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Experiments in statistical nonlinear acoustics are reviewed. Measurements of the average
intensities of the harmonics of a narrow-band randomly modulated signal, the nonlinear
transformation of broad aerodynamic-noise spectra, and different effects involving the
interaction of regular and random waves (active suppression of noise by an intense signal,
excess fading of a weak signal in noise fields, cascade-like broadening of spectra, formation of
white noise, and other effects) are described. Theoretical explanations are given for the
observed phenomena. An approximate method is developed for finding the stochastic solutions
of equations of the Burgers and Khokhlov-Zabolotskaya type. Results on the diffraction of
intense noise, taking into account the effects of the spatial and temporal statistics, the
excitation of random waves by distributed sources, and the formation of steady-state spectra,
are presented for the first time. The problems of the nonlinear transformation of the statistical
characteristics of acoustic noise and other general questions are discussed.
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1. INTRODUCTION

The study of statistical phenomena accompanying the
propagation of waves in nonlinear media is important for
many areas of physics and technology. Amongst all the sta-
tistical problems in the physics of nonlinear waves, those
concerning the interactions of intense noise disturbances in
nondispersive media are of special interest. We shall refer to
these problems as problems in statistical nonlinear acous-
tics, although many results obtained here are applicable to
systems of a different physical nature—in the study of waves
in plasmas, on the surface of a liquid, in particle streams,
etc., in those situations when dispersion can be neglected or
is very weak.'?

From the theoretical standpoint, nondispersive nonlin-
ear media are of interest because in such media all spectral
components interact with comparable efficiency, since they
are in resonance with one another. This leads to cascade-like
multiplication of the spectral lines, nonlinear broadening of
the spectra, and the appearance of a continuous component.
In the time language, the distinguishing feature of the real-
ization will be the formation in it of steep sections of the
profile—discontinuities or shock waves with a front of finite
width. After the appearance of the discontinuities the behav-
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ior of the disturbance is qualitatively different; nonlinear
damping, which is independent of the dissipative properties
of the medium become significant; saturation effects and a
number of other effects appear. All these phenomena are
specific precisely to nondispersive media.> Another charac-
teristic feature of statistical nonlinear acoustics is the fact
that it is necessary to study random isolated pulses with fluc-
tuating parameters, and not only randomly modulated qua-
siperiodic signals as done for dispersive media.*

The behavior of strongly distorted profiles in acoustics
is described adequately by simplified equations of the
Burgers, simple-wave, and Khokhlov-Zabolotskaya type.
These evolutionary equations are model equations for many
physical systems. For this reason, in addition to the direct
physical consequences of the theory it is also of interest to
study the consequences of the formal mathematical analogy
following from the analysis of the properties of the standard
equations and their solutions.’

From the standpoint of applications these studies are
important because of the fact that both in nature and tech-
nology there exist real sources which are essentially sources
of noise waves. Detonation waves in the atmosphere and in
the ocean,®’ acoustic shock pulses, noise from jet and other
powerful engines,® and intense fluctuating sonar signals>'’
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are examples of low-frequency disturbances for which at
definite distances nonlinear effects become significant.
There also exist smaller sources whose emission spectrum
lies in the ultrasonic band. These include, for example, ther-
mooptical (laser)'''? and ordinary electromechanical
transducers, whose field always contains fluctuations, and
ensembles of microscopic radiators (cavitation noise,'
acoustic emission,’? etc.). A classical example of nonlinear
statistical phenomena in acoustics are the processes involved
in the establishment of thermodynamic equilibrium in sol-
ids, which occur as a result of the anharmonicity of the crys-
talline lattice'>™"”; the characteristic phonon frequencies
here lie in the far hypersonic frequency band. Finally, there
also exists intense noise of natural origin—thunder,'® seis-
mic waves,'® and a number of other types of noise.®

We point out the obvious links between the statistical
nonlinear acoustics and “nonwave” problems—models of
turbulence,?' problems of aeroacoustic interactions,’? and
stability in hydrodynamics.

Thus the development of the physics of interactions of
intense noise waves was stimulated by two factors: the diver-
sity of real problems and the convenience of the apparatus of
nonlinear evolutionary equations." 32 these equations were
first obtained by R. V. Khokhlov' and his coworkers for the
analysis of regular nonlinear problems. Weakly nonlinear
waves, modulated in time and in space, are used in informa-
tion transmission and processing, the diagnostics of the
properties of a medium. The classification of sound-scatter-
ing objects, and the solution of other radiophysical problems
in acoustics. The slow (on the wavelength scales) evolution-
ary character of the processes enables the use of approximate
approaches, such as the slowly varying profile method, in
order to simplify the problems.’ These methods were devel-
oped and tested based on an idea proposed by R. V. Khokh-
lov.! The apparatus of simplifed equations is made even
more necessary by the random character of the modulation
of the waves. The complexity of the nonlinear statistical
problems usually makes it impossible to solve them by other
methods, and this path is the only possible one.

A number of publications on the theory of finite-ampli-
tude random acoustic waves appeared at the end of the 1960s
and beginning of the 1970s.24-2® Systematic studies, how-
ever, were begun later.?® The results of this period are re-
viewed in detail in Refs. 3-5. Extensive experimentation,
largely stimulated by the development of the theory, began
after 1975; a large number of studies was carried out in the
USA, Japan, and a number of other countries.

Many researchers became interested in these problems
as aresult of a review presented by R. V. Khokhlov at the 5th
Interational Symposium on Nonlinear Acoustics { Copenha-
gen, 1973). At the 6th Symposium, chaired by R. V. Khokh-
lovin 1975 in Moscow, Khokhlov presented a long and com-
pete report; since then the physics of intense noise has
occupied a central place in all-union and international con-
ferences on nonlinear acoustics.

At the present time, statistical nonlinear acoustics ex-
hibits all the features of a developed scientific field; 1) a
specific theory and mathematical apparatus have been de-
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veloped; 2) experimental studies are being vigorously pur-
sued; 3) many scientific groups in different countries are
studying the problem; 4) there is a range of applications;
and, 5) links with other areas of physics and mechanics have
appeared.

2. NONLINEAR DISTORTION OF THE SPECTRA OF ONE-
DIMENSIONAL WAVES. BASIC THEORETICAL RESULTS

It is well known that for models of simple waves the
measured statistical characteristics of nonlinear distur-
bances can be calculated exactly. The general expression for
the correlation function of a stochastic process in an arbi-
trary section of a nonlinear medium in terms of the two-
dimensional characteristic function of the input signal is pre-
sented in the reviews of Refs. 3 and 4. Formulas which relate
the spectral density in the medium to the correlation func-
tion at the input were found for a normal (at the boundary of
the nonlinear medium) process.

The approach to the analysis of the evolution of noise
spectra developed in Refs. 30 and 31 can be generalized to
more complicated models. We shall explain the idea of the
method*?3 for the important example of Burgers equation,
which describes the propagation of intense plane acoustic
disturbances in dissipative media:

av

FZR

av a2V
The following dimensionless variables are used in (1):
V = u/uy—the particles velocity, z = x/x 4. = £¢g 2woloX
—the distance traversed by the wave in units of the discon-
tinuity distance x4, and 8 = w,7 = w,(t — x/c,). The ratio
of the characteristic nonlinear and dissipative lengths
I' = x4, /%q = bwy/2ec, pol,, is the inverse acoustic Reyn-
olds number. Here the constants u, and w, are the character-
istic values of the starting particle velocity and frequency of
the signal; po,c, are the equilibrium density of the medium
and the velocity of sound; and, £ and b are the nonlinear and
dissipative parameters®.

The solution of (1) with I" = 0 at distances up to the
discontinuity distance has the form of a simple wave
V=f(T=280+zV). In order to generalize the methods of
spectral analysis of stochastic simple waves we transform in
(1) from 2,8 to the new variables z,T:

av

8T oV -2
a )
In the approximation z|d¥ /dT | <1 Eq. (2) formally be-
comes the linear diffusion equation, which, however, in-
cludes nonlinear effects because of the implicit dependence
Viz,T(V, ..)]. This approximation describes well the
strongly distorted disturbance for I" €1 in the region up to
the formation of discontinuities, as well as the opposite limit-
ing case of weak nonlinearity I" > 1—in the entire region of
propagation of the wave. For intermediate values I' S 1 in
the discontinuous region the processes are described only
qualitatively, and even features which are associated with
the fact that the structure of the shock fronts was not taken
into account appear.
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So when z|dV /9T | €1 (the distances are short or the
profile is very smooth}, solving the linearized equation (2)
we find the auxiliary function ¥(z,7). The transition to the
measured velocity ¥(z,0) is made with the help of the non-
linear transformation®®-34

V(z, 6)= _Z_:u' S emeim‘?_ S (el1V e TY— {) g-WT 4T, (3)
Since the behavior of the auxiliary function V(z,T) is de-
scribed by the linearized equation (2), the normal stationary
stochastic process at the point of entry into z = 0 has the
same properties for z> 0 also. This makes it possible to cal-

culate the measured correlation function
R(z,80=0,—0)=(V(z, 8,)V (z, 8,)

do

1
—_ _ etwbp~(w2)'a%(z)
2n ) (mz)’e e tonae
- 00

X S (etwn*Riz, TV —{) g-i0T gT, (4)

Here 0%z)=R(z,T=0), and R(z,T=T,—T,)
= (R(z,T,)R(z,T,)) is an auxiliary correlation function,
whose behavior in the model (2) is described by the equation
2
L e (5)
Therefore, based on the given correlation function
R(0,60) =(f(8,) f(8,)) of steady-state normal noise
£ (), the statistical characteristics of the wave can be calcu-
lated in an arbitrary section of the medium in two stages. It is
first necessary to find the auxiliary function R (z,T") as a so-
lution of Eq. (5) with the boundary condition R(0,T = 8).
Then it is necessary to make the nonlinear transformation
(4) and determine the measured function R (z,8) or the cor-
responding spectral density S(z,w) (according to the Wie-
ner-Khinchin theorem):

5 (2, @) = gy e (@200 5 B T) gorrre-i07 7. (6)

The approach®>3* described above is applicable not
only to the analysis of nonlinear random waves in a dissipa-
tive medium (1). The statistical characteristics can be calcu-
lated based on the formulas (4) and (6) for any disturbances
of the type V' = V(z,T = 6 + zV,r); of course, it will be nec-
essary to obtain the auxiliary function R(z; T,7T); r,,r,)
from other linear equations, differing from (5). In particu-
lar, in Sec. 7 the method is used to analyze the evolution of
the spectra of diffracted waves and of the spatial statistical
characteristics.

