solitons in a
fiber-optics waveguide with a small number of modes was
examined under the condition of complete or partial com-
pensation of the detuning of group velocities at the frequen-

due to the waveguide dispersion.
The result of the nonlinear transformation is a soliton at

the Stokes frequency with an energy practically equal to the
energy of the multi-soliton pumping pulse. Thus, for exam-
ple, the pumping pulse qp = N sech r for N = 3 is trans-
formed into a Stokes soliton q^=x sech (XT) with the form-
factor x = 7.

The authors of Ref. 158 have realized experimentally
compression of pulses in a single-mode waveguide using the
Raman frequency shift. As a source they used a parametric
light generator with synchronous pumping (r0~30 ps,
A~ 1.5-1.65/um). For an input pulse power P0 — 900 W, and
a waveguide length of 250 m, it was possible to observe at the
waveguide output 200 fs pulses at the Stokes frequency with
a power of 55 kW (the magnitude of the Stokes shift was
~ 55 cm"'). The physical mechanism of compressed pulse
formation based on Raman amplification of a "priming"
pulse at the frequency arising during the SPM at the leading
edge of the pulse, was also considered.

The possibility to achieve, in principle, a high degree of
compression in the system fiber-optics waveguide-amplifier
is shown in Ref. 159. It is essential that self-compression, in
combination with amplification, allows one to form high-
power single pulses without a background signal.

4.4. Soliton laser

This is how the authors of Ref. 160 called the source of
stable, tunable frequency and length, pulses with a profile in
the form q = x sech(^r). A diagram showing the principle
of operation of a soliton laser is given in Fig. 31. The laser
consists of two coupled resonators—the main one (the mir-
rors Af|, 71/2, M0) and the auxiliary one (the mirrors M0,
M}). The main resonator constitutes a color-center laser
with synchronous pumping, generating in an autonomous
regime transform-limited 8 ps pulses with a mean power of
~ 1 W and a repetition frequency of ~ 100 MHz. In the soli-

Color M
center
crystal

Birefringent
plate

FIG. 31. Block-diagram of a soliton laser.160 A color center laser with a
resonator formed by the mirrors M, — M0, and an auxiliary resonator
(M0 — M,) containing a fiber optics waveguide are shown.

ton laser regime a part of the radiation is introduced through
the semitransparent mirror M0 (transmission coefficient
~ 30%) and a beam-splitter into the second resonator, con-
taining a single-mode fiber-optics waveguide, which does
not change polarization. The power level P2 in the second
resonator and the fiber-optics waveguide length are chosen
in such a way that the self-compressed pulse is injected into
the main resonator synchronously with pumping, and this
leads to generation of a shorter pulse etc., until the steady-
state regime is reached. In the steady-state regime a pulse
was reproduced after it passed twice through the auxiliary
resonator and represented a bound state of two solitons. Its
parameters could be found from the condition

where L is the waveguide length, and Pcri, is the critical pow-
er, determined by the relation (4.3). Thus, in addition to the
condition of balance between amplification and losses usual
for a steady-state regime of generation, one adds a condition
of balance between the dispersive spreading and nonlinear
self-compression, which determines the duration of the gen-
erated pulse.

Typical orders of magnitude are the following: for the
optical waveguide length L ~ 30 m a soliton laser generated
pulses of length ~ 3 ps and a peak power of ~ 30 W. When a
short optical waveguide with L — 60 cm was used, pulses
with a length of 210 fs and a peak power of 2 kW were gener-
ated.

The authors of Ref. 160 considered that an entirely real-
istic goal can be generation of 100 fs length pulses. Soliton
lasers are quite promising sources for scientific and technical
applications. A detailed presentation of the theory of soliton
lasers is given in Ref. 161.

5. STATISTICAL PROBLEMS IN OPTICAL SOLITON THEORY

Advances of experimental techniques and important
applications of self-action effects posed new questions before
the theory of self-action. In Sec. 3 we have already discussed
briefly a modification of truncated equations that describe
the self-action of high-power femtosecond pulses. Next we
shall discuss the development of the theory of temporal self-
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action taking into account higher-order nonlinearities (see
the conclusions).