We shall generalize the formulas (4)-(6) to the impor-
tant problems of the propagation of spherically and cylindri-
cally symmetric disturbances. For definiteness, we shall ex-
amine the case of converging waves with an initial radius of
curvature of the wavefront r,. The normalized distance ¢z,
traversed by the wave, in this case will vary from z, = r,/
Xgisc t00. Using the well-known? expressions for the reduced
coordinates, we obtain a description of the energy spectrum
(6) of spherical (n=2) and cylindrical (n=1) noise
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waves:
S (z, )= —% \' ————aﬁgz'. )
]
x exp { — [wzk, (2)]? (0% (z) — R (z, T)]} sin oT dT;
€))
here &, =2[1—(z/2,)""*], §&,=In(zy/2), o%(2)

= R (z,0); the auxiliary correlation function in (7) is calcu-
lated using the formula

(z0/3)”

R(z, I)= Gar e—iis

U Rtscs v (T =T e
XS R(Z—-ZD,T)OXP[—S—F(—;“__—Z-)]dT. (8)
The dispersion of the velocity of sound in acoustics is
usually small and associated with some relaxation process

with a characteristic time ¢,,,. The propagation of intense
plane waves in relaxing media is described by the equation®
av av

0 '
?Z——VW=D_". -Qz-exp(—aa—e )dB’, €))]

a9 a6’

- 00 rel

where 8, = wot,, and the number D = (c%, — c})/2ecqu,
is the ratio of the discontinuity distance to the coherence
length. The spectral energy density of the noise in such me-
dia can be calculated using the general formulas (4) and (6).
the auxiliary correlation function R (z,T'), in this case, is de-
termined from the linear equation

4 (R R 2D 4R
— 5= —— 55> 10
9z ( o1' g 2] ) 9, o (10)
corresponding to the equation of nonlinear evolution (9). It
is related to the starting noise spectrum S(0,w) by the
expression

oo

' 2
R T)=2{s0, m)exp(—ZD ©"0raz
0

)cos ol do.
1+w,0%
(11)

In the limiting case of low-frequency spectra wf,,, €1, as is
evident from the formulas (10) and (11), the function
R (z,T) will be determined from Eq. (5), in which the in-
verse Reynolds number I is replaced by the product D6,,, .
In addition, the wave is described not by (9), but rather by
the corresponding Burgers-Korteweig—de Vries equation.’
In the other limit of high-frequency spectra we have the sim-
ple expression R (2,T) = R(0,T)exp( — 2Dz/0,,); it is also
possible to obtain an exact solution, which can be obtained
from (6) by making the substitution (wz)— (06.4/
D)[1 —exp( — Dz/6,,)], in the case b, > 1.

3. GENERATION OF THE HARMONICS OF A NARROW-BAND
RANDOMLY MODULATED SIGNAL

We shall study at the point of entry into the nonlinear
dissipative medium narrow-band normal noise with the cor-
relation functiono 2R (x = 0,t) = o 2b(t /t.) X cos wyt; here
b is the slow (w.r. > 1) envelope, and ¢, is the correlation
time. It is desirable to interpret the normalization constants
@o,U,, used in writing down Burgers equation (1) and the
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formulas (3)~(6), as the central frequency of the spectral
line of the noise w, and the variance o.

The auxiliary function is determined from (5) and has
the form

R (z, T)=b( r )exp(—2[‘z)cosT. (12)

Wl

Substituting (12) into (4), it is possible to calculate the mea-
sured correlation function in a medium as a sum of the noise
harmonic functions

S 2
R(z,0)= ) T SXp [ — (n2)? =221 1,
n={

(13)

X [(nz)ze‘zr‘b ( 4 )]cos no.
27
It is interesting to follow the dynamics of the spectral
lines. For example, for a Lorentz starting signal, setting
b=exp( — |t|/t.) and employing the asymptotic form of
the modified Bessel function I,, we find the widths of the
spectra

Ao, (2) & nhe, (2=0) [ 1+ 4—(7"_‘7_-1—) (1—em) gte=4%: ],
(14)

Thus the characteristic width of the spectral line of the nth
harmonic for small z is » times greater than that of the first
harmonic. As the wave propagates, the widths of the spectral
lines increase to some maximum values, achieved at the dis-
tance z = 1/I'. Then the widths of the lines once again de-
crease. The broadening-narrowing process is observed in a
nonlinear medium only when dissipative effects are taken
into account (compare with Ref. 3); it is observed for small
inverse Reynolds numbers I, and is all the stronger the high-
er the harmonic number n.

The result (13) permits establishing the difference in
the rates of generation of the harmonics of monochromatic
and randomly modulated waves. The comparison must be
made assuming that the intensities are the same at the inlet
(at z = 0); the center of the spectral line of the noise must
coincide with the frequency w, of the determinate wave. The
average intensities of the second (n = 2) and third (n = 3)
harmonics as function of the distance are shown in Fig. 1 by
the solid (I, noise) and broken (IS, regular signal)
curves for inverse Reynolds numbers I'/v2 = 0.01 and 0.1.
Analysis shows that depletion of the fundamental and
growth of the higher-order harmonics occur at faster rates in
the case of the noise. At short distances z, in the limit " - 0,
the ratio 7 {N’/I {9 ~n!. The fact that in the noise field the
nth harmonic is generated n! times more efficiently was not
observed in nonlinear optics*?%; this phenomenon is linked
with the accentuation of large-amplitude surges in nonlinear
transformations.

Linear damping, which increases with T, has a stronger
effect on the harmonics of the determinate wave. It is evident
from Fig. 1 that for T'/v2 > 0.1 the solid curves for the sec-
ond and third harmonics of the noise in the entire domain of
distances z pass above the corresponding broken curves.
This is linked with the fact that for not very small ' 2 0.15
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FIG. 1. Intensity of the second (n = 2) and third (n = 3) harmonics of
narrow-band (solid curves) and of a harmonic signal with the same start-
ing intensity (broken curves). An increase in the number I" corresponds
to intensification of linear dissipation.

the generation of the harmonics of the regular wave is appre-
ciably suppressed by linear dissipation?; the noise, however,
contains surges which are virtually unaffected by dissipa-
tion. Thus for moderate values of ' the harmonics of the
narrow-band noise are excited primarily owing to quasiper-
iodic oscillations with large amplitudes. The process is more
efficient than in a regular wave with the same intensity.

These phenomena have been studied experimentally.
Noise with high intensity (up to 140 dB relative to 2-10~°
N/m?) propagated in a polyethylene tube 75 m long and
4,92 cm in diameter. The width of the spectral line constitut-
ed 6% of the central frequency 0.5, 1, 2, or 3.2 kHz. A tube
whose wall was 0.56 cm thick was buried in sand, which
suppressed the flexing modes. Thus conditions close to those
of propagation of a plane wave in free space were obtained.
In the tube, however, there was an additional mechanism of
viscous-heat-conduction losses in the boundary layer at the
walls.

The measurements of the acoustic pressure of harmon-
ics with numbers n = 2~7 are shown in Fig. 2 for a mono-
chromatic starting signal (solid curves) and narrow-band
noise (circles). The + 1 dB accuracy for n > 3 unavoidably
decreased because of the overlapping of the spectral lines of
the higher-order harmonics. The increase in the efficiency of
nonlinear transformations in the field of the noise wave was
clearly recorded in the experiment. Quantitative estimates of
1N /IS were obtained by extrapolating to small distances;
the increase equals 2.2 (n = 2), 5.6 (3), 16 (4), 45 (5), 200
(6), and 500 (n =7). For n =2 and 3 good agreement is
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FIG. 2. Results of measurements of acoustic pressure at the frequencies of
the harmonics of narrow-band noise.>*

obtained with the theoretical value n!. the disagreement for
n>4, aside from the noted overlapping of the spectra, could
be linked with the difficulties in carrying out the measure-
ments in the near-field and with the effect of dissipation. We
note that at the time the work was carried out the theory of
the phenomenon had not yet been developed. In later years,
as far as we know, such experiments were not performed.

4. TRANSFORMATION OF BROAD SPECTRA—ACOUSTIC
TURBULENCE

Interest in the characteristic features of the nonlinear
evolution of broad acoustic spectra arose from the measure-
ments of intense aviation noise. Anomalously low fading of
the high-frequency wing of the spectrum is observed. In the
band from 5 to 10 kHz the fading at 500 m is approximately
10 dB less than calculated.>® Temperature nonuniformities
of the atmosphere, humidity, and other properties along the
path cannot explain the effect. It was therefore proposed
that the anomalously high intensity of the high-frequency
wing is caused by the pumping of energy from the intense
low-frequency components of the noise spectrum of jet
streams.>*

The results of detailed measurmements of the param-
eters of stream noise under natural conditions are presented
in Ref. 68. Figure 3a shows the behavior of the attenuation
factor of noise waves excited by an aircraft with four jet en-
gines. The receiver integrated over a 1/3-octave frequency
bands. The distance varied from 262 to 345 m and from 345
to 501 m. It is obvious that the solid curves, constructed
taking into account the nonlinear corrections, are in much
better agreement with the experimental data (circles) than
are the calculations based on the linear theory (broken
curves). The linear theory, which does not take into account
the pumping of energy upwards along the spectrum, overes-
timates the values of the attenuation factor.

The form of the spectra in octave frequency bands is
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FIG. 3. Results of measurements of the attenuation factor (a) and spec-
trum (b) of intense stream noise under natural conditions.**

shown in Fig. 3b. Here the source of intense noise was the
engine on the Atlas-D rocket. The points—data obtained
from measurements of the sound intensity—in the frequency
band > 1 kHz lie appreciably higher than the broken curves,
representing the linear extrapolation of the noise spectrum
measured near the source to large distances.

A series of special laboratory experiments was per-
formed.>”*® The measurements®’ were performed in a 29.3
m long air pipe with acoustic pressure levels up to 160 dB.
Figure 4a shows the measured form of the disturbance near
the source and far away from it (distances of 0.3 m and 25.9
m). Two processes are clearly manifested: increase in the
slope of the leading fronts and the increase in the time scale
of the oscillations. The first process gives rise to the forma-
tion of sharp jumps in the pressure—shock waves; in spectral
language, this corresponds to the pumping of energy over to
high frequencies, which was observed under natural condi-
tions. The second process is associated with the motion of
unsymmetric (relative to the zero level) shock fronts, their
collisions, and coalescence?; it leads to pumping of energy
from the center of the spectrum to the low-frequency band.