Generalization of the results, obtained for the deter-
ministic case, to the case of randomly-modulated fields10', is
of considerable interest both from the point of view of the
development of the theory and for the applications. We had
an example of such a situation in Sec. 3 which discussed
compression of randomly-modulated pulses.

A natural statistical generalization of self-action effects
of regular pulses discussed in Sec. 2 is the problem of self-
action of noise waves172"174 (see also Ref. 6).

The statistical problems of optical soliton theory are of
a more fundamental character. One of the main questions
here is — under what conditions is it possible to form a soli-
ton from optical noise? In Sees. 5.1-5.3 the process of such
formation is discussed step by step; Sec. 5.1 deals with a
calculation of the energy threshold for the formation of soli-
tons from flashes of optical noise. Section 5.2 is devoted to
the influence of random modulation of an optical pulse on
propagation in the near-field. Finally, evolution of solitons
in the far-field is discussed in Sec. 5.3; analysis in it differs
from analysis of previous sections in that it is based on the
inverse problem method of scattering theory.

5.1. Threshold conditions for the formation of optical
solitons from pulses of noise

In this subsection we concentrate our attention on the
estimate of the threshold energy flux density at which the
formation of an optical soliton from a pulse having both re-
gular and noise components becomes possible. 165-166 We also
shall study the influence of dispersion and the correlation
time of the noise component of the input signal on the critical
value of the nonlinearity parameter ( see Sec. 4. 1 ) . The anal-
ysis is based on the method of moments.167

We carry out the discussion using as an example noise
pulses of the form (3. 14) with the correlation function of the
random component g ( r ) in the form (1.22). We introduce
the moments of the intensity distribution \I/>(T) \2

r°
9m - <*m& - J ** W Tml|> (T) dT. (5.1)

Averaging over the variable r will be denoted in the future by
angular brackets {...). According to Eq. ( 3. 1 ) , the change of
the moment 02 (mean square of the pulse length) is de-
scribed by the system of equations

(5.2)

i (5-3)

— R ((i/>i/>*)2> is an integral ofwhere ̂  = ., H0 =
dr

Eq. (3.1), having the meaning of a Hamiltonian.
Substituting the boundary condition (3.13) into (5.3),

we obtain the approximate polynomial representation

e2 (£) =
where

(5.4)

where C0 = ®2(0), C, = 0, and the coefficient

')• (5.5)

The applicability region of the representation (5.4) is deter-
mined by the inequality Rg2 < 1, which is equivalent to the
condition z < Lnl.

Substituting the specific expression (3.13) into (5.4)
and performing statistical averaging (it is denoted by a bar),
we obtain

(5.6)

(5-7)

The condition of constancy of the duration ®2 for the statis-
tically averaged pulse takes the form: C2 = 0. From here for
a pulse with the profile/?(r) = sech r we obtain the relation-
ship

-1]- (5-8)

which is valid in the approximation of weak fluctuations,
a2 •< 1 . An analysis of this expression shows that in the case of
"fast" fluctuations TKQ <-j2r0 the critical energy flux den-
sity grows with an increase of the fluctuation variance a2.

For slow fluctuations TKO > J2r0 expression (5.8) pre-
dicts a decrease of critical power. This, at first glance, para-
doxical result is associated with the specifics of the pulse
(3.13) itself: with an increase of the fluctuation variance a2

the average energy of the input pulse W=W0(\+(7i} also
increases. Pulses with R > Rcrit will on the average be com-
pressed, and pulses with R < Rcrit will spread.

5.2. Self-action of randomly-modulated pulses in the near
zone

How do the statistical characteristics of pulses with ran-
dom modulation vary in a nonlinear medium? This section is
devoted to an answer to that question. We shall analyze the
evolution of the pulse length and correlation time of random
pulses in the case of self-action in the area of anomalous
dispersion of the group velocity. A rigorous solution of the
aforementioned statistical problems is not possible. For this
reason, the analytical results obtained here168'170 are re-
stricted to the initial stage of nonlinear propagation
(z<Lnl ); calculations are carried out in the so-called ap-
proximation of the given channel with the use of Feynmann
path integrals.