Thus the broad spectrum of an intense source is broad-
ened by nonlinear interactions into both the high- and low-
frequency regions. Figure 4b shows the relative acoustic
noise intensities (in the 50-Hz band ), measured at distances
of 0.3 m, 15.0 m, and 22.3 m (curves 1-3).>” Similar behav-
ior of the spectrum was observed in Ref. 38, where, in addi-
tion, the statistic characteristics of the negative
(“‘smoothed”; see Fig. 4a) slopes of the rectilinear sections
of the wave profile were studied. Algorithms for the numeri-
cal simulation of the nonlinear evolution of noise distur-
bances were also proposed.*®

We shall use the approach of Ref. 33 to describe the

wide-band noise with the starting spectrum
S(z=0,m)=4—:‘;,7exp(—~-“_,:—l). (15)

The normalizing constants w, and 4, used in Burgers’ equa-
tion (1) and the formulas (3)-(6), are interpreted here as
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the inverse correlation time ¢ ' and the variance o. The
auxiliary correlation function, according to (5), is given by

Rz, T) = (1482 (1 — 22 Y exp ( — o7 )

Fz= bx

=" 16
2¢5 pot (1)

Substituting (16) into (6) and calculating the integral ap-
proximately, we obtain

(148T2) S (2, ©) = (1 +30)72 [ 2kt o B(1+39) |

oy

Xexp | — e ) -
o (2) = o (1 +-8T2), P (2) = (02)* (1 + 8T'z)32,

The dynamics of the transformation of the broad spec-
trum S(z,w) (17) is shown in Fig. 5a for the inverse Reyn-
olds numbers I" = 0 (solid curves) and I" = 0.25 (broken
curves). As the distance z increases energy is observed to
spread along the spectrum. At ' = 0.25, in addition, dissipa-
tion becomes significant. The low-frequency region is de-
scribed by a quadratic law S(z,w - 0) = (w?*/47'?)@(2).
The slope ¢(z) of the parabola increases with z, reaches a
maximum value 1 4 0.087 % at z = 1/2I", and then once
again decreases. We note that in a nondissipative medium
the slope increases monotonically, while in a linear medium
it remains constant.

At high frequencies the behavior of the broad spectrum
(17) is determined by the exponential factor. The exponen-
tial decreases by a factor of e at w = w,, (z); the solid curves
in Fig. 5b show the dependence of the “upper limit” of the
spectrum on the distance. The broken curves illustrate the

(17)

12

FIG. 4. Form of the disturbances (a) and power spectrum
(b), measured in a laboratory experiment.*’

corresponding linear dependence. The limiting frequency
@y, (2) exhibits a complicated behavior: At first it de-
creases; then it increases, reaches a maximum, and once
again begins to decrease. This behavior is due to the fact that
the nonlinear or dissipative effects predominate at different
stages of the propagation of the wave. For I > 0.29 the width
decreases monotonically—dissipation predominates for all
z. At T = 0.25 the nonlinearity is significant, whereas al-
ready at I" = 0.5 it is a small correction.”

The problems of describing the transformation of broad
spectra are usually classified with the problem of acoustic
turbulence.*>*' The most interesting problem is thought to
be the problem of finding the equilibrium form of the spec-
tral distribution or the universal law governing the decay of
S(z,0) in the limit @ — . In the region of developed shock
fronts the power spectrum decays as ~@ 2, since the ampli-
tudes of the harmonics forming the discontinuity decay as
o~ '. At higher frequencies linear dissipation is strongly
manifested, and the spectrum decays according to the expo-
nential law S(z,0) = S(z = 0,0)exp( — 2Il'w?z), following
from Eq. (5). These questions are discussed in detail in the
review of Ref. 5.

Among experiments concerning the power-law asymp-
totic behavior, we call attention to Refs. 84 and 86, as well as
Ref. 87, where the o ~? dependence is carefully checked.

5. INTERACTIONS OF A SIGNAL WITH NOISE. GENERATION
OF ACONTINUOUS SPECTRUM. SUPPRESSION OF NOISE BY
AN INTENSE SIGNAL

Among all the problems of statistical nonlinear acous-
tics, the problems of the interactions of regular and noise

FIG. 5. Dynamics of the transformation of broad noise
spectrafor I' = 0.25 (broken curves) and I' = O (solid
curves) (a) and of the “upper boundary” of the non-
linear spectrum (b).
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waves are of greatest interest for applications. The directions
of flow of acoustic energy in signal-noise interactions are
determined by the relative intensities and the position of the
spectra of the regular and random components of the distur-
bance. Some typical situations are discussed in Secs. 5 and 6.

I}

25 (02)2 S (2, w)

The theory of the interaction of simple monochromatic
and noise waves is developed in Ref. 31. We present an
expression which generalizes the results of Refs. 3 and 31 to
more complicated systems in the approximation of quasi-
simple disturbances (see Sec. 1):

= e—(0z)*6%(z) § [e((n)z)‘R(z, T)— 1] e—ioT exp {imz [s (z, T + T') —s (z, T')]} 4dTr

- o0

o0
_H S [e=(1/2)02y 0N )giazs(z, T) — 1] g-iaT {T :
— oo

Here the overbar denotes averaging with respect to the time
T, which is necessitated by the presence of the regular signal
s(z,T).

We shall study, following Ref. 31, the simplest case of
the interaction of plane waves in a nondissipative medium. If
the noise at the inlet is mixed with a harmonic (at x = 0Y
disturbance u = u,sin wgyt, then in the solution (18) we must
set s=4 sin N,T (here s=u/0, A=uy/o, Qy=wyl.).
Then, from (18) we can obtain a formula which describes
the distortion of the noise component:

5™ (0, 2) = — = J3 (4wz)
x| B () exp (w22 (R—1)1 2220 g7, (19)
0

The result (19) differs from the corresponding expression
(6) by the presence of the factor J 2, which accounts for the
nonlinear losses in the noise spectrum owing to pumping of
part of its energy upwards along the spectrum (due to the
presence of the regular signal with 4 #£0).

The creation of new sections of the spectrum in the sig-
nal-noise interaction process is described by the expression

8% 9 (6, z) = ——J3 (402)

X 5 R'(T) exp [(wz)? (3_1)11%—%?{ dr.

o

(20)

Finally, the second term in the formula (18) contains infor-
mation about the behavior of the harmonics of the regular
disturbance. In particular, the amplitude of the wave at the
fundamental frequency ), equals

59 (0, 2) = A g- ooy [_2%%22_)]2 6 (0 — Q).

20
It is evident that as a result of the nonlinear interaction with
the noise component [this process is described by the expo-
nential factor in (21)] and the generation of the characteris-
tic harmonics (the factor in the brackets), the spectral den-
sity of the signal decreases, but the spectrum $ retains its
delta-function form.

Let us examine an example illustrating the phenomena
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(18)

described. Let the noise correlation function at the inlet have
the form R(T) = (1 — 2T ?)exp( — T'?), corresponding to
the starting spectrum (15). Calculating the integrals (19)
and (20) we arrive at the result shown in Fig. 6 for £, = 10,
A =0.5. As z increases, the noise spectrum S™ becomes
distorted—energy flows from the center to the low and high
frequency bands (see also Fig. 5).

It is of special interest to study the dynamics of the new
region of the spectrum S™ appearing in the vicinity of
© = §),. The width of this “pedestal” at small distances
equals approximately twice the width of the spectrum of the
noise disturbance; each of the “wings” on both sides of ,
has the same form as that of the starting noise spectrum. We
call attention to the unsymmetric (relative tow = §),,) form
of the pedestal. Its high-frequency wing has a larger ampli-
tude and grows more rapidly as a result of the nonlinear
pumping of energy. The depression between the wings
gradually vanishes (atz=z;), and both wings of the pedestal
coalesce into a single broad line, whose energy center is dis-
placed into the frequency band > §),,. Later the amplitude
of the line increases even more (up to z = z,), and then the
stage of spreading along the spectrum appears (see z = z5);
in addition, most of the energy is once again pumped into
high frequencies.

S
Sz
2 s08)
Z5
s
Zs
7]
Zz
2z
44
1 1 | 1 o ) L
0 4 8 2, 12 5 e

FIG. 6. Appearance of a section of the continuous spectrum near the first
harmonic of the signal interacting with noise.
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FIG. 7. Results of numerical modeling of the problem of signal-noise
interaction.*?

Figure 6 shows only part of the spectrum. The full pic-
ture is more complicated. Harmonics of the signal nQ, are
created in the medium, and “pedestals’ appear at the foot of
each one.

For simplicity, we have talked about the position of the
spectral line of the signal when there is no overlapping with
the spectrum of the random disturbance. The solution (18)
enables studying the general case also. If the signal and noise
bands overlap, the dynamics become more complicated and
the separation of the spectrum into the components S,
SN 8 for 230 becomes a formal procedure.

It is precisely the last case that is encountered in prac-
tice. Thus cavitation spectra,' noise from jet engines, and
other sources of intense disturbances consist of discrete
lines, against the background of wide-band noise. Since in
accordance with Fig. 6 the broad spectrum is reproduced at
the foot of each discrete component, it may be concluded
that the continuous part of the spectrum grows rapidly as the
sound propagates in the medium. This conclusion is con-
firmed by direct experiments,** which agree with the the-

W, dB

ory.?! The intense formation of the continuous spectrum was
also observed in Refs. 43 and 44; in particular, it was ob-
served in Ref. 44 that the wide-band noise is intensified by 7
dB when a jet stream is irradiated with intense noise (130
dB).

The dynamics of this process is shown in Fig. 7. The
spectra for different z¢*’ (the distance in units of the discon-
tinuity lengths of the harmonic wave) were obtained in Ref.
42 in a numerical simulation of the physical experiment,
which is described below. It is obvious that the propagation
of the mixture of the discrete signal and the noise (z® = 0)
is accompanied by the appearance of harmonics of the signal
(more than 30), which “stretch out” and intensify the con-
tinuous part of the spectrum. Thus at 20 kHz an intenstifica-
tion by 25 dB was observed as the distance z‘® changed from
0.8to 1.2

The phenomena were studied experimentally in a tube
filled with air. A noise wave was excited in the 1-3 octave
band centered at the frequency 0.7-1.2 kHz. The average
intensity of the harmonic signal reached 140-151 dB. Its
frequency varied and could lie near the lower or upper
boundary of the noise spectrum. Figure 8 shows the spectro-
grams of the noise with no signal (upper series) and in the
presence of the full disturbance (bottom series); they were
obtained at distances of x = 0 and x = 7.38 m with a receiver
having an integration band of 100 Hz. It is obvious that when
the signal is switched off the noise spectrum remains practi-
cally unchanged—its intensity is too low. In the presence of
a 1.73 kHz signal, however, the broad spectrum becomes
transformed: a continuous component extending to at least
50 kHz appears.

We note that the continuous spectrum does not always
appear solely because of the wave nonlinearity. In specific
systems other mechanisms can also operate. Thus, in the
problem of acoustic cavitation nonperiodic pulsations under
harmonic action were already observed for the simplest ob-
ject—asingle gas bubble. The nonlinear oscillator—the bub-
ble—belongs to the class of Feigenbaum systems,** which
are characterized by the presence of a stochastic attractor
and by the fact that the motion becomes more complicated as

00

x=0 z=7.38m

FIG. 8. Experimental spectrograms of noise in the ab-
sence of a signal (top series) and a mixture of an in-
tense signal and a weak noise wave (bottom series).*?
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FIG. 9. Suppression of low-frequency noise by an intense
high-frequency signal. a) Measured spectra; b) results of cal-
culations in Ref. 48.

a result of period-doubling bifurcations.*® The process of
stochastization leads to the formation of a continuous spec-
trum of oscillations of a single bubble.*” Of course, with the
transition to a distributed system (cavitation region) a pic-
ture similar to that in Figs. 7 and 8 will be observed.

In addition to being intensified, the noise spectrum, as
follows from (19), can also be somewhat suppressed. To
observe this, it is necessary to choose a sufficiently high sig-
nal frequency so that the noise spectrum and the “pedestal”
for the first harmonic do not overlap. The supression of low-
frequency noise by an intense signal is of great significance.
Low-frequency noise has a harmful effect on structures and
organisms; for this reason, safety requirements for operation
of passenger aircraft are increased.® The unavoidable in-
crease in the total sound intensity under the action of the
intense signal does not present any danger, since it occurs in
the high-frequency components which decay rapidly as they
propagate.

This phenomenon was studied theoretically and experi-
mentally in Ref. 48. The experimental arrangment consisted
of a tube 11 cm in diameter, made up of five detachable sec-
tions each 1 m long. The gas—dynamic source of noise was
placed on the axis of the tube; generators of the narrow-band
signal were placed around it. The measurements were per-
formed beyond the tube at a distance of 1 m from its output
end at an angle of 45° to the axis. With the signal switched off
the starting noise spectrum (broken curve in Fig. 9a) re-
mained virtually unchanged at distances from 1 to 5 m. Be-
cause of the interaction with the signal there appeared a re-
gion in which the noise level decreased. Curve 1 corresponds
to a signal frequency of 5.5 kHz; curve 2 corresponds to a
signal frequency of 13.5 kHz. The tube was 5 m long. The
tendency for the noise level to decrease increased with the
intensity of the signal and the length of the interaction re-
gion.

Figure 9b shows the results of the calculations. The
noise spectrum was taken in the form (15), and the inverse
correlation time £~ ' = 8 kHz. The ratio of the intensity of
the noise component to that of the regular component
equaled 0.16. The curves 1 and 2 were constructed for the
distance z = egx/c5t, = 0.8. The dot-dashed curves show
the spectrum of the suppressed noise component. Figures 9a
and b agree only qualitatively. The form of the noise spec-
trum did not completely correspond to the observed form;
diffraction of waves along the path from the output end of
the tube to the sound receiver was not taken into account. In
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addition, the intense sound can change the structure of the
turbulent flow and therefore that of the starting noise spec-
trum. For this reason, in such problems, aside from nonlin-
ear interactions of sound with sound, it is also necessary to
take into account acoustohydrodynamic phenomena of the
sound-turbulence type.?? :

We call attention to the possibility of noise suppression
as a result of a different process—the interaction of noise
with a regular signal at a lower frequency. This possibility
follows from a remarkable property of the solutions of
Burgers’ equation (1). Let V™ (z,6)be an exact solution of
(1). It is easy to verify that

(S¥N) __ 0 1 (N) z 0
4 Tz [T—(2/zg)] + 1—(z2/z¢) 4 ( 1—(3/20) * 1—(2/z,)

(22)

will also be an exact solution. In other words, from one solu-
tion it is possible to obtain another solution by superposing
on it a linearly increasing or decreasing (depending on the
sign of the constant z,) function of time 6 = w,(t — x/¢;) in
the comoving coordinate system. As follows from (22), for
z,>0 the wave V™ is intensified on a rising slope and at
distances 0 < z < z,according tothelaw 1/[1 — (z/z,) ], and
its spectrum is shifted into the high-frequency region (the
old variable 8 transformsinto 8 /[1 — (z/z,) ]. Conversely,
on a falling slope (z5<0) the wave is suppressed ~1/
{1+ (2/|25)) ], and its spectrum is shifted into the low-fre-
quency regon.>"%3

The picture of this interaction is shown in Fig. 10. The
starting (at z = 0) profile of the low-frequency signal V'S
has the form of an equilateral triangle; a noise disturbance
V™ s superposed on it (see Fig. 10a). The distorted profile
of the resulting wave V** * ™ is shown on the left in Fig. 10b;
it corresponds to the distance z > 0 [but z < z,, since a shock
front has not yet formed on the front side of S |. The noise
component ¥’ of the distorted wave is shown on the right
in Fig. 10b. It is obvious that on the steep front slope of >
the noise is compressed and intensified, while on the gently
sloping trailing side the noise is stretched out in time and
suppressed.

The regular wave ¥ can contain only descending
slopes. An example is the typical, for nonlinear acoustics,
periodic saw-tooth wave, in which the linear sections of the
profile are connected by shock fronts. It is obvious that such
a “saw”’ will suppress high-frequency noise.

The question of the drop in the noise level accompany-
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ing the interaction of the noise with an intense signal is also
discussed in Ref. 49.

We emphasize that the possiblity of controlling the
spectra, the shift in the frequency, and the amplification of
weak signals in the field created by a powerful low-frequency
pump, following from (22) and Fig. 10, should be of great
importance not only for statistical problems, but also in dif-
ferent applications of nonlinear acoustics. This question is
further discussed in Sec. 6 for the example of the problem of
excess fading of a signal in a noise field.

6. FADING OF A SIGNAL INTERACTING WITH NOISE

The nonlinear interpretation of dissipative processes in
the language of phonon—phonon interactions originated in
the classical works of Landau, Rumer, and Akhiezer; it is
mostly employed for calculating the sound attenuation fac-
tors in solids.'® In many cases, however, this viewpoint is
useful in the study of waves in liquids and gases. This is
linked with the possibility of taking into account extraneous
noise (whose presence can lead to anomalously high attenu-
ation), the generation of harmonics, and other factors. Thus
a hypothesis attributing the excess absorption of low-fre-
quency sound in the ocean to the interaction with noise
waves accumulating in the underwater sound channel was
stated in Ref. 50. The results of Refs. 31 and 50 are linked

FIG. 10. Suppression of noise interacting with a low-fre-
quency signal.

with a number of experiments,’'~>* involving the compre-

hensive study of the nonlinear attenuation of a signal in a
noise field. Theoretical studies in this direction have also
been proposed.’*-37

We shall first study the process of nonlinear attenuation
of a weak signal with frequency @, interacting with an in-
tense low-frequency wave w; (@, €@l >U,). Setting in
theformula (3) V =exp( — Tz)sin T + (uy /ugy) sin(w, T/
®,), we obtain for the particle velocity at the signal frequen-
cy wg

U = Uy exp ( — b—""z) Jy (—c%a)ouLX) sin ©,T.

2C8po (23 )

It is evident that the amplitude decreases for two reasons.
The exponential in (23) describes the linear attenuation,
and the Bessel function J, describes the attenuation associat-
ed with the presence of the low-frequency wave (u; #0).
The argument of J,(y) can be writtenasy = (x/x4;, 1 ) (0y/
@, ). Since the ratio of the frequencies is w/w; » 1, the value
of y (for distances x ~x4.. | = ¢3/€w, uy —the discontin-
uity distance in a powerful low-frequency wave) can be
large: y» 1. In addition, the amplitude of the signal, which
decays as a function of the distance, will oscillate.

This behavior of the signal has been observed experi-
mentally.’"3* In Ref. 53 the measurements were performed

FIG. 1. Results of experiments on the non-
linear attenuation of an acoustic signal inter-
acting with a noise wave in water.>
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in a cell with water in a pulsed regime at megahertz frequen-
cies. Curve 1 in Fig. 11a shows the experimental dependence
of the amplitude of the signal, whose frequency equaled &,/
2m = 11.5 MHz, on the distance; the oscillatory velocity at
the inlet was u,~8-10~2 cm/s. Here there are no nonlinear
effects; damping occurs owing to viscosity and heat conduc-
tion. The experimental values of the amplitude of the signal
interacting with the low-frequency wave w, /27 = 1.35
MHz and u; =~ 6.5 cm/sec are plotted on the curve 2. The
attenuation increased appreciably, and the behavior of the
curve qualitatively changed. Analogous oscillatory behavior
of the amplitude was observed under natural conditions®' at
lower frequencies: w, /27 = 68 kHz and w,/27 = 244 kHz.
We note that the curve 2 is described well by the formula
(23). In particular, from the condition y = 2.4, correspond-
ing to the first root of the Bessel fuanction J,,(y), setting for
watere = 4, ¢, = 1.5-10° cm/s, we find the coordinate of the
signal minimum =~ 29 cm.

When the nonlinear attenuation of the signal occurs as a
result of the interaction with noise, as follows from the for-
mulas of Sec. 5 the amplitude decays exponentially

bwd 11e 2q ..
mx;—-i-(-ci-moox) ]sm T,

u=uoexp[—~ (24)
In this case the additional damping is determined solely by
the noise intensity o 2 and is independent of the mutual posi-
tion of the noise and signal spectra.

The results of experiments™ on the attenuation of a sig-
nal in a noise field are shown in Fig. 11a (curve 3). The noise
spectrum is concentrated in the band 0.6-1.9 MHz. The
noise intensity 0.3 W/cm? (o = 4.6 cm/s) was the same as
that of the regular low-frequency wave when the points on
curve 2 were measured. The behavior of curve 3 is described
well by the formula (24).

Analogous measurements with high spectral resolution
taking into account the finite width of the signal line were
performed in Ref. 53. Under real conditions it often happens
that the signal S coalesces with the spectral complex
SN3) (see Fig. 6), formed in the process of the interaction
at the base of the line. Actually, a new and wider line, which
cannot be separated into individual components, forms.
Here it makes sense to follow only the peak value of the
spectral density at the signal frequency.

The results of the measurements are shown in Fig. 11b.
The straight line gives the excess fading A = 10 Ig e-z?
~4.3(ew0x/ck)? of a delta-shaped line. The shading marks
the region of theoretical values of A obtained taking into
account the finiteness of the width of the signal spectrum
and the error in the noise measurement. The disagreement
with the experimental values (points) must apparently be
attributed to the fact that diffraction phenomena in the in-
teracting beams were ignored.