5.2. 1. Path Integration; approximation of the given channel

We shall use the nonlinear Eq. (3.1). Considering
\if>(T,£ ) \2 as a potential, in which a pulse propagates the so-
lution (3.1) can be written in the form168 (see also Ref. 171)

+00

, 0- ^WG (6, v, Qde. (5.9)
— 00

where if>0(0) is given at the input of a nonlinear medium.
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The function G(6,r) is determined by the path integral

G (6, T; 0 = j exp [ - j X (T (*), T (*)) dx] DT (z),

a,) e- (5.15)

X (T (*), T (X)) = -L T* (*) + fl I* (T ( X ) , X) |V
(5.10)

where f(;t = dr(x)/dx, integration is done along an infinite
number of trajectories, connecting the points with the co-
ordinates 0, 0 and T, g, where 9 = r(0) and T = r(f).

Thus, from Eq. (3.1) we go over to the path-integral
Eq. (5.9), (5.10). These expressions turn out to be conven-
ient for an approximate calculation of the statistical charac-
teristics of a randomly modulated pulse in a nonlinear medi-
um. An obvious method for solving (5.9), is to use the
iteration method.

We shall demonstrate a method of solving (5.9) and
(5.10) using as an example a regular PM pulse. The maxi-
mum contribution to (5.10) is given by the trajectories satis-
fying the Euler equation

or, in our case, the equation

(5.11)

(5.12)

which can be solved only for a specific form of \!>(T,X).
As a zero-order approximation of the iteration method

we can take the solution 1/>D 0 ( r,x ) corresponding to R = 0 in
(3.1) or r/>n] (T,X) which corresponds to neglecting the dis-
persion term. Having in mind the analysis of nonlinear prop-
agation of high-power optical pulses, we shall use the second
approach; in that case

^° (T, x) = <*„, (T, x) = *„ (T) exp [— « (^ (T) '» x]t

The use of the substitution (5.13) in (5.10) means that
at the following stage of solution of (5.9) we consider the
propagation of the pulse in a non-steady-state medium, the
parameters of which are determined by the initial pulse.
Such an approximation is usually called the "given channel
approximation" ( GCA ) ; it can be used at distances z < Lnl .

In the case of a Gaussian pulse if% (T*) = exp( — r2) Eq.
(5.12) for optimal trajectories can be solved in the paraxial
approximation (r< 1). In that case (5.10) takes the form

(5.14)
exp -

cos K - 2T6] -

where A = ( 2 / J ) 1 / 2 . Expression (5.14) is, in fact, the
"Green's function" of (5.9).

Assume that the initial pulse has the quadratic PM
(1.18). It is easy to see that the phase modulation of the
pulse does not influence parameters of the given channel
since the function (5.10) is determined by the expression
(5.14).

For the normalized intensity of the pulse we obtain the
expression

V2 (t; a0) = !+[(*-*- 1) (l|+|v2) sin* (ftQ + yfc-» sin
(5.16)

where y = aoTo •
In the absence of phase modulation (a0 = 0, 7 = 0)

steady-state propagation of the pulse corresponds to the val-
ue R = 1/2 (h = 1).

According to (5.15), when 7 = 0, but h ̂  1, the maxi-
mum intensity /max = V ~ ' (f ;0)/0 and the pulse length TM /
f) = K(f;0)r0 oscillate with the distance, and this agrees
qualitatively with the results of Sec. 4.1.

For a PM pulse with h = 1 the function
^2(f;«o) = 1 +7sin2f and the pulse length r^/
f) = F(f;a0) r0 varies periodically, and in the initial stage of
propagation either increases (a0 > 0) , or decreases (a0 < 0) .
The contribution of phase modulation to (5.16) is rather
complicated and at the initial stage cannot be compensated
by SPM. Calculations show that there exists a critical value
of the initial frequency modulation rate acrit ; for a0 > acrit

and f > LA , a PM pulse spreads, and for a0 < acrit a soliton
with the form-factor K < 1 is formed.

5.2.2. Pulse with random phase modulation

Let us consider self-action of a pulse with a random
phase

(p0(T)=exp[- ^- + i<p0(T)], (5.17)

where <PO(T) is a steady-state Gaussian process with the cor-
relation function in the form (1.22), dispersion <TJ; and cor-
relation time rcp .