When the noise and signal waves propagate collinearly,
the nonlinear attenuation is described by the formula (24).
Itis shown in Ref. 31 that when the weak noncollinear inter-
actions are taken into account, the law exp( — fx?) trans-
forms into the standard dependence exp( — ax). However,
the model of an isotropic noise field better corresponds to
real conditions. For this reason, a more accurate calculation
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must be performed not in the plane-wave approximation, but
rather according to the theory of nonlinear acoustic beams.
We shall employ the model equation

1 4 28 9%l
(A—gam)u=—F5 (25
which is equivalent to the evolutionary Khokhlov-Zabolots-
kaya (KZ) equation

a2 ¢ g J%?
(aza-: —’E‘LAl)“='§' PN (26)
In order to transform from (25) to (26) it is necessary to use
the approximations of a slowly varying profile and quasi-
optics,>8 i.e., in (25) we must set

u(z, ry, t)=u(1=t_'ci"l"z’ P”Izrl); 27
o

here r, is the coordinate in the plane perpendicular to the
beam axis. A, is the Laplacian with respect to the corre-
sponding variables, x is the coordinate along the axis, and u
is a small parameter.

We shall represent the longitudinal component of the
oscillatory velocity as

p=u® LU fuls @) =@M =0;  (28)

here u‘® is the regular signal (a harmonic plane wave),
4™ is the steady-state noise, and ¥™’ is a small fluctu-
ation correction to the signal, appearing because of the inter-
action of the signal with the noise. We assume that the signal
is weak and we neglect both the formation of its harmonics
and the reaction on the noise field. Under these assumptions,
from (25) we obtain the system of equations

1 o2 2e 0%
—— e N, — & —_ (uSyN)
(A 3 at,)u 5 5 (WOum), (29)
a 1 4 e 9
DL 0 Y ue= 2 sy,
(6: € 6t)u ci ot (u ul (30)

An analogous system can be obtained from the KZ equation,
but the subsequent calculations based on (29) and (30) are
much simpler.

We shall write down the solution of (29) in terms of the
retarded potential and set in the solution

uld = -%- U, exp (imgt —ikyz) 4+ c.C.,

o0
u (¢, r)=% S un (o, r)ete*do+ c.c.

(30D

This gives

_ Bl , (0y+ )%
u(N-S)—-—Tn—:a S do S dr —I:—_r-T

x exp| — ikoz +i (09 +0) (t— =LY |40 (o, 7).
(32)

Substituting (31) and (32) into Eq. (30) and carrying out
the averaging, we find the dispersion law

y— 2 = 2”“‘0’5 jﬁ (0p—0)2do S G (o, R)

xexp[ikoRcose—i(mo—m) %]ERE. (33)

0. V. Rudenko 630



where R=r—r, R cos #=x—x', and G(w, R)
= (2 Mg ™NM*) = G(w) X sin(wR /cy)/(wR /c,) is the
correlation function of the wave noise in a nondispersive me-
dium. After integrating in (33) we obtain the attenuation
factor

. (I)o 3 o
a=gr [ | BE%6(0) do+ 20 [ 6(0)d0]. (34)

0 Wy

The formula (34) was first derived by Westervelt.’® Here,
however, we give the computational scheme of Ref. 59,
which is based on the simplified equations of nonlinear
acoustics. This scheme is convenient for solving more com-
plicated problems, in which it is necessary to take into ac-
count the dynamics of internal processes in the medium or
its structural peculiarities, leading to the appearance of dis-
persion.

If the frequency of the signal is much higher than the
characteristic frequency of the noise, the attenuation factor
is proportional to the square of the frequency

" o0
ax Iral [ €2 do. (35)
0
For the inverse ratio of the characteristic frequencies, & de-
pends linearly on w,>>":
2 o0
o RS %E,—coo 5 G(w)do= ﬂmo;
o s

el (36)

here & = p,(u'™) is the volume density of the energy in
the noise waves. In Refs. 56 and 59 the formula (34) was
used to describe the attenuation of first sound in superfluid
helium at temperatures < 0.6 K and the attenuation of low-
frequency signals accompanying the interaction with dy-
namic noise in the ocean.

We shall indicate other schemes for calculating the dis-
sipative coefficients in a noise field. In Ref. 60 a method
based on the use of canonical variables for liquids or gases
and the frequency distribution of the occupation numbers of
the noise modes is described. Different modifications of
models of weak acoustic turbulence and the random phase
approximation are often used.>**%! The fact that in acous-
tics only the quasicollinear waves interact efficiently is taken
into account in these schemes already at the evaluation
stage, and not in order to simplify the starting equations or
calculations.

Returning to one-dimensional models, we note that the
results of recent studies®>®* of strong turbulence, described
by Burgers’ equation, are very useful for understanding the
physics of noise-signal interactions.

7. DIFFRACTION OF INTENSE NOISE

The effect of the time-dependent and spatial statistics
on the interaction of diffracting wave beams has been studied
in detail in nonlinear optics.* The analogous phenomena in
acoustics have not been studied. The complexity of nonlin-
ear acoustic problems comes from the specific nature of
these problems—the creation of many spectral components
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in a nondispersing medium. Under these conditions, one
cannot regard waves as being quasiharmonic and one cannot
transform from field equations to nonlinear parabolic equa-
tions for the amplitudes.

The basic equation of the nonlinear acoustics of finite
beams is the KZ equation (26). We shall employ this equa-
tion to calculate the space-time-dependence correlation
function

B(z, T="T—"%, Iy, Fg) = (% (2, ¥y, T U (2, Ty, F))e  (37)

In accordance with the approximate method presented
in Sec. 2, the solution of the nonlinear problem can be con-
structed in two stages. First, we find the auxiliary correla-
tion function B(x, 7, r, R) from the linearized equation, cor-
responding to (26),

2B

0*B __ ¢ _ __ . 0B
arov 2 (Ar,1—Ay,2)B=6, oroR *

(38)

where r=r, —r,, R= (r; +r,)/2. Then, to obtain the
physical result, the auxiliary function must be transformed
by means of a nonlinear transformation of the type (6).
The solution (38) with the condition B = By(r,r, R) at
the boundary x = 0 of the nonlinear medium has the form

1 1 3

B(z, 1,5, R)= — G T

§ 1B (r— E=HE=R) v, r) dr ar.

0T
(39)

Let the starting (x = 0) space~time-dependent correla-
tion function be represented as a product of a time-depen-
dent correlation function B,(f) and a space-dependent
B, (r) correlation function

By (t, r, R)= DB, (t) B, (r) I (R); (40)

Here I(R) describes the distribution of the average intensity
in the transverse cross section of the beam. Substituting (40)
into (39) we see that for wide-band signals forx > 0B(x, 7, r,
R) cannot be decomposed into the product of space- and
time-dependent correlation functions, as was done for nar-
row-band randomly modulated waves.* Thus, in the process
of propagation of acoustic noise the space- and time-depen-
dent statistics are strongly coupled already in the linear ap-
proximation.

When the starting transverse correlation radius is less
than other characteristics scales (r, — 0, the spatial correla-
tion is approximated by a  function) from (39) and (40) we
obtain
B(z, r,R)=1 (o)’

2(-‘0.1'

X °5° @S (w) B (7, 0, 1) exp [ 1o (t— )] do.

=00

(41)

Here, in accordance with the Van-Zittert—Zernike theorems,
the transverse correlation function is related to the initial
intensity distribution by a spatial Fourier transform
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’ [ ’ 14
Bl(z,(o,r)=SI(R)exp(iﬁrR)dR. (42)
It follows from the formula (41) that for wide-band signals a
more general theorem holds: B(x, 7, r, R) is determined by
the frequency Fourier transform of the product w?SyB,,
where S, is the starting wave spectrum.

We shall examine the following example: at the inlet the
beam [ is Gaussian and the spectrum .S, corresponds to a
Gaussian correlation function B,(t) = exp( — t2/t2).

I(R)=ujexp (—775). So(w)=2t;‘/__exp(—31—t-:—). (43)

T
We shall calculate (41); concentrating on the correlation
function near the axis of the beam, we setr, =0, r, = s. The
linear space-time-dependent correlation function assumes
the form
~ 2
B= 2(%) B(x, 7, 5)

r.Rou,

=(1+iz_)—s/2 1—29

s
rz] - tr "31 e
- 2 \2_
()
Xexp| — S‘; (44)
— 1 + ’,‘2:] |
There are two characteristic correlation radii:
ro (x) = c"}:‘x ~X, P (%)= (2pt.x)"*~x"2. (45)

0

In the limit x — O the effective radius r, (x) increases linear-
ly with the distance, after which a slower square-root growth
appears.** N

Figure 12 shows the normalized function B(x, 7 =0,
5), constructed based on the formulas (44) for the values
B = (r,/ry)*=0.1;0.2;0.4;0.7; 1.0 (curves 1-5). Setting
7 =0 we thereby assume that the function B is measured
with two wide-band receivers (one of them lies on the axis of
the beam, and the other is a distance s away from the axis),
which record the total noise energy over the entire frequency

)

.0

[

a.2

1
2.0 s%/r¢,

N

FIG. 12. Spatial correlation function of narrow-band acoustic noise and
increase in the correlation radius.
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spectrum. The change in the form of the curves with increas-
ing B indicates the fact that aside from r_,, the correlation
radius r, also strongly affects the spatial correlation of the
field. The broken curve 1’ in Fig. 12 shows the behavior of
the effective correlation radius, determined at the 0.1 level
[this is the dependence of 7. /2R, on the reduced distance
VB = (cot. /2R 2)x. The curve 2’ describes the increase in
the correlation radius r, (x), when the assumption that the
starting field is &-correlated breaks down and
r. (0) = 0.2R,, Differences from the curve for r, (0) = 0 are
noticeable only at small distances.

The function B (44) was calculated for wide-band
noise, given at x = 0in the form of a beam with a plane phase
front. At short distances the increase in the correlation radi-
us according to the law r,, (x) (45) is a result of diffraction.
When the correlation radius begins to grow according to the
law r_, (x), the diffraction process is mainly completed and
the growth is determined by the spherical divergence of the
components of the spectrum. It is precisely for this reason
that the maximum correlation is observed [see (44)] for
T = — 5%/2cyx; the delay in the measurement of 7 at a dis-
tance s from the axis must equal precisely the difference in
the arrival times of the waves at the points located at dis-
tances x and (x> +5%)'"2=x + (s°/2x) from the sound
source.

Figure 13 shows the ‘“limits” of the correlation function
(44) on the surface 7/¢., s>/r%, for different values of the
parameter 8 '/2 = (cot. /2R 3)x = 0; 0.1; 0.2 (curves 1-3).
these curves are formed by the intersection of the surface
B(r,s) with the surface at the level B = 0.1. It is evident that
as x increases the region of the highest values of the function
B becomes localized along the curve 7 = — 52/2¢x.

Consider now the nonlinear problem. Neglecting for
the time being the change in the spatial statistics (s = 0), we
take into account its effect on the evolution of the spectrum
of the intense diffracting noise. (The generation of noise
acoustic harmonics in regular beams neglecting diffraction
is studied in Ref. 65.) A new parameter appears here—the
nonlinear length x4, = ¢3¢ /€u,, so that it is convenient to
transform to the variables used in (1) and (6): z = x/x .,
T = r/t.. We shall regard B and w as dimensionless quanti-

FIG. 13. Change in the form of the “boundary” (with respect to the level
at 0.2 of the maxiumum) of the space-time correlation function of a broad-
band acoustic noise as a function of distance.
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FIG. 14. Stationary spectra (in the far zone) of diffracting nonlinear
acoustic noise.

ties; the normalizimg constants for them are uj and t [ '.
The correlation function (44) assumes the form
2

Bz, T)=(N—‘),-(1-—2T2)exp(-—2'2)- (46)
The number ¥ = x4, /X 44 is the ratio of the characteristic
discontinuity distance to the characteristic diffraction dis-
tance x4 = r. Ry/2¢,t. . In the limit N— o the nonlinear-
ity has virtually no effect, and for small ¥ it affects mainly
the evolution of the form and spectrum of the wave.’

Applying the nonlinear transformation (6) to (46), we
find

8= 2512 (N2)2 S (3, 0) = [1 +6 (%)2]-1/2

xfor (7)1 ($)7])
o= [10(5)]7)

For weak (N» 1) and strong (V< 1) manifestations of non-
linearity we have

(47)

= ®? = 36 (o/N)?
S i = 02 exp ( - T) + Shontin™ {6 (o/NPTR®

(48)
Itis evident from the formulas (47) and (48) thatin all cases
in the far zone a stationary spectrum is formed—its form is
independent of the distance z, and the values decrease asz 2.
The stationary form of the spectral distribution is shown in
Fig. 14 for different degrees of manifestation of nonlinear
effects. The nonlinearity intensifies as the increasing number
of curves 1--5 increases (N = o, 4/6,2J6,6, 1), and in
Fig. 14 the transition from S ;, t0 8., in (48) is observed.
It is evident that nonlinear effects, together with diffraction,
appreciably reduce the width and shift of the maximum of
the spectral density into the low-frequency region. The
broken curve corresponds to the starting spectrum (43)
S(z=0, ») = exp( — ®*/4); when the nonlinearity is not
manifested, the spectrum in the far zone Ky in (48) (curvel)
equals the starting spectrum multiplied by »” (the corr-
sponding correlation function equals the second derivative
with respect to T of the starting function).

633 Sov. Phys. Usp. 29 (7), July 1986

In order to follow the evolution of the form of the spec-
trum as a function of distance and the process of establishing
the steady-state spectral distribution in the spherical diver-
gence zone, it is necessary to drop the assumption that the
correlation is of the 8-function form. In addition, the auxil-
iary function must be described by a more general expression
than (46):

B=e“7"—3¥3-Nze(N‘)’“ {e'N‘T [1—®'(E—I-—T)]

2
ronfio (3]}
(49)

where

CD(a:)=L S exp (—+v%dv
0

n/2

is the error integral. Calculations show that for a fixed dif-
fraction length x4 the intensification of the nonlinearity (de-
crease in x4, ) causes an appreciable increase in the attenu-
ation on the axis of the beam. This phenomenon has the
following significance: the nonlinear interaction of the spec-
tral components “feeds” the low-frequency region of the
spectrum, from which the energy is extracted by diffrac-
tion.”

We shall now consider how the nonlinearity affects the
spatial statistics. To this end, we find the correlation func-
tion B(z, 7, 5), applying the transformation associated with
(6), to the auxiliary function (44):

_(T_/‘c_-ﬂl]dp (50)

+  oF
L) T
S T 2I(1- B

(Nz)?

- 00

B(z;ts)=

Figure 15 shows the space-time-dependent correlation
function at 0.1 of its maximum value.> The calculation was
performed for different manifestations of nonlinearity, the
curves 1 correspond to the linear case (N — « ), the curves 2
correspond to N = 2v2, and the curves 3 correspond to
N = v2. It is evident that as the nonlinearity increases, be-
cause of the mixing of the spectral components both the spa-
tial and temporal correlations increase. The analogous effect
of nonlinear smoothing of spatial surges has been well stud-
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FIG. 15. Section of the space-time correlation function at different dis-
tances for different values of the diffraction-nonlinearity numbers.

ied for regular beams, described by the KZ equation.*'’ The
region of correlation expands also as a result of the accumu-
lation of nonlinearity as the distance traversed by the wave
increases. The two groups of curves in Fig. 14 correspond to
a reduced distance y8 of 0.4 and 0.8.

The increase in the correlation radius, determined from
the total energy (as in Fig. 12), is shown in Fig. 16. The
curves 1-4 correspond to the values of N equal to 2v2, 3v2/2,
v2, and v2/2. The broken curve corresponds to the linear
case (N- «, see curve 1’ in Fig. 12).

We note that this definition of the correlation radius is
based on the idealized notion of point receivers, whose fre-
quency characteristic is uniform over the entire frequency
range. Of course, for wide-band noise this is not the only
possible definition. If, for example, the receiver cuts out of

:{/th’,,
4
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FIG. 16. Increase in the transverse-correlation radius during the propaga-
tion of a wave with a broad spectrum. The broken curve shows the linear
dependence. The nonlinearity becomes stronger as the numbers on the
curves increase.
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the noise a narrow spectral band, then, in principle, the re-
verse effect is possible—accentuation of the surges and de-
crease in the correlation radius with increasing nonlinearity.
This situation is encountered, for example, in nonlinear op-
tics.* Moreover, real acoustic noise spectra are more compli-
cated than the example studied here [the second formula in
(43)] and can exhibit other, diverse properties.

In concluding this section, we point out that the prob-
lems of diffraction of intense noise, especially taking into
account the spatial statistics, have not been previously stud-
ied. These problems are very complicated; they are difficult
to solve even with the help of modern computers. In acous-
tics only the linear problems have been studied; an example
is the analysis of the spatial correlation of noise created by
the falling of raindrops on the surface of water.°® At the same
time, any real source of intense noise creates a spatially limit-
ed disturbance, and diffraction must in principle be taken
into account in describing the propagation of this distur-
bance. The spatial statistics must affect the operation of
powerful radiating systems with multicomponent mosaic
antennas, the random transverse oscillations of the field here
are linked with the spread in the parameters of separate ele-
ments. Another example is a cavitation layer with a random
distribution of bubbles, emitting intense noise as they col-
lapse. Many analogous sources exist in aeroacoustics and
wave hydrophysics of the ocean,®” where correlation mea-
surements are primarily used.

Thus the study of nonlinear problems taking into ac-
count spatial statistics is only beginning; interesting results,
both theoretical and experimental, can be expected here.

8. EXCITATION OF NONLINEAR RANDOM WAVES BY
DISTRIBUTED SOURCES. STEADY-STATE SPECTRA

Thus far we have studied intense noise whose character-
istics are fixed at the point of entry into the nonlinear medi-
um. It happens, however, that often it is not the statistical
properties of the starting noise field that are known, but
rather those of spatially distributed sources exciting the
wave. Such problems are described by inhomogeneous non-
linear equations, whose right side is a random function. The
simplest such equations are the inhomogeneous Burgers
equation and the equation describing simple waves.®®’® This
model is adequate for many situations realized in optoacous-
tics, mechanics, plasma physics, and the physics of electron
beams (see Ref. 32). Some examples are the processes of
excitation of nonlinear sound in a gas incident with nearly
the velocity of sound on a laser beam or an uneven solid
profile, the excitation of ocean waves by a traveling pressure
wave, etc. In addition, inhomogeneous equations of the
Burgers type are interesting as the simplest model of turbu-
lence since, together with nonlinear mixing and dissipation,
it includes a third fundamental factor—external energy
sources.®?

For definiteness, we shall talk about the excitation of
sound by a moving field of random sources. Equations of the
evolutionary type can be obtained if the sources move rela-
tive to the medium with the velocity ¢, close to the velocity ¢,
of the characteristic wave: |c; — ¢4|/c, <€ 1. In this case, two
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oppositely traveling waves efficiently excite only one wave,
traveling synchronously with the sources. The equation for

it*? has the form
v W _ BV eV dF (e)
%Vl tizm= =19 D
Here the variables V=u/u, z=x/x4,, 0=w,
X [r—x(e; " —c5 ") ] are the same as those defined pre-

viously [see (1)], and § = (¢, — ¢,)/eu, is the dimension-
less offset of the velocities. The sources are described by the
function F with the normal distribution law and a fixed cor-
relation function

(F(8,)F(6,))=Rp(8=6,=—0,), (F)= (52)

The normalizing “amplitude” u, depends on the intensity of
the sources and is chosen so that R (0) = 1.

The properties of the solutions of (51), corresponding
to determinate physical formulations of the problems, are
described in Ref. 32. The basic analytical results for the in-
homogeneous Burgers equation (51) were obtained by lin-
earizing it using a Hopf-Cole transformation. The behavior
of the solutions of the inhomogeneous equation for simple
waves [(51) with T = 0] can be analyzed qualitatively in
the phase plane. But these approaches® are inadequate for
studying the excitation of intense noise waves.

An approximate (for large velocity offset |§|> 1) solu-
tion of the inhomogeneous equation for simple waves, corre-
sponding to the absence of disturbances V(z =10, 8) =0 at
the boundary of the medium z = 0, is proposed in Ref. 71:

—LF@)—%F (8—24-2V—Z F(8)+0 (5L) . (53)

Employing (53), it is possible to carry out exactly the statis-
tical averaging and calculate the correlation function
R, (2,6 =0,—6,) =(V(z2,0,) XV(z,0,)) of the noise
wave:

Ru RF(e)_*_q&z T dRp ¢(T+az—e) (D(r+az+e)

- Vs V2z/6
I—9
—(D((m)]dl (54)

In the linear limit (z/6— 0) we have the expression
8°Ry =2Rp(0) — Rp (0 —6z) — R (8 + 6z). From here
it is evident that the total intensity of the linear noise
R, (2,0) = (2/6*)[1 — R;(62)) grows with increasing z
and in the limit 5z— oo approaches the stationary value 2/
&2, which decreases as the velocity offset || increases.