The pulse correlation function in a nonlinear medium is
determined, according to (5.9), (5.14), and (5.17), by the
expression

B (T2, TI; 0

where rp = -̂ - and

(5.18)

. (5.19)

According to (5.18), the pulse length averaged over the en-
semble and the correlation time vary according to the same
law: rM (f) = V2(S)T0, TC = F2(f )rcp/ap. These quantities
do not vary when

> ft -T- 1 O —i 4 /O

(5.20)

In this case the statistically average pulse propagates in a
steady-state manner. This result differs from the expression
(5.15) for a pulse with regular PM. The distinction is due to
the fact that in individual pulses (realizations) the existence
of PM leads to additional broadening or narrowing of a pulse
in such a way, that under a certain condition the average
pulse length and correlation time can remain constant.

Random PM leads to an increase of the threshold /icrit
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(5.20) for steady-state propagation and, therefore, to an in-
crease in the threshold energy density. In Ref. 169 calcula-
tions are presented of the intensity correlation function of a
pulse with random PM in a nonlinear medium.

5.2.3. Self-action of a noise pulse

In the given channel approximation the problem of
finding the correlation function for a noise pulse in a nonlin-
ear medium

+00

B(tlt T2; 2)= j J d94de2 j J Jf (9lt 92; T,, T2)
— 00

X exp [ - 1 -i- J (Tj (*) - tj (*)) <fa] Dr, (*) Dr2 (x) ( 5.21 )

is reduced to calculating the correlator

i, 62; T,, T2)

X exp \ — iR

(5.22)

We consider self-action of a noise-pulse in the form
^o(r) — £(T)F(T) with a regular profile F(T) = exp( — t2/
2) and a random Gaussian process f (r), with the correla-
tion function (1.22).

It is convenient to carry out the averaging (5.22) sepa-
rately for two propagation regimes: 1) coherent regime
(z < Lcoh = r2^ /\k 2 \) and 2) incoherent regime (z > L^ ).
We consider here the coherent propagation regime; in this
case it is possible to perform in (5.22) the substitution

Ifo fa (*)) I2 d (0)) PS = |*0 (9) ft. ( 5.23 )

The correlation function ( 5.2 1 ) in paraxial approximation is
calculated in Ref. 170. According to Ref. 170, the pulse
length and correlation time of a noise pulse in a nonlinear
medium are equal to

M£> = r,(£)To, rc (0 = [1 +(2HQ»]-V»F. (0 TO. (5.24)

The magnitudes of rp (f ) and rc (f ) can both decrease or
increase with an increase off, and there can be a situation,
when the correlation time is decreasing, while the average
pulse length is increasing.

Analysis shows170 that in the incoherent regime of self-
action (/-cob <z'<Lni ) of a noise pulse its average length and
correlation time are always increasing with an increase off.
Intensity statistics of noise pulses has been studied in Ref.
175-176. The influence of noise on the nonlinear propaga-
tion regime of a regular pulse was considered in Ref. 168. It
was shown that the coherent properties of a pulse deteriorate
and the steady-state regime of pulse propagation is absent at
the initial stage.

5.3. Soliton statistics. The inverse problem method

The approximate methods described above make it pos-
sible to follow the evolution of the profile and of the statisti-
cal characteristics at the early stages of propagation
(z < Lnl ) . The same is true for methods using numerical so-
lutions of the Cauchy problem for the nonlinear Schrodinger
equation.177 With the shift to the far-zone (z>£nl), the
drawbacks of the direct numerical methods associated with
grid dispersion or an artificial periodization of the solution
in the spectral approach become apparent. At the same time,
such practically important problems as an estimate of the
influence of initial pulse fluctuations on the pass band of
soliton communication systems require the development of
adequate methods of analysis of the wave fields in the far
zone. In fact, at the initial pulse length r0~6 ps and /Is: 1.5
(im, the far zone corresponds to a waveguide length of L ~ 1
km, and for TO ~ 1 ps L ~~ 30 m. At the present time transmis-
sion of solitons has been achieved over a distance of 50
km.147

The analysis of fields in the far zone is based on the
method of the inverse problem in scattering theory.142 We
shall give here some results of this method required for
further presentation. Let us consider the Cauchy problem
for a nonlinear Schrodinger equation written in the tradi-
tional mathematical form (4.1) with the initial condition
q(r,Q) = q0(r). It is required to find q(r,£ ) from the known
q0 for q from a class of functions decreasing in the absolute
value when r-» ± oo faster than any power function.

According to the inverse problem method, instead of
the nonlinear evolution of the complex amplitude 0(r,f),
one considers an auxiliary linear scattering problem, in
which the required solution enters in the form of a potential

(5-25)

where 4> *• is a matrix-function of r and of the spectral pa-
rameter AeR, q* is the complex conjugate of q. The func-
tions 4> * satisfy the asymptotic relations

(5.26)

when T-» ± oo, respectively, since the potential q0 > 0 when
r-> ± oo. The relationship between the functions 4>~ and
4>+ is established with the help of the scattering matrix S

/o* 6\
(-b* a ) ' (5.27)

The coefficient a = a(A) depends only on the spectral pa-
rameter A, and the coefficient B can be presented in the form
b = .B0(A)exp(/2A2f )• The coefficients are related by the
normalization condition oa*+bb* — \. Additionally, a
(A) -. 1 when A— ± oo, AeR.

As is shown in Ref. 142, the coefficient a( A) can be
analytically continued into the upper half-plane ImA > 0,
and in order to find the soliton component of g0 it is neces-
sary to find the zeros Am = Re Am +1 Im Am of the coeffi-
cient a (A) for ImA>0. The soliton solution corresponding
to Am, has the form:

672 Sov. Phys. Usp. 29 (7), July 1986 Akhmanove/a/. 672



9m K £) = *m sech [xm (T- T0m— y

xexp -tomT + J-i-(i?!, , (5.28)

where pcm = 2 Im Am is the soliton amplitude, !>„,
= 2 Re Am is its velocity; r0m and <p0m are the initial coordi-
nates of the maximum and the phase.

If the velocities of all the solitons included in the solu-
tion (4. 1 ) are different, then at g -> oo an ./V-soliton solution
is determined by the trivial linear superposition

?«=

where qm is expressed by formula (5.28).
At finite distances or in the presence of coinciding ve-

locities (see, for example, Fig. 25), the superposition of soli-
tons is essentially nonlinear. Its reconstruction can be re-
duced to the solution of a system ofN linear equations. 142 It
was found that a nonsoliton part of the solution is essential
only in the initial stages of propagation, since for £ -» oo it
decreases as £ ~ ' /2. Using the graphic analogy with the prob-
lem of diffraction of a slit-shaped beam in a nonlinear medi-
um, solitons in the far zone correspond to bright stripes with
an intensity that does not depend on the distance, and the
non-soliton part corresponds to a linearly diffracting diffuse
background.

An energy relationship between the soliton and non-
soliton parts of the solution can be found using a nonlinear
generalization of the Parseval theorem,179 according to
which

(i) d|. (5.29)
m=i -oo

The first term on the right side of this equation corresponds
to the energy of the soliton part of the solution (a discrete
spectrum), and the second term — to the non-soliton part
(continuous spectrum). This theorem allows one to estab-
lish an analogy between a Fourier-spectrum and its nonlin-
ear analogue, determined by the coefficients a and b.

In a few particular cases it is possible to calculate the

soliton spectrum analytically.143 A pulse with the profile
q0(T) = N sech r discussed in Sec. 4 can serve as an exam-
ple. At the present time effective numerical methods have
been developed178 that allow one not only to find the "soliton
spectrum" of an arbitrary pulse q0(r), but also to calculate
the soliton component of the solution qs (r,g) for arbitrary g.

A number of useful results can be obtained with the help
of perturbation theory. The authors of Ref. 143 have found
that the small real variations \§ \ < \ of the amplitude of the
one-soliton pulse q{ = (1 + £)sech r lead to a linear change
of the form-factor of the soliton xt = 1 + 2£ and do not
cause corrections to its group velocity. From here, in parti-
cular, it follows that if the amplitude of the initial pulse
q0 = l + g is a random function (£ = 0, g2 = a2), then dur-
ing the transition to the far zone (z>Z,d ) the distribution
law and the mean value o f x t remain constant, but the stan-
dard deviation of the fluctuations will be doubled.