The expression for the spectrum of the intensity of the
wave corresponding to (54) has the form

Se (2, 0) = SF("’) {1—2exp[-— Fz—) J cosﬁmz}
+ar e | o ee[ = (F) =R
X exp(—ial)dT; (55)
here

Sp= e \ Ry (6) e-io® 46

is the spectrum of the intensity of the distributed sources.
Comparing the formulas (55) and (6) we note that the sec-
ond term in (55) is the spectral density of a freely propagat-
ing simple wave, whose starting spectrum (at the boundary
z=0) is S (w) /8% The high-frequency asymptotic behav-
ior determined by this term in the nonlinear medium » ~?, as
is well known,” is associated with the inaccurate description
of discontinuities by solutions of the type (53). At large dis-
tances the spectrum of the disturbance formed is proportion-
al to the spectral density of the sources: S, (z— «o,0)
=Sq(w)/8%

The dynamics of the formation of the intensity spec-
trum of the wave is illustrated in Fig. 17 for Sy = (1/
27'"%)exp( — w?/4). Figure 17a shows the spectrum
S, =2m'/252S, for values of the velocity offset 52 = 4 at
distances z/6 = 0.15, 0.3 (2), and 0.5 (3) (broken curves).
The corresponding solid curves 1-3 were constructed using
the linear theory (the curves 1 are practically identical). Itis
obvious that in the process of excitation of the wave the
nonlinearity increases the redistribution of energy over the
spectrum. In Fig. 17b analogous curves are given for % = 10

FIG. 17. The spectrum of an intense wave,
excited by a traveling field of distributed
sources, as a function of distance.
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and z/8 = 0.5. Here, oscillations owing to the larger fre-
quency offset § are clearly seen; the nonlinearity partially
*“smooths” them.

Interesting phenomena in intense noise fields, excited
by random sources, occur after the formation in the realiza-
tion of sections with a steep profile—sequences of shock

waves.

To study these phenomena we shall employ the method
of qualitative analysis of the solutions of Eq. (51) (forT"«1)
in the phase plane.’? We shall study a segment of the random
function F(8), describing the right side of (51), which lies
between the two maximum surges F(8 =a) and F(6 = b)
Fig. 18. To simplify the discussion, we shall set the velocity
offset § =0 and we shall assume that the surges are
quite large and almost identical in magnitude
(F(a) =F(b)> (F?)'?2 = 1). In addition, the neighboring
sections of the realization (€ <a, 8 > b), as will be explained
below, will not affect for a long time the nonlinear processes
within the segment under study a<6<b. Here a quasistation-
ary field, which does not vary as z increases until a moving
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FIG. 18. Segment of the realization of the original function of
random sources, the phase-plane diagram, and the profiles of
the excited wave with motion and merging of discontinuites.

discontinuity appears from the outside in the segment
[a,b]—from the vicinity 8 =c¢ of the larger maximum:
F(c) > F(a). However, for F(a) s (F?)'/? this event is un-
likely.

Figure 18 shows a segment of the realization of F(89)
between two small peaks [for simplicity F(a) = F(b)]; the
phase-plane diagram (fine lines) and the waveform (curves
1-3) for three values z, <z, <z, are constructed beneath
them. Curve 3, corresponding to the traversed distance zs,
shows the quasistationary profile.

The phase-plane method is based on the properties of
the characteristics of Eq. (51)

48 _ _y.

dz (56)

Y+ F®)=C,
The first of the formulas (56) describes the family of phase
trajectories corresponding to different values of the constant
C. The second formula in (56) is the differential law of mo-
tion of each image point along its trajectory. Knowing the
coordinates 6,,V,(8,) of this point at the distance
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z, =nAz, it is possible to find its position
6,,, =0, —V,Az at the distance z,, | , . The aggregate of
image points for a given z,, forms a curve—the wave profile.
The nonuniqueness of the profile indicates the appearance of
a discontinuity, whose position is determined in the same
manner as for freely propagating disturbances—from the
rule of “equal intercepted areas.” 3

At short distances the wave is weak, and grows accord-
ing to a linear law V= zf(8): its profile reproduces the deriv-
ative dF /d6 = f (curve 1). It is obvious that the statistical
characteristics of the disturbance are described by the nor-
mal distribution, and the intensity spectrum is given by

Sy (2, ©) & 225, (0) = 22028, (0). (57)

During the growth process the wave form becomes dis-
torted because of the increasing effect of the nonlinearity.
One discontinuity forms between each pair of neighboring
saddle points (they are marked by circles in the phase-plane
diagramin Fig. 18). These discontinuities are nonsymmetric
relative to the zero level ¥ =0 (curve 2); for this reason,
they move and collide with one another like absolutely in-
elastic particles. As a result of the set of collisions on the
segment one “‘large particle” forms—a discontinuity (curve
3), corresponding to the absolute maximum of the random
function F(8).

It is not difficult to see that the quasistationary profile
consists of the segments of two separatrices
V=14 [2(Cpa — F(8))]'? passing from the saddle point
6 = a to the saddle point @ = b, and a discontinuity whose
position is determined by the integral equation (51) (6 =0,
r-0):

b
\ V(2 8)a0=2I(F (5)—F (a)l.

a

(58)

In constructing the phase-plane diagram we set
F(a) = F(b) = C,,, so that in Fig. 18 the discontinuity is
drawn so that the area under the curve 3 exactly equals zero.

If the magnitudes of the peaks are close, but not identi-
cal, for example, F(b) > F(a), the area (58) under the curve
V(z,0) will grow linearly with increasing z owing to the dis-
placement of the discontinuity to the left, when the wave
traverses a distance

b
2= S {2(F (b))~ F (0)1}¥2d6- [F (b)— F (a)]™,

the discontiniuty will reach the left boundary 8 = a of the
segment under study and will leave the segment. A station-
ary wave with no discontinuities and whose form coincides
with the top separatrix V' = {2[F(b) — F(6)]}'/? will be
established in the segment [a,b]. In the other case
F(b) < F(a), the discontinuity will pass beyond the bound-
ary at theright 8 = b, and the stationary wave in the segment
[a,b] will assume the form of the bottom separatrix:
V= —{2[F(a) — F(6)]}"2

In all cases the quasistationary wave is described by the
formula
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V& & [(2Cmax)' *— (2Cmax)! 2 F(8)]1' 2, (59)

where C,,, can be a slowly increasing function of the dis-

tance z. It is now understandable that at large z the statistics

of the noise field once again becomes Gaussian with the

mean + (2C...,)"?and variance (2C,,,, ) ~". Thus the val-

ues of ¥ are localized in a narrow region around the center,

determined by the magnitude of the largest maximum C,,,, .
The intensity spectrum acquires the form

S
Sy z>1,0)~ 26}':::): .

(60)

Comparing the formulas (57) and (60) we can see that in
the quasistationary spectrum the low-frequency compo-
nents are accentuated. This is linked with the enlargements
of the scales of the field owing to the coalescence of moving
discontinuities. In addition, the nonlinearity determines the
high-frequency asymptotic behavior, associated with the
structure of the front of “long-lived” shock waves. This
asymptotic behavior has the form @ =% in the limit T — 0 of
vanishingly small viscosity (see the end of Sec. 4). When the
finiteness of the width of the shock-wavefront, described by
the expression ¥ = (2C)'/2 th[8(2C)'/2/2TI'], at high fre-
quencies is taken into account we have

Sy (z, ) ~ I'?sh~? ol

oy . (61)

For small but finite I' the power-law dependence w ~ 2 in the
limit @ - « transforms into the exponential dependence
~exp( — Bw).

The qualitative picture of the formation of quasistation-
ary noise, described with the help of Fig. 18, permits stating
plausible hypotheses that the statistical characteristics of the
process are close to Gaussian, and that the correlation of the
field ¥ (z,0) and the right side f () of Eq. (51) (for large z)
is weak. These hypotheses are sufficient for uncoupling the
correlations and obtaining a closed stochastic equation.

'R 94R like
BV (@) S o (Ry —1)2=2R,.

(62)

It is not difficult to find the stationary solution of (62) for
I'=0. Let, for example, the correlation function
R, = {f(8,) f(6,) and the corresponding spectral density
S, equal
4 4

1+ (0%4) 1ot
The sources (63) excite a wave with the statistical character-
istics

Ry=2 2101 —¢=181, 1S ,— (63)

Ry=e-1%l, nSy= (64)

i
1+
The physical constants were chosen so that R, and R,
would equal unity at 8 = 0.

The functions (63) and (64), illustrated in Fig. 19, ex-
hibit the behavior discussed in connection with the formulas
(57) and (60). If the spectral density of the sources S, in the
limit w — O behaves like ~w?, then the low-trequency com-
ponents in the spectrum of the wave S, will be accentuated:
Sy (w— 0) — const. This phenomenon is not limited to the
example studied (63) and is of a general character. When
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FIG. 19. Spectra (solid curves) and correlation functions (broken
curves) of distributed sources and the nonlinear random wave excited by
them.

the spectrum of the sources S;(w— 0) ~»", where n <2, a
singularity appears in the noise wave (S, (w— 0) » : the
quasistationary spectrum is not formed). Physically, this is
linked with the fact that the high-frequency dissipation can-
not prevent the accumulation of energy at low frequencies;
the diffraction of nonlinear noise could be a real competing
effect here (see Sec. 7).

The steady-state solutions of (62) with I' = 0 also ex-
hibit @~? high-frequency asymptotic behavior. This is
linked with the presence of a break (at the point § =0) in
the noise correlation function, exhibiting the universal be-
havior R, (6-0)=1—|0|+ .. while R, (6- 0)
~1—af%+ .. Of course, taking viscosity into account
(T'#0) smooths out this break; the solution of the singularly
perturbed problem [Eq. (62) with the small parameter
(2I')? in front of the highest, fourth order derivative] must
describe the transition of the power-law asymptotic behavior
to the exponential type behavior (61).

In concluding this section, we point out that the statisti-
cal theory of problems of intense noise emission, based on
the nonlinear equations of the type (51), is actually only
beginning to be constructed. In the near future it will appar-
ently be possible to obtain here more detailed quantitative
results. To this end, the theory of surges of stochastic pro-
cesses and especially the computer modeling of nonlinear
discontinuous waves are promising.*’

9. NONLINEAR TRANSFORMATION OF THE STATISTICAL
CHARACTERISTICS OF ACOUSTIC NOISE

A method for calculating distribution functions for
nonlinear noise waves, based on the property of ergodic
steady-state processes, is proposed in Ref. 72. This property
is usually used in the experimental determination of statisti-
cal characteristics, and consists of the fact that the relative
time that the process spends in the interval (u, u + Au) con-
verges to a one-dimensional distribution function.