In Ref. 179 it was shown that purely phase perturba-
tions of initial conditions (for the model of the diffusive drift
of the phase) leads in the first order of perturbation theory to
"stochastization" of soliton velocity. A random correction
to the group velocity has a normal distribution with the vari-
ance ~ai. The second-order correction to the eigenvalue
Am is purely imaginary—it corresponds to random varia-
tions of the soliton amplitude.

The formation of optical solitons from pulses of partial-
ly-coherent radiation was studied in Ref. 180 by the method
of statistical testing based on the approach described in Ref.
178. An illustration showing one of the realizations of the
initial conditions is given in Fig. 32. A "noise flash" in the
form

9o(T) = ai(T)e"<V2, (5.30)

where £(T) is the complex Gaussian noise (£
= 0, £(r)£*(r + 6>) = exp( - 62/r2

0 ), a = 4, rc,0
= 0.4) is shown in Fig. 32a. Separation of the soliton com-

ponent has shown that this flash gives rise to two solitons
with the parameters xt = 2.4, i>, = — 0.71 and x2 = 0.61,
v-, = 2.8, where the velocities are expressed in units of Z,d/r0.

FIG. 32. Noise pulse (a) and its soliton component
obtained by the inverse problem method at the dis-
tance f= 1 (b).
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FIG. 33. Formation of a soliton in the presence of noise.180 a—Depen-
dence of the mean value of the form-factor on the noise amplitude a. b—
Dependence of the mean correction to the group velocity on a (standard
deviations are shown in the picture).

The soliton part of the solution \qs \
2 is shown in Fig. 32b for

z = LA.
Fig. 33 shows the influence of additive Gaussian noise

on the parameters of a soliton, formed for £ -> <x> from the
pulse with the profile

9o(T) = e-*'/2+ag(T). (5.31)

The dependence of the mean value of the amplitude x l and
the velocity vl on the parameter cr(g = 0, r^ = 0.4) ob-
tained by averaging over realizations, is shown. It is possible
to see that the increase of noise variance leads to some in-
crease of the average value of the amplitude x. The presence
of complex Gaussian noise leads to fluctuations of soliton
velocity (see Fig. 33); naturally the magnitude of these fluc-
tuations increases with an increase of a. Note, that fluctu-
ations of the group velocity lead to the necessity of increas-
ing the interval between pulses in order to use solitons in
communication lines.

Therefore, at the present time there exist a number of
effective mathematical methods allowing one to study in de-
tail the stochastic self-action of pulses both in the near and
far zones.

CONCLUSIONS

1. The development of efficient generators of picose-
cond and femtosecond optical pulses and the use of new non-
linear media have greatly increased the interest in the phys-
ics of self-action of wave packets and nonlinear optical
methods for control of shape and length of ultrashort laser
pulses. Successes of nonlinear-optics compression methods
have made it possible to develop unified principles for con-
struction of high-power femtosecond laser systems in the
visible, IR and UV regions of the optical spectrum.

A typical laser system, using nonlinear optical com-
pression, consists of a signal generator of frequency tunable,
high-quality transform-limited picosecond pulses, a fiber-
optics compressor, a nonlinear optical frequency converter,
and a power amplifier. The use of such systems opens up
unique opportunities for studying nonequilibrium states in
atoms, molecules, and condensed media. 19° Experiments of

this kind put very stringent requirements on the stability of
formed pulses. The solution of the problem is connected, in
our opinion, with the efficient use of methods of adaptive
optics, discussed in Sec. 3.7. Practically, the situation here is
similar in many respects to the situation, arising during fo-
cusing of high-power light beams in a nonlinear, statistically
inhomogeneous medium. The results that can be achieved
here by methods of adaptive optics are well known.183-184

The methods described In Ref. 184, can be effectively used
for adaptive control over shape and length of laser pulses in a
grating compressor.

Undoubtedly, the problem of direct registration of tem-
poral behavior of the profile and, especially, of the phase of
optical packets, is becoming more urgent. Over the last few
years some interesting work has been done in that area; we
note, in particular, Ref. 182 in which registration of the tem-
poral behavior of the phase was accomplished using the re-
sponse of an ensemble of two-level atoms.