Consider a segment of the narrow-band random process
u (Fig. 20). We take on the axis of the oscillatory velocity u
the point u; and a small neighborhood Au; around it; this
neighborhood corresponds to the set A8 (4, @, ) on the
dimensionless-time axis 8 = wy(z — x/c,). The index & re-
fers to the number of the period; v =1 or 2 depending on
whether or not u; is on the front or back slope of the wave;
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FIG. 20. Segment of the stochastic process; the quantities used in deriving
the nonlinear functions of the distribution based on ergodicity.

A, ., are the random values of the amplitude and phase.
Then the distribution function is given by

N
W ()= lim (2xNAu,)™t X | A6Y (A, oas @) |- (65)
AU~0 v; he=i
N-+oo
The notation in (65) is convenient because the distortions of
acoustic waves are most simply described in terms of the
change in the increments Af {” (4, ,p,; x = 0) as the dis-
tance x increases.
Thus if the plane wave does not contain discontinuities
and its propagation in the low-viscosity medium (I’ €1) is
described by Burgers equation (1), then

N e . u e
e 1) __ Ui 2) i — Z.
! == arcsin e Wz, O = n— arcsin y T Wol;

(66)

It is evident that in the region prior to the formation of dis-
continuities  the sum  |AG{V|+ |A6 (P | =2(4}
— u?)~""?Au; does not change as x increases. For this rea-
son, the form of the one-dimensional distribution function
W(u) (65) remains the same, though the form of the signal
changes substantially.”® This fact is discussed for starting
signals of arbitrary form in Ref. 73.

After discontinuities form in the wave, the nonlinear
distortions cause the smooth sections of the profile to creep
onto the shock front. At first the point u, lying on the front
slope, appears on the shock front; A@ " immediately van-
ishes, while the value of A8 (?, corresponding to the back
slope, will increase as before. Then the point «; on the des-
cending section of the profile will collide with the shock
front. The nonlinear distortions of the one-dimensional dis-
tribution function are linked precisely with the vanishing of
Af {” (u;) when u; reaches the shock wavefront.

For initially Gaussian noise, after averaging the sum of
the increments A@ [ (4, @,;x) (with a Rayleigh distribu-
tion law for the amplitude 4, and a uniform distribution of
the phase @, ) we obtain the function

W(V)=%[1+CD(Vctng)+

|V|<:—1

2 -VsctgsV
:tllﬁev £

(67)

and W(¥)=0 for |V|>n/z; here V=u/ov2z
= e0wyx/v2c}. The nonlinear transformation of the start-
ing normal distribution is shown by the solid curves 1-3
(z=0,7/2, ) in Fig. 21. The form of W (V) (67) becomes
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FIG. 21. Nonlinear transformation of the distributions of the signal W(4)
(curves 1-3) and its maxima W{ V) (broken curves 4-6).

strongly deformed. Because of the nonlinear damping the
probability of large values of | V| decreases (the function W
vanishes completely at finite values |V | = 7/z; as a result of
this the probability for observing small | V| increases).

The corresponding changes in the Rayleigh distribution
of the peaks are shown in Fig. 21 by the broken curves 4-6
(z=0,7/2,m).

Thus because of the formation of discontinuities in the
nonlinear medium and the subsequent damping the prob-
ability of small values of the signal ¥ and its envelope 4
increases owing to the decrease in the probability of large
surges. For arbitrarily small z the distributions W (V) and
W(A) are bounded for large values of the arguments and the
intensity of the signal (¥ ?) is less than at the point of entry
into the medium. The behavior of the average intensity and
variance of the process in a nonlinear medium is analyzed in
Refs. 65 and 74 with the help of the formula (67).

Later, the method of Ref. 72 was successfully used in
the solution of other statistical problems.” '

The characteristics described in Refs. 76 and 77 were
checked experimentally. In Ref. 77 noise with an intensity of
152 dB was excited in a muffled aluminum tube 20 m long
and 5 cm in diameter. The average frequency of the spectrum
with a 1/3-octave band equaled 1 kHz. The results of the
analysis of the measurements are presented in Fig. 22. The
distribution function of the noise at the input was nearly
Gaussian (broken curve). As the noise propagated (x = 7.5
and 17.5 m——curves | and 2) the distribution approached
the uniform distribution. It was found that this tendency is
linked with the formation of discontinuities. The asymmetry
of the curve can be explained by the weak dispersion of the
wave in the tube; as is well known, it leads to asymmetric
nonlinear distortion of the compression and rarefaction
phases.?

The distribution function of narrow-band noise was
measured in Ref. 76 on an electrical model of a nonlinear
weakly-dispersive medium. The model consisted of an artifi-
cial transmission line of the low-frequency filter type with
varicaps serving as the nonlinear capacitors. The theory of
Ref. 72 was refined in Ref. 76 so as to incorporate the condi-
tions of the experiment. The function W (V) was calculated
taking into account two additional factors: dissipation and
weak cubic nonlinearity. It turned out that the transforma-
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FIG. 22. Experimental observation of the tendency of a normal distribu-
tion to transform into a uniform distribution at the stage of formation of
shock fronts.””

tion of the normal distribution W(¥) into a uniform distri-
bution owing to losses is somewhat smoothed. The cubic
nonlinearity, as well as the dispersion, leads to asymmetry of
W (V) relative to positive and negative surges. The measure-
ments are in good agreement with the more accurate theory.

We note that the hypothesis of ergodicity and stationar-
ity of the stochastic process in a nonlinear medium’? was
later provided with a rigorous mathematical substantiation.
It is shown in Refs. 32 and 78 for an initially normal station-
ary process V(z =0,8), whose evolution is described by
Burgers equation (1), that the solution V(z,0) will be ergo-
dic for any z. This permits calculating the statistical charac-
teristics on a computer by averaging one realization of the
solution.

In Refs. 79 and 80 a numerical method is presented for
calculating the characteristics of nonlinear noise waves, and
the uncertainties of the approximations obtained are esti-
mated. In order to use this method it is necessary to model
numerically the realization of the starting normal process
with a given correlation function, calculate the realization of
the solution in the required z section with the help of a differ-
ence scheme, and average the realization with respect to 8,
under the assumption of ergodicity, in order to obtain the
statistical characteristics of the solution.

In particular, the one-dimensional probability density
of an initially normal process with the correlation function
R =exp(—60?%/4) xcos 10 6(I" = 0.01) was calculated in
Ref. 80. For small z the distribution remains Gaussian; then
it acquires the form of a plateau-shaped function, close to a
uniform function; finally, at z~ 10 the distribution is
smoothed out and once again becomes similar to a Gaussian
distribution. The stage of formation of discontinuities is
clearly reflected in the realizations. However, the fronts are
slightly asymmetric, are shifted relative to one another only
slightly, and are washed out owing to the increasing effect of
dissipation. It is precisely the high-frequency absorption
that led here to smoothing and, possibly, to normalization of
the distribution function.

There should be no difficulties in obtaining the analo-
gous results (numerical and analytical) for intense narrow-
band noise, described by different evolutionary equations—
taking into account relaxation processes (9), diffraction
(26), and other factors. It is also possible to take into ac-
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count the displacement of the shock fronts,”” associated with
their weak asymmetry.

However, when the starting noise is confined to a nar-
row band and the realization consists of many strongly dif-
fering triangular pulses with moving and repeatedly collid-
ing, sharply asymmetric discontinuities,®’ the analytic
methods of the type used in Ref. 72 are ineffective. Here it
was possible to employ the approach used in Refs. 63, 82,
and 83, which is based on the asymptotic analysis of the
general solution of Eq. (1). It was shown in Refs. 82 and 83
that at large distances x, where the merging of shock fronts is
significant, the statistical characteristics become self-simi-
lar. They depend solely on one parameter 7, (x)—the out-
er scale of acoustic turbulence, characteristic for the time
interval between neighboring discontinuities. The self-simi-
lar state forms for 7, (x) > ¢, (¢, is the correlation time at
x =0), i.e., as a result of the merging of a large number
( ~10-10?) of discontinuities. Because of the motion of the
fronts the field at a fixed time 7 is determined by the values of
the starting field from a region much larger than ¢.. This
“nonlinear mixing” results®'~** in the normalization of the
one-dimensional distribution. The two-dimensional distri-
bution W(¥,¥,) in this case, however, differs substantially
from the Gaussian distribution.

The initial stage in the establishment of the self-similar
state was observed in an experiment®* performed in a tube 12
m long at an average sound frequency of 1.5 kHz ata 150 dB.
Full self-similarity, however, did not occur, since the condi-
tion for repeated merging of discontinuities was not satisfied
because of the small size of the medium.

It should be noted that the merging of R 10 discontinui-
ties has apparently not yet been observed. It could possibly
be observed in specially formulated numerical experiments
or in experiments with very long gas-filled tubes, where there
is no diffraction and special measures are taken to reduce
dissipative losses (in the gas volume and in the layer near the
wall). Nevertheless, the normalizing of the distribution un-
der conditions of nonlinearity is an important asymptotic
result. We assume that under real conditions the absorption
of the wave, diffraction, dispersion, and other processes ca-
pable of mixing weakly correlated sections of the field will
intensify the normalizing process. Moreover, the nonlinear-
ity can only lead to broadening of the spectra and thereby
create conditions for strong mixing owing to the indicated
linear mechanisms. In all cases, it is necessary to estimate the
average intensities, the characteristic distances, the frequen-
cies and other parameters in order to determine the realiza-
bility of these states in experiments.

10. CONCLUSIONS

In this review we attempted to indicate the place of sta-
tistical nonlinear acoustics among adjoining areas of re-
search, to present the basic ideas, and to indicate the special
peculiarities of the problems arising in this field. The review
was based on the results of recent experimental work and the
corresponding theoretical explanations. Some well-known
and some special results were omitted. In particular, the the-
ory of parametric radiators of acoustic noise®*~°° was not
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discussed, and the methodological questions of nonlinear
statistics and other problems were discussed only briefly.
Many of these problems are discussed in the review of Refs.
3-5, 63, and 85, whose bibliographies substatially supple-
ment the list of references presented here.

I am grateful to S. A. Akhmanov for the idea of writing
this review and for his support of research in the physics of
nonlinear random waves, carried out over many years in the
physics department at Moscow State University.
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