Speaking of the use of femtosecond pulses in high-speed
systems for processing and transmission of information, we
emphasize once again the fundamental necessity of using
optical nonlinearity for stabilization of such pulses. Experi-
ments on the formation, interaction, and amplification of
optical solitons carried out recently are quite encouraging in
this sense.

2. Practically "inertialess" (relaxation time rr ~ 10~14

sec) cubic nonlinearity of optical fibers is quite small
y3)~ 10~ H CGSE units. On the other hand, in semiconduc-
tors, especially under resonant conditions, it is possible to
obtain j(3)^10~2-10~3 CGSE units. Such "giant" cubic
nonlinearities of semiconductors are widely used lately for
wave front reversal and creation of optically bistable de-
vices.185'186 However, as a rule, the price for the large value
of nonlinearity is a sharp increase of the inertia of nonlinear
response. At the same time we indicate that for some semi-
conductors it is possible to realize a relatively large cubic
nonlinearity with rr < 10~12 sec (see Ref. 136); the com-
pression with their help of ultrashort pulses in the infrared
range is, undoubtedly, of great interest.

3. In this review we could not discuss the characteristic
effects of self-action caused by quadratic nonlinearity ;£-|2).187

The simplest nonlinear effect in a medium with P(2) ~£(2)E(2)

is generation of the second optical harmonic. When the in-
tensity of the second harmonic becomes comparable with
the intensity of exciting radiation, there arises a reverse reac-
tion of the harmonic on the main wave. In this situation, the
first manifestation is the. reaction of the harmonic on the
phase of the main wave. This latter reaction is equivalent to
the appearance of a dependence of its phase velocity on in-
tensity, i.e., a characteristic kind of self-action. Optical recti-
fication in electro-optical crystals also leads to a similar ef-
fect.188

Reverse reaction on the phase in parametric pro-
cesses189, taking place because of quadratic nonlinearity, un-
derlies many interesting wave effects. Numerical experi-
ments, performed by Sukhorukov and his co-authors191"193

show the possibility of existence of stable multi-frequency
formations—the so-called parametric solitons, effects of

674 Sov. Phys. Usp. 29 (7), July 1986 Akhmanove/a/. 674



parametric compression, etc. Now the time has come for
experimental verification of these effects.

Of course, parametric processes open up also many oth-
er possibilities for the formation and compression of optical
pulses. Attention to prospects of fast control and compres-
sion of pulses in media with quadratic nonlinearity was
drawn for the first time already in Ref. 13; for the present
status of this technique see Refs. 194-195. The technique of
parametric compression (four-frequency interactions using
cubic nonlinearity196 can also be used here) apparently can
be especially useful for the formation of the shortest possible
pulses (see Refs. 13, 196).

4. The problem of wave propagation in media with a
strong local nonlinear response has become a fundamental
problem of nonlinear optics which has been attracting in-
creasing attention in recent years (see the review of earlier
work in Ref. 197). There are increasing indications of the
fact that such a situation can be realized near exciton reson-
ances in semiconductors and in artificial, inhomogeneous
nonlinear media.198 Non-resonance optical bistability and
multistability, and stochastic self-modulation of propagat-
ing optical waves can become manifestations of a strong lo-
cal nonlinearity1".199-201

"Linear frequency modulation is often called in English "chirp," and the
Russian direct transliteration of this word is increasingly often used in
the Russian literature.

2)In the general case the phase matching condition <p0 ( ( I ) + <p k =0 guar-
antees only that the resulting amplitude will be maximum, since the
concept of a pulse length is ambiguous for pulses of complex shape.

31We note that in a two-level medium the steepness increase of the pulse
leading edge is possible due to its preferential amplification.80"8'

4lExpression (2.30) differs from the corresponding formulas of Ref. 76 by
a factor of 2. This difference, in our opinion, is due to the fact that Ref.
76 takes into account only the dependence of group velocity on intensi-
ty.

''Equation (2.9) is often called the nonlinear Schrodinger equation.
6'Note that in Ref. 82 the possibility was shown of self-compression of

short optical pulses in metal halide vapors.
7>The problems of simultaneous analysis of spatial-temporal effects are
